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Preface

T he goals of this book are to teach the reader about system programming
tools and resources, and to make the reader a better programmer. Con-

sider the following questions: What is a library, and how is it used? What is a
debugger, and how does it help during program development? What are script-
ing languages, and for what sorts of programming work are they useful? What are
system calls, and when are they useful? Why would someone ever want to run a
program from a shell instead of using a graphical user interface? These questions
are addressed by the study of system programming as outlined in this textbook.

In addition to the concepts of system programming, this text explores the
lower-level data types: bits and bytes, bit operations, arrays, strings, structures,
and pointers. This material is covered with an emphasis on memory and under-
standing how and why these different data types are used. Understanding code
at the memory level can help clarify even the most difficult programming con-
cepts. It is common for a student to be less comfortable with these topics than
with other basic programming concepts, such as loops and conditionals. Cover-
age of the lower-level data types is intended to reinforce an introductory coverage
obtained previously. The goal is to advance the programming skill of the reader
from the intermediate level to the advanced level, to the point where these topics
are well and comfortably used.
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Who Is this Book for?
The material in this text is intended to be used for study in a single-semester
course in system programming. It was written to follow an introductory pro-
gramming course. A colloquial title for this book might be Second Semester Pro-
gramming. It is intended to precede the study of more advanced topics in pro-
gramming such as data structures, algorithms, operating systems, and compilers.
While it is not necessary to sequence these studies in this manner, the study of sys-
tem programming will enhance the ability of a student to effectively implement
the more advanced topics. There is a strong emphasis in this text on improving
the practical programming skills of the reader, which should benefit a student in
subsequent courses of study. For an audience with stronger programming skills,
the earlier chapters could be covered briefly to allow more time for system top-
ics. Although the book is written for a single-semester course, it contains enough
material to customize study to the level of knowledge of the audience.

A Note to Instructors
Each chapter contains numerous code examples throughout the text demonstrat-
ing the concepts under discussion. All the examples have been thoroughly tested
through repeated use in classroom instruction. They are also available for down-
load at the publisher’s web site, http://www.pearsonhighered.com/irc. They are
intentionally short so that they can be coded, displayed, and discussed during
classroom instruction. The author typically uses a laptop with a projector to ex-
ecute many of the code examples during lectures, modifying and testing them
in different ways to demonstrate the concepts. Students are encouraged to bring
laptop computers and execute examples or short problems from each chapter’s
“Questions and Exercises” during class periods. These interactive techniques tend
to engage students, and this text is designed to facilitate that type of instruction.
However, these techniques are not required to use this text. The examples are
short enough to warrant other types of display during lectures, and an instructor
can use them with confidence, knowing that they do indeed execute as demon-
strated in the text.

Certain chapters in this book present multiple examples of the topic un-
der discussion. For example, scripting languages are demonstrated through shell
scripting, Perl, and MATLAB®. All three languages do not need to be covered
in depth, but seeing several examples clarifies the overall purpose and use of
scripting languages. The same approach is taken for libraries (the examples are
C standard, curses, and X) and system calls (the examples are processes, signals,

http://www.pearsonhighered.com/irc
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and sockets). This coverage allows an instructor flexibility in labwork and in cus-
tomizing the course, depending on which examples are emphasized.

In this book, Unix refers to any Unix-like operating system, including Linux,
Mac OS X, BSD variants, Solaris™, HP-UX, AIX®, and so on. The author used
Linux to develop the examples while writing this book, but they should work on
any Unix or Unix-like system.

Supplements
The following supplements are available to qualified adopters of the textbook:

● An extensive set of lecture slides (in PPT and PDF), including all the figures
from the book;

● Source code for all the example programs in the book, ready to compile and
execute;

● Instructor’s Solutions Manual containing solutions to all end-of-chapter
questions and exercises;

● An additional appendix on software licensing.

To obtain supplements, please visit www.pearsonhighered.com/irc. Instructors
seeking a password for instructor-only material can contact their local Pearson
Education representative or send email to computing@aw.com.

How Is this Book Different from Other Books?
The focus of this book is on the concepts of system programming; it is not in-
tended to serve as a complete reference for any of the topics it covers, such as text
editors, shells, libraries, scripting languages, system calls, and program building.
Such a text would be inordinately large and unwieldy, and good references for
those topics are already available. This book puts all the system programming
concepts together, providing a textbook perspective on systems-level problem
solving.
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script during its development:

● Hussein Abdel-Wahab, Old Dominion University

● Brian D. Davison, Lehigh University

www.pearsonhighered.com/irc


xii Preface

● Christopher R. Fischer, University of Delaware and Hologic, Inc.

● Gene Fisher, Cal Poly University

● Richard Fox, Northern Kentucky University

● Cindy Fry, Baylor University

● Patrick T. Homer, University of Arizona

● Sam Hsu, Florida Atlantic University

● Benjamin A. Kuperman, Oberlin College

● Natalie A. Nazarenko, SUNY College at Fredonia

● Bill Reid, Clemson University

● Bob Rinker, University of Idaho

● Nicholas A. Russo, University of Chicago

● Melissa Smith, Clemson University

● Tom Way, Villanova University

● Tilman Wolf, University of Massachusetts

Their efforts and feedback were of tremendous value and helped shape the final
text. A special note of thanks to reviewers Melissa Smith and Bill Reid, both of
whom used this material for instruction during its development. Finally, a note of
thanks to the author’s wife and children, Adair, Austin, and Gabrielle. The book
is done; let’s go hiking.

Adam Hoover
Clemson University

October 2008



1
Introduction

1.1 ● What is System Programming?

C omputer systems are made up of hardware and software. Software gener-
ically refers to the programs running on the computer. While both hard-

ware and software can be modified or upgraded, it tends to happen more often
with software. In fact, the major reason to have software is to provide the abil-
ity to change the instruction stream executed on the computer. This means that
it is often expected that new programs will be written, or old programs will be
modified or evolved, during the life cycle of a computer system.

Given this expectation, it is natural to look for methods to allow the com-
puter system to support program development. A number of tools and resources
have evolved over the last 30 years to assist program development. These in-
clude standard libraries (also called system libraries), system calls, debuggers,
the shell environment, system programs, and scripting languages. Knowledge of
these tools greatly enhances the ability of a programmer. While it is important to
learn the details of some specific tools, it is more important to understand when
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and how to best use a tool. A number of good reference manuals can provide de-
tailed information on a specific language or tool. This book is intended to provide
a broader understanding of the concepts in system programming.

We may define system programming as the use of system tools during pro-
gram development. Proper use of these tools serves several purposes. First and
foremost, it saves a great deal of time and effort. Using system libraries saves a
programmer the time it would take to independently develop the same functions.
Using a debugger saves an enormous amount of time in finding and fixing errors
in a program. Common tasks, such as searching for text within a set of files or
timing the execution of a program, are facilitated by the existence of system pro-
grams.

Second, system tools provide opportunities for program development that
are otherwise extremely difficult to come by. System calls provide access to the
core functions of the operating system, including memory management, file ac-
cess, process management, and interprocess communication. Some standard li-
braries implement complex functions that are beyond the capability of most pro-
grammers. For example, the math library includes trigonometric functions and
other real-valued operations that require iterative methods to reach a solution.

Third, consistent use of system tools promotes standards, so that code de-
veloped for one computer system is more easily ported to another computer
system. System libraries provide a layer of abstraction, implementing the same
function calls on multiple computing systems. An application can call a system
library without worrying about the details of the underlying hardware. In this
manner, the application can be ported as long as the destination system possesses
the same system libraries. For graphics, this has become increasingly important
as the number and variety of hardware display capabilities has expanded.

Knowledge of the basic system file structure assists in program management.
A Unix computer system typically includes well over 10,000 files related to system
operation (this does not include user data files). Over time, a standard method for
organizing these files has evolved. There are common places for libraries, system
programs, device files (connections to hardware), applications, and user data.

Finally, there is the shell environment. The shell environment is rich with
options, capabilities, and configurability, to the point that it is overwhelming
to novice programmers. However, once some proficiency has been gained, the
shell is a powerful tool for any serious system programmer. It offers tremendous
flexibility in process control, system management, and program development.
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This text was written with three goals. First, it supports teaching about the
tools and concepts of system programming. Second, it should help the reader ele-
vate his or her programming skill beyond an introductory level. Third, it provides
a rigorous regimen of programming exercises and examples that allow the reader
to practice and develop the skills and concepts of system programming. To help
achieve these goals, example code pieces and programs are provided throughout
the text. Each chapter ends with numerous questions and exercises that can be
undertaken to strengthen understanding of the material.

Besides the concepts of system programming, this text explores the lower-
level data types: bits and bytes, bit operations, arrays, strings, structures, and
pointers. This material is covered with an emphasis on memory and understand-
ing how and why these different data types are used. It is common for a student
to be less comfortable with these topics than with other basic programming con-
cepts, such as loops and conditionals. The coverage of the lower-level data types
is intended to reinforce an earlier exposure to these topics. The goal is to ad-
vance the programming skill of the reader to the point where these lower-level
data types are well and comfortably used.

1.1.1 Required Background
This text assumes that the reader has a basic understanding of programming,
such as variables, loops, conditionals, and control flow. For example, the reader
may have completed a single semester of study covering an introduction to C
programming. If the reader studied a different language, such as Java or C++,
then Section 1.5 can be studied to provide background on the equivalent C
syntax. The text also assumes that the reader has a working computer system,
with a C compiler, text editor, shell, and debugger already installed. The reader is
assumed to be familiar with the basic operation of the computer system, such as
navigating a directory or folder hierarchy and executing programs. Lastly, some
shell knowledge is also assumed, such as that obtained from an introductory
programming course.

1.1.2 Why Unix?
The majority of the material presented in this text can be studied on any com-
puter system, using any operating system. However, it would be naive not to
recognize the two most prevalent operating systems at the time of this writing:
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Microsoft Windows™ and Unix.1 For reasons about to be explained, this text ad-
vocates the study of system programming concepts on a Unix system. Note that
this discussion centers on which is to be preferred for study. There are other on-
going debates as to which operating system has the better business model, better
development, and other issues. The interested reader is directed to seek other
sources for discussion on these debates.

The Windows operating system is designed to simplify computer usage. A
Windows computer is essentially a closed system. The system is designed to be
turnkey, in line with the business model of providing the typical user with a sys-
tem that is as easy to use as possible. This design strategy necessarily obstructs
getting “under the hood,” to keep the typical user from doing something harm-
ful to the system. In addition, Microsoft publishes limited information on the
internal workings and design of Windows. This is also a business policy to pro-
tect their design from competitors. Finally, Windows is monolithic, not allowing
for various parts of the system to be disconnected or swapped for alternatives.
Once again, this is a business decision; Microsoft wants to sell its products and
only its products, so it makes its system fully integrated. It is straightforward to
understand the business motivations for the closed design, scarcity of published
details, and non-modularity of Windows. However, the very properties that aid
the typical computer user can be frustrating for the student studying system op-
eration.

Unix, on the other hand, and specifically Linux, has different design princi-
ples. It is open source, so that all details of its inner workings can be studied. It
is completely modular, so that any system component can be swapped for an al-
ternative. For example, the Linux kernel is developed completely independently
of the desktop environment. Within the kernel, a Linux computer operator has
many choices as to how to configure the operation of the system. The kernel itself
can be swapped or modified. One could argue that these properties prevent the
more widespread adoption of Unix by typical computer users, who are not inter-
ested in this flexibility and openness. However, it is these design properties that
make Unix an attractive choice for a student studying system operation.

Throughout this text, the examples shown are taken from a computer run-
ning the Linux operating system. For the most part, these examples can be run
just as easily on a Windows or other Unix system. There are some important
design issues that differentiate Unix/Linux and Windows, such as the multiuser
versus single-user nature of the systems. These differences will be discussed in de-
tail at the appropriate places. Beyond these considerations, deep down under the
hood, the system concepts are largely similar.

1. In this book, Unix refers to any Unix-like system, including Linus, Mac OS X, BSD variants, etc.
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1.1.3 Why C?
Selection of a particular programming language is an old debate in computing.
For application development, the debate still rages. For system programming,
however, very few experts argue for a language other than C. The reason is simple:
C is closest to the hardware. All programming languages provide various lev-
els of abstraction to assist in program development. For example, the concept
of a named variable, as opposed to a numeric memory address, tremendously
simplifies program development. Out of all the commonly used programming
languages, C provides for the least abstraction and hence is closest to the hard-
ware. Most single C statements translate simply to machine code. The available
data types in C tend to reflect what the hardware directly supports. Accessing
memory via indirection (pointers) provides the programmer with the ability to
access all parts of the system.

Historically, the development of the Linux kernel, as well as the development
of the original Unix operating system, was done in C. Most system software
is developed in C. Device drivers are almost always written in C. An indirect
benefit of being close to the hardware is speed. Code written in C tends to execute
faster than code written in other languages. For a programmer who intends to
work on system software, or who intends to develop code that closely interacts
with hardware (peripherals or the main system), studying concepts using the C
language provides opportunities to develop the most practical skills.

This choice does not preclude the study of other languages or advocate learn-
ing only C. Other programming concepts outside the scope of this text may be
more readily studied and implemented using another programming language.
However, it is the opinion of this author that a firm understanding of the pro-
gramming language closest to the hardware better supports an understanding
and proper use of a more abstract programming language.

1.2 ● The Three Tools
The three main tools of a system programmer are a shell, a text editor, and a de-
bugger. Familiarity with these tools increases programming skill and decreases
the time it takes to get programs working properly. The following serves as an in-
troduction to these tools and their interdependency. The real trick is in knowing
how to use all three together. Noticeably absent from this list is a compiler. A com-
piler is a powerful tool that can certainly aid in program development. However,
the compiler as a tool is addressed more fully in Section 6.1 during a discussion
of program building.
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1.2.1 Shell
It is assumed that the reader is familiar with basic operations in a shell, such as
generating a file listing. There are a number of good books and online references
that provide the necessary details to operate a specific shell. Appendix B offers a
list of common commands. This section is concerned with why a shell should be
used, and how a shell assists with program development.

A shell is a program that allows the user to run other programs. A shell
is usually executed in a terminal. Historically, a terminal was a simple display
and keyboard that was connected to a computer, providing a text-only interface
to the computer. Today, most operating systems provide a graphical interface
in which multiple virtual terminals can be run simultaenously, each running a
separate shell. If a specific terminal is reserved for system administration or error
messages on behalf of the entire computer system, then it is sometimes referred
to as a console. In practice, the words shell, terminal, and console are often used
interchangeably.

Most Unix systems provide several methods to start a shell. Some systems
provide a shell after login, without the benefits of a graphical desktop. On other
systems a shell must be started manually through a menu or mouse click in-
terface. Once started, a typical shell looks like the ones shown in Figure 1.1.
Commands are entered into the shell through a text-only interface. The shell
informs the user that it is waiting for its next command via a prompt. In the fig-
ure, the prompt is ahoover@video>, which is the user name and machine name.
Some shell configurations show the current directory or other information in
the prompt. Throughout this text, the shell prompt will hereafter be shown as
ahoover@video> to promote clarity.

A typical command is the name of a program, which starts execution of
that program. For example, both the shells in Figure 1.1 show the execution of
the ls program, which provides a listing of files in the current directory. Many
of the programs run in a shell have text-only input and output, similar to ls.
However, it is also possible to run graphics- (GUI-) based programs from a shell.
For example, Figure 1.2 shows the result of typing xclock at the prompt; it starts
the xclock program.

This method for starting programs may seem strange to those familiar with
today’s desktop approach to running programs. Clicking on an icon and perus-
ing through a pull-down menu are typical operations used to run a program.
Why then start a program, the shell, just to run other programs? The answer is
flexibility. The desktop mouse and menu operations provide limited options in
how a program is run. Typically, the desktop and menu shortcuts run a program
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Figure 1.1 Two examples of a shell, running in different terminal emulators.
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Figure 1.2 Starting a GUI-based program by typing its name in the shell.

in its default mode. For example, starting a word processor opens the program in
full-screen mode (the program fills the entire screen), with an open blank page,
and all options set to their defaults (bold is off; text is left- justified; font is Times
Roman; etc.). Suppose one desired to start the word processor with some of those
options changed? A shell provides for this through command line arguments. A
command line argument is anything typed at the shell prompt after the name
of the program to execute. It provides information about how the user wishes
to run the program. For example, typing xclock -help at the prompt yields the
following:

ahoover@video> xclock -help

Usage: xclock [-analog] [-bw <pixels>] [-digital] [-brief]

[-utime] [-fg <color>] [-bg <color>] [-hd <color>]

[-hl <color>] [-bd <color>]

[-fn <font_name>] [-help] [-padding <pixels>]

[-rv] [-update <seconds>] [-display displayname]

[-geometry geom]

ahoover@video>

In response to the -help command line argument, the xclock program displays
its usage and then quits. The usage explains all the command line arguments
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Figure 1.3 Command line arguments change the way a program is run.

that can be used when starting the program. For this particular program, most
of these arguments change the way the clock is displayed. For example, xclock
-digital -bg grey causes the program to run as displayed in Figure 1.3.

The control and flexibility offered by command line arguments is often useful
during program development and system administration. While many programs
can be reconfigured while running, selecting options through menu interfaces
can take time. Configuring the program at startup through command line argu-
ments can save a great deal of time, especially if a program is run multiple times,
such as during development.

A variety of shells have been developed over the years. Some examples include
sh, csh, tcsh, ksh, and bash. On a Windows system, there is a very simple shell
called console, sometimes called DOS console or command prompt. The shells
differ in their intrinsic capabilities. Besides having the ability to run programs,
and provide command line arguments, a shell has a list of internal commands
that it can perform. For example, most shells have the ability to set up aliases for
commonly typed commands. In the tcsh shell, typing

ahoover@video> alias xc xclock -digital -bg grey

ahoover@video>
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Table 1.1 Some common shell internal commands.

Command Description

alias Create an alias

cd Change directory

pwd Print current working directory

set Give a shell variable a value

which Identify full path of program

Table 1.2 Some common system programs.

Command Description

grep Search files for specific text

ls List files and their attributes

man Display manual (help) for command/program

more Display a text file using pausable scrolling

time Measure the running time of a program

sort Sort lines in a text file

causes the shorter command xc to become an alias for the longer command
xclock -digital -bg grey. This can be quite useful when one is running the
same command over and over, for example during program debugging. Table 1.1
lists some common internal commands for shells. All these commands are com-
mon to all the most popular shells (notably excluding the Windows console,
which is intended to be only a limited shell). Unfortunately, different shells im-
plement some of these internal commands using different syntaxes. For example,
to create the same alias using the bash shell as given in the above example for the
tcsh shell, one would type

ahoover@video> alias xc="xclock -digital -bg grey"

ahoover@video>

Most advanced programmers select a single shell with which to become profi-
cient. Luckily, most of the shells are similar enough that proficiency with a par-
ticular shell allows a programmer to work adequately in any shell.

In addition to the internal shell commands, there are a number of programs
pre-compiled and ready to run on most Unix systems. Table 1.2 lists some of the
commonly used programs. These programs are called system programs because
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they generally provide capabilities to manipulate, explore, and develop programs
for the computer system. For example, ls is a system program that provides
a listing of files in the current directory. Perhaps the most important system
program to begin using is man. It accesses a manual of help files stored on the local
computer system. Usually, there are individual “man pages” for all programs, and
often for support files for the more complex programs. There are also man pages
for all the functions within the various libraries on the system. These man pages
usually come installed by default on a Unix system, but they are also posted many
times over on the Internet, and can be found using a web search engine. It is
also possible (and recommended) to find tutorials and other help via the Web on
using a particular shell.

The purpose of both shell internal commands and system programs is to as-
sist the system programmer. It is not terribly important to remember whether
a particular operation is a shell command or a system program. Sometimes the
operations are listed all together. The important thing is to become comfortable
with the common operations that save time and effort. These programs are revis-
ited in Section 5.3.1 during a discussion of pipeline chaining, and Appendices B
and C provide longer lists.

1.2.2 Text Editor
The second tool considered here is a text editor. The basic operations of a text
editor allow the user to write and edit code, save it to a file, and load it from a
file. These operations are not much different from those supported by a word
processor. In fact, it is possible to use a word processor to write code (although
it is not recommended). However, there are additional features that a text editor
can provide, beyond what a typical word processor provides, that are designed to
support programming. For example, Figure 1.4 illustrates the finding of match-
ing parentheses. Using the text editor vi, if the cursor is on an opening or closing
parenthesis, pressing the percent symbol (%) moves the cursor to the matching
parenthesis. Pressing it a second time moves the cursor back to where it started.
The same keystroke matches opening and closing braces (the symbols surround-
ing blocks of code) and square brackets (the symbols used for array indices). For
the text editor gedit, bracket matching is enabled through a menu option.
For the text editor emacs, the bracket matching feature can briefly move the
cursor to the opening bracket every time a closing bracket is typed, animating
the grouping. Some text editors also provide color coding to highlight match-
ing brackets and their enclosed blocks of code. Whichever text editor is used, the
bracket matching feature can be quite useful in tracking down logic errors on
expressions, flow errors on loops, array usage, and other bugs.
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Figure 1.4 Using a text editor to identify matching parentheses.

Perhaps the most important features a text editor can provide to a program-
mer are the ability to display the line number of the program for the given cursor
location, and the ability to move the cursor to a given line number. Figure 1.5
illustrates an example. Using the text editor vi, the keyboard sequence CTRL-G
displays the line number. The keyboard sequence :N[CR] relocates the cursor to
line number N. Using the text editor gedit, this feature is provided through menu
options. Using the text editor emacs, the keyboard sequence [ESC]GN relocates
the cursor to line number N (assuming a commonly configured installation).
Whichever text editor is used, it is important to learn these operations. They al-
low a programmer to use line numbers to communicate with a debugger. The
programmer can tell the debugger to pause program execution at a given line
number. The debugger can tell the programmer at which line number a given
error occurred. In this manner, the programmer can work with the debugger to
focus on the relevant line of code.

As a programmer becomes familiar with a given text editor, other useful
features will be learned. The ability to search and/or replace a given string is
often helpful in debugging variable usage. The ability to cut and paste a word,
line, or block of code is often useful during code writing. The ability to arrange
indentation helps support good coding practices. Some text editors support color
coding of keywords as well as of code blocks.
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Figure 1.5 Using a text editor to identify or find a program line number.

Not all text editors share all features. The text editor vi relies upon keystroke
combinations to access features. The text editor emacs uses a combination of
keystroke and menu operations. Newer text editors tend to rely more upon menu
operations since they can be easier to find. It is beyond the scope of this book
to delve into all the features for various text editors. One can easily find an
online manual as well as online feature guides for all the popular text editors. The
important thing to realize is that whichever text editor is used, a programmer
should dedicate some time to becoming comfortable with those features that
support programming.

1.2.3 Debugger
The debugger is perhaps the most important tool for a system programmer. It
allows a programmer to observe the execution of a program, pausing it while it
runs, in order to examine the values of variables. It also allows a programmer to
determine if and when specific lines of code are executed. It allows a programmer
to step through a program, executing it one line at a time, in order to observe
program flow through branches. This section describes how a debugger works;
the process of debugging is addressed in the next section.
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The debugger is itself a program, which is executed like any other program. As
with shells and text editors, there are many debuggers. In this book, examples are
explained using the GNU debugger, which is usually executed as gdb. Although
it is possible for a debugger to interoperate with more than one compiler, most
debuggers are correlated with specific compilers. In this book, the concepts and
examples are explained using the GNU C compiler, which is usually executed as
gcc.

To explain how a debugger works, we will use the code example given in
Figure 1.5. Suppose this code is stored in a file called sum.c. In order to compile
the file, one could execute the following operation:

ahoover@video> gcc sum.c

ahoover@video>

This produces a file called a.out, which is an executable program. Typing a.out
runs the program:2

ahoover@video> a.out

sum=29

ahoover@video>

The program is executed, running until it ends, at which time the shell prompts
for another command. In order to use the debugger to run the program, one must
follow a sequence of operations:

ahoover@video> gcc -g sum.c

ahoover@video> gdb a.out

(gdb) run

Starting program: /home/ahoover/a.out

sum=29

Program exited with code 07.

(gdb) quit

ahoover@video>

We will discuss each of these steps in detail.

First, when compiling, we make use of the command line argument -g. This
tells the compiler that the executable file is intended for debugging. (Other com-
pilers use similar flags or options.) While creating the executable file, the compiler
will store additional information about the program, called a symbol table. The

2. This assumes the current directory is included in the PATH environment variable; otherwise

./a.outmust be typed.
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symbol table includes a list of the names of variables used by the program. For
our example, this list includes i and sum. The program is also compiled without
optimization. Normally, a compiler will rearrange code to make it execute faster.
However, if the program is intended for debugging, then any rearrangement of
the code will make it difficult to relate which line of C code is currently being
executed. When compiling for debugging, it is normally desirable to turn off all
optimizations so that program execution follows the original C code exactly.

One can see the effects of compiling for debugging by looking at the size of
the executable:

ahoover@video> gcc sum.c

ahoover@video> ls -l a.out

-rwxr-xr-x 1 ahoover fusion 4759 Jun 19 18:53 a.out*

ahoover@video> gcc -g sum.c

ahoover@video> ls -l a.out

-rwxr-xr-x 1 ahoover fusion 5843 Jun 19 18:54 a.out*

ahoover@video>

The executable has increased in size by 1,084 bytes. This increase in size is caused
by the inclusion of the symbol table, and because the compiler was not allowed
to optimize the code, so that its final output is not as efficient as it could be. Note
that if you forget to compile for debugging, then the debugger will not be able
to operate on your executable. Without the symbol table, or in the presence of
optimizations, the debugger will be lost.

After compiling, we run the debugger gdb on the executable a.out that we
just created. This does not immediately execute our program. It runs the debug-
ger and loads our program into the debugger environment. This is emphasized
by the fact that the prompt has changed. Instead of ahoover@video>, which is the
shell prompt, we now see (gdb), which is the debugger prompt. One can think of
a debugger as a wrapper around a program. Figure 1.6 shows a diagram. When
the debugger is started, it uses the symbol table and original C code file to keep
track of what the program is doing during execution.

Once the debugger is started, it has its own set of commands. One of these
commands is run, which begins execution of the program. In our example, this
results in the program running as it would from the shell, eventually producing
the output sum=29 and then exiting. With the program finished, we are back at
the debugger prompt (gdb). To exit the debugger, we issue the command quit
that takes us back to the shell.
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Symbol table C code

Executable

Debugger

...
i
sum
...

Figure 1.6 A debugger relates an executable to the original variable names and source
code file so that a programmer can track execution.

Sometimes it is useful to execute a program all the way to completion within
a debugger. However, more often it is useful to execute a program “halfway,” or
through only part of its complete code. This is accomplished by setting a break-
point . It tells the debugger to execute the program until that point is reached,
at which time execution is to be paused. The programmer is then able to give
commands to the debugger while the program is paused. For example:

ahoover@video> gdb a.out

(gdb) break 13

Breakpoint 1 at 0x804837b: file sum.c, line 13.

(gdb) run

Starting program: /home/ahoover/a.out

Breakpoint 1, main () at sum.c:13

13 sum=sum+((i-3)/2+(i/3));

(gdb)

At this point, the program has reached line 13 in the file sum.c for the first
time. This should happen when the variable i reaches a value of 5 in the loop.
Execution of the program is paused while we decide what to do. For example, we
can display the value of i:

(gdb) display i

1: i = 5

(gdb)

As expected, the value of i is 5. We can also ask the debugger to tell us where the
program is paused in relation to the original source code:
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(gdb) where

#0 main () at sum.c:13

#1 0x4004e507 in __libc_start_main (main=0x8048460 <main>,

argc=1, ubp_av=0xbffffa34, init=0x80482e4 <_init>,

fini=0x8048530 <_fini>, rtld_fini=0x4000dc14 <_dl_fini>,

stack_end=0xbffffa2c)

at ../sysdeps/generic/libc-start.c:129

(gdb)

As expected, the first line tells us that we are at line 13 in the file sum.c, which is
where we set the breakpoint. For now, we can ignore the other strange-looking
line. Chapter 6 discusses functions and variable scope.

When a program is paused, there are three different ways to start it executing
again: step, next, and continue. The step command executes the next line of
code and then pauses again. For example:

(gdb) step

9 for (i=0; i<10; i++)

(gdb)

We had paused the program prior to the execution of line 13 using a breakpoint.
After the step command has finished, we have executed line 13 and moved to
the next line, which in this case is back to the top of the for loop at line 9.
The debugger has again paused the program, prior to executing this line, and
is awaiting our command.

The next command does the same thing, but if the next line of code is a
function call, then the debugger will execute all the lines of code in that function
call and then pause after the function returns. In other words, it treats the entire
execution of the function call as one line of code. The step command will go into
the function call and pause inside it at the first line of its code. Successive step
commands can then be used to go through the entire function.

Issuing step or next commands repeatedly allows a programmer to run a
program one line at a time, pausing after each line. This is called stepping through
a program. For example, picking up where we left off above:

(gdb) next

10 if (i < 5)

(gdb) next

Breakpoint 1, main () at sum.c:13

13 sum=sum+((i-3)/2+(i/3));

(gdb) next

9 for (i=0; i<10; i++)
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(gdb) next

10 if (i < 5)

(gdb) next

Breakpoint 1, main () at sum.c:13

13 sum=sum+((i-3)/2+(i/3));

(gdb) next

Each time the command next is issued, one more line of code is executed. Note
that if a breakpoint is reached, the debugger also informs us of that, although it
would have paused anyway because the next line of code was finished executing.
Depending on the situation, using next to step through a program is often pre-
ferred over using step. The step command may cause the debugger to go into
system library function calls, such as printf() function calls, which is rarely use-
ful. (We can—hopefully!—expect the system library code to be more bug-free
than code we are currently writing.) It is also useful to know that pressing [EN-
TER] alone will cause the gdb debugger to issue the previous command, so that
one does not need to type “next” over and over. Most debuggers have a similar
shortcut or keystroke to simplify stepping through a program.

The third method of continuing program execution is enacted by the con-
tinue command. It restarts execution and allows it to continue until a breakpoint
is reached, until the program exits normally, or until the program reaches a line
of code doing something illegal. Illegal operations include things like trying to
divide by zero, or trying to access a bad memory location.

There are two different ways to observe the value of a variable. The print
command is a onetime request to see the value. The debugger displays the value
once only and will not display it again until requested. The display command
is a request for ongoing observation. The debugger will display the value of the
variable each time the program is paused. For example:

ahoover@video> gdb a.out

(gdb) break 13

Breakpoint 1 at 0x8048490: file sum.c, line 13.

(gdb) run

Starting program: /home/ahoover/a.out

Breakpoint 1, main () at sum.c:13

13 sum=sum+((i-3)/2+(i/3));

(gdb) display i

1: i = 5

(gdb) continue

Continuing.

Breakpoint 1, main () at sum.c:13

13 sum=sum+((i-3)/2+(i/3));
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1: i = 6

(gdb) continue

Continuing.

Breakpoint 1, main () at sum.c:13

13 sum=sum+((i-3)/2+(i/3));

1: i = 7

(gdb)

Notice that each time the program is paused, the value of i is displayed. The
continue command is used to resume execution of the program each time,
causing it to run until it again reaches the breakpoint. Each time this happens,
the loop counter i has increased by 1.

Multiple breakpoints can be set. For example:

(gdb) break 13

Breakpoint 1 at 0x8048490: file sum.c, line 13.

(gdb) break 8

Breakpoint 2 at 0x8048467: file sum.c, line 8.

(gdb) run

Starting program: /home/ahoover/a.out

Breakpoint 2, main () at sum.c:8

8 sum=0;

(gdb) display i

1: i = 134518128

(gdb) continue

Continuing.

Breakpoint 1, main () at sum.c:13

13 sum=sum+((i-3)/2+(i/3));

1: i = 5

(gdb)

The order of the breakpoints does not matter. When any breakpoint is reached,
the debugger pauses. In this example, we displayed the value of i at line 8, before
it had been given any value in the program. The strange value 134518128 is
essentially a random value that happens to be stored in i at the beginning of
execution of the program; later when the program is inside the loop, we see the
more normal looking value 5.

Breakpoints can be removed during debugging using the clear command.
This can be useful during extended debugging sessions. Sometimes it is simpler
for a programmer to quit and restart the debugging process from scratch, using
new breakpoints. Sometimes when a program has done something unexpected,
a programmer will want to start over in an effort to identify where the program
misbehaved.
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The gdb debugger (and many other debuggers as well) includes a large set of
commands not discussed here. These commands include capabilities to pause ex-
ecution based upon variables being read or written (called watchpoints), to pause
execution based upon signals (called catchpoints), and others. While these com-
mands are useful, they are not necessary for common debugging. The commands
and concepts introduced in this section generally suffice for the vast majority of
debugging problems. The reader is encouraged to get started with this set of con-
cepts and to explore additional debugging capabilities as the need arises.

1.2.4 Integrated Development Environment (IDE)
As systems have evolved, so have system tools. The interdependence of the three
tools outlined in the previous sections has been recognized for many years. This
led to the establishment of an integrated development environment (IDE). An
IDE combines the three tools, along with a compiler, into a single program or
program interface. Rather than separately running a text editor, compiler, and
debugger, they all can be run together from within a single IDE. This allows the
tools to be even more tightly integrated. Usually an IDE supports graphics-based
operations that tie the individual tools together in a manner that can further
speed program development and management.

At the time of this writing, popular examples of IDEs include Microsoft’s Vi-
sual Studio, Eclipse, Sun Microsystem’s NetBeans, and the GNAT Programming
Studio. Some IDEs are intended to support a single programming language, such
as NetBeans (for Java). Other IDEs support multiplate languages, such as Visual
Studio and Eclipse; the former is proprietary, while the latter is open source. The
advantage of multiple language support is to be able to assist a team of program-
mers in large-scale software development, or in multiplatform development. The
centralized control of program development within one environment is often one
of the biggest advantages to using an IDE.

An IDE is a powerful tool and belongs in the repertoire of any serious system
programmer. However, it is important to understand what comprises an IDE,
and how it works, by understanding the individual tools within it. Students of
system programming should be encouraged to use the basic tools to gain at least
some proficiency. That basic proficiency should help in future transitions to other
IDEs or systems.

1.3 ● How to Debug
The previous section introduced the shell environment and the three most im-
portant tools for system programming: the shell, the text editor, and the de-
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bugger. In this section, we discuss methods to use the debugger. This includes
deciding when and how to use the debugger to track down various problems.

In this discussion, we must make a distinction between fixing program logic
and fixing program errors. Debugging is primarily inteded to help with the lat-
ter. Translating logical ideas into program code requires an understanding of
how and when to use various programming constructs, such as a loop, a condi-
tional, and an array. A debugger will not help a programmer determine whether
a problem requires a pair of nested loops or whether a single loop will do the
job. This is a logic concept, and should be approached through pseudocode writ-
ing, flowcharting, or other program development techniques. On the other hand,
when a programmer is confident (or at least comfortable) with the logic being
written into a program, then a debugger is an invaluable tool. It can assist the
programmer in finding errors in the implementation or due to unanticipated de-
tails. For example, a debugger can help locate the use of an incorrect data type
(e.g., using an int in place of a float), incorrect bounds on a loop, incorrect
array indices, equation and logic errors, and typographical errors (some of the
more devilish errors turn out to be nothing more than simple typos, such as a
missing semicolon).

There are a handful of situations that are common to debugging problems.
The following sections will describe each of these situations and go through
an example debugging session. We will approach the debugging problem from
the perspective of a programmer: we witness a symptom or some observed bad
behavior on the part of a program. We then present a technique to locate the
problem in the program code and, ultimately, to identify the cause of the program
error.

1.3.1 Program Crashes
When a program stops executing in an unexpected manner, it is said to have
crashed. Something went wrong, and the system was unable to continue running
the program. For example, suppose the following code is contained in a file called
crash1.c:

#include <stdio.h>

main()

{

int x,y;

y=54389;
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for (x=10; x>=0; x--)

y=y/x;

printf("%d\n",y);

}

At the shell, we compile3 and execute the program, only to find that it crashes:

ahoover@video> gcc -o crash1 crash1.c

ahoover@video> crash1

Floating exception (core dumped)

ahoover@video>

The error message “Floating exception” gives only a limited idea of what went
wrong, and almost no idea of where it went wrong. The system has created a
core dump file to help the programmer. It contains a snapshot of the contents
of memory and other information about the system right at the moment that the
program crashed. However, core dump files are usually large, containing far more
than is needed for common debugging. Typically, core dump files are used only
in advanced system programming problems.

A naive programmer might open up the C code file and begin studying the
code, looking for possible sources of error. In a program as small as our example,
this might even work. However, using a debugger is far simpler and will save a
great deal of time. The idea is to run the program in the debugger until it crashes,
and at that point look at what happened:

ahoover@video> gcc -g -o crash1 crash1.c

ahoover@video> gdb crash1

(gdb) run

Starting program: /home/ahoover/crash1

Program received signal SIGFPE, Arithmetic exception.

0x0804848b in main () at crash1.c:10

10 y=y/x;

(gdb)

The debugger tells us that the program crashed at line 10, and shows us the line
of code at line 10. Looking at that line, it is easy to see that not many things could
have gone wrong. Something must be wrong with either the value of y or x. The
most likely scenario is that the value of x is zero, and that the program is therefore
attempting to divide by zero. We can test this by asking the debugger to display
the value of x:

3. The option to the compiler -o crash1 tells it to name our executable crash1 instead of the default

a.out. It is a good habit to give executables meaningful names instead of calling all of them a.out.
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(gdb) display x

1: x = 0

(gdb)

As we suspected, x has a value of zero. Now we can review the code to determine
whether this was intended or whether we have an implementation error. For
example, we might not have intended the loop to run until x>=0, and instead
intended it to run until x>0.

Dividing by zero is not the only thing that can cause a program to crash.
Perhaps the most common error resulting in a crash occurs when using arrays
or pointers. For example, suppose the following code is stored in a file called
crash2.c:

#include <stdio.h>

main()

{

int x,y,z[3];

y=54389;

for (x=10; x>=1; x--)

z[y]=y/x;

printf("%d\n",z[0]);

}

When we compile and execute this code, the program crashes:

ahoover@video> gcc -o crash2 crash2.c

ahoover@video> crash2

Segmentation fault (core dumped)

ahoover@video>

Using the debugger, we run the program until it crashes to find out where the
problem occurred:

ahoover@video> gcc -g -o crash2 crash2.c

ahoover@video> gdb crash2

(gdb) run

Starting program: /home/ahoover/crash2

Program received signal SIGSEGV, Segmentation fault.

0x080484a2 in main () at crash2.c:10

10 z[y]=y/x;

(gdb)
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A “segmentation fault” is usually a bad memory access; in other words, the pro-
gram has tried to access a memory location that does not belong to the program.
For example, an array has a specified size. Trying to access a cell index outside
the specified size is a bad memory access. Looking at the line of code where the
program crashed, we can see an access to the array z[] at cell index y. We can ask
the debugger for the value of y and compare it against the allowed range (z[]was
defined as a three-element array, so the allowed range is 0 . . . 2):

(gdb) display y

1: y = 54389

(gdb)

As we suspected, the value for y is outside the allowed range for indices for the
array z[]. Once again, we have quickly identified the point where the program
has misbehaved and can now go about the process of determining if the program
logic or implementation is at fault.

Using a debugger to discover where a program is crashing is probably the
most popular use for a debugger. During program development, if a crash is ob-
served, the first action should almost always be to run the program in a debugger
to locate the problem.

1.3.2 Program Stuck in Infinite Loop
When a program runs for a long time without displaying anything new, or
prompting the user for new input, then it is probably stuck in an infinite loop.
This means that the code executing in the loop is never going to cause the condi-
tional controlling the loop to fail, so that the loop runs over and over. Of course,
a “long time” is a relative expression. Some programs may need 10 seconds, or a
minute or longer, in order to complete a complex calculation. However, if you can
go for a cup of coffee, check the baseball scores, come back and still see the pro-
gram not responding, then it is probably stuck in an infinite loop. For example,
suppose the following code is stored in the file infloop.c:

#include <stdio.h>

main()

{

int x,y;

for (x=0; x<10; x++)

{

y=y+x;
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if (y > 10)

x--;

}

}

When we compile and execute this code, the program seems to “run forever”:

ahoover@video> gcc -o infloop infloop.c

ahoover@video> infloop

_

The “_” symbol indicates the cursor. The program is running but never ends, so
we never see the shell prompt again. Eventually we press CTRL-C to force the
program to stop executing.

We can perform the same operation using the debugger, but pressing CTRL-C
in the debugger does not cause the program to quit. Instead, it tells the debugger
to pause program execution at whatever line is currently being executed. We can
then look at the surrounding code to determine which loop is executing infinitely:

ahoover@video> gcc -g -o infloop infloop.c

ahoover@video> gdb infloop

(gdb) run

Starting program: /home/ahoover/infloop

_ [...user presses CTRL-C...]

Program received signal SIGINT, Interrupt.

0x08048444 in main () at infloop.c:8

8 for (x=0; x<10; x++)

(gdb)

In this simple example, there is only one loop, so it comes as no surprise that the
program is currently executing a line of code somewhere in this loop. In order
to determine why the program will not finish the loop, we can watch the loop
counter through an iteration:

(gdb) display x

1: x = 0

(gdb) next

10 y=y+x;

1: x = 0

(gdb) next

11 if (y > 10)

1: x = 0

(gdb) next

12 x--;
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1: x = 0

(gdb) next

8 for (x=0; x<10; x++)

1: x = -1

(gdb) next

10 y=y+x;

1: x = 0

(gdb)

After having watched a complete iteration of the loop, we find that the counter
variable x has the same value (zero) at the beginning of every iteration. Since
it never reaches 10, the loop never ends. Now we can go about the process of
examining the code involving x within the loop to determine the problem.

This technique for debugging is particularly useful when there are many
separate loops within a program. It is the fastest way to determine which loop
is faulty, and a good way to determine why the loop is not terminating properly.

1.3.3 Program Working Partially
Sometimes a program is working correctly, up to a point, when it suddenly
starts misbehaving. For example, a program may be processing a series of input
commands from the user. For the first few commands, the program seems to
work fine, but at some point it starts producing erroneous output. How can a
debugger help find the problem? It can help by focusing time and effort on the
code in question, skipping over all the code that is seemingly working correctly.
For example, consider the following code:

#include <stdio.h>

main()

{

int choice;

float ppg,rpg;

ppg=rpg=0.0;

choice=0;

do

{

printf("(1) Enter points per game\n");

printf("(2) Enter rebounds per game\n");

printf("(3) Quit\n");

scanf("%d",&choice);

if (choice == 1 || choice == 2)
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{

printf("Amount: ");

if (choice = 1)

scanf("%f",&ppg);

else if (choice == 2)

scanf("%f",&rpg);

printf("Points=%f Rebounds=%f\n",ppg,rpg);

}

}

while (choice != 3);

}

The program is supposed to keep track of two statistics, the points per game and
the rebounds per game. The program is supposed to allow the user to update
these statistics, running until the user decides to quit. When this code is compiled
and executed, however, the following happens:

ahoover@video> gcc -o wrong wrong.c

ahoover@video> wrong

(1) Enter points per game

(2) Enter rebounds per game

(3) Quit

1

Amount: 14

Points=14.000000 Rebounds=0.000000

(1) Enter points per game

(2) Enter rebounds per game

(3) Quit

2

Amount: 5.3

Points=5.300000 Rebounds=0.000000

(1) Enter points per game

(2) Enter rebounds per game

(3) Quit

The first option seemed to work fine, placing the entered value 14 into the ppg
variable. But the second option put the entered value 5.3 into the wrong variable.
What went wrong?

Using the debugger, we can work to find the problem. We recompile the
program for debugging and load it into the debugger:

ahoover@video> gcc -g -o wrong wrong.c

ahoover@video> gdb wrong

(gdb)
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Now we have to decide where to pause execution of the program. It seems as if
the display of the menu is working correctly and that the problem lies somewhere
in the code where the values are input. A logical place to pause the debugger
is therefore after the menu has been displayed but before any input has been
received from the user. Using a text editor, we can see that the code if (choice
== 1 || choice == 2) is at line 16. Therefore, we set a breakpoint at line 16 and
run the program up to that point:

(gdb) break 16

Breakpoint 1 at 0x80484ec: file wrong.c, line 16.

(gdb) run

Starting program: /home/ahoover/wrong

(1) Enter points per game

(2) Enter rebounds per game

(3) Quit

2

Breakpoint 1, main () at wrong.c:16

16 if (choice == 1 || choice == 2)

(gdb)

At this point, the program is paused at line 16. Now we can step through the
program, one line of code at a time, to see what happens:

(gdb) next

18 printf("Amount: ");

(gdb) next

19 if (choice = 1)

(gdb) next

20 scanf("%f",&ppg);

(gdb)

Up until that last step, things seemed to be working correctly. However, we en-
tered 2 at the menu, and yet the program is proceeding to the code that asks the
user for the ppg value. What went wrong? The only variable involved so far is
choice, which decided what part of the code to execute next. We can display its
value:

(gdb) display choice

1: choice = 1

(gdb)

For some reason, the program thinks we entered 1 when we know we entered
2. How could this have happened? Now that we are focused on the problem of
finding an error involving the variable choice, we look backward over the last
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few lines of code and notice the problem. At line 19, the code reads if (choice
= 1) instead of if (choice == 1). The wrong code actually changes the value of
choice to 1 every time it executes.

This is a simple example because the program is short. However, the im-
portant idea is to use the debugger to pause execution near where a problem is
occurring, and then to step through the code in question. As a program increases
in length, this technique becomes increasingly useful.

1.3.4 Loop Behaving Incorrectly
The logic inside a loop can be complicated to the point that it is impossible to
mentally outline every possible case through every iteration. If such a loop is
behaving incorrectly, a debugger can be used to observe the loop, pausing to
examine the variables controlling the logic at each iteration. This can be useful
not only for finding errors but also in correcting any problems with the logic
inside the loop. For example, consider the following code:

#include <stdio.h>

main()

{

char word[80];

int i,j;

printf("Enter any word: ");

scanf("%s",word);

i=0;

while (word[i] != ’\0’)

{

if (word[i] == word[i+1])

{

j=1;

while (word[i] == word[i+j])

j++;

printf("%d consecutive %c\n",j,word[i]);

}

i++;

}

}

This program is supposed to search the word given by the user for consecutive
occurrences of any letter, and report them. Compiling and executing, it works
correctly on the first test:
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ahoover@video> gcc -o badloops badloops.c

ahoover@video> badloops

Enter any word: apple

2 consecutive p

ahoover@video>

However, on a test having three of the same letter in a row, the program outputs
an additional erroneous line:

ahoover@video> badloops

Enter any word: appple

3 consecutive p

2 consecutive p

ahoover@video>

What caused the output of the extra line “2 consecutive p”? The debugger can be
used to watch the iterations of the outer loop to see what happened. The first line
in the outer loop is if (word[i] == word[i+1]), at line number 14. This line
tests if two consecutive letters match, while the following code determines the
total span of consecutive letters. Recompiling the code for debugging, the idea is
to pause the program at the beginning of each iteration of this loop to see how it
behaves on the problem test case.

ahoover@video> gcc -g -o badloops badloops.c

ahoover@video> gdb badloops

(gdb) break 14

Breakpoint 1 at 0x80484d4: file badloops.c, line 14.

(gdb) run

Starting program: /parl/ahoover/ece222/book/1/badloops

Enter any word: appple

Breakpoint 1, main () at badloops.c:14

14 if (word[i] == word[i+1])

(gdb)

The variable i controls the behavior of the loop. Therefore, it is prudent to
watch the value of i through every iteration, before continuing execution of the
program.

(gdb) display i

1: i = 0

(gdb) continue

Continuing.
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Breakpoint 1, main () at badloops.c:14

14 if (word[i] == word[i+1])

1: i = 1

(gdb)

After the completion of the first iteration, we see that the program worked cor-
rectly. No output was displayed, because the first two letters of “appple” do not
match. The next iteration should produce output.

(gdb) continue

Continuing.

3 consecutive p

Breakpoint 1, main () at badloops.c:14

14 if (word[i] == word[i+1])

1: i = 2

(gdb)

The expected output “3 consecutive p” was observed. However, at this point it
is possible to see why there will be additional erroneous output. The value of
i is 2, which means that the next iteration will begin by comparing the second
“p” in “appple” to the third “p.” The value of i should have jumped ahead to
test the “l” against the “e.” Looking at the code at the bottom of the loop, we
now realize that i++ does not move ahead by enough characters in the case
where multiple consecutive characters all match. The logic for this loop must be
partially rewritten.

1.4 ● Program Development
Program development concerns the writing of a program to solve a given prob-
lem. Knowledge of the syntax of a programming language is not enough. One
must know how to use the language to approach programming problems. An
analogy can be made to human conversation. Knowing the vocabulary and rules
of grammar for a spoken language is not enough; one must be skilled in oratory
in order to speak effectively. There is an art to using a programming language to
develop and write programs to accomplish tasks, just as there is an art to using a
human language to speak effectively.

One of the most important skills for program development is to be able to
break a programming problem into a set of subproblems. Code can be written to
solve each subproblem independently. That code can be tested before proceeding
to the next subproblem. This is the ancient philosophy of divide and conquer. The
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subproblems may themselves be broken up repeatedly into subproblems until a
reasonable amount of programming work can be undertaken in isolation. Almost
all programming work benefits from following some variation of this approach.

In order to demonstrate, consider the following problem. Write a program
that takes an integer as input and then determines whether or not the given
number is a sum of two unique squares. For example, given the number 13, the
program would find that 13 = 9 + 4 is a sum of unique squares. Similarly, given
17, the program would find 16 + 1; given 90, the program would find 81 + 9.

How should this problem be approached? One possibility is to loop through
all integers from 1 to X, where X is the largest integer whose square is less than the
given number. Call this first integer i. For each of these numbers, a second loop
could test all integers from 1 to i. Call this second integer j. Testing all possible
pairs of i and j should find any sum of unique squares equal to the given number.

With a basic approach in mind, attention can be turned to writing code.
Considering the above outline, the work can be broken into two parts. The first
part is to prompt the user for a number, and loop through all possible integers
whose square is less than the given number. For example:

#include <stdio.h>

main()

{

int i,number;

printf("Enter a number: ");

scanf("%d",&number);

i=1;

while (i*i < number)

i=i+1;

printf("%d is the largest square within %d\n",i*i,number);

}

This code does not solve the whole problem; it tries only to identify the boundary
on the range of the first loop. The output statement at the end will be used to de-
bug this portion of the program. If this code is stored in a file named squares1.c,
then compiling it and executing it produces results like the following:

ahoover@video> gcc -o squares1 squares1.c

ahoover@video> squares1

Enter a number: 5

9 is the largest square within 5
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ahoover@video> squares1

Enter a number: 14

16 is the largest square within 14

ahoover@video>

After a few tests, it is possible to see that the code works correctly but that after the
loop is finished the value of i is 1 too high. This can be corrected by subtracting 1
from i before printing it out. For example:

#include <stdio.h>

main()

{

int i,number;

printf("Enter a number: ");

scanf("%d",&number);

i=1;

while (i*i < number)

i=i+1;

i=i-1;

printf("%d is the largest square within %d\n",i*i,number);

}

If this code is stored in a file named squares2.c, then compiling it and executing
it produces results like the following:

ahoover@video> gcc -o squares2 squares2.c

ahoover@video> squares2

Enter a number: 5

4 is the largest square within 5

ahoover@video> squares2

Enter a number: 14

9 is the largest square within 14

ahoover@video>

This shows that the first loop seems to be working correctly. However, an addi-
tional test shows another error:

ahoover@video> squares2

Enter a number: 4

1 is the largest square within 4

ahoover@video>
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This error occurs when the given number is itself a perfect square. This can be
fixed by changing the exit condition for the loop from < to <= as follows:

.

.

.

while (i*i <= number)

i=i+1;
.
.
.

Further testing of this version of the program reveals that it is now working
correctly.

After code has been written and debugged for the first part of the problem, it
is easier to work on implementing code for the second part of the problem. For
example:

#include <stdio.h>

main()

{

int i,j,number;

printf("Enter a number: ");

scanf("%d",&number);

i=1;

while (i*i <= number)

{

j=1;

while (j < i)

{

if (i*i + j*j == number)

printf("Found: %d + %d\n",i*i,j*j);

j++;

}

i=i+1;

}

}

Code has been added for looping j through all values for the second integer. If this
program is stored in a file named squares3.c, then compiling it and executing it
produces results like the following:
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ahoover@video> gcc -o squares3 squares3.c

ahoover@video> squares3

Enter a number: 90

Found: 81 + 9

ahoover@video> squares3

Enter a number: 14

ahoover@video> squares3

Enter a number: 101

Found: 100 + 1

ahoover@video>

The program works as expected.

Even for a problem as simple as this example, it is possible to see how a
divide-and-conquer approach can benefit during program development. Two
errors were uncovered while implementing code for the first part of the program
design. Finding these kinds of errors is more difficult when the individual parts
of a program are not tested prior to further development or code writing. As
mentioned earlier, this approach can benefit almost any programming work and
should be practiced whenever possible.

1.5 ● Review of C
The following serves as a quick review of the basic data types, operations, and
statements in the C programming language. The reader is directed to any one of
a number of excellent books covering the syntax of C for a deeper coverage. The
goal of this review is to remind the reader of a few key concepts. This section can
also assist the reader who has not yet studied C but has studied an introduction
to programming in a related language, such as C++ or Java. It is possible to
learn the syntax of C while studying the concepts of system programming in this
text, provided that the reader is willing to undertake the extra burden. Such a
reader is strongly encouraged to acquire an additional textbook that covers the
C programming language to use in conjunction with this text. Several excellent
candidates include:

1. The C Programming Language, 2nd ed., B. Kernighan and D. Ritchie,
Prentice Hall, 1988, ISBN 0131103628.

2. Programming in C, 3rd ed., S. Kochan, Sams, 2004, ISBN 0672326663.

3. C Primer Plus, 5th ed., S. Prata, Sams, 2004, ISBN 0672326965.
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1.5.1 Basic Data Types
There are four basic data types in C: int, float, double, and char. The int data
type is intended to store whole numbers. The float data type is intended to store
real numbers. The double data type is also intended to store real numbers but has
twice the precision so that it can store a larger range of numbers. The char data
type is intended to store character symbols and controls used to display text. The
following code demonstrates the differences between the types:

#include <stdio.h>

int main()

{

int x,y;

char a;

float f,e;

double d;

x=4;

y=7;

a=’H’;

f=-3.4;

d=54.123456789;

e=54.123456789;

printf("%d %c %f %lf\n",x,a,e,d);

printf("%d %c %.9f %.9lf\n",x,a,e,d);

}

Executing this code produces the following result:

4 H 54.123455 54.123457

4 H 54.123455048 54.123456789

In the first line of output, the float variable has seemingly been rounded down-
ward in the last displayed digit, while the double variable has correctly been
rounded upward in the last displayed digit. In fact, the float has simply run out of
precision. This can be seen in the second line of output, where both variables are
forced to print to nine decimal places. The double variable has the correct value,
but the float has erroneous values in the latter digits.

The printf() and scanf() functions are the primary output and input func-
tions in C. They are included in the C standard library, which is usually linked to
an executable by default (in other words, a programmer can use these functions
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without worrying about where they come from). The syntax for them involves
pairing up each variable in the list of arguments with a formatting symbol within
the quoted string. For the details of this formatting, the reader is encouraged to
consult a C programming book or the man page for either function.

1.5.2 Basic Arithmetic
The basic arithmetic operations supported in C include addition, subtraction,
multiplication, division, and modulus (remainder). Within loops, it is common
to increment (add 1 to) or decrement (subtract 1 from) a variable. The operators
++ and -- are provided for this reason. The following code demonstrates the basic
arithmetic operations:

#include <stdio.h>

int main()

{

int x,y;

int r1,r2,r3,r4,r5;

x=4;

y=7;

r1=x+y;

r2=x-y;

r3=x/y;

r4=x*y;

printf("%d %d %d %d\n",r1,r2,r3,r4);

r3++;

r4--;

r5=r4%r1;

printf("%d %d %d\n",r3,r4,r5);

}

The output of executing this code is as follows:

11 -3 0 28

1 27 5

The modulus operator can be used only on integer variables. All the other arith-
metic operators can be applied to all variables.
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1.5.3 Loops
There are three basic types of loops in C: for, while, and do-while. The for loop
is intended to be executed a fixed number of iterations, known before the loop is
entered. Hence, it is given both a starting condition and an ending condition. The
while loop is intended to be executed an unknown number of iterations. Hence,
it is only given an ending condition. The do-while loop is also intended to be
executed an unknown number of iterations but will be executed at least once.
The while loop may be executed zero times if it fails the condition on the first
attempt. The do-while loop does not test the condition until it has finished the
loop, so it will execute the loop at least once. The following code demonstrates all
three types of loops:

#include <stdio.h>

int main()

{

int i,x;

x=0;

for (i=0; i<4; i++)

{

x=x+i;

printf("%d\n",x);

}

while (i<7)

{

x=x+i;

i++;

printf("%d\n",x);

}

do

{

x=x+i;

i++;

printf("%d\n",x);

}

while (i<9);

}

The following is the output of executing this code:
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0

1

3

6

10

15

21

28

36

The reader is encouraged to identify which lines of output came from which
loop.

1.5.4 Conditionals and Blocks
The basic conditional in C is the if-else statement. It supports tests for equality
(==), inequality (!=), and relative size (>, <, >=, and <=). Multiple conditions can
be tested within a single statement using the logical AND (&&) and logical OR
(||) operators to group the individual conditions. Statements (individual lines of
code) are grouped using brackets ({}). In the absence of brackets, a conditional
or loop statement applies only to the single following statement. The following
code demonstrates conditionals and blocks:

#include <stdio.h>

int main()

{

int i,x;

x=0;

for (i=0; i<5; i++)

{

if (i%2 == 0 || i == 1)

x=x+i;

else

x=x-i;

printf("%d\n",x);

}

}

The following is the output of executing this code:
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0

1

3

0

4

The indentation in the code is for convenience only; it does not affect the group-
ing of statements. The topic of formatting code for easier management and un-
derstanding is addressed in Section 6.2.

1.5.5 Flow Control
Normally, loop iterations must be run to completion. When the bottom of a loop
is reached, control is returned either to the top of the loop or to the statement
immediately following the loop, depending on the result of evaluating the loop
conditional. There are two flow control statements that change the way an inter-
ation through a loop is executed: continue and break. The continue statement
returns control to the beginning of the loop, testing the loop conditional to start
the next iteration. In effect, it skips the rest of the current iteration and starts the
next one. The break statement terminates the loop and immediately proceeds to
the next line of code following the loop. The following code demonstrates flow
control:

#include <stdio.h>

int main()

{

int i,x;

x=0;

for (i=0; i<5; i++)

{

if (i%2 == 0)

continue;

x=x-i;

if (i%4 == 0)

break;

printf("%d\n",x);

}

}
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Executing this code produces the following output:

-1

-4

Out of the five iterations in the loop, only two reach the printf() statement.
The fourth iteration ends in the break statement, which terminates the loop, so
that the fifth iteration never runs. Beginning students of C may be discouraged
from using these flow control statements. The alternative is to use conditionals to
control flow inside loops. The advantage to using control flow statements is that
it simplifies (reduces) the number of program blocks, which usually simplifies
the indentation that goes along with multiple program blocks.

There are also two control flow statements that are programwide: exit and
goto. The exit statement immediately terminates the program. It is useful for
handling unwanted situations, such as when a user inputs data outside an allowed
range. The goto statement jumps program execution to the named line of code.
In general, its use is discouraged. Unlike the other flow control statements, it can
have complex consequences that can outweigh its benefits.

Questions and Exercises
1. System software on a Unix system performs the same basic services as system

software on a Microsoft Windows system. However, there are some fundamental
differences in how the system software is designed and developed. Describe at
least two.

2. Briefly describe two operations that a debugger can perform (i.e., commands that
you can give to a debugger).

3. Why must a program specifically be compiled for debugging to be able to execute
that program in a debugger? What two things does the compiler do to assist a
debugger?

4. Describe two ways a text editor can assist with writing program code (as opposed
to writing generic text using a word processor).

5. A Unix system typically has many programs that can be run from its graphical
user interface (menus). For the system you are using, pick five programs and
identify the actual filename that is being executed. Use a shell to type the name
of the program at the prompt to start the program instead of starting it from
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the menu. Read the man page for the program and discover what options can be
given to the program at startup.

6. For the text editor of your choice, identify what keystroke or menu option it
provides in order to display the line number of the current cursor location. Also
identify how to jump the cursor to a given line.

7. Debug the following code by compiling it for debugging and executing it within a
debugger. At which line of code does the program crash? Why does it crash there?

/* This code has a compile-time error, and at

** least one run-time error. */

#include <stdio.h>

#include <math.h>

main(int argc,char *argv[])

{

int n,i;

int d2,count,

double d1;

while (1)

{

printf("Enter a number (0 to quit): ");

scanf("%d",&n);

if (n == 0)

break;

count=0;

for (i=0; i<n; i++)

{

d1=(double)n/(double)i;

d2=n/i;

if (fabs(d1-(double)d2) < 0.00001)

count++;

}

if (count == 2)

printf("%d is prime\n",n);

else

printf("%d is not prime\n",n);

}

}
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8. Write a program that prompts the user for a positive integer and then reports the
closest integer having a whole number square root. For example, if the user enters
8, then the program reports 9. If the user enters 18, then the program reports 16.
The program should work for any number having one to seven digits.

9. Write a program that prompts the user for a positive integer and then computes
the sum of all the digits of the number. For example, if the user enters 2784, then
the program reports 21. If the user enters 59, then the program reports 14. The
program should work for any number having one to ten digits.

10. You are tasked with writing a program that manages contact information for
a group of people. The program should save the first name, last name, and
telephone number for up to 12 people. The program should have options to
add a person, delete a person, update the information for a person, and display
all information for all current entries. How could you go about breaking up
the programming work into a set of subproblems that could be implemented
separately? Describe the subproblems, the order in which you would work on
them, and any testing you would do for each subproblem before proceeding to
the next.

11. The following program compiles and executes but does not do what its designer
intended. The program is supposed to allow a user to enter five integers, sorting
the list from smallest to largest each time a new number is entered. However,
when tested on a simple sequence, the program fails to sort correctly.

Use a debugger to track down what is going wrong. Set a breakpoint at line 14
(w=n[i];). Use the display command to view the value for the variable n, which
shows the current list of numbers, and the variables s and i, which show the
indices of the two numbers about to be swapped. Use the continue command to
pause the program at the same point (line 14) after one number has been entered,
after two numbers have been entered, and after three numbers have been entered.
By that point you should see the problem. Is it a bug or a program design flaw?

#include <stdio.h>

main()

{

int n[5],s,i,j,w;

for (i=0; i<5; i++)

{

printf("Enter any integer: ");

scanf("%d",&(n[i]));
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s=0; /* find index of smallest */

for (j=1; j<=i; j++)

if (n[j] < n[s])

s=j;

w=n[i]; /* swap smallest with current */

n[i]=n[s];

n[s]=w;

}

for (i=0; i<5; i++)

printf("%d\n",n[i]);

}



2
Bits, Bytes, and
Data Types

I n theory, a variable is an abstract concept. It is a placeholder for a value used
in some computation. In implementation, a variable occupies a fixed storage.

It is important to understand how variables differ in storage because this affects
how different variables can be used in different computations. It promotes effi-
ciency in programming by utilizing the correct data types, and hence the correct
amount of memory (using 64-bit variables to store whole numbers between 1
and 100 is a waste of space). It promotes correct coding of arithmetic operations
(coding floating point computations on whole numbers is a waste of time). It
leads to a better understanding of bitwise operations, which are critical for many
computing algorithms, such as in graphics. Finally, a proper understanding of
memory helps in program design and debugging, especially when more complex
data types are used, such as arrays and pointers. This chapter, and the follow-
ing two chapters, all develop an understanding of C data types based upon an
understanding of the actual memory they occupy.

2.1 ● Bit Models
In C, what is the difference between an int and a float? The simple answer
is that one stores whole numbers, whereas the other stores real numbers. But
how? Or, how about some tougher questions: How does a double store higher-
precision numbers compared to a float? Does it double the numerical range of
possible values, or double the precision, or something else? How do the qualifiers
short or unsigned change the way a value is stored? In order to answer these
questions, we have to understand the bit models that underlie the data types.
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A bit, short for binary digit, is a binary valued variable. The two possible
values are typically written as 1 and 0, or true and false. On a computing chip
(processor, memory chip, etc.), they are represented by high and low voltages,
where a high value is typically 1–5 V and a low value is typically 0.0–0.5 V.
Everything in computing is based upon combinations of bits. Everything stored
in a computing chip is based upon using a fixed number of bits to model (or
represent) the thing of interest.

For our discussion, bits can be either 1 or 0. Since a single bit can only
represent only two values, we must group bits together to represent a wider range
of numbers. The most common grouping is a byte, which is 8 bits grouped in
sequence. For example, the following is a byte:

00 00 01 1 1

When bits are grouped, there are a variety of methods for interpreting them
collectively. Each method of interpretation is called a bit model. We will now
examine several bit models for representing various types and ranges of numbers.

2.1.1 Magnitude-only Bit Model
The simplest bit model is for nonnegative whole numbers. In this case, each bit
represents a nonnegative integer power of 2. The place values of the bits are as
follows:

example bit value 0 0 0 1 0 0 1 1

place value 27 26 25 24 23 22 21 20

place value (base 10) 128 64 32 16 8 4 2 1

A bit value of 0 indicates a place value of 0; a bit value of 1 indicates a place value
as given in the table. The total value of the number represented is found by adding
up the place values of all the bits. In the example above, the value represented in
the 8 bits (1 byte) is 19:

0 + 0 + 0 + 16 + 0 + 0 + 2 + 1 = 19

Given 8 bits, it is possible to store whole numbers in value up to

7∑

i=0

2i = 28 − 1 = 255

or in the range 0 to 255.
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The bits with the lowest powers of 2 (to the right in the above example) are
called the least significant bits, or lowest-order bits, because they represent the
smallest portions of the number. The bits with the highest powers of two (to
the left in the above example) are called the most significant bits, or higher-order
bits. The significance of bits can be thought of as which digits most change the
number. It is common practice to list bits from highest to lowest, left to right,
following the same convention used to write base 10 numbers.

Binary addition using this model is done similarly to base 10 addition. The
easiest way to compute a sum by hand is to line up vertically the digits with similar
powers. The digits in each power (column) are added, starting with the lowest
power (rightmost column) and proceeding toward the highest power (leftmost
column). If the sum in any single power exceeds the allowed range (9 in base
10, or 1 in base 2), then the sum is carried over to the next highest power. For
example:

Base 10 (decimal) Base 2 (binary)

7 00000111

+ 4 + 00000100

11 00001011

In this example, there was a carry in base 10 from the one’s digit to the ten’s
digit. There was also a carry in base 2 from the 22 digit to the 23 digit.

In general, storing numbers only within the range 0–255 is not terribly useful.
Some things do use this range, such as graphical display pixel values, but obvi-
ously a wider range is needed for most computations. This is accomplished by
grouping more bits together. For example, by grouping 4 bytes (32 bits) together,
the magnitude-only bit model can represent whole numbers in value up to

31∑

i=0

2i = 232 − 1 = 4,294,967,295

or in the range 0–4,294,967,295. This number can be related to a size many
personal computer enthusiasts are familiar with. At the time of this writing,
most common personal computers and workstations can have a maximum of
4 GB of memory. Why? It is a result of the size of the memory bus, which can
be thought of as the number of wires from the system to its memory. With 32
wires, a system can address 4,294,967,296 (which is about 4 billion, or 4 “giga”)
different memory locations. If each memory location is a byte (8 bits), then a
“32-bit architecture” can have a maximum of 4 GB of memory.
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In C, several data types use the magnitude-only bit model. An unsigned char
is a 1-byte (8 bits) variable with a range of 0 to 255. On a 32-bit system, an
unsigned int is a 4-byte (32 bits) variable with a range of 0 to 4,294,967,295,
and an unsigned short int is a 2-byte (16 bits) variable with a range of 0 to
65,535. Technically, the C language does not define the size of an int. However,
the 32-bit usage has become so predominant that we will treat it as the standard
within this text. At the time of this writing, as 64-bit architectures are becoming
more common, there is debate over whether to standardize the C int as 4 bytes or
continue to allow it to vary depending on the system architecture. Regardless of
size, the concepts taught in this text are valid, but it is easier to learn the concepts
by solidifying the size of an int at a specific value.

2.1.2 Sign-magnitude Bit Model
In the case where signed whole numbers are desired, a common practice is to
allocate the highest-order bit to be the sign bit . This is called the sign-magnitude
model:

example bit value 1 0 0 1 0 0 1 1

place value sign 26 25 24 23 22 21 20

place value (base 10) + or − 64 32 16 8 4 2 1

By common convention, a value of 0 in the sign bit indicates a positive number,
while a value of 1 in the sign bit indicates a negative number. In this example, the
decimal value represented using the 8 bits is −19. Using the sign-magnitude bit
model, it is possible with 8 bits to represent whole numbers in the range −127 to
+127.

The sign-magnitude model suffers from two drawbacks. First, notice that
there are two possible bit values for zero: 00000000 can be interpreted as “pos-
itive zero,” while 10000000 is interpreted as “negative zero.” This does not make
much sense. Even more important, using this bit model makes binary addition
somewhat complicated. If we have zero or two negative numbers, we can per-
form addition exactly as outlined for the magnitude-only bit model. However, if
we have one negative number and one positive number, we must instead perform
a subtraction. While subtraction is not a terribly difficult task, it would be nice if
we could use the same method for binary addition regardless of the signs of the
two numbers.
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Because of these two drawbacks, no data types in C use the sign-magnitude
bit model. It is usually seen only in simple computing circuits, or in design
problems where these drawbacks do not present any difficulty. The bit model
discussed next was designed to overcome these drawbacks.

2.1.3 Two’s Complement Bit Model
Using the two’s complement bit model, positive integers (and zero) are repre-
sented exactly the same as they are in the magnitude-only bit model. Negative
numbers are represented by applying the following sequence of steps:

1. Write the bits for the positive version of the number.

2. Invert (flip) all the bits.

3. Add 1.

For example, to represent −7, we proceed through the following steps:

positive value (+7) 0 0 0 0 0 1 1 1

invert all bits 1 1 1 1 1 0 0 0

add 1 1 1 1 1 1 0 0 1

The process of adding 1 is carried out exactly as described in the previous sec-
tions. Based on our example, we find that the two’s complement bit representa-
tion for −7, using 8 bits, is 11111001.

When a two’s complement number has a 1 in the highest bit, it indicates that
the number is negative. To find the value, we perform the same steps:

unknown value (−?) 1 1 1 1 1 0 0 1

invert all bits 0 0 0 0 0 1 1 0

add 1 0 0 0 0 0 1 1 1

After performing these steps, the value provides the magnitude of the negative
number. In this example, we get a magnitude of 7, so the original bit pattern
11111001 is known to be −7.

The two’s complement bit model solves the double zero problem seen with
the sign-magnitude model. The only bit pattern for zero is 00000000. Apply-
ing the steps that compute the negative value for the pattern yields the original
pattern:
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0 (base 10) 0 0 0 0 0 0 0 0

invert all bits 1 1 1 1 1 1 1 1

add 1 0 0 0 0 0 0 0 0

Since we only have 8 bits, the carry out of the highest-order bit is lost in this
operation; it has no place to go. Therefore trying to compute “negative zero”
results in the same bit pattern as “positive zero,” thus there is only one bit pattern
for zero.

Using the sign-magnitude model, the bit pattern 10000000 represented “neg-
ative zero.” In the two’s complement bit model, what does it represent? To find
the value, we apply the usual operations for interpreting a two’s complement
number:

unknown value (−?) 1 0 0 0 0 0 0 0

invert all bits 0 1 1 1 1 1 1 1

add 1 1 0 0 0 0 0 0 0

Since the first bit is 1, we know the number must be negative. After inverting
and adding 1, we obtain a magnitude of 128. Therefore, the bit pattern 10000000
using the two’s complement bit model represents −128 (base 10). This is called
the weird number. When following the two’s complement conversion steps, it
comes out the same as it started. However, at the beginning, we look only at the
highest bit to determine that the number is negative. After converting, we see that
the magnitude is 128, and so the complete value is −128. Thus, using the two’s
complement bit model, the range of integers that can be represented using 8 bits
is −128 to +127.

Two’s complement also makes addition and subtraction easier to implement
because, regardless of the signs of the two numbers, they can always be added.
For example, consider 7 + (−5):

Base 10 (decimal) Base 2 (binary)

carry bits 11111111

7 00000111

+ (−5) + 11111011

2 00000010

The bit pattern for −5 was obtained through the two’s complement conversion
steps: +5 = 00000101; inverted it becomes 11111010; and after adding 1 it be-
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comes 11111011. When performing the addition, there was a carry value of 1 in
every bit place. The final carry bit at the end was again thrown away because it has
no place to go. However, it must be checked. For the sum to be valid, the highest
two carry bits must be either 11 or 00. In this example, the final two carry bits
were 11, and so the sum is valid.

If the highest two carry bits are either 10 or 01, then the result is an arithmetic
overflow. Arithmetic overflow is when the process of a calculation results in a
number outside the range of values that can be represented by the available bits.
For example:

Base 10 (decimal) Base 2 (binary)

carry bits 10000000

(−127) 10000001

+ (−126) + 10000001

−253 00000011

The bit patterns for both −127 and −126 were computed normally (the reader
is encouraged to work these out). Both of these values are fine; the two’s com-
plement bit model can represent them using 8 bits. However, the result of the
addition is 00000011, which equates to 3 in base 10. This is of course wrong.
What has happened is that an overflow has occurred. With 8 bits, we cannot rep-
resent −253 (it is outside of the allowed range of −128 to +127). We can see that
an overflow has occurred by looking at the highest two carry bits, which in this
example are 10.

Several data types in C use the two’s complement bit model. A char uses 1
byte (8 bits) to represent numbers in the range −128 to +127. An int uses 4 bytes
(32 bits) to represent numbers in the range −2,147,483,648 to +2,147,483,647. A
short int uses 2 bytes (16 bits) to represent numbers in the range −32,768 to
+32,767. The two’s complement bit model is the most commonly seen bit model
for representing signed whole numbers in computing systems.

2.1.4 Floating Point Bit Model
For storing real numbers, a method completely different from the previous bit
models must be used. Some of the bits must be used to represent the fractional
portion of the number. One possibility is to use bits to denote powers of 2 that
are negative, and hence fractions. For example, we could use 1 byte (8 bits) as
follows:
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example bit value 1 0 0 1 0 0 1 1

place value 24 23 22 21 20 2−1 2−2 2−3

place value (base 10) 16 8 4 2 1 0.5 0.25 0.125

This approach is called a fixed point bit model, because the position of the num-
ber of digits (in base 10) that can be represented in the fraction are fixed. In our
example, the base 10 value that is represented by the 8 bits is 18.375. In this ex-
ample, only three fractional digits of a base 10 number can be represented. This
is generally considered a limitation, and a poor use of available bits.

It is possible to represent a wider range of fractions, using the same number of
bits, using a floating point bit model. The general idea is to represent the number
using scientific notation. For example, in base 10 notation:

123.456 = 1.23456 × 102

In a computer we have only bits, so we must use base 2 scientific notation. For
example, the bits representing 18.375 from above could be written as follows:

18.375 (base 10) = 10010.011 (base 2) = 1.0010011 × 24

Since it is known that base 2 is used, we do not need to store the “2” each time;
it is implied. Similarly, we can simplify the storage of a number by assuming that
the leading mantissa (the value in front of the decimal point) is 1. Therefore the
floating point bit model stores numbers in the following form:

±1.f × 2e

The values that must be stored are the bits for the sign, the fraction f , and the
exponent e. Obviously, only one bit is needed to store the sign. The remaining
available bits can be divided between the fraction and the exponent. Given 32 bits
(4 bytes), the standard1 is to represent the fraction using 23 bits and the exponent
using 8 bits:

Total bits 1 8 23

sign exponent (e) fraction (f)

bit places 31 30 . . . 23 22 . . . 0

The bits in the fraction represent negative powers of 2, as described above. For
example, bit 22 represents 2−1 = 1

2 = 0.5; bit 21 represents 2−2 = 1
4 = 0.25; bit 20

represents 2−3 = 1
8 = 0.125; and so on. The 8 bits for the exponent are used to

1. The IEEE 754 floating point standard.
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represent whole values in the range −127 to +128. The negative values support
the representation of small fractions, and hence larger precision after the decimal
point. Conversely, the positive values support the representation of large non-
fractional numbers. Thus, there is a choice in how the available bits will be used.
For example, it is possible to represent 0.123456 or 123.456 or 123,456.0, but it is
not possible to represent 123,456.123456. The total precision available in base 10
is about eight digits using a 4-byte floating point bit model.

The following steps can be used to convert a number from base 10 to binary
using the floating point bit model:

1. Write the sign bit.

2. Write the number in fixed point binary, without the sign.

3. Normalize, moving the radix (the decimal point) to just after the first “1”
digit.

4. Take f as the values to the right of the radix, zero padded.

5. Take e as the given exponent, biased by adding +127.

The following example demonstrates these steps. The value −118.625 will be
encoded:

(1) get sign bit s = 1

(2) write # in fixed point binary 118.625 = 1110110.101

(3) normalize 1110110.101 = 1.110110101 ×26

(4) get fraction from right of radix f = 110 1101 0100 0000 0000 0000

(5) get exponent, biased +127 e = 6+127 = 133 = 1000 0101

The exponent is biased by adding 127 so that the exponent can be stored as
a mangnitude-only, and yet still represent the range −127 to +128. For our
example, the final 32-bit floating point representation is:

1 1000 0101 110 1101 0100 0000 0000 0000

Note that the spaces are for our convenience only; they are not represented in any
way in the computing system. The following are some additional examples:

Real number Bit pattern

4.125 0 1000 0001 000 0100 0000 0000 0000 0000

123456.123 0 1000 1111 111 0001 0010 0000 0001 0000

−6.429678 1 1000 0001 100 1101 1011 1111 1110 1100
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In the C language, the float data type uses 4 bytes to store a real number,
and the double data type uses 8 bytes to store a real number. The double still
uses 1 bit for sign, but it uses 11 bits to store the exponent and 52 bits to store the
fraction, so that it can represent a wider range of numbers.

2.1.5 ASCII and Unicode Bit Models
In order to represent nonnumeric data, another bit model must be used. The
ASCII (American Standard Code for Information Interchange) bit model was
developed to represent English text symbols, along with control characters nec-
essary to print English text. A partial listing of the ASCII bit model is shown in
Table 2.1 (a full listing is in Appendix A). There are 128 total ASCII bit patterns.
Each bit pattern uses 7 bits. In order to fill a byte, an eighth bit is added to each
pattern. Historically, this extra bit has been used for several purposes, such as par-
ity (a form of error recovery) and extended ASCII sets (providing an additional
128 bit patterns). However, it is also common to leave the bit with a value of zero,
in effect padding the 7-bit ASCII patterns with a preceding zero. Most of the bit
patterns in ASCII represent printable symbols, such as the lowercase versions of
letters in the English alphabet. The patterns for both the lower- and uppercase
letters are stored in order, from 97 to 122 and from 65 to 90, respectively. The
first 32 bit patterns (from 0000 0000 to 0000 1000) represent control characters,
which do not correspond to printable symbols. Instead, these characters control
some aspect of printing, such as a backspace, horizontal tab, or carriage return.

In C, both the char and unsigned char data types use the ASCII bit model.
However, because of their 7-bit nature, the eighth bit allows for a second, differ-
ent use of each data type. If we interpret each of the bit patterns as magnitude-
only whole numbers, then we obtain the base 10 values listed in Table 2.1. The
unsigned char data type can be interpreted in this manner, providing a range of
values from 0 to 255. If we interpret each of the bit patterns using the two’s com-
plement bit model, then we obtain base 10 values in the range −128 to +127. The
char data type can be interpreted in this manner. This dual interpretation of the
bit patterns can be seen through the following C code:

char a;

unsigned char b;

a=’A’;

b=’B’;

printf("%c %c %d %d\n",a,b,a,b);

a=183;

b=255;

printf("%d %d\n",a,b);
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Table 2.1 Partial listing of ASCII bit model.

Bit values Base 10 Description

0000 0000 0 null character

0000 1000 8 backspace

0000 1001 9 horizontal tab

0000 1010 10 line feed

0000 1101 13 carriage return

0000 1000 27 escape

0010 0000 32 space (space bar)

0010 0001 33 ! (exclamation point)

0011 0000 48 0 (numeric zero)

0011 0001 49 1 (numeric one)

0011 1001 57 9 (numeric nine)

0100 0001 65 A

0100 0010 66 B

0101 1010 90 Z

0110 0001 97 a

0110 0010 98 b

0111 1010 122 z

The output of executing this code is as follows:

A B 65 66

-73 255

Using the %c designator, the printf() function call will interpret the variable using
the ASCII bit model. Using the %d (or %i) designator, the printf() function call
will interpret the variable as a whole number. In this case, which bit model to
use depends upon the data type. For the char data type, the printf() function
interprets the variable using the two’s complement bit model; whereas for the
unsigned char data type, the printf() function interprets the variable using the
magnitude-only bit model. The magnitude-only bit pattern for 183 is 1011 0111,
which interpreted using the two’s complement bit model is −73 in base 10. This
is why the variable a appears to change in the second printf() output.

The ASCII bit model has a few problems. Many of the ASCII control charac-
ters are obsolete, relics of the earliest days of digital text transmission and print-
ing. The eighth bit is open to interpretation, and has consequently been used in
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a variety of methods on different computing systems. Most important, the sym-
bol range covers only the English language. In response to these problems, the
Unicode bit model was developed. In its most straightforward implementation,
it uses 16-bit patterns to represent 65,536 total symbols. These include the al-
phabets of many languages besides English. In C, a short int is commonly used
to store a Unicode bit pattern. Because of the prevalence and continued use of
the ASCII bit model, the first 128 bit patterns represent the same symbols in the
Unicode bit model as they do in the ASCII bit model. The full details of Uni-
code can be found in the reference book The Unicode Standard, 5th ed., Unicode
Consortium, Addison-Wesley, 2006.

2.1.6 Bit Model Summary
To summarize, what is 1100 0010 1110 1101 0100 0000 0000 0000 ?

The answer is that it depends on how the bits are grouped and interpreted. In
other words, it depends upon the bit model. Here are some possible answers:

C variable(s) Bit model Value(s) or symbol(s)

4 unsigned char magnitude-only 194 237 64 0

4 char two’s complement −62 9 64 0

4 char ASCII [x] [x] @ [NULL]

1 int two’s complement −1,024,638,976

1 unsigned int magnitude-only 3,270,328,320

1 float floating point −118.625

The bits can be grouped together 8 at a time (1 byte at a time), or 32 at a time,
or other possibilities not listed here. After grouping, different bit models can be
applied to determine the value(s) or symbol(s) represented.

The important concept to understand is that bits alone do not provide data.
They must be grouped and interpreted according to the appropriate bit model;
otherwise they are meaningless. A common pitfall for naive computer operators
is to open up any file within a text editor. However, not all bit patterns relate
to printable symbols. Looking at the example above, 2 of the 4 bytes do not
represent any regular ASCII symbols; 1 of the bytes represents a control value (the
NULL character); and only 1 byte represents a printable symbol (the @ symbol).
This is why using a text editor to view any random file will often display it as
seemingly a bunch of garbage. A text editor interprets all the bits using the ASCII
bit model, when the underlying data was not encoded that way.
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A common pitfall for naive programmers is to use the wrong data type for
the given data or computation. This amounts to using the wrong bit model, with
consequences similar to opening a random file using a text editor. When seeing
a value that looks very strange (i.e., garbage), one should look to make sure the
correct data type is being used. The reason for type casting computations to use
the same data type is to ensure that all the variables involved are using the same
bit model. For example:

int i=3;

double d=7.2;

float f;

f=(float)i+(float)d;

In the last statement, the (float) in front of the variables i and d converts the bits
used to represent the values to the float bit model so that the addition operation
can be performed.

While programming, even when it is not necessary to understand how the
individual bits are organized in variables, it is often important to understand how
many bytes are used by variables. The sizeof() operator reports how many bytes
a data type, or a variable, is using:

int i;

char c;

double d;

printf("%d %d %d %d\n",sizeof(i),sizeof(c),

sizeof(d),sizeof(float));

The result of executing this code is:

4 1 8 4

This matches our expectations: a variable of type char is 1 byte in size; an int and
float are 4 bytes each; and a double is 8 bytes. In Chapter 4, when we look at
structures and pointers, we will revisit the sizeof() operator.

2.2 ● Bitwise Operations
In some situations, a single bit can store all the information needed for a com-
putation. For example, a file can be write-protected, or not. A user can be logged
in, or not. A program can be currently running, or not. In many advanced al-
gorithms, bits are frequently used in computations and data structures. For ex-
ample, compression/decompression routines (codecs) commonly manipulate bit
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patterns to reduce the necessary storage size. Sorting methods commonly use
trees and other binary structures during operation. Bitwise operations are also
common in device drivers and graphics programming.

In the C language, the smallest data type available is the char, which is 1 byte
(8 bits). How then can one store or manipulate a single bit? One possibility is
to use an entire char to store the single bit. This is of course wasteful and, if
used indiscriminately, would seriously raise the amount of memory necessary
to operate a modern computing system. Another option is to figure out how
to manipulate just 1 bit within a char, or within any other data type. In the C
language, this is accomplished using bitwise operations.

In this section, we first describe the basic logic underlying bitwise operations.
We then look at the C bit operators that are used to program bitwise operations.
Finally, we look at bit masking, which is the most common type of coding prob-
lem involving bit manipulations. In later chapters in this text, we will again see bit
coding problems when we look at file attributes (Chapter 5) and some graphics
operations (Chapter 8).

2.2.1 Binary Logic Operations
Recall that a single bit can have a value of either 1 or 0, which can also represent
true or false. The three most basic logic operations are AND, OR, and NOT. The
operations work as follows:

AND OR NOT

0 AND 0 = 0 0 OR 0 = 0 NOT 0 = 1

0 AND 1 = 0 0 OR 1 = 1 NOT 1 = 0

1 AND 0 = 0 1 OR 0 = 1

1 AND 1 = 1 1 OR 1 = 1

The result of an AND operation is true only if both input values are true. The
result of an OR operation is true if either input value is true. The result of a
NOT operation is to reverse the bit value. Logic operations are independent of
any particular programming language used to implement them. There are several
other logic operations, for example NOR and NAND, which are commonly used
in circuits. In this text, we are concerned only with the basic three operations and
how to implement and use them in C programming.
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2.2.2 Bit Operators
Bit operators are the symbols or syntax used in a programming language to affect
individual bits within a variable. In the C programming language, there are six
bit operators:

Operator Symbol name Action

~ tilde bitwise NOT

& ampersand bitwise AND

| vertical bar bitwise OR

^ caret bitwise XOR

>> greater-than greater-than right-shift

<< less-than less-than left-shift

The bit operators are intended to be used only on the whole number data types,
char and int, and the related extensions (e.g., unsigned char). Although bits
can be manipulated in any variable, it is rare to see bit operators applied to the
real number data types.

The bitwise NOT operator inverts every bit in a variable. It is written using
the tilde symbol (~). For example:

unsigned char a;

a=17;

a=~a;

printf("%d\n",a);

The result of executing this code is:

238

At the bit level, the result of the code is:

C code Bits in variable a Base 10 value

a=17; 0 0 0 1 0 0 0 1 17

a=~a; 1 1 1 0 1 1 1 0 238

The bitwise AND operator performs an AND between two variables, indepen-
dently at every bit. It is written using the ampersand symbol (&). For example:
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unsigned char a,b;

a=17;

b=22;

a=a & b;

printf("%d\n",a);

The result of executing this code is:

16

At the bit level, the result of the code is:

C code Bits in variable a Base 10 value

a=17; 0 0 0 1 0 0 0 1 17

b=22; 0 0 0 1 0 1 1 0 22

a=a & b; 0 0 0 1 0 0 0 0 16

Prior to the bitwise AND, only one bit position had a value of 1 in both variables
a and b. Therefore, after the bitwise AND, this is the only bit position with a value
of 1.

The bitwise OR operator performs an OR between two variables, indepen-
dently at every bit. It is written using the vertical bar symbol (|). For example:

unsigned char a,b;

a=17;

b=22;

a=a | b;

printf("%d\n",a);

The result of executing this code is:

23

At the bit level, the result of the code is:

C code Bits in variable a Base 10 value

a=17; 0 0 0 1 0 0 0 1 17

b=22; 0 0 0 1 0 1 1 0 22

a=a | b; 0 0 0 1 0 1 1 1 23
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After the bitwise OR, the variable a has a value of 1 in any bit position in which
either of the two input variables a or b had a value of 1.

Like the arithmetic or logic operators in C, the bit operators can be applied
to either variables or constants. For example:

char x,y;

x=7;

y=6;

x=x&y;

y=x|16;

printf("%d %d\n",x,y);

The result of executing this code is:

6 22

At the bit level, the result of the code is:

C code Bits in variable a Base 10 value

x=7; 0 0 0 0 0 1 1 1 7

y=6; 0 0 0 0 0 1 1 0 6

x=x & y; 0 0 0 0 0 1 1 0 6

y=x | 16; 0 0 0 1 0 1 1 0 22

The left-shift and right-shift bit operators move bits into higher-order and
lower-order bit positions, respectively. When a bit pattern is written out hori-
zontally, this is equivalent to moving the bits toward the left, or toward the right,
respectively. A left-shift is written in C using two consecutive less-than symbols
(<<) and a right-shift is written using two consecutive greater-than symbols (>>).
The value following the shift operator indicates how many bit positions to move.
For example:

unsigned char a,b;

a=17;

a=a << 2;

b=64;

b=b >> 3;

printf("%d %d\n",a,b);

The result of executing this code is:

68 8
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At the bit level, the result of the code is:

C code Bits in variable a Base 10 value

a=17; 0 0 0 1 0 0 0 1 17

a=a << 2; 0 1 0 0 0 1 0 0 68

b=64; 0 1 0 0 0 0 0 0 64

b=b >> 3; 0 0 0 0 1 0 0 0 8

After the left-shift, every bit value in the variable a has moved to the left (to a
higher-order bit) by two bit positions. After the right-shift, every bit value in the
variable b has moved to the right (to a lower-order bit) by three bit positions.
Any bits that move beyond the highest or lowest available bit are discarded. For
example:

Original bits Shifting Discarded bits Result

01101111 left 3 011 01111 000

01101111 right 3 111 000 01101

The new bit values that take up residence in the now vacated bit positions
are given values that depend upon the bit model used by the variable. For a
magnitude-only bit model, the new bit values are always zero, as shown above.
For a two’s complement bit model, the new bit values are zero for left-shifts,
and copies of the original highest-order bit for right-shifts. The latter maintains
the original sign of the value, while shifting the negative number in a manner
synonymous with positive numbers. For example:

char a,b;

a=17;

a=a >> 2;

b=-65;

b=b >> 2;

printf("%d %d\n",a,b);

The result of executing this code is:

4 -17

At the bit level, the result of the code is:
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C code Bits in variable a Base 10 value

a=17; 0 0 0 1 0 0 0 1 17

a=a >> 2; 0 0 0 0 0 1 0 0 4

b= -65; 1 0 1 1 1 1 1 1 −65

b=b >> 2; 1 1 1 0 1 1 1 1 −17

2.2.3 Bitmask Operations
Bitmasking is perhaps the most common type of bitwise operation. It involves
using a bitmask to change or query one or more designated bits within a variable.
The bitmask indicates which bits are to be affected by the operation. The idea
is to operate on a variable, changing or affecting only the bits indicated by the
bitmask:

variable → bitmask (bit N) → variable (only bit N changed)

The bitmask indicated that bit N should be changed (N is the bit position, which
is also the power of 2 of the bit). The following are examples of bitmasks for an
8-bit variable (e.g., unsigned char):

Bitmask Base 10 value Indicated bits to work on

0 0 0 0 0 0 0 1 1 bit 0

0 0 0 1 0 0 0 0 16 bit 4

1 0 1 0 1 1 0 0 172 bits 2, 3, 5, and 7

A bitmask can indicate that any number of bits are to be affected. The three most
common bitmask operations work on a single bit: set the bit, clear the bit, or
query the value of the bit. Each of these operations can be accomplished through
the following logic:

Operation Logic

set Nth bit x = x OR 2N

clear Nth bit x = x AND NOT(2N)

read Nth bit = x AND 2N

The act of setting a bit gives the bit a value of 1, regardless of its initial value.
At the same time, it leaves all the other bits unchanged. The act of clearing a
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bit gives the bit a value of 0, regardless of its initial value, and similarly leaves
all the other bits unchanged. The act of querying a bit determines the current
value of a bit, leaving all bit values unchanged. Each of these operations can be
implemented in C as follows:

Operation C code

set Nth bit x = x | (1<<N);

clear Nth bit x = x & (~(1<<N));

read Nth bit (x & (1<<N)) >>N

When reading the Nth bit, the final right-shift operation results in a value of 1
or 0 regardless of which bit is being read. Without that final right-shift, the read
value will be equal to the value of the bit position (the power of 2 of the bit place).

The following code demonstrates setting, clearing, and reading bits:

char a;

int i;

a=17;

a=a | (1 << 3); /* set 3rd bit */

printf("%d\n",a);

a=a & (~(1<<4)); /* clear 4th bit */

printf("%d\n",a);

for (i=7; i>=0; i--)

printf("%d ",(a&(1<<i)) >> i); /* read i’th bit */

printf("\n");

The result of executing this code is:

25

9

0 0 0 0 1 0 0 1

At the bit level, the result of the code is:

C code Operation Bits in variable a Base 10 value

a=17; 0 0 0 1 0 0 0 1 17

a=a | (1 << 3); set bit 3 0 0 0 1 1 0 0 1 25

a=a & (~(1 << 4)); clear bit 4 0 0 0 0 1 0 0 1 9
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2.3 ● Memory Map
In this section, we introduce the memory map concept. A memory map is a table,
listing all the variables in a piece of code. The table includes the variable names,
values, and memory addresses. The addresses indicate the sizes of the variables,
in bytes. Each address is assumed to represent 1 byte. For example, consider the
following code:

char a,b,c;

a=7;

b=-13;

c=0;

The memory map for this code could be written as follows:

Label Address Value

a 400 7

b 401 -13

c 402 0

The starting address is not important; 400 was picked so that the range of values
in the addresses differs significantly from the values in the variables, so that they
are easier to read. The important thing to note in the address column is that each
variable occupies only 1 byte. This is because a char variable is only 1 byte in
size.

If variables of different types are used, then the address column should reflect
their relative sizes. For example, consider the following code:

char a;

int b;

float c;

double d;

a=7;

b=-13;

c=0.1;

d=42.5;

The memory map for this code could be written as follows:
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Label Address Value

a 400 7

b 401–404 -13

c 405–408 0.1

d 409–416 42.5

In this example, we see the appropriate sizes of the different data types reflected
in the address column. A char is 1 byte, an int and a float are both 4 bytes, and a
double is 8 bytes in size.

It is important to remember that what resides in memory are bit patterns. In
order to be interpreted as a value (or symbol), the appropriate bit model must be
applied. Which model is determined by the data types. For example, consider the
following code:

char a;

short int b;

char c;

a=6;

b=13;

c=’6’;

The memory map for this code could be written as follows:

Label Address Bits Value/symbol

a 400 0000 0110 6

b 401–402 0000 0000 0000 1101 13

c 403 0011 0110 ’6’

This example emphasizes the difference between the symbol ’6’ and the integer
value 6, which have different bit patterns. In most cases, it is not necessary to
include the bit patterns in a memory map. One can differentiate between symbols
and values using appropriate notation, such as enclosing symbols within single
quotes (as in C coding).

A memory map can be used in a dynamic manner, keeping track of vari-
able values as a piece of code executes. As a tool, it lets a programmer work
through a piece of code to determine its result. For example, consider the fol-
lowing code:
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int i,n;

n=0;

for (i=1; i<=4; i++)

n=n+i;

The memory map for this code could be written as follows:

Label Address Value

i 400–403 /1 /2 /3 /4 5

n 404–407 /0 /1 /3 /6 10

Note that the final value of i in the memory map is 5, which is 1 beyond the loop
bounds. This is because the loop is not terminated until the tested condition i<=4
is false, which is when i=5. This is a common programming mistake (recognizing
the value of a loop counter after the loop terminates) that can be caught by
working through code using a memory map.

The memory map can point out another common programming mistake.
Consider the following code, which is intended to compute the sum of the first
five even integers:

int i,sum;

for (i=1; i<=10; i++)

if (i%2 == 0)

sum=sum+i;

Have you spotted the coding error? Through a partial execution of the program,
the memory map could be written as follows:

Label Address Value

i 400–403 /1 2

sum 404–407 ?

In the first iteration, i=1, i%2 is equal to 1, and so the if statement fails. In
the second iteration, i=2, i%2 is equal to 0, and so the if statement is true.
The program now comes to the line that adds i to sum. However, sum has not
previously been given a value. What is its current value? The answer is that the
value is unknown. Every variable always has a value. There is no such thing as a
“blank” variable; the wires storing the bits for the variable must have either high
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or low voltages, corresponding to 1’s and 0’s. However, because the program did
not previously give this variable a value, the current value is unknown. It could
be zero, or it could be anything. We can change the code to see this effect:

int i,sum;

printf("%d\n",sum);

for (i=1; i<=10; i++)

if (i%2 == 0)

sum=sum+i;

printf("%d\n",sum);

Executing this code yields (results will vary from machine to machine, and even
moment to moment):

3457056

3457086

Executing the program again yields:

14852128

14852158

Additional executions of the program yield similarly strange numbers, always
having a difference of 30. That difference is due to the desired calculation, while
the rest of it is due to the original unknown value in the variable when the
program started each time.

The examples shown in this section are relatively simple. The true power of
a memory map becomes apparent when it is used to work with pointers, arrays,
and structures. In Chapters 3 and 4, the memory map will be used repeatedly to
look at these constructs.

Questions and Exercises
1. Show the total number of bits used, and all the bit values, for the following

variables:

char c=35;

char d=’G’;

int x=-42;

float f=17.25;

int i=1099563008;

double a=17.25;



Questions and Exercises 69

2. Convert each of the following bit patterns into whole numbers. Assume the values
are stored using the two’s complement bit model.

00101101

01011010

10010001

11100011

0010100010110110

0110111100101011

1100101111001000

1000000010100011

3. Assume a real value is stored using a 4-byte floating point bit model, with 8 bits
for the mantissa representing values of −127 to 128. Approximately what is the
largest value that can be represented? Approximately what is the smallest fraction
that can be represented?

4. Convert each of the following bit patterns into real numbers. Assume the values
are stored using the floating point bit model.

00111111100000000000000000000000

01000100100010101110001110001110

11000001000101101011100001010010

11000111100010100010011101000000

5. Use the following lines of code to start a program:

#include <stdio.h>

main()

{

char n[10];

int x;

printf("Enter a three-digit nonnegative number: ");

scanf("%s",n);
.
.
.

printf("The number is %d\n",x);

}

Write code that performs the conversion from the ASCII bit model for the vari-
able n to the magnitude-only bit model for the variable x. You may assume that
the user enters exactly three digits for the input. (Hint: what are the magnitude
only values for the bit patterns that represent the ASCII numeric symbols?)

6. What does 10011001 represent?
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7. Suppose that account identification numbers are written using nine digits, for
example, 972-54-5990. What C variable type should be used to store these? Why?

8. Money in the United States is valued according to dollars and cents, where dollars
can have any nonnegative whole value and cents can have a whole value from 0
to 99. What C variable type should be used to store monetary values? Why?

9. What is the output of the following code?

unsigned char x,y,z;

x=15;

y=35;

z=133;

x=x|64;

y=y&3;

z=~z;

printf("%d %d %d\n",x,y,z);

10. What is the output of the following code?

int x=7;

x=(x|16)<<1;

printf("%d\n",x);

11. What is the output of the following code?

char i;

double d;

int t;

t=0;

for (i=’z’; i>=’w’; i--)

for (d=1.0; d<=1.5; d+=0.1)

if (d-1.3 > 0)

t++;

printf("%d\n",t);

12. What is the output of the following code?

int i,j;

j=0;

for (i=1; i<100; i=i<<1)

{

if (i % 5 > 1)

j=j | i;

printf("%d %d\n",i,j);

}
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13. What is the output of the following code?

int i,j,k;

j=0;

k=32;

for (i=100; i>0; i-=10)

{

if (k/4 > 0)

j=j | k;

if (i <= 70 && i >= 40)

k=k<<1;

else

k=k>>1;

printf("%d %d %d\n",i,j,k);

}

14. Using the sign-magnitude bit model, shifting to the left is the same as what simple
mathematical operation? How about shifting to the right? (Hint: write out a few
examples by hand, and look at both the binary and base 10 values.)

15. Write a program that lets a user manipulate bits individually in a 4-byte variable.
The program should begin with all bits having a value of zero. The program
should enter a loop where it prints out the current bit values as a single integer
using the two’s complement bit model. It should then prompt the user to either
set a bit, clear a bit, or exit. If the user desires to set a bit or clear a bit, then the
program should prompt the user for which bit, change the appropriate value, and
then cycle back to the beginning of the loop. Setting a bit changes its value to 1
regardless of its current value; clearing a bit changes its value to 0 regardless of its
current value.

16. Write a program that allows the user to perform simple arithmetic in binary.
Upon starting, the program should tell the user that it is a binary math program,
along with brief instructions on how to use the program. The program should
then enter a loop, where it gives a prompt, such as “input:”. Upon receiving
input from the user, the program should process it, report the output result (or
error), and loop back to the prompt. This should continue until the user gives the
keyphrase to exit the program (the keyphrase is of your choosing; good choices
are “quit”, “end”, “exit”, etc.).

Input from the user should be of the form BSB, where B represents a binary
number and S represents a mathematical symbol. There should be no spaces
between the three parts (the two B’s and the S). A binary number should consist
of seven 0’s and 1’s, for example, 1101100. The bits represent sign-magnitude,
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not two’s complement. The mathematical symbol should be from the set + − /
* %. These symbols correspond to their natural use in the C language: addition,
subtraction, division, multiplication, and modulus.

If the user inputs a binary number with more than seven digits, the program
should report an error (and the error message should be meaningful). If the
user inputs a mathematical symbol outside the expected set, the program should
report an error. If the input provided by the user is not of the form BSB (e.g.,
if it is only SB, or only B), then the program should report an error. All error
messages should be meaningful in their context, telling the user what was wrong
with the input.

If a grammatically correct input is received, the program should convert the
two binary numbers to base 10 and perform the given operation. The program
should then convert the result back to binary and report it to the user. For exam-
ple:

Input: 0000101+0001100

0010001

If the mathematical operation given by the user results in an answer requiring
more than 7 bits to represent, the program should report an error message of bit
overflow. If the mathematical operation given by the user is invalid (e.g., a divide
by zero), the program should report a relevant error message.

17. Write a memory map for the following code. Show all values at the end of execu-
tion of the program.

#include <stdio.h>

main()

{

int i;

double d;

char s[10];

s[0]=’f’; s[1]=’r’; s[2]=’o’; s[3]=’g’;

d=0.0;

for (i=0; i<4; i++)

d=d+(double)(s[i]-’a’);

}



3
Arrays and Strings

B eyond the four basic data types (char, int, float, double), the C language
supports some advanced data constructs. These include arrays, strings,

pointers and structures. Like the basic data types, each of these advanced data
constructs is intended to store something different:

Data construct Intended to store:

array list of same-type values

string text

pointer address of another variable

structure group of mixed-type values

An array is intended to group together a list of values, all of the same type, under
one variable name. It is much easier to code computations on an array than on a
list of independently named variables:

for (i=0; i<100; i++) /* array coding */

sum=sum+qty[i];

sum=qty1+qty2+qty3+... /* without an array */

A structure is intended to group together an assortment of values of different
types under a single variable name. Like an array, it makes it easier to code com-
putations. A string is intended to group together a series of character symbols
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under one variable name. It is closely related to an array, but because it is in-
tended only for text data, a number of functions have been crafted to perform
text-specific operations on strings. A pointer is intended to hold the address of
another variable, to provide a “gateway” or path of indirect access to the other
variable. It is used most often in passing values between pieces of code (func-
tions). This chapter examines arrays and strings; pointers and structures are dis-
cussed in the next chapter.

It is assumed that the reader is familiar with the basic syntax and use of
arrays and strings (although this will be briefly reviewed). The first purpose of
this chapter is to describe how arrays and strings work, by examining how they
are constructed in memory. To accomplish this, we will use the memory map.
An understanding of how each data construct resides in memory is useful for
program design, and especially debugging. The second purpose of this chapter
is to describe the functions provided by the C standard library that operate on
string data. Once familiar with the concepts of strings, a programmer saves time
and effort by using this system resource.

3.1 ● Arrays
An array is a construct used to store a set of values using only one variable name.
Each of the values occupies a cell. Every cell in the array is the same size, meaning
it occupies the same amount of memory. The size of each cell is dictated by the
data type (char, int, float, double) given in the variable declaration. The number
of cells is also given in the variable declaration. Here are some examples:

int a[2]; /* 2 cells, each cell 4 bytes (32 bits) */

float b[3]; /* 3 cells, each cell 4 bytes (32 bits) */

double c[4]; /* 4 cells, each cell 8 bytes (64 bits) */

char d[5]; /* 5 cells, each cell 1 bytes (8 bits) */

Cells are accessed using indices, with syntax similar to that used in the variable
declarations. For example:

a[0]=5;

b[1]=4.0;

c[2]=14.7;

d[4]=’a’;

The memory map for these code segments could be written as:
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Label Address Value

a[0] 400–403 5

a[1] 404–407

b[0] 408–411

b[1] 412–415 4.0

b[2] 416–419

c[0] 420–427

c[1] 428–435

c[2] 436–443 14.7

c[3] 444–451

d[0] 452

d[1] 453

d[2] 454

d[3] 455

d[4] 456 ’a’

Most of the cells in the arrays were not given values in this code example. There-
fore their values are unknown. It is convenient to leave these entries blank in the
memory map table. This does not mean that they do not have a value, just that
their values are unknown (see Chapter 2).

When accessing an array, the index used should be from zero to one less
than the total number of cells in the array. These are called the array bounds.
However, the C language does not check to make sure that program code stays
within the array bounds. It is possible to compile and execute code that goes
outside the array bounds. For example, if we add the following code to that from
above:

b[4]=15.9;

printf("%lf\n",b[4]);

Even though index 4 is past the array bounds for the variable b, the output of this
code still produces the expected output:

15.900000

Why did it work? Looking at the memory map, one can see what happens. The
four bytes after b[2] can be accessed using the name b[3]:
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Out-of-bounds access Label Address Value

a[0] 400–403 5

a[1] 404–407

b[0] 408–411

b[1] 412–415 4.0

b[2] 416–419

b[3] ? b[4] ? c[0] 420–427

b[5] ? b[6] ? c[1] 428–435

c[2] 436–443 14.7

c[3] 444–451

d[0] 452

d[1] 453

d[2] 454

d[3] 455

d[4] 456 ’a’

In the memory map, these bytes occupy addresses 420–423 and are used by the
variable c[0]. However, the C compiler allows a programmer to access them by
“going off the end” of the b array. Past the array bounds, accesses simply move
ahead the appropriate number of bytes. The next four bytes, at memory addresses
424–427, can be accessed using the name b[4]. These operations “work” because
although they are accessing memory outside the array bounds, they are still
accessing memory used by this program. Therefore, the program compiles and
executes with seemingly correct output.

Of course, it is possible for an access outside the array bounds to clobber a
variable. This happens when the out-of-bounds array access overwrites a value
in another variable. In our example above, half the variable c[0] is clobbered by
writing to b[3], and the other half of c[0] is clobbered by writing to b[4]. Encoun-
tering this error, a programmer will observe a variable to suddenly change value.
Seemingly, no line of code in the program changes that variable’s value, yet when
displayed it has changed. This mistake often frustrates novice programmers. With
some practice, one will recognize that it is likely the result of an out-of-bounds
array access that has clobbered another variable.

It is also possible for an out-of-bounds array access to cause a program to
crash. For example, consider adding the following code fragment to those from
above:
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b[33333]=15.9;

printf("%lf\n",b[33333]);

This code still compiles, but when executed produces a segmentation fault. This
is because the out-of-bounds array access went far beyond the memory used by
this program, and perhaps tried to access memory used by another program (or
that was otherwise restricted). The operating system will recognize the problem
and terminate the program, reporting a segmentation fault.

Faulty addressing can lead to another type of crash called a bus error. A bus
error occurs when a program tries to access a memory address that is physically
impossible (or nonexistant). A bus error can also occur on some systems when
a program tries to address an “unaligned” address. This means that the program
attempts to read multiple bytes that are not aligned with the width of the data bus
(for example, on a 32-bit system the data bus is 4 bytes wide). If an error of this
type happens, the operating system will recognize the problem and terminate the
program, reporting a bus error.

Why does the C compiler allow out-of-bounds array accesses? The question
is actually more complicated than it seems. Not all arrays have a fixed, known
size. Sometimes a programmer needs to decide on the size of an array after a
program has been compiled and is executing. Sometimes a programmer needs an
array to change size while a program is executing. These needs make it impossible
for the C compiler to know, in all cases, if an array access is out-of-bounds. The
answer may not be known until the program is running and reaches the code that
accesses the array.

3.1.1 Multidimensional Arrays
Arrays in C can have more than one dimension. But computer memory is all ar-
ranged in one-dimensional order, as though it were one long street of bytes. How
then are multidimensional arrays stored in computer memory? Does a comput-
ing system have some other strange, multidimensional space for use only by these
arrays? Of course not. The answer is that the cells in the multidimensional array
are listed out, one at a time, in one-dimensional order. For example, consider the
following code:

int a[3][2];

a[0][1]=7;

a[1][0]=13;

The memory map for this code could be written as:
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Label Address Value

a[0][0] 400–403

a[0][1] 404–407 7

a[1][0] 408–411 13

a[1][1] 412–415

a[2][0] 416–419

a[2][1] 420–423

There are a total of six cells in this array. They are listed in order by cycling
through the range on the rightmost index, incrementing the next index to the
left when done. The same procedure works for any number of dimensions. For
example, consider the following code for a three-dimensional array:

int b[2][3][4];

b[0][2][0]=7;

b[1][0][2]=13;

There are 24 cells in this array, occupying a total of 96 bytes. The memory map
for this code could be written as:

Label Address Value Label Address Value

b[0][0][0] 400–403 b[1][0][0] 448–451

b[0][0][1] 404–407 b[1][0][1] 452–455

b[0][0][2] 408–411 b[1][0][2] 456–459 13

b[0][0][3] 412–415 b[1][0][3] 460–463

b[0][1][0] 416–419 b[1][1][0] 464–467

b[0][1][1] 420–423 b[1][1][1] 468–471

b[0][1][2] 424–427 b[1][1][2] 472–475

b[0][1][3] 428–431 b[1][1][3] 476–479

b[0][2][0] 432–435 7 b[1][2][0] 480–483

b[0][2][1] 436–439 b[1][2][1] 484–487

b[0][2][2] 440–443 b[1][2][2] 488–491

b[0][2][3] 444–447 b[1][2][3] 492–495

The order of incrementing dimension indices is similar to how base 10 numbers
are counted, cycling through the one’s digit before incrementing the ten’s digit,
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then cycling through the ten’s digit before incrementing the hundred’s digit, and
so on.

Everything stored in computer memory is somehow stretched out in one-
dimensional order. Things not typically viewed as one-dimensional, such as im-
ages, video, databases, maps, and three-dimensional models are all actually stored
by listing out the data in one-dimensional order. We will revisit this principle in
Section 5.4 when we look at files.

3.2 ● Strings
A string is a specific type of array: it is an array of char, containing a sequence of
values where a value of ’\0’ signifies the end of the string. Although the array
could be of any size, it is assumed that the valid data in the array starts at the first
cell, and ends with the first cell having a value of ’\0’. For example:

char d[8];

d[0]=’H’; d[1]=’e’; d[2]=’l’; d[3]=’l’; d[4]=’o’;

d[5]=’\0’; /* ’\0’ indicates the end of string */

The memory map for this code could be written as:

Label Address Value

d[0] 400 ’H’

d[1] 401 ’e’

d[2] 402 ’l’

d[3] 403 ’l’

d[4] 404 ’o’

d[5] 405 ’\0’

d[6] 406

d[7] 407

Although the array has eight cells, only the first six are used. The cell containing
the ’\0’ character is not seen during either printing or the scanning of input.
It is a nonprintable character1 used to control how text data is processed. Any
code working on a string is supposed to stop processing the array when the ’\0’

1. The slash-symbol pair within the single quotes is called an escape sequence or control sequence and

is used to represent the nonprintable character because there is no single visible symbol to represent

the action.
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character is reached. It is assumed that the values in the remaining cells (two in
this case) are not used.

The value of the ’\0’ character is zero. ’\0’ is simply another way of saying
zero. It is used to specify a specific “type” of zero. For example, it is informative
to use a different zero for a whole number (0) than for a real number (0.0) to
show that they are representing slightly different information. ’\0’ is a way to
say zero for a char representing an ASCII symbol that means end of string. Zero
has another alias called NULL. NULL is usually used to indicate a value of zero
for an address (discussed further in Chapter 4), but it is sometimes used for the
end of string character. Any of these aliases can be used; they all result in the
same bit pattern being placed in the cell, which is all zeros. For example, all of the
following lines of code are equally valid and do the exact same thing:

d[5]=’\0’; /* ASCII zero */

d[5]=0; /* integer zero */

d[5]=(char)NULL; /* address zero */

The basic functions for reading string input from the keyboard and for writ-
ing string output to the screen are scanf() and printf(), respectively. Just as
each basic data type has its own % identifier (char uses %c, int uses %i or %d,
float uses %f, double uses %lf), a string uses %s. The %s identifier makes it sim-
pler for a programmer to print out a string. How does it work? Consider the
following code to print out the example from above:

printf("%c%c%c%c%c\n",d[0],d[1],d[2],d[3],d[4]);

This brute force approach is tedious; code must be written to specifically print
out each character, and we must know exactly how many are to be printed. The
%s identifier tells printf() to assume the variable is an array of char, ending with
a value of zero, and to print each byte using the ASCII bit model. Using this
identifier, we can rewrite the printf() as follows:

printf("%s\n",d);

Notice that there are no indices given for the variable d in the printf() when using
the %s identifier. The printf() is given the variable name d, not d[0] through
d[4]. We can explain this using the memory map:

Address label Label Address Value

d d[0] 400 ’H’

d[1] 401 ’e’

d[2] 402 ’l’

d[3] 403 ’l’
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d[4] 404 ’o’

d[5] 405 0

d[6] 406

d[7] 407

The variable name d is a label for an address rather than for a value. It
identifies address 400. Given that address, the printf() function will print out
bytes until it encounters a value of zero. Thus, it will print out the bytes at
addresses 400–404, and upon seeing a value of zero at address 405, it stops. What
if we were to code the following?

printf("%s\n",d[0]); /* what does this do? */

This code does not make any sense. It seemingly asks printf() to print character
symbols, starting with the value ’H’. But which ’H’? How is printf() supposed
to know that the programmer intended printing to start with the specific ’H’ at
address 400? In fact, this code will crash. It asks printf() to start printing bytes at
“address ’H’”, which causes a segmentation fault.

When reading input using the scanf() function, the & symbol is required in
front of the variable name for the basic data types (char, int, float, and double).
However, it is not required for a string. For example:

int x;

float f;

char s[6];

scanf("%d",&x);

scanf("%f",&f);

scanf("%s",s);

This can be explained by looking at the memory map:

Address label(s) Label Address Value

&x x 400–403

&f f 404–407

&(s[0]) s s[0] 408

s[1] 409

s[2] 410

s[3] 411

s[4] 412

s[5] 413
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The variable names x and f each refer to the values stored for those variables.
Similarly, s[0] through s[7] refer to values. The syntax &x is used to identify the
address of x, which is 400. The syntax &f identifies the address of f, which is 404,
and &(s[0]) identifies the address of s[0], which is 408. The variable name s is
simply a shorthand for writing &(s[0]). The nature of the operation involving
the %s identifier in scanf() is to store a series of characters, ending it with a value
of zero. This is why it must be given an address, where the storing of characters is
to start.

3.2.1 Multidimensional Strings
One of the common uses for multidimensional arrays is to store a list of strings.
Since each string is a one-dimensional array, a list of strings requires a two-
dimensional array. For example:

char n[2][4];

n[0][0]=’T’; n[0][1]=’o’; n[0][2]=’m’; n[0][3]=0;

n[1][0]=’S’; n[1][1]=’u’; n[1][2]=’e’; n[1][3]=0;

The memory map for this code can be written as:

Address label(s) Label Address Value

&(n[0][0]) n[0] n n[0][0] 400 ’T’

n[0][1] 401 ’o’

n[0][2] 402 ’m’

n[0][3] 403 0

&(n[1][0]) n[1] n[1][0] 404 ’S’

n[1][1] 405 ’u’

n[1][2] 406 ’e’

n[1][3] 407 0

Each string in the two-dimensional array can be referenced using the address
label for the one-dimensional array that stores it. For example, the following code
prints out the two strings:

printf("%s %s\n",n[0],n[1]);

Both n[0] and n[1] identify addresses (400 and 404, respectively). In the case of
a multidimensional array, the variable name by itself provides a third alias for the
starting address of the entire array. In this example, &(n[0][0]), n[0], and n all
refer to the same thing, the address 400.
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3.3 ● String Library Functions
There are a handful of calculations that are common to a large number of text
processing problems. These calculations include finding the length of a string
and comparing the contents of two strings. Because they are so common, the C
standard library has evolved to include functions to perform these calculations.
In Chapter 8 (Section 8.3) we take a deeper look at the C standard library, which
contains functions for a variety of purposes; in this section, we are concerned
only with the portion of the library involved in text processing. Even that portion
of the library includes dozens of functions.2 However, there are five functions that
cover the most common calcuations and operations:

Function What it does

strlen() count the total characters in the string

strcmp() compare two strings, determine if identical

strcpy() copy one string into another string variable

strcat() append one string to another string

sprintf() print formatted output into a string variable

The following sections examine each of these functions from the perspective
of memory. Studying the operations at the memory level is a good way to ap-
proach many text processing problems and is particularly helpful when tackling
problems outside the scope of the string library functions.

3.3.1 String Length: strlen()
Suppose we wish to count the number of characters in a string. For example:

String Length

“Hello” 5

“H.i;” 4

“h e y” 5

We can calculate the length of a string using the following code:

2. For a complete listing, consult a reference such as C: A Reference Manual, 5th ed., S. P. Harbison

and G. L. Steele, Prentice Hall, 2002.
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int length;

char s[6];

s[0]=’S’; s[1]=’u’; s[2]=’e’; s[3]=’\0’;

length=0;

while (s[length] != ’\0’)

length++;

The memory map during execution of this code may be written as:

Label Address Value

length 400–403 /0 /1 /2 3

s[0] 404 ’S’

s[1] 405 ’u’

s[2] 406 ’e’

s[3] 407 ’\0’

s[4] 408

s[5] 409

Notice how the ’\0’ value is used to control the calculation. Upon reaching it,
the calculation ends. This type of value is sometimes called a sentinel or a flag.
The value of a sentinel is not intended to be used in a computation; rather, it is
intended to terminate the processing of a list of data. Sentinels are used in many
computational problems besides text processing.

The same calculation can be performed by calling the strlen() function:

length=strlen(s);

It does not save us a lot of code for this one calculation (1 line versus 3 lines of
code). However, after having written code for the same calculation a few hundred
(or thousand) times, the savings add up. In addition, calling the same function
prevents accidentally inserting an error into the calculation. Even experienced
programmers can make mistakes, and the benefit of using proven code can save
the time it takes to track down bugs.

3.3.2 String Compare: strcmp()
Suppose we wish to compare two strings to determine if they are the same.
Further, if they are different, we desire to know which string first reaches an index
having a value less then the same index in the other string. For example:
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Strings Comparison (meaning)

“Hello” vs. “Hello” 0 (same)

“Hello” vs. “Hellp” −1 (first string smaller)

“Hey” vs. “Hallo” 1 (second sting smaller)

“Hillo” vs. “Hi” 1 (second sting smaller)

We can compare two strings using the following code:

int i,a;

char s[4],t[4];

s[0]=’S’; s[1]=’u’; s[2]=’e’; s[3]=’\0’;

t[0]=’S’; t[1]=’u’; t[2]=’n’; t[3]=’\0’;

i=0; a=0;

while (a == 0)

{

if (s[i] < t[i]) a=-1;

if (s[i] > t[i]) a=1;

if (s[i] == ’\0’ || t[i] == ’\0’)

break;

i++;

}

The memory map during execution of this code may be written as:

Label Address Value

i 400–403 /0 /1 /2 3

a 404–407 /0 -1

s[0] 408 ’S’

s[1] 409 ’u’

s[2] 410 ’e’

s[3] 411 ’\0’

t[0] 412 ’S’

t[1] 413 ’u’

t[2] 414 ’n’

t[3] 415 ’\0’
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The loop compares the values in the cells at the same indices of the two strings
(s[0] to t[0], s[1] to t[1], etc.) until it finds an index where the values are different,
or until it reaches the end of one of the strings. The comparison result is stored
in a. If the strings are the same, the comparison result is 0. If the first string is less
than the second, the result is −1; if the first string is greater than the second,
the result is 1. This provides an alphabetical comparison, so long as the case
of the letters is equivalent. For our example, since “Sue” is less than “Sun,” the
comparison result is −1.

The same calculation can be performed by calling the strcmp() function:

a=strcmp(s,t);

This saves us slightly more code than the strlen() function, but like strlen(), its
real value lies in repeated use.

3.3.3 String Copy: strcpy()
Suppose we wish to copy the contents of a string to a second string variable. The
following code accomplishes this task:

int i;

char s[4],t[4];

s[0]=’S’; s[1]=’u’; s[2]=’e’; s[3]=’\0’;

i=0;

while (s[i] != ’\0’)

{

t[i]=s[i];

i++;

}

t[i]=’\0’;

The memory map during execution of this code may be written as:

Label Address Value

i 400-403 /0 /1 /2 3

s[0] 404 ’S’

s[1] 405 ’u’

s[2] 406 ’e’

s[3] 407 ’\0’

t[0] 408 ’S’

t[1] 409 ’u’
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t[2] 410 ’e’

t[3] 411 ’\0’

Notice that the loop will not copy the ’\0’ character. It must be added to the new
string separately after the loop is completed. This is a common programming
mistake. Without the ’\0’ character, any processing of the new string will be
erroneous. Any code or function processing that string will continue until it finds
a zero byte somewhere in memory (which could cause a crash or other problem).

The same calculation can be performed by calling the strcpy() function:

strcpy(t,s);

The source string comes second in the argument list; the destination string comes
first.

3.3.4 String Concatenate: strcat()
Suppose we wish to append a string (the addendum) to the end of another string
(the original). For example:

Original Addendum Result

“Hi” “ there” “Hi there”

“Sun” “ny” “Sunny”

“a” “.out” “a.out”

We can concatenate two strings using the following code:

int i,j;

char s[8],t[4];

s[0]=’S’; s[1]=’u’; s[2]=’\0’;

t[0]=’s’; t[1]=’a’; t[2]=’n’; t[3]=’\0’;

i=strlen(s);

j=0;

while (t[j] != ’\0’)

{

s[i+j]=t[j];

j++;

}

s[i+j]=’\0’;

The memory map during execution of this code may be written as:
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Label Address Value

i 400–403 2

j 404–407 /0 /1 /2 3

s[0] 408 ’S’

s[1] 409 ’u’

s[2] 410 /0 ’s’

s[3] 411 ’a’

s[4] 412 ’n’

s[5] 413 0

s[6] 414

s[7] 415

t[0] 416 ’s’

t[1] 417 ’a’

t[2] 418 ’n’

t[3] 419 0

In this example, we make use of another string library function (strlen()) to
accomplish the task. It is common to see library functions that make use of other
functions (or even other libraries). We will look at this principle in Chapter 8
when we examine libraries in general. In this example, we also had to explicitly
add the ’\0’ character at the end of the result so that the string remains valid for
further processing.

The same calculation can be performed by calling the strcat() function:

strcat(s,t);

The original string comes first in the argument list; the addendum string comes
second. The result is placed in the original string variable.

3.3.5 String Print: sprintf()
The sprintf() function works just like the printf() function, except that the
output “prints” into a string variable. This can be useful for converting numeric
data types into ASCII text, or for creating long strings from multiple components.
For example:

char a[24];

float f;

int i;
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f=3.72;

i=9;

sprintf(a,"Price %f, qty %d",f,i);

printf("%s\n",a);

The output of this code is:

Price 3.720000, qty 9

The memory map for this code is revealing; it highlights the difference between
text-storage and value-storage of numbers:

Label Address Value Label Address Value

a[0] 400 ’P’ a[13] 413 ’0’

a[1] 401 ’r’ a[14] 414 ’,’

a[2] 402 ’i’ a[15] 415 ’ ’

a[3] 403 ’c’ a[16] 416 ’q’

a[4] 404 ’e’ a[17] 417 ’t’

a[5] 405 ’ ’ a[18] 418 ’y’

a[6] 406 ’3’ a[19] 419 ’ ’

a[7] 407 ’.’ a[20] 420 ’9’

a[8] 408 ’7’ a[21] 421 0

a[9] 409 ’2’ a[22] 422

a[10] 410 ’0’ a[23] 423

a[11] 411 ’0’ f 424–427 3.72

a[12] 412 ’0’ i 428–431 9

How many bytes does it take to store each of the numbers as a numeric value
(float or int) versus as text?

3.3.6 String Functions Example
The following code demonstrates several of the string functions just covered,
together in a complete program:

#include <stdio.h> /* for printf(), scanf() */

#include <string.h> /* for strlen(), strcmp() */

main()

{

char look[80],test[80];
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printf("Look for: ");

scanf("%s",look);

while (1)

{

printf("Enter a string (0 to quit): ");

scanf("%s",test);

if (strcmp(test,"0") == 0)

break;

if (strlen(test) < strlen(look))

printf("%s is too short for %s\n",test,look);

else if (strcmp(test,look) == 0)

printf("Found one!\n");

else if (strncmp(test,look,3) == 0)

printf("Started the same...\n");

else

printf("Not what we’re looking for\n");

}

}

Compiling and executing the code, we obtain the following (the text given at each
input was selected to demonstrate the various functions):

Look for: sun

Enter a string (0 to quit): s

s is too short for sun

Enter a string (0 to quit): sun

Found one!

Enter a string (0 to quit): sunny

Started the same...

Enter a string (0 to quit): sleet

Not what we’re looking for

Enter a string (0 to quit): 0

The last function call, strncmp(), is a variant on strcmp(). It takes a third argu-
ment indicating how many characters (three in this example) are to be compared.
If no difference is found between the two strings after that many characters have
been compared, then the function returns zero. Otherwise, the strncmp() func-
tion works exactly the same as the original strcmp() function. There are similar
variants on the strcpy() and strcat() functions, called strncpy() and strn-
cat().
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3.3.7 Nonlibrary Problems
A naive programmer can become too reliant upon the string library functions.
Not every text processing problem is easily solved through use of the library
functions. For many problems, individual character processing of string data
must be coded. This section demonstrates an example.

Suppose we want to remove all occurrences of the letter ’a’ from a string,
compressing characters to fill any created gaps. For example:

Original Result

“Saturday” “Sturdy”

“a ball” “ bll”

There is no single function within the C standard library that will accomplish this
task. Instead, we must write code to process the string at the character level. The
following code accomplishes ’a’-removal:

int i,j;

char s[6];

s[0]=’a’; s[1]=’b’; s[2]=’a’; s[3]=’c’; s[4]=0;

i=0; j=0;

while (s[i] != 0)

{

if (s[i] != ’a’)

{

s[j]=s[i];

j++;

}

i++;

}

s[j]=0;

The memory map during execution of this code may be written as:

Label Address Value

i 400–403 /0 /1 /2 /3 4

j 404–407 /0 /1 2

s[0] 408 ’/a’ ’b’

s[1] 409 ’/b’ ’c’ (continued)
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Label Address Value

s[2] 410 ’/a’ 0

s[3] 411 ’c’

s[4] 412 0

s[5] 413

A serious programmer should be well-versed in the common string processing
functions of the C standard library and should use them when appropriate. How-
ever, any serious programmer must also be able to process strings at the character
level, in order to accomplish the given task. Studying the problem at the mem-
ory level is often a good approach. Writing out one or two examples in memory,
especially those involving the trickiest cases, will often facilitate code design and
debugging.

3.4 ● Command Line Arguments
As discussed in Chapter 1, a command line argument is anything typed at the
shell prompt after the name of the program to execute. Command line arguments
are typically used to provide information about how the user wishes to run a
program. For example:

ahoover@video> ls -l -t

drwxr-xr-x 26 ahoover fusion 4096 Jul 20 16:03 ece222/

drwxr-xr-x 7 ahoover 325 4096 Jul 19 17:01 public_html/

drwx------ 2 ahoover fusion 4096 Feb 7 14:33 mail/

drwxr-xr-x 3 ahoover fusion 4096 Dec 14 2005 ece854/

drwxr-xr-x 3 ahoover fusion 4096 Dec 14 2005 ece429/

drwxr-xr-x 2 ahoover fusion 4096 Mar 19 2005 ece893/

drwxr-xr-x 3 ahoover fusion 4096 Mar 19 2005 ece468/

drwxr-xr-x 15 ahoover fusion 4096 Dec 14 2005 Projects/

ahoover@video>

The command line argument -l tells the program ls to provide a long listing in
its output. The command line argument -t causes the output to be sorted accord-
ing to time last modified. This example shows two command line arguments; it
is possible to have any number. They must be separated from each other by one
or more spaces.
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How is a program made aware of its command line arguments? When exe-
cuted, into what variables are the values for the command line arguments placed?
The answer lies in the full function declaration for main():

int main(int argc, char *argv[])

The variable argc stores the number of command line arguments, including
the name of the program. For the example ls -l -t, this equals 3. The variable
argv stores a list of strings, one string per command line argument. Although
the declaration for argv looks strange, including a pointer symbol and an empty
pair of array brackets, it can be accessed just like a two-dimensional array. For
example, the following code prints out all the command line arguments, one
character at a time:

int i,j;

for (i=0; i<argc; i++)

{

j=0;

while (argv[i][j] != ’\0’)

{

printf("%c",argv[i][j]);

j++;

}

printf("\n");

}

The partial memory map for argc and argv, based on our example, may be written
as follows:

Address label(s) Label Address Value

&(argc) argc 400–403 3

&(argv[0][0]) argv[0] argv[0][0] 404 ’l’

&(argv[0][1]) argv[0][1] 405 ’s’

&(argv[0][2]) argv[0][2] 406 ’\0’

&(argv[1][0]) argv[1] argv[1][0] 407 ’-’

&(argv[1][1]) argv[1][1] 408 ’l’

&(argv[1][2]) argv[1][2] 409 ’\0’

&(argv[2][0]) argv[2] argv[2][0] 410 ’-’

&(argv[2][1]) argv[2][1] 411 ’t’

&(argv[2][2]) argv[2][2] 412 ’\0’
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Each string can be accessed through its own address label, so that the code exam-
ple just given can be simplified as follows:

for (i=0; i<argc; i++)

printf("%s\n",argv[i]);

Although the variable argv can be accessed as though it were a two-dimensional
array, it actually occupies memory a little differently. Using pointers, what we
have been calling the “address labels” in this chapter are given their own storage
locations. This is a primary subject of the next chapter.

Questions and Exercises
1. Write a memory map for the following code. Show all values at the end of execu-

tion of the program.

#include <stdio.h>

main()

{

int i,j,k,swap;

char c[8];

c[0]=’f’; c[1]=’r’; c[2]=’o’; c[3]=’g’; c[4]=0;

for (i=0; i<4; i++)

{

k=i;

for (j=i+1; j<4; j++)

if (c[j]-c[k] < 10)

k=j;

swap=c[i];

c[i]=c[k];

c[k]=swap;

}

}

2. Write a memory map for the following code. Show all values at the end of execu-
tion of the program.

#include <stdio.h>

main()

{
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int a[4],i;

float b[3];

char c[3];

double d[4];

b[2]=6.7;

for (a[0]=2; a[0]>0; a[0]--)

b[a[0]-1]=b[a[0]]+2.3;

c[1]=’N’;

d[0]=12.6;

for (i=1; i<3; i++)

d[i]=d[0]+(double)b[i];

}

3. Consider the following variable declarations. Assume each variable stores the
values in a matrix. Write code that multiplies the matrix a by the matrix b and
stores the result in the matrix c.

float a[2][3],b[3][2],c[2][2];

4. Write a memory map for the following code. Show all values at the end of execu-
tion of the program.

#include <stdio.h>

main()

{

int x[2][3][2];

int i,j,k;

for (i=0; i<3; i++)

for (j=0; j<2; j++)

x[0][i][j]=i*3+j;

for (k=0; k<2; k++)

for (j=0; j<2; j++)

x[1][k][j]=x[0][j][k]-1;

}

5. Consider the following code:

int i,j,t;

char name[50];

printf("What is your name? ");

scanf("%s",name);

t=0;
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for (i=0; i<strlen(name); i++)

for (j=’a’; j<=name[i]; j++)

t++;

printf("%d\n",t);

If the user types “dad” (not including the quotes—just the three letters dad
followed by the [ENTER] key) at the prompt, what is the output?

6. Consider the following program:

#include <stdio.h>

main()

{

char s[10],t[10];

int i,j;

strcpy(s,"frog");

for (i=0; i<strlen(s); i++)

t[i]=s[i];

j=0;

for (i=0; i<strlen(t); i++)

j=j+(int)t[i];

printf("%d\n",j);

The expected output of the program is 430, but it often produces a different
result. The result seems to change depending on when the program is run, or
on which computer it is run. Why?

7. Write code to split an input string (variable “name”) into two output strings
(variables “first” and “last”). Assume that the user provides input containing
only the characters a through z and A through Z. Assume there are exactly two
capital letters in the input, one at the beginning of the first name, and one at
the beginning of the last name. For example, given the input “JoeSmith”, your
code should split it into “Joe” and “Smith”. Your code should use the following
lines:

char name[50],first[25],last[25];

printf("What is your name? ");

scanf("%s",name);

8. Write a complete program that prompts the user for an input string, sorts its
characters, and prints out the sorted output. Assume the string contains no
spaces and is at most 30 characters. Sort the characters according to byte values,
irrespective of the symbols those values represent, from smallest to largest. The
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output should be one contiguous string, printed on one line. Example: “Input:
apple” should print “aelpp”.

9. What is the output of the following code?

double d[4][3];

int i,j;

for (i=0; i<4; i++)

for (j=0; j<3; j++)

if (j == 0)

d[i][j]=(double)i /10.0;

else

d[i][j]=d[i][j-1]+(double)i*2.0;

printf("%lf\n",d[3][2]);

10. Write code to “de-vowel” an input string. Assume that the user provides input
containing only the characters a through z (and all lowercase). Your code should
create an output string that deletes all vowels from the input string, pushing the
letters together to fill any gaps. For example, given the input “theturtleandthe-
hare” your code should print out “thtrtlndthhr”.

Your program should create an output string from the input string, before
presenting its output, and should include the following lines:

char input[80],output[80];

printf("Enter a string: ");

scanf("%s",input);

11. Write out the memory map for the following code, providing all values at the
end of execution. Assume the user enters 8654115 at the prompt. How many total
bytes does this code declare for variables?

main()

{

char x[3][8];

int j,length;

float number;

double avg;

for (j=0; j<3; j++)

if (j == 0)

{

printf("Enter input string: ");

scanf("%s",x[0]);
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length=strlen(x[0]);

}

else if (j == 1)

{

x[0][0]=’9’; x[1][0]=’7’; x[2][0]=’5’;

number=(float)(x[0][0]+x[2][0]);

}

else

avg=(double)(x[0][0]+x[1][0])/2.0;

}

12. Write a complete program that prompts a user for a filename and then prints
out only the suffix of the filename. Assume the filename will take the form of
“filename.suffix”—where both the filename and the suffix will contain one or
more characters each, and the period will always be present to demarcate the
boundary.

13. Write a program that looks at all the command line arguments and reports if any
of the arguments are the same (i.e., they match exactly). The program should
print out the matching argument and the positions it occupies in the list of
arguments.

14. Write a program that accepts up to six arguments at the command line prompt.
The program should print the first character of any odd-
numbered arguments (numbers 0, 2, and 4), and the second character of any
even-numbered arguments (numbers 1, 3, and 5). The characters printed should
be separated by spaces. The program should inform the user of the correct pro-
gram usage if fewer than two or more than six arguments are provided. Assume
each argument contains at least two characters. For example:

ahoover@video> myprog arg1 200 list all arg5

m r 2 i a r

ahoover@video>

15. Write a program that allows the user to perform pseudo arithmetic on a string.
Upon starting, the program should tell the user that it is a string math program,
along with brief instructions on how to use the program. The program should
then enter a loop, where it gives a prompt, such as “input:”. Upon receiving
input from the user, the program should process it, report the output result (or
error), and loop back to the prompt. This should continue until the user gives the
keyphrase to exit the program (the keyphrase is of your choosing, good choices
are “quit”, “end”, “exit”, etc.).
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Input from the user should be of the form SOS, where S represents a string
and O represents a mathematical symbol. There should be no spaces between the
three parts (the two S’s and the O). A string should consist of from one to nine
lowercase letters. The mathematical symbol should be from the set + - / *. These
symbols correspond to their natural use in the C language: addition, subtraction,
division, and multiplication.

If the user inputs a string containing symbols outside the lowercase letters, or
if the string has more than nine characters, the program should report an error.
If the user inputs a mathematical symbol outside the expected set, the program
should report an error. If the input provided by the user is not of the form SOS—
for example, if it is only SO, or only S—then the program should report an error.
The error messages can be generic; they do not have to describe specifically what
the user did wrong.

If a grammatically correct input is entered, the program should convert the
two strings to integer arrays and perform the given operation on each cell in-
dependently. The resulting array should then be converted back to a string, and
displayed to the user. For example:

Input> abc+aab

abc + aab => bce

The output must be exactly in that format, showing the two strings and
mathematical symbol separated by spaces, to demonstrate that the program has
correctly subdivided the input into its three parts.

The mathematical operations should work as follows. Each character should
be converted to an integer in the range 1–26 (a is 1, b is 2, c is 3, . . . , z is 26).
The operation should then be performed using integer math. If the result is inside
the range 1–26, then the output character should be the corresponding lowercase
letter. If the result is outside the range 1–26, then the output character should be
the uppercase version of the input character from the first string. For example:

Input> wxy+bbb

wxy + bbb => yzY

If the two input strings are not the same length, then each output character
beyond the length of the shorter string should be a copy of the character from
the longer string. For example:

Input> xyz+a

xyz + a => yyz
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Finally, here are some additional examples to clarify all expected operations.
These do not necessarily encompass all checks for errors, or all the cases that need
to be tested.

Example input Correct output

abc-aa Aac

dog*cat loG

turtle/frog caable

Frog+turtle bad input

bird/tiger BabDr

emu+zebra Erwra

This lab should be done entirely without string functions. Avoid any usage of
strlen(), strcpy(), strcmp(), and the related functions.

16. Write a program that allows the user to spell check an ASCII text file. The pro-
gram should read in a dictionary of words from the plain ASCII file linux.words
(usually found in /usr/share/dict, depending on your system’s installation of is-
pell) and store it in a suitable array. The program should then read words, one
at a time, from the user-given input file. Each word should be compared to the
dictionary. If an exact match is found, the program should continue to the next
word. If no exact match is found, then the program should begin searching for
suitable suggestions for replacement.

The search for replacement words should work as follows. Let N be the length
of the original input word, minus 1. Starting with that value of N, the program
should search for any exact matches of the first N characters of the input word
with any words in the dictionary, and add them to a suggestion list. Following
that, the program should search for any exact matches of an N substring any-
where inside the input word, as compared to anywhere inside a dictionary word.
Decrease the value of N by 1, and repeat. This process should stop when 10 words
have been suggested, or when N reaches 0.

The program should provide the list of suggestions to the user through a
simple text menu. One option in that menu should be to keep the original word.

Either upon verifying that the original word is found in the dictionary, or
upon the user selecting a replacement, the program should write the appropriate
word to an output file. The program should discover the names of both the input
file and the output file from command line arguments. The program should
check to make sure that the appropriate number of command line arguments
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is given by the user and, if not, report an error along with the proper usage of the
program.

The program does not have to be concerned with spacing or arrangement
between words. Words can be output one per line, for example, even though that
does not match how they were arranged in the input file. The program does not
need to handle punctuation characters and can disregard them while checking
spelling.
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4
Pointers and Structures

I n the last chapter, we used the memory map to study how arrays and strings
work. Writing out a memory map is often useful during program design.

During debugging, it can be invaluable. In this chapter, we extend these ideas
to pointers and structures. All variables have an address in memory, much the
same way that all houses and businesses have a street address in the real world.
However, the organization of buildings and streets becomes clearer by looking at
a map. It tends to be easier to explore an unknown city or to reach a destination
using a map. In much the same way, it tends to be easier to design code for a
problem involving pointers or to debug the code using a memory map. Pointers
(and to some degree, structures) can be the most difficult tool to master in the C
programming language. The goal of this chapter is to increase the proficiency of
the reader with these tools through a deeper understanding of how they work.

4.1 ● Pointers
A pointer is a construct used to store an address of a variable. We declare a
variable to be a pointer-type variable by preceding its name with the asterisk
symbol (*). For example:

char c,*cp;

int i,*ip;

float f,*fp;

double d,*dp;

The variables c, i, f, and d are normal variables, each holding a different type of
value. The variables cp, ip, fp, and dp are all pointers, each holding an address.
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How big is each of these variables? From previous chapters, we know that a
char is 1 byte, an int and a float are 4 bytes each (although they use the bits
differently), and a double is 8 bytes. How many bytes does a pointer use?

To answer that question, consider what a pointer holds: an address. A pointer
needs enough bits to store all the possible addresses on the computing system.
How many addresses are there? At the time of this writing, a common computing
system can have a maximum of 4 GB of memory. It takes 32 bits to store roughly
4 billion different addresses, one for each byte of memory. In fact, this is precisely
why such a computing system is limited to 4 GB of memory; it is because it has
a 32-bit address bus connecting the CPU to memory. Throughout this book,1 we
have been assuming a 32-bit architecture to explain memory concepts.

Knowing how many bytes a pointer variable requires, we can now draw a
memory map for our example above:

Label Address Value

c 400

cp 401–404

i 405–408

ip 409–412

f 413–416

fp 417–420

d 421–428

dp 429–432

An address is an address, regardless of what resides at that address. All addresses
require 4 bytes. Therefore all pointers, regardless of the type of variable “pointed
to,” require 4 bytes.

The use of pointer variables involves two symbols: & and *. The ampersand
symbol (&) indicates the “address of” a variable, and the asterisk symbol (*)
indicates “at the address given by” a variable. For example:

cp=&c;

ip=&i;

*ip=42;

The memory map for this code can be filled in as follows:

1. Please see the discussion in Section 2.1.1.
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Label Address Value

c 400

cp 401–404 400

i 405–408 42

ip 409–412 405

f 413–416

fp 417–420

d 421–428

dp 429–432

The first two lines store the addresses of the variables c and i into the pointer
variables cp and ip. The last line looks at the address stored in ip, which is 405,
and places the value 42 at that address. Address 405 is where the variable i resides,
so in effect i is the variable with a new value.

A pointer can hold the address of any variable, including a cell in an array.
For example:

char ca[3],*cp;

ca[1]=3;

cp=&(ca[1]);

*cp=7;

The memory map for this code may be written as:

Label Address Value

ca[0] 400

ca[1] 401 /3 7

ca[2] 402

cp 403–406 401

When writing code using multiple symbols, it is a good practice to use parenthe-
ses to emphasize the order of operations. Although it is possible to write &ca[1],
and it means the same thing as &(ca[1]), the latter is preferable because of its
clarity. This becomes increasingly true as variables are used in greater complexity.
An advanced programmer may not need to be reminded of the order of opera-
tions, but including the parentheses never hurts.

An address can be printed out using the printf() function in a few different
ways. Since it is a 4-byte whole number, it can be printed as an int (using %i
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or %d), but this interprets the highest bit as a sign bit, so that the value may be
negative. It is easier to read if it is printed as an unsigned int (using %u) so that the
number is always positive. The printf() function also provides the %p identifier
for pointers, to display the address in hexadecimal. For example:

char a,*b;

a=7; b=&a;

printf("%d %u %p value=%d\n",b,b,b,*b);

The output of this code is as follows:

-1073764873 3221202423 0xbfffa5f7 value=7

The unsigned base 10 display of an address is often the easiest to read, but the
hexadecimal display of an address is sometimes preferred because it is the easiest
to translate to binary (each hexadecimal digit converts to four binary digits).
Notice that the address, in unsigned base 10, is a much larger number than the
range we have been using (the 400’s). For purposes of code design, it is convenient
to use small numbers for addresses when writing a memory map, but during
debugging, it may be necessary to work with large actual address values like
these.

4.1.1 Pointer Arithmetic
There are two different uses for the * symbol,2 one during variable declaration,
and one during variable usage. This can lead to some confusion. The distinction
is that in the first case, the * symbol is indicating the variable type (pointer), while
in the second case, the * symbol is using the pointer to place a value at another
address. It is natural to ask why we use the complicated notation

char *cp;

to declare a variable, instead of something simple like

pointer cp;

After all, if we have keywords to define the four basic data types, why not a key-
word to define this “fifth data type” that stores an address? The answer is pointer
arithmetic. When adding or subtracting amounts from an address, pointer arith-
metic acts in quantities of bytes equal to the size of the thing referenced. For
example, consider the following code:

2. Of course, the * symbol is also used for multiplication; here we are strictly talking about pointers.
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char ca[3],*cp;

int ia[3],*ip;

cp=&(ca[0]);

ip=&(ia[0]);

The memory map for this code may be written as:

Label Address Value

ca[0] 400

ca[1] 401

ca[2] 402

cp 403–406 400

ia[0] 407–410

ia[1] 411–414

ia[2] 415–418

ip 419–422 407

Now consider the following lines of code involving pointer arithmetic:

*(cp+2)=8; /* cp + 2 what? */

*(ip+2)=33; /* ip + 2 what? */

In each line of code, the * symbol indicates that a value is to be placed at the given
address. But at what address? In the first line, we have the value of “cp+2” as the
address. The value of cp is 400. Adding 2 gives an address of 402. Looking at the
memory map, the variable ca[2] resides at that address, so this seems to make
sense. Now consider the second line, where we have the value of “ip+2” as the
address. The value of ip is 407. Adding 2 gives an address of 409, which is the
midpoint of the variable ia[0]. This does not make sense.

Pointer arithmetic uses the units of the type of variable “pointed to.” Those
units are set during the variable declaration. Since cp is a pointer to char, its units
are 1-byte increments. Since ip is a pointer to int, its units are 4-byte increments.
Using the correct units, we can determine that:

cp+2 = cp+2 (1 byte units) = 400+2 = 402

ip+2 = ip+2 (4 byte units) = 407+8 = 415

The resulting memory map may be written as follows:
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Label Address Value

ca[0] 400

ca[1] 401

ca[2] 402 8

cp 403–406 400

ia[0] 407–410

ia[1] 411–414

ia[2] 415–418 33

ip 419–422 407

Notice that using pointer arithmetic, the offsets match the indices of the
arrays. This is the whole point. Pointers and arrays can be used interchangeably;
in fact, they are often the same thing. This concept is discussed more in the next
section.

4.2 ● Using Pointers
Pointers are a difficult tool to master. They are the source of many coding errors
and bugs, leading to a number of flaws and security problems. Why then do we
use them? This section discusses some of the most common reasons for using
pointers.

4.2.1 Passing Values Back from a Function
The most common reason for using pointers is to pass values back from a func-
tion. Consider the following program:

#include <stdio.h>

int division(int numerator, int denominator,

int *dividend, int *remainder)

{

printf("address stored in dividend: %u\n",dividend);

printf("address stored in remainder: %u\n",remainder);

if (denominator == 0)

return(0);

*dividend=numerator/denominator;

*remainder=numerator%denominator;
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return(1);

}

main()

{

int x,y,d,r;

x=9;

y=2;

printf("address of d: %u\n",&d);

printf("address of r: %u\n",&r);

division(x,y,&d,&r);

printf("%d/%d = %d with %d remainder\n",x,y,d,r);

printf("x=%d\n",x);

}

First, we look at the label and address (the size of each variable) columns of the
memory map. This may be written as follows:

Label Address Value

numerator 400–403

denominator 404–407

dividend 408–411

remainder 412–415

x 700–703

y 704–707

d 708–711

r 712–715

The parameters of the division() function are variables, so they must be included
in the memory map. They should be treated just like variables declared inside a
function. The addresses used for the main() function (700’s) have been somewhat
separated from those used for the division() function (400’s), simply to help
organization. In reality, they might be right next to each other in memory, or
far apart, or anywhere in between. The size of every variable is 4 bytes, because
they are all either int or pointer variables.

When the code executes, the values 9 and 2 go into x and y, and then the
function call happens. What does that do? It makes a copy of all the parameters,
and places them in the local memory locations for the function. At this point, the
memory map may be written as:
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Label Address Value

numerator 400–403 9

denominator 404–407 2

dividend 408–411 708

remainder 412–415 712

x 700–703 9

y 704–707 2

d 708–711

r 712–715

Notice that the values of x and y are copied to numerator and denominator, but
that it is the addresses of d and r that are copied to dividend and remainder.
After this, the function code is executed. Using the pointer to dereference the
address, the results are placed in the memory locations for d and r. At this point,
the memory map may be written as:

Label Address Value

numerator 400–403 9

denominator 404–407 2

dividend 408–411 708

remainder 412–415 712

x 700–703 9

y 704–707 2

d 708–711 4

r 712–715 1

Notice that those results are never in any local memory location for the division()
function, they are stored only in the original main() function variables. This is
why pointers are necessary. It allows a function to be called to do some work,
putting the results in variables residing in the original function. Variables like x
and y are known as “call by value” parameters, while those like d and r are known
as “call by reference” parameters. These phrases refer to how a variable value is
passed to a function.

Suppose we added the following line of code to the end of the division()
function:

numerator=7;
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Looking at the memory map, we can see why this will have no effect upon the
variable x in the main() function. Changing the value at address 400, where
numerator resides, has no effect upon the value at address 700, where the variable
x resides. This shows why we must use a pointer to pass a result back from a
function call.

4.2.2 Pointers and Arrays
The second most common use of a pointer is when an array is used. Arrays are
pointers, insofar as they are both addresses. We saw in the last chapter that an
array name is a label for the starting address of the array. We saw in the last
section that pointer arithmetic works similarly to array indexing. We will now put
these ideas together and show how array and pointer syntax are interchangeable.
Consider the following program:

#include <stdio.h>

main()

{

double array[5];

double *d_ptr;

double value;

int i,offset;

for (i=0; i<5; i++)

array[i]=(double)i+10.0; /* fill array with #’s */

d_ptr=&(array[0]); /* set up pointer */

while (1)

{

printf("Address(hex)\tAddress(base10)\tValue\n");

for (i=0; i<5; i++)

printf("%p\t%u\t%lf\n",&(array[i]),&(array[i]),array[i]);

printf("Enter offset value (0 0 to quit): ");

scanf("%d %lf",&offset,&value);

if (offset == 0 && value == 0.0)

break; /* break out of loop */

if (offset < 0 || offset > 4)

{

printf("Offset out of bounds\n");
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continue; /* go back to start of loop */

}

/* three ways to do the same thing: */

array[offset]=value; /* using array syntax */

*(d_ptr+offset)=value; /* using pointer syntax */

*(array+offset)=value; /* using mixed syntax */

}

}

This program sets up an array of five doubles, and then enters a loop. The user
can select an array index and new value, which the program then places into the
given index. The program also checks for valid array indices (within the bounds
0 to 4), and uses the index/value pair 0/0 to quit.

The last three lines of code are the most interesting. They show how we can
access the same memory using array indexing, pointer arithmetic, or even a mix
of both. All three of those lines of code do the exact same thing. We can see this
by looking at the memory map:

Address label(s) Label Address Value

array &(array[0]) array[0] 400–407 10.0

array[1] 408–415 11.0

array[2] 416–423 12.0

array[3] 424–431 13.0

array[4] 432–439 14.0

d_ptr 440–443 400

value 444–451

i 452–455 /0 /1 /2 /3 /4 5

offset 456–459

The value at address 400 can be accessed through its original name array[0], or
through the pointer value of d_ptr, or through mixed notation using a pointer
to the original address label array. It can even be accessed using another mixed
notation based on the other original address label &(array[0]):

*(&(array[0])+offset)=value;

There is one important difference between using an address label, such as array,
and a pointer variable, such as d_ptr. The former has a fixed value that cannot be
changed. It refers to the address 400, and that cannot be changed. However, the
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value stored in the pointer variable can be changed at any time. This is sometimes
used as an argument to support the idea that pointers and arrays are different.
However, looking at the memory underneath, we can see that both can be used
to access an ordered block of memory. This is why they can be interchanged and
are often considered the same thing.

4.2.3 Dynamic Memory Allocation
Variables are normally given space through static memory allocation. This means
that the size (in bytes) of each of the variables is known before the program runs.
Upon starting execution of the program, the operating system (O/S) finds a place
in memory for all the global variables in the program (in an area called the data
segment). As each function is entered, including main(), space for its variables
and parameter values are found (in an area called the stack). Without going into
the details of the implementation of these memory areas, it is important to note
that the entire time that the program is running, the size of a statically allocated
variable does not change.

Sometimes a program does not know how much memory it needs prior to
execution. For example, in reading a line of text from a file, the program might
not know how big a string is needed to store all the words before the particular
file has been selected, and read. In this case, a programmer might decide to
declare a string of sufficient size to store any possible line of text. This is wasteful
and perhaps, in some cases, impossible. The maximum size of something to be
read might not be known beforehand. The alternative is to use dynamic memory
allocation.

Dynamic memory allocation uses a pointer variable to request memory from
the O/S while the program is running. The basic function call for dynamic mem-
ory allocation is malloc(), and works as follows:

#include <stdlib.h> /* header file for malloc() */

double *a; /* pointer variable */

a = (double *) malloc (40);

/* ^^^^^^^^ ^^^^^^ ^^ */

/* typecast request how many bytes? */

/* to O/S */

The typecast identifies the type of pointer arithmetic expected for the address
returned from malloc() (see Section 4.2.2 on pointer arithmetic). The malloc()
function call is the request to the O/S for memory. It takes one parameter, which
is the number of bytes needed. In this example, we request 40 bytes, which is 5
doubles (8 bytes per double).
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How does it work? One of the primary jobs of the O/S is to manage memory.
A malloc() call asks the O/S for a chunk of memory of the given size. The chunk
of memory is obtained from an area of memory called the heap. Compared to the
other memory areas (e.g., the stack or the data segment), the heap can normally
support larger variables. In general, a program can dynamically acquire much
larger chunks of memory than can be obtained using static variable declarations.
The address of that chunk of memory, if available, is returned. The memory map
for this code may be written as follows:

Label Address Value

a 400–403 10000

[DM] 10000–10039

Dynamically allocated memory does not have an existing label, so we use [DM] to
temporarily provide it a name. In order to give it a name that our program can
use, we must use either pointer or array syntax based upon the variable a. Either
syntax can be used to address, or label, different parts of the 40 bytes requested.
For example, we can write the following code:

a[0]=8;

*(a+2)=3;

a[3]=9;

The memory map for this code may be written as:

Label(s) Address Value

a 400–403 10000

*(a+0) a[0] 10000–10007 8

*(a+1) a[1] 10008–10015

*(a+2) a[2] 10016–10023 3

*(a+3) a[3] 10024–10031 9

*(a+4) a[4] 10032–10039

Every cell of memory in the chunk of bytes has both a pointer-based label and
an array-based label and can be accessed using either syntax. It is quite common
to see a pointer variable used for dynamic memory allocation and then accessed
using array syntax.

Every time a function ends, its statically declared memory is released from
the stack and returned to the O/S. This includes the ending of the main function,
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which is the end of the program. Dynamic memory allocation is different. Be-
cause the allocation can be made at any point in a program, the program must
also be responsible for releasing the memory and returning it to the O/S. This is
done by calling the free() function:

free(a);

Failure to call the free() function appropriately may result in a program losing
track of the memory it uses. Sometimes this is referred to as a memory leak. For
example, consider the following code:

double *a;

a=(double *)malloc(70);

a=(double *)malloc(300); /* memory leak */

The program requests 70 bytes from the O/S, and then 300 bytes, each time
storing the address of the bytes in a. But the second request overwrites the address
of the first request. What happens to those 70 bytes? They are still reserved for
use by the program, but the program has lost any record of the address where
they reside! This is a common programming mistake and can lead to a program
crashing.

There are several variants on the malloc() function that request bytes in
slightly different ways. A common variant is calloc(), which in addition to
requesting the bytes also initializes the value of every byte to zero. For example:

double *a;

a=(double *)calloc(70,sizeof(double));

The calloc() function takes two arguments; the first is the number of cells of
memory, and the second is the size of each cell. The sizeof() operator is a
convenient tool for denoting the number of bytes in a data type. It is evaluated
by the compiler at compile time to find the size of a variable or variable type. It
is often used with structures and complex data type combinations, which we will
see more of in the next section. For this example, the sizeof() operator returns 8,
which is the size of a double, so the total number of bytes requested is 560.

4.2.4 Double Pointers
In the last section, we saw how a chunk of dynamically allocated memory can
be accessed as an array. In effect, this is like creating a variable-length, one-
dimensional array, where the length is determined while the program is run-
ning. This concept can be extended to multidimensional arrays by using multiple
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pointers. For example, we can use a double pointer to act like a two-dimensional
array. Consider the following code, which declares a double pointer:

double **ptr;

It may be understood by rewriting it, emphasizing the order of applying each of
the * operators:

double *(*ptr);

We know that *ptr is an address of a double. The * symbol means “at the
address given by;” therefore, *(*ptr)must mean “the double at the address given
by the address given by.” How big, in bytes, is a double pointer? It’s still just an
address, so it is 4 bytes. All addresses are 4 bytes, even an address of an address.

The following code demonstrates using a double pointer like a two-dimen-
sional array:

double **m;

m=(double **)calloc(2,sizeof(double *));

m[0]=(double *)calloc(3,sizeof(double));

m[1]=(double *)calloc(2,sizeof(double));

m[0][1]=6.3;

m[1][0]=-2.8;

The first calloc() function call asks for enough bytes to store two pointers (ad-
dresses), or 8 bytes total. Each of these pointers is then used to store the address
of a number of doubles (3 doubles in the second calloc(), and 2 doubles in the
third calloc()). Once all the memory is allocated, it may be accessed as though it
were a two-dimensional array. The memory map for this code may be written as:

Label(s) Address Value

m 400–403 10000

*(m+0) m[0] 10000–10003 10008

*(m+1) m[1] 10004–10007 10032

*(*(m+0)+0) m[0][0] 10008–10015

*(*(m+0)+1) m[0][1] 10016–10023 6.3

*(*(m+0)+2) m[0][2] 10024–10031

*(*(m+1)+0) m[1][0] 10032–10039 -2.8

*(*(m+1)+1) m[1][1] 10040–10047
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The variable m holds a double pointer, or the address of a list of addresses (10000).
The list of addresses is m[0] and m[1], each of which holds an address of a list of
doubles (10008 and 10032).

Another common use of double pointers is the passing of a pointer variable
to a function. This is necessary when a function needs to dynamically allocate
memory and then pass that memory back to the calling function. The following
code demonstrates this use of a double pointer:

#include <stdio.h>

#include <stdlib.h>

int integers(int listsize,int **list)

{

int i;

*list=(int *)malloc(listsize*sizeof(int));

if (*list == NULL)

return(0);

for (i=0; i<listsize; i++)

(*list)[i]=10+i; /* mixed array/pointer syntax */

return(1);

}

int main(int argc, char *argv[])

{

int *numbers;

int i;

i=integers(3,&numbers);

for (i=0; i<3; i++)

printf("%d\n",numbers[i]);

}

The integers() function dynamically allocates space for a list of ints and then puts
values in each cell. One of its parameters indicates how large a list to create. At
the completion of execution of the program, the memory map may be written as:

Label(s) Address Value

listsize 400–403 3

list 404–407 708

i 408–411 � 0 � 1 � 2 3
argc 700–703 (continued)
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Label(s) Address Value

argv 704–707

numbers 708–711 10000

i 712–715 /0 /1 /2 3

(*list)[0] numbers[0] 10000–10003 10

(*list)[1] numbers[1] 10004–10007 11

(*list)[2] numbers[2] 10008–10011 12

This memory map brings up a few interesting points. First, it includes argc and
argv, which are variables local to the main() function. The latter (argv) is a
double pointer and in memory looks like the examples just shown. Second, it
includes two variables named i. Each of these is local to a different function,
which is why the same name can be used twice. Third, the syntax (*list)[0]
shows a mixed pointer/array reference to the double pointer. In most cases, it is
easier to read code that sticks to a pure pointer or pure array syntax. For example,
the line

*(list)[i]=10+i;

may be rewritten as

*((*list)+i)=10+i;

4.3 ● Structures
A structure is a construct used to group a set of variables together under one
name. The first step in using a structure is to declare its organization. For
example:

struct person { /* "person" is name for structure type */

char first[32]; /* first field is array of char */

char last[32]; /* second field is array of char */

int year; /* third field is int */

double ppg; /* fourth field is double */

}; /* ending ; to end definition */

This code does not create a variable. There are no bytes of storage named yet.
Instead, this code creates a template for a new variable type called struct person.
One can think of a struct person as being a similar construct to an int or
double. It is a name for a data type, not a name for a variable. In this example,
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the struct person consists of two arrays of 32 char, an int, and a double, for a
total of 76 bytes.

We can use this definition of a struct person to declare a variable as follows:

struct person teacher;

We now have a variable named teacher that provides 76 bytes of storage. Each
part of the variable is called a field and is accessed using the period (.) symbol.
For example:

teacher.year=2006;

teacher.ppg=10.4;

strcpy(teacher.first,"Adam");

strcpy(teacher.last,"Hoover");

The memory map for this code may be written as:

Address label(s) Label(s) Address Value

teacher.first teacher teacher.first[0] 400 ’A’

teacher.first[1] 401 ’d’

teacher.first[2] 402 ’a’

teacher.first[3] 403 ’m’

teacher.first[4] 404 ’\0’

teacher.first[5]-[31] 405–431

teacher.last teacher.last[0] 432 ’H’

teacher.last[1] 433 ’o’

teacher.last[2] 434 ’o’

teacher.last[3] 435 ’v’

teacher.last[4] 436 ’e’

teacher.last[5] 437 ’r’

teacher.last[6] 438 ’\0’

teacher.last[7]-[31] 439–463

teacher.year 464–467 2005

teacher.ppg 468–475 10.4

There are two labels for the data at address 400, teacher.first[0] and teacher.
The former refers to the char (1 byte) at that address, while the latter refers to
the struct person (76 bytes) at that address. Of course, the latter includes the
former as its first byte. It should come as no surprise that a label can refer to
multiple bytes starting at a given address. For example, teacher.ppg refers to
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the double (8 bytes) starting at address 468, not just byte 468. The number of
bytes is known by the data type of the label. In the case of teacher, the data type
is a struct person, and so the label refers to 76 bytes.

Having a label that refers to the entire structure is convenient for two pur-
poses. First, it allows assignment statements between structure variables. For ex-
ample, continuing the code from above:

struct person mailman,teacher;

mailman=teacher; /* copy entire contents of struct */

Assigning a structure to another copies every byte. Of course, the structures
must be of the same type. The second convenience is in passing a structure as
a parameter to a function. For example:

DisplayStats(struct person Input)

{

printf("%s, %s: %lf PPG in %d\n",Input.last,Input.first,

Input.ppg,Input.year);

}

main()

{

struct person teacher;

/* .... */

DisplayStats(teacher);

}

When the function call to DisplayStats() is made, all 76 bytes in the variable
teacher are copied to Input. These examples demonstrate the whole point of
using a structure. It is convenient to group a number of variables (hence, a large
number of bytes) under a single variable name.

Looking back at the memory map for teacher, from above, we had the
following line:

Address label(s) Label(s) Address Value

teacher.first teacher teacher.first[0] 400 ’A’

Unlike an array variable name, a structure variable name is a label for the values
in the given bytes, not for the address. In this manner, a structure variable name
acts like a regular (char, int, float, double) variable name. In the example, we see
that the label teacher.first is a name for address 400, which is the beginning
address of an array of char. The label teacher is a name for the values of the 76
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bytes starting at address 400; it is not another label for address 400. However, we
can use the & symbol prior to either regular label to turn it into an address label
(for example, &teacher or &(teacher.first[0])).

4.4 ● Using Structures
Structure variables can in many cases be treated exactly like regular variables. For
example, they can be used in assignment statements and passed as function pa-
rameters, and a field of a structure variable can be used in regular calculations.
However, structures can be combined with arrays, pointers, and other struc-
tures, making the syntax and usage complicated. A good approach to unraveling
a strange combination, in order to design, debug, or understand code, is to ex-
amine it at the memory level. The following sections demonstrate this approach.

4.4.1 Arrays and Structures
It is possible to create an array of structs, just like it is possible to have an array
of any data type. The template for the structure definition remains unchanged; it
still must be declared first. Using our definition of a struct person from above,
we may write the following code:

struct person class[54]; /* array of "struct person" */

class[0].year=2006; /* notice where array subscript goes */

class[0].ppg=5.2;

strcpy(class[0].first,"Jane");

strcpy(class[0].last,"Doe");

class[1].first[0]=’B’; /* array field in a struct array */

class[1].first[1]=’o’;

class[1].first[2]=’b’;

class[1].first[3]=0;

The memory map for this code may be written as:

Address label(s) Label(s) Address Value

class class[0].first class[0] class[0].first[0] 400 ’J’

class[0].first[1] 401 ’a’

class[0].first[2] 402 ’n’

class[0].first[3] 403 ’e’

class[0].first[4] 404 ’\0’

(continued)
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Address label(s) Label(s) Address Value

class[0].first[5]-[31] 405–431

class[0].last class[0].last[0] 432 ’D’

class[0].last[1] 433 ’o’

class[0].last[2] 434 ’e’

class[0].last[3] 435 ’\0’

class[0].last[4]-[31] 436–463

class[0].year 464–467 2006

class[0].ppg 468–475 5.2

class[1].first class[1] class[1].first[0] 476 ’B’

class[1].first[1] 477 ’o’

class[1].first[2] 478 ’b’

class[1].first[3] 479 ’\0’

class[1].first[4]-[31] 480–507

class[1].last class[1].last[0]-[31] 508–539

class[1].year 540-543

class[1].ppg 544–551

class[2] 552–627

class[3] 628–703

class[4]--[53] 704–4503

Back in Chapter 3, we learned that an array name by itself is an address label.
This is true regardless of the type of array. Thus, class, which is the name for an
array of struct person, is an address label. So is class[0].first, which is the
name for an array of char. Both of these refer to address 400. On the other hand,
class[0] is not the name of an array; it is the name of a cell within the array.
Therefore it is not an address label; it is a regular label. So is class[0].first[0].
The labels class[0] and class[0].first[0] do differ in how many bytes are
labeled. The former labels 76 bytes as a group, while the latter labels only 1 byte.

4.4.2 Definitions and Scope
Structure variables can be global or local to a function, just like any other variable.
Structure definitions can also be global or local. In addition, when making a
definition, a variable using that definition can be declared at the same time.
Consider the following code:
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struct fraction { /* structure definition */

int x,y;

} global; /* variable using this definition */

/* variable outside a function is global */

main()

{

/* "throw away" structure template (used only once) */

struct { /* notice there is no name for structure def. */

char title[20];

float cost;

} paperback; /* variable using this definition */

int n;

struct fraction local;

n=3;

paperback.cost=4.50;

strcpy(paperback.title,"C");

}

some_function()

{

struct fraction x; /* var. names are independent of fields */

global.x=1;

x.x=2; /* so "x" can be a var. and field name */

}

At the end of a structure definition, one or more variables can be declared that use
that definition. Thus, global and paperback are both variables. The former is a
struct fraction type variable, while the latter . . . has no name for its type! It
is possible to define a structure template but never give that template a name and
use it only to define a variable at the end of its definition. This makes it impossible
to declare a variable using that particular structure definition at a later time.
This sort of thing is rarely done and in general is not recommended. However,
a programmer should be able to understand these sorts of tricks, which are best
examined using a memory map:

Address label(s) Label(s) Address Value

global global.x 100–103 1

global.y 104–107

paperback.title paperback.title[0] 400 ’C’

paperback.title[1] 401 ’\0’ (continued)
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Address label(s) Label(s) Address Value

paperback.title[2]-[19] 402–419

paperback.cost 420–423 4.5

n 424–427 3

local local.x 428–431

local.y 432–435

x x.x 700–703 2

x.y 704–707

Writing out the memory map enforces an understanding of which things are
variables: fraction is a structure definition, not a variable name. It does not
belong in the memory map. This memory map also shows how a label can be used
for both a structure variable (x) and a field within that structure (x.x). Although
they label bytes starting at the same address (700), x refers to a struct fraction
(8 bytes), while x.x refers to an int (4 bytes).

4.4.3 Nested Structures
Structures can be nested, so that a field within a structure is itself another struc-
ture. For example:

struct name {

char first[32];

char last[32];

};

struct person {

int age;

float ppg;

struct name title; /* nested structure */

}; /* "name" must be defined above */

struct person boss;

boss.age=80;

boss.ppg=0.1;

strcpy(boss.title.first,"Dean");

strcpy(boss.title.last,"Smith");

The memory map for this code may be written as:
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Address label(s) Label(s) Address Value

boss boss.age 400–403 80

boss.ppg 404–407 0.1

boss.title.first boss.title boss.title.first[0] 408 ’D’

boss.title.first[1] 409 ’e’

boss.title.first[2] 410 ’a’

boss.title.first[3] 411 ’n’

boss.title.first[4] 412 ’\0’

boss.title.first[5]-[31] 413–439

boss.title.last boss.title.last[0] 440 ’S’

boss.title.last[1] 441 ’m’

boss.title.last[2] 442 ’i’

boss.title.last[3] 443 ’t’

boss.title.last[4] 444 ’h’

boss.title.last[5] 445 ’\0’

boss.title.last[6]-[31] 446–471

The label boss is a name for a struct person (72 bytes), while the label boss
.title is a name for a struct name (64 bytes). The other nested structure names,
boss.title.first and boss.title.last, are address labels for arrays of char,
referring to addresses 408 and 440, respectively.

4.4.4 Pointers and Structures
The address of a structure variable can be stored in a pointer variable, just like
the address of any other type of variable. For example:

struct fraction {

int x;

int y;

}

struct fraction f[3],*g;

f[0].x=3;

f[0].y=7;

g=&(f[0]);

g++;

The memory map for this code may be written as:
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Address label(s) Label(s) Address Value

f f[0] f[0].x 400–403 3

f[0].y 404–407 7

f[1] f[1].x 408–411

f[1].y 412–415

f[2] f[2].x 416–419

f[2].y 420–423

g 424–427 400 408

The variable g holds an address of a struct fraction. Using pointer arithmetic,
this means that the units of addition for g are 8 bytes. Therefore, g++ adds 8 to
the current value of g.

Continuing from this code example, we can access the bytes of the structure
through the pointer variable. There are two different syntaxes available to do this.
The following demonstrates each syntax:

(*g).x=5;

g->y=11;

The first line uses the same syntax as all other types of pointers. The value of g is
408; the * symbol says to go to that address; then the .x says to go to that field at
the given address. The C language provides a second syntax that accomplishes the
same steps. The -> syntax (hyphen followed by greater-than symbol) means “in
the field at the given address.” The memory map for this code may be updated as
follows:

Address label(s) Label(s) Address Value

f f[0] f[0].x 400–403 3

f[0].y 404–407 7

f[1] f[1].x 408–411 5

f[1].y 412–415 11

f[2] f[2].x 416–419

f[2].y 420–423

g 424–427 400 408

A pointer variable for a structure can also be used to dynamically allocate
memory. For example:
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g=(struct fraction *)malloc(sizeof(struct fraction));

A struct fraction is 8 bytes in size; the sizeof() operator is a convenient
method to determine the number of bytes needed.3 By default, the malloc()
function returns a void pointer (void *), which means that the returned value is
an address but that the type or size of variable at that address could be anything.
This lets the malloc() function be used to allocate space for any type of pointer. It
is common practice to typecast the return value from the malloc() function call to
make the code easier to read by showing how the pointer is dereferenced. As noted
above, the variable g holds a pointer to struct fraction, which increments in
units of 8 bytes. The memory map after this allocation may be updated as:

Address label(s) Label(s) Address Value

f f[0] f[0].x 400–403 3

f[0].y 404–407 7

f[1] f[1].x 408–411 5

f[1].y 412–415 11

f[2] f[2].x 416–419

f[2].y 420–423

g 424–427 400 408 10000

g.x 10000–10003

g.y 10004–10007

Questions and Exercises
1. Write out the memory map for the following code, providing all values at the end

of execution. How many total bytes does this code declare for variables?

#include <stdio.h>

main()

{

char a,*b,c[3];

int i,*j,k[3];

3. It is especially convenient because a struct may not always contain a number of bytes equal to the

size of its members. The compiler may pad odd-sized fields, for example, placing an unused byte at

the end of an array of 3 char, in order to align fields on data bus boundaries.
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a=’N’;

b=&(c[2]);

j=&(k[0]);

for (i=0; i<3; i++)

{

*b=a-(char)i;

b--;

*j=i+5;

j++;

}

}

2. Write out the memory map for the following code, providing all values at the end
of execution. How many total bytes does this code declare for variables?

double d[3],*e;

int i,*j;

char a,*b,c[3];

i=3;

j=&i;

d[0]=4.2;

e=&(d[1]);

*(e-1)=1.5;

e[1]=2.3;

for (i=0; i<5; i++)

c[i%3]=(char)(*j+i);

b=&a;

*b=c[2];

3. When is it necessary to use dynamic memory allocation? Give two reasons.

4. In the following code, the first printf() reached produces the output “14,” but the
second printf() can cause a bus error or a segmentation fault. Why?

main()

{ int *p;

funct(p);

printf("%d\n",*p);

}

funct(int *p2)

{

p2=(int *)malloc(4);

*p2=14;

printf("%d\n",*p2);

}
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5. Consider the following variable declarations. Write code that uses these variables
to perform a matrix multiplication. The program should prompt the user for the
sizes of the two matrices to be multiplied (from these, it can calculate the size of
the result matrix). It should then dynamically allocate memory for the matrices
and prompt the user for values for all entries in the matrix. Finally, the program
should perform the matrix multiplication and report the result.

double **m1,**m2,**mr;

int m1_rows,m1_cols,m2_rows,m2_cols,mr_rows,mr_cols;

Example: if the first matrix is 1 × 3 with values [1 7 4] and the second matrix
is 3 × 2 with values [1 3], [1 9] and [6 2] in each row, then the result matrix
should be 1 × 2 with values [32 74].

6. A phonebook typically lists the name, address, and telephone number of every-
one living in an area. Write code defining a structure template that could be used
to store this data. Assume that a name and address will be no more than 30 char-
acters each, and that a telephone number has exactly seven digits.

7. What is the exact output of the following code?

struct comp {

char address[80];

char phone[11];

} tc;

struct inv {

char barcode[12];

float price;

struct comp *manuf;

};

main()

{

struct inv s;

sprintf(tc.address,"313 Main St.");

strcpy(tc.phone,"3035552479");

s.price=6.42;

strcpy(s.barcode,"1961354128");

s.manuf=&tc;

printf("%c %s\n",s.manuf->address[5],&(tc.phone[6]));

}

8. Use the following code to describe a rectangle. Assume the rectangle sides are
parallel to the x and y axes (no rotation), and that the corners of the rectangle
are located properly according to their compass designations in the structure.
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struct point {

int x,y;

};

struct rect {

struct point ne,se,sw,nw;

};

Write a function called RectArea() that returns an integer value equal to the
area of the given rectangle. The rectangle should be passed in as an argument.

9. Use the same code to describe a rectangle as given in the previous problem. Write
a function called RotateRect() that takes in a rectangle and rotates it 90 degrees
clockwise. The function should have one parameter that passes the rectangle in
and out. The function should have no return value.

10. Write out the memory map for the following code, providing all values at the end
of execution. How many total bytes does this code declare for variables?

double testd;

int testi;

struct frog {

double *x,y;

};

struct frog turtle,*apple,tv[3];

testi=2;

apple=&turtle;

apple->x=&testd;

*(turtle.x)=7.3;

(*apple).y=3.6;

turtle.y=1.5;

for (testi=0; testi<3; testi++)

tv[testi].x=&(tv[(testi+1)%3].y);

*(tv[1].x)=6.4;

11. Write out the memory map for the following code, providing all values at the end
of execution. How many total bytes does this code declare for variables?

struct ID {

int number;

float cost;

double *barcode;

};
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struct ID list[3],*item;

float *f;

double *d,d2;

d2=888;

list[2].number=12;

list[2].cost=44.11;

list[2].barcode=&d2;

item=&(list[2]);

f=&(item->cost);

d=item->barcode;

*d=(*d)+1;

12. Write out the memory map for the following code, providing all values at the end
of execution. How many total bytes does this code declare for variables?

struct passport {

char last[10];

int number;

float fees;

double *country_code;

};

struct passport list[3],*passenger;

char who[7],a,*b;

double *d,d2;

int i,*j;

d2=888;

i=12;

j=&i;

strcpy(who,"person");

strcpy(list[1].last,"jones");

list[1].number=129783;

list[1].fees=105.37;

list[1].country_code=&d2;

passenger=&(list[1]);

b=&(passenger->last[0]);

d=passenger->country_code;

*b=’t’;

passenger->last[4]=’y’;

for (i=0; i<5; i++)

who[i%3]=(char)(*j+i);
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13. Consider the lines of code below. Indicate which are invalid, meaning either that
they would not compile or that they may produce a memory fault. Consider each
line independently of all others.

struct passport {

char last[10];

int number;

float fees;

double *country_code;

};

struct passport list[3],*passenger;

char who[7],a,*b;

double *d,d2;

b="Hello";

list->country_code=277;

list[0].country_code=d;

list[2].country_code=&d2;

*(list[3].country_code)=277;

passport.country_code=463;

passenger=&passport;

who[6]=’a’;

a=5;

b=&(list[0].last[5]);

passenger=&list;

passenger =&(list[0]); list[2]=(* passenger);

list[0].fees="world";

list[0].fees=’p’+0.65;

*(passenger->country_code)=*d=(double)(list[0].last[12]);

14. Write a program that allows the user to manipulate the entries in a vector, or in
a matrix. The program should keep track of one vector of variable length, and of
one matrix of exactly 4 × 4 size. The program should enter a loop, displaying a
set of options (given below). Once the user selects an option, the program should
display the vector (or matrix, as appropriate) before and after the operation
chosen by the user. For example, if the user selects “reverse vector” and the
current vector is [-3 0 2 5], then the program should display:

-3 0 2 5

reversed

5 2 0 -3
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The program should run until the user selects an option to quit. The program
must use the following structure definitions:

struct vector {

float *data;

int size;

};

struct matrix {

struct vector rows[4];

};

Two of the options of the program should be to enter data into the vector,
and to enter data into the matrix. For the vector, numbers should be read until
the user enters -1, indicating the end of the vector (that number should not be
included in the vector). The maximum number of values in the vector should
be eight; if the user enters eight values then the program should stop prompting
for more. For the matrix, the program should simply prompt the user for the 16
numbers, in row order (all of row 1 first, then row 2, etc.). All numbers should be
real numbers.

Each option that manipulates the vector or matrix must be implemented
inside a different function. The options are:

. Sum the vector. This function should take in one argument, a vector, and sum
its entries. It should return the sum as a float.

. Reverse the vector. This function should take in one argument, a vector, and
reverse its entries. It should have no return value.

. Distribution of vector. This function should take in three arguments: a vec-
tor and two counters. Upon completion, the counters should hold the total
numbers of positive and negative values in the vector. The function should
have no return value.

. Mirror the vector. This function should take in one argument, a vector. It
should return a second (new) vector that is a copy of the first, followed by a
reverse copy of the first. If the input vector is more than four values in length,
the operation should use only the first four entries. The input vector should
not be changed.

. Sum the matrix. This function should take in one argument, a matrix, and
sum its entries. It should return the sum as a float.

. Reverse the matrix. This function should take in one argument, a matrix, and
reverse the order of entries in each column. It should have no return value.

. Distribution of matrix. This function should take in three arguments: a ma-
trix and two counters. Upon completion, the counters should hold the total
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numbers of positive and negative values in the matrix. The function should
return the number of values equal to zero.

. Matrix kazaam. This function should take in one argument, a matrix. It
should return a second (new) matrix that is a copy of the first, but with all
positive entries multiplied by 2, and all negative entries multiplied by −3. It
should return the number of original values that were negative. The input
matrix should not be changed.

15. Write a program that provides a simple spreadsheet. The program should allow
the user to enter numeric values, text, or formulas into any cell. As new data is
entered, the spreadsheet should be updated and redisplayed. The program should
run until the user quits.

The maximum size of the spreadsheet should be 9 x 9 cells. Rows should
be labeled with numbers, starting from 1, and columns should be labeled with
letters, starting from A. Cells should be referenced by a letter number pair, with
no space or symbol between; for example, E9. Lowercase and uppercase letters to
reference cells are allowed and must be recognized.

The program cannot prompt what type of entry is being made into a cell.
It should prompt only for an input. If the user types data consisting only of
numeric values, for example 4.53, then the program must recognize that input
as a number. All numbers should be considered real numbers. If the user types
input describing a formula (discussed below), then the program must recognize
that input as a formula. Everything else defaults to text.

The display of the spreadsheet should be aligned in an easy-to-read 9 x 9 grid.
If text entries or other displayed content go beyond the given display size, the
display should be truncated. When entering a new input for a cell, the program
must display the old (previous) input.

Optional: include formulas in the program. Formulas are of the form =AV-
ERAGE(A2,A5). This formula would return the average value from the four cells
A2, A3, A4, and A5. Three formulas are required: AVERAGE, SUM, and RANGE.
RANGE should return the difference between the largest and smallest value in the
input. SUM should return the cumulative total. The input must be a horizontal
or vertical 1D range of cells, described by the end points. The formula should
compute a result using only values within the given range of cells; it should ig-
nore empty cells and those containing text or another formula. If there are no
values within the given range of cells, the result should default to zero.



5
Input/Output

I n order to do something interesting, most programs have to get input from
somewhere and send output to somewhere. This is commonly called input/

output, or I/O for short. There are several different situations in which I/O oc-
curs. User I/O involves interactions between a program and a user, typically
through a keyboard and display. File I/O involves interactions between a program
and the file storage system. Device I/O involves interactions between a program
and a piece of hardware, such as a sensor or peripheral component. Regardless
of the particular situation, all these I/O transactions make use of a similar set of
concepts. These concepts include streams, buffers, pipes, file attributes and func-
tions, and device drivers. The goal of this chapter is to introduce the reader to
these concepts.

It is assumed that the reader is familiar with basic user I/O, such as reading
input from a keyboard and printing text to a terminal display. The reader is likely
also familiar with basic file I/O, such as reading and writing text to a file. It is
common for a student to first learn text-based I/O; unfortunately, this can bias
the student toward thinking of all I/O as text-based. The goal of this chapter
is to provide a broader picture into the aspects of generic I/O. It is important
to remember that text is only one type of data. When considering generic I/O,
we should remember to think of the data as raw bytes. It is up to the sender or
receiver of the data to interpret the bytes.
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5.1 ● Streams
An I/O transaction occurs when a program receives bytes from a source or sends
bytes to a destination. Example sources that send bytes to a program include
a keyboard, mouse, file, and sensor. Example destinations to which a program
sends bytes include a display, file, printer, and actuator. Programs can also send
bytes to other programs, acting as sources or destinations.

Most modern operating systems, including Unix, use the stream model to
control I/O. In this model, any input or output transaction can be viewed as
a flow of bytes from a source to a destination. The flow of bytes is commonly
referred to as a stream. The operating system creates and manages streams based
upon the function calls made by the program. The program has some control
over how the stream is operated, but in general it is managed by the operating
system.

An I/O connection can be established using the fopen() function. For exam-
ple, consider the following code:

FILE *fpt;

fpt=fopen("output.txt","w");

fprintf(fpt,"This is a test.");

fclose(fpt);

Figure 5.1 shows a step-by-step diagram of the process. When fopen() is called,
a stream connection is established between the program and the file. When
fprintf() is called, bytes are passed along the stream from the program to the
file. When fclose() is called, the stream connection is broken. As we will see in
Section 5.5, all I/O transactions use streams in the same manner.

5.1.1 Transporting Bytes on Streams
There are several functions that can be used to transport bytes on streams. These
include the familiar fprintf() and fscanf() functions. For example:

#include <stdio.h>

main()

{

FILE *fpt;

fpt=fopen("data.txt","w");

fprintf(fpt,"Fortytwo 42 bytes of data on the wall...");

fclose(fpt);

}
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stream

File: output.txt

fopen (...)

Program
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Figure 5.1 The steps in creating, using, and closing a stream.

In this example, bytes are being sent down a stream using the fprintf() function.
For the rest of the examples in this section, we will assume that this code has been
successfully executed, so that the file data.txt exists and is available for access.
For example, consider the following code:

#include <stdio.h>

main()

{

FILE *fpt;

char text[80];

fpt=fopen("data.txt","r");

fscanf(fpt,"%s",text);

printf("%s\n",text);

fclose(fpt);

}

In this example, bytes are being transported on a stream using the fscanf() func-
tion. Assuming this code is stored in a file called demo-fscanf.c, then compiling
and executing it would produce the following output:

ahoover@video> gcc -o demo-fscanf demo-fscanf.c

ahoover@video> demo-fscanf

Fortytwo

ahoover@video>

The generic functions for transporting bytes on streams are fread() and
fwrite(). The fread() function reads bytes from a source into the program.
For example:
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#include <stdio.h>

main()

{

FILE *fpt;

char text[80];

fpt=fopen("data.txt","r");

fread(text,1,15,fpt);

text[15]=0;

printf("%s\n",text);

fclose(fpt);

}

Assuming this code is stored in a file called demo-fread.c, then compiling and
executing it would produce the following output:

ahoover@video> gcc -o demo-fread demo-fread.c

ahoover@video> demo-fread

Fortytwo 42 byt

ahoover@video>

The first parameter to the fread() function provides the address at which the
received bytes are to be stored. In the above example, the program is storing
bytes in the variable text, which is an array of 80 char. The second and third
parameters in the fread() function indicate how many bytes are to be received.
The parameters adopt the style of an array, indicating the number of cells (the
third parameter) and the size in bytes of each cell (the second parameter). In
the above example, the program is receiving 15 cells of data, where each cell is
1 byte in size. The fourth parameter in the fread() function is the file pointer to
the stream on which bytes are being received.

The fread() function reads bytes from the source regardless of what the bytes
represent. Note that in the above example, the value of text[15] had to be set
to zero so that the bytes in the array could be interpreted as a string (all strings
must end with a NULL byte). The fread() and fwrite() functions do not assume
that the bytes being moved represent text. Since they do not perform cleanup or
modifying operations to the bytes, they are sometimes referred to as “raw” byte
movers. However, this gives an unfortunate connotation as it implies that these
functions are doing something sinisterly different from the more familiar fscanf()
and fprintf() functions. It is in fact the opposite that is true. The fprintf() and
fscanf() functions are actually specialized functions intended to work only with
ASCII formatted text data. They manipulate the bytes according to a set of rules
for formatting text, before either sending or receiving the bytes on the stream.
For example, consider the following code:
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FILE *fpt;

char text[30];

int x;

fpt=fopen("data.txt","r");

fscanf(fpt,"%s",text);

fscanf(fpt,"%d",&x);

fclose(fpt);

We will look at the byte transfers done in each fscanf() separately. A memory map
of the result of the first fscanf() can be written as follows:

File Memory

Byte Value Label Address Value

0 ’F’ (70) text[0] 400 ’F’ (70)

1 ’o’ (111) text[1] 401 ’o’ (111)

2 ’r’ (114) text[2] 402 ’r’ (114)

3 ’t’ (116) ⇒ text[3] 403 ’t’ (116)

4 ’y’ (121) text[4] 404 ’y’ (121)

5 ’t’ (116) text[5] 405 ’t’ (116)

6 ’w’ (119) text[6] 406 ’w’ (119)

7 ’o’ (111) text[7] 407 ’o’ (111)

8 ’ ’ (32) text[8] 408 ’\0’ (0)

Values for the bytes are shown as ASCII symbols and as two’s complement in-
tegers in parentheses. The first fscanf() results in 8 bytes being transferred from
the file to the variable text. In the file, the next byte has a value of 32 (the space
character), but this byte is not transfered. Instead, the next byte in the text array
is given a value of 0 (the NULL character). A memory map of the result of the
second fscanf() reveals more byte manipulations during the transfer:

File Memory

Byte Value Label Address Value

9 ’4’ (52) ⇒ x 430-433 42

10 ’2’ (50)

11 ’ ’ (32)

The second fscanf() results in 2 bytes being transferred from the file to the vari-
able x. However, the 2 bytes are also converted into a 4-byte (int variable size),
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two’s complement representation of an integer. From these examples, we can see
that the fscanf() and fprintf() functions are doing extra operations besides the
byte transfers. At the heart of both functions are calls to fread() and fwrite() to ac-
tually move the bytes after the desired byte manipulations have been completed.

The fwrite() function moves bytes from the program to a destination. For
example:

#include <stdio.h>

main()

{

FILE *fpt;

char text[80];

sprintf(text,"Fortytwo 42 bytes of data on the wall...");

fpt=fopen("data2.txt","w");

fwrite(text,1,strlen(text),fpt);

fclose(fpt);

}

Executing this code will produce a file data2.txt that is identical to the file
data.txt from our original example. The parameters of the fwrite() function are
identical to those in the fread() function. Note that this example uses the strlen()
function to determine the number of cells in the array to send on the stream,
which in this case is 40.

Using the fwrite() and fread() functions affords another advantage: it allows
the programmer a simple way to check when the end of a file has been reached.
The return value of both functions is an indicator of the number of bytes actually
moved along the stream. For example:

#include <stdio.h>

main()

{

FILE *fpt;

char text[80];

int bytes_read;

fpt=fopen("data.txt","r");

bytes_read=fread(text,1,70,fpt);

printf("%d\n",bytes_read);

fclose(fpt);

}

Assuming this code is stored in a file called demo2-fread.c, then compiling and
executing it would produce the following output:
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ahoover@video> gcc -o demo2-fread demo2-fread.c

ahoover@video> demo2-fread

40

ahoover@video>

Since the file data.txt contains only 40 bytes, the fread() function is not capable
of reading the requested 70 cells × 1 byte/cell = 70 bytes of data. Once the end of
the file has been reached, the fread() terminates. The return value for the fread()
function is the number of cells of data moved along the stream. If each cell is 1
byte, then this is equivalent to the number of bytes moved; otherwise, to realize
the number of bytes moved, the return value must be multiplied by the size of
each cell requested (the second parameter of the fread() function).

There are a number of other functions that can be used to move bytes on
streams, such as fgetc(), fputc(), gets(), and puts(). All of these functions
are similar to fscanf() and fprintf() in that they manipulate the byte values in
some manner before placing them on the stream, or after retrieving them from
the stream. Although these functions can simplify programming involving text
data, they should be used with care. It is common for a novice programmer to fall
into traps using these functions by not understanding the precise manipulations
made upon the bytes by these functions. It is more prudent to use the generic
fread() and fwrite() functions to move bytes on streams, custom coding any
desired byte manipulations. In this manner, a programmer can be more certain
of what is happening on a stream transaction.

5.1.2 System I/O Functions
There is another set of functions that can be used for I/O. These functions include
open(), close(), read(), and write(). They look very similar to the fopen(),
fclose(), fread(), and fwrite() functions just discussed. How then are the
non-f-versions of the I/O functions different from the f-versions?

The non-f I/O functions are system calls. Depending on which operating
system they are called from, they may behave differently. The f-versions of the
I/O functions are standardized in the C library. A programmer can expect them to
behave similarly regardless of the underlying system. Unless otherwise motivated,
a programmer is encouraged to always use the f-versions of the I/O functions.

A general rule of thumb is that the f-versions of the I/O functions are buff-
ered, while the non-f-versions are not (buffers will be discussed shortly). This is
not always true, as some system implementations of I/O functions may include
buffering. However, in practice a programmer can expect to frequently encounter
this distinction. This issue is discussed further in Chapter 7 on system calls.
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5.1.3 Standard Streams
Most programs get user input from a keyboard and display text output to a
screen. It is somewhat monotonous to write code to create these streams for
every program. Therefore, every time a program1 is started, the O/S automatically
creates three streams. The first stream is called the “standard in” stream and is
abbreviated stdin. It connects the keyboard to the program. The second stream
is called the “standard out” stream and is abbreviated stdout. It connects the
program to the display. The third stream is called the “standard error” stream
and is abbreviated stderr. It connects the program to a secondary display that is
intended only for the display of errors.

The standard streams are most commonly used by calling the scanf() and
printf() functions. The scanf() function is actually a specialized version of the
more generic fscanf() function. While the fscanf() function can receive bytes
from any stream, the scanf() function is “hardwired” to the stdin stream. In the
following example, the scanf() and fscanf() function calls perform the exact same
operation:

char s[80];

scanf("%s",s);

fscanf(stdin,"%s",s);

The same is true with regards to printf() and fprintf(). While the fprintf() func-
tion can send bytes along any stream, the printf() function is hardwired to the
stdout stream. In the following example, the printf() and fprintf() function calls
perform the exact same operation:

int x=42;

printf("%d is a nice number\n",x);

fprintf(stdout,"%d is a nice number\n",x);

The definitions for the standard streams can be found in the include file stdio.h
(most often found in /usr/include). Searching that file will uncover code simi-
lar to the following:

/* Standard streams. */

extern FILE *stdin; /* Standard input stream. */

extern FILE *stdout; /* Standard output stream. */

extern FILE *stderr; /* Standard error output stream. */

1. In this context, we are discussing terminal-based programs. On some systems, GUI-based

programs do not automatically get connected to the three standard streams.
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The stderr stream is intended as a backup output stream for programs. It is
commonly used to report errors or warnings. It is often connected to the same
terminal display as the stdout stream but can be connected to a different display.
For example, if a program is left running in the background, the program may be
disconnected from its stdout stream but still have its stderr stream connected to
a main terminal display.

5.2 ● Buffers
A buffer is a temporary storage between the sender and receiver of bytes on a
stream. When a stream is created, one can think of it as having an address from
which bytes are sent and an address at which bytes are received. Each address is at
a memory location controlled by the operating system. The buffer is an additional
piece of memory that is used to moderate the flow of bytes from the source to the
destination.

A buffer is useful in a variety of situations. For example, what if the sender
puts bytes into the stream faster than the receiver can handle? Or what if a
program is in the middle of a calculation and is not prepared to receive any
bytes? The buffer can store up the bytes until the program is able to handle them,
receiving them either at the reduced rate or when it is ready for them.

There are three basic types of buffering: block buffering, line buffering, and
unbuffered. They differ in how the temporary storage is flushed. Flushing is the
act of emptying out the temporary storage, sending all the bytes in the buffer on
down the stream to the receiver. Each type of buffering differs as to how it flushes.
In a block buffer, a fixed-size chunk of memory is filled before being passed on
to the receiver. A block can be any size, although byte sizes that are powers of 2
are typical (e.g., 1 KB, 16 KB, etc.). In a line buffer, any bytes inside the buffer are
sent to the receiver once a newline character (byte value of 13) is received. The
newline character is also sent to the receiver. Finally, if the stream is unbuffered,
then each byte is sent to the receiver as soon as it is placed in the buffer. The buffer
operates as though it is transparent.

Block buffering is commonly used for large data transfers, such as file I/O.
It makes the transfer more efficient by saving up a large number of bytes before
actually transporting them. If a program is doing a lot of large data transfers,
block buffering will speed it up. Line buffering is typically used for text-based I/O,
such as when interacting with a user. It allows bytes to be modified before actually
committing them to the stream transport. For example, a delete or backspace key
can be used to modify the bytes in the line buffer, while the enter key can be
used to initiate the flush. Finally, buffering may be completely turned off when
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responsiveness is critical. For example, a program may want to take action after
any keypress provided by the user, without having to wait for flushing. In this
case, the input stream would likely be unbuffered.

The effect of buffering can be seen through the following C code:

#include <stdio.h>

main()

{

int i;

for (i=0; i<5; i++)

{

printf("i=%d ",i);

sleep(1);

}

}

Executing this code, no output is seen until the program ends, which is 5 seconds
after it started. This means that the stdout stream is buffered, either block or
line. The type of buffering can be determined by modifying the printf(), adding
a newline at the end, as follows:

.

.

.

printf("i=%d\n",i); /* add newline */

.

.

.

Executing the code with this modification, a new line of output is seen once per
second. This indicates that the stream is line buffered. The buffer can also be
forced to flush using the fflush() function call, as follows:

.

.

.

printf("i=%d ",i);

fflush(stdout); /* force flushing of the buffer */

.

.

.

By calling fflush(), the program does not have to print a newline character each
time the buffer is to be flushed. Note that fflush() can be used on any stream, not
just the stdout stream, and it can be used to flush streams that are either block or
line buffered.

A program typically does not need to know many of the details of how a
stream or buffer is operating. Some of these details are hidden inside the FILE
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struct definition, and others can be accessed via system calls. For example, a
program does not generally need to know the memory location of the temporary
buffer storage or its size. It is, however, sometimes important to control the type
of buffering on the stream. The setvbuf() function can be used to change the
type of buffering on an existing stream.

The topic of buffering is revisited in Section 8.4.1 in the context of graphics
and interfaces, along with the related topics of echoing and blocking. Controlling
buffering is often more important for graphical interfaces than for text streams.

5.3 ● Pipes
The term pipe is used in several contexts in I/O. Sometimes, the word “pipe” is
used interchangeably with “stream” to refer to a flow of bytes between a source
and destination. More often, it is used in contexts where streams are reconnected
to alternate sources or destinations. An analogy to plumbing can be made as fol-
lows: imagine a water pipe that is disconnected at its source but left connected
at its other end. The disconnected end is then reconnected to an alternate source.
By modeling a stream on this concept, one can think of the connections at stream
ends as pipe fittings. The process of connecting and reconnecting streams is re-
ferred to as piping, or pipelining. The analogy also extends to replacing a single
pipe-to-pipe fitting with a three-way fitting, connecting one source to two desti-
nations. One can imagine reconnecting the standard out stream so that it simul-
taneously sends the same bytes to a file and a display. This is another example of
piping.

Section 5.1 discussed how streams can be created and terminated using file
I/O functions. There is another set of functions, including pipe() and dup(),
that can be used to manipulate stream connections. These functions are system
calls and are discussed in more detail in Chapter 7. In this section, we focus on
manipulating stream connections at the shell level.

Recall that the O/S automatically creates three streams for every running
program. Most shells provide the ability to redirect those streams at startup.
Table 5.1 lists the three most common options. In order to demonstrate their
functionality, we will make use of the following code:

#include <stdio.h>

main()

{

int x,s;

s=0;
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while (1)

{

printf("#? ");

scanf("%d",&x);

if (x == 0)

break;

s=s+x;

printf(" sum=%d\n",s);

}

}

This code prompts the user for integers, reporting the sum as each new number
is entered. It exits when a value of zero is entered. If the code is stored in a file
called summer.c, then compiling and executing the code with the input shown
produces the following output:

ahoover@video> gcc -o summer summer.c

ahoover@video> summer

#? 4

sum=4

#? 1

sum=5

#? 7

sum=12

#? 0

ahoover@video>

Now suppose we create a file named input1.txt that contains the following:

4

1

7

0

Table 5.1 Common shell symbols for pipelining standard streams.

Symbol Stream reconnection

< standard in comes from the given file

> standard out goes to the given file

| standard out from the first program goes to standard in
for the second program
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This is the exact same sequence of bytes that was input through the keyboard to
the program. The < symbol allows the user to redirect the stdin stream to a file
instead of the keyboard. For example:

ahoover@video> summer < input1.txt

#? sum=4

#? sum=5

#? sum=12

#? ahoover@video>

Running the program in this manner, the user provides input to the program
from the file input1.txt instead of from the keyboard. In fact, the program is
disconnected from the keyboard. Nothing the user types would be sent to the
program; instead, it would be buffered until the program ended, and then sent to
the shell. Note also that the bytes being sent to the program from the file are not
being displayed. This is because they are not coming from the keyboard, which
automatically echoes (copies) its bytes to the stdout stream.2

The stdout stream can be treated similarly. The > symbol allows the user to
redirect the stdout stream to a file instead of to the display. For example:

ahoover@video> summer > output1.txt

4

1

7

0

ahoover@video>

Running the program in this manner, the program provides output to the file
output1.txt instead of to the terminal display. In this case, we can see the input
bytes being typed at the keyboard, but we see none of the output. In order to
verify the output, we can execute the following command:

ahoover@video> more output1.txt

#? sum=4

#? sum=5

#? sum=12

#?

ahoover@video>

All the output that we had previously seen in the terminal is now stored in the file
output1.txt instead.

2. The topic of echoing is discussed in detail in Section 8.4.1.
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Finally, we can connect the stdout stream of one program to the stdin stream
of a second program. In order to demonstrate, we will make use of the following
additional code:

#include <stdio.h>

main()

{

char s[80];

while (1)

{

scanf("%s",s);

if (strcmp(s,"sum=5") == 0)

printf("Bingo!\n");

else if (strcmp(s,"sum=12") == 0)

break;

}

}

This program looks for the line sum=5 and displays Bingo! if it sees it; otherwise,
it looks for the line sum=12 to exit. Assuming this code is stored in a file named
bingo.c, then compiling it and executing it as follows will produce the following
output:

ahoover@video> gcc -o bingo bingo.c

ahoover@video> summer | bingo

4

1

7

0

Bingo!

ahoover@video>

The input to the program summer is being provided from the keyboard. However,
note that no output from summer is being sent to the terminal display. Instead, it
is being sent to the second program bingo on its stdin stream. In other words,
the first program is acting like a user on a keyboard inputting data to the second
program.

Most shells provide additional stream redirections. For example, it is often
possible to redirect the stderr stream to a file. It is also often possible to redi-
rect the stdout stream to concatenate its flow of bytes to an existing file. How-
ever, different shells use different symbols to implement these additional stream
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redirections. The three redirections shown in this section are universal; for oth-
ers, the interested reader is encouraged to look at the documentation for a specific
shell.

5.3.1 Pipeline Chaining
Multiple piping redirections can be done simultaneously. For example, using the
programs and files from the previous section, the following can be executed:

ahoover@video> summer < input1.txt | bingo > output2.txt

ahoover@video> more output2.txt

Bingo!

ahoover@video>

In this example, both the stdin and stdout streams of the program summer are
being redirected, the latter to the second program bingo, which also has its stdout
stream redirected to a file.

Pipelining the output of one program to the input of another program can
be done repeatedly. This allows us to write programs that perform single, simple
operations, and to link them together into complex chains in order to accomplish
tasks. For example:

ahoover@video> ls /usr/lib | grep libcu | sort -r

libcurses.so@

libcurses.a@

libcurl.so.3.0.0

libcurl.so.3@

libcups.so.2

libcupsimage.so.2

ahoover@video>

In this example, the program ls is retrieving a full file listing of the directory
/usr/lib. This output is being sent as input to the program grep, which is
searching for any occurrences of “libcu.” This output is being sent as input to
the program sort, which is alphabetically sorting the data into reverse order.

A set of standard programs has been built up over the years, following this
methodology. Table 5.2 provides a list of some of the most common; Appendix
C provides a longer list. Most Unix systems come with these programs installed
as well as hundreds of others. There are a few of which all system users should
be aware; more will become known and useful as one becomes more invested in
system programming. Note that even these simple programs have lots of options,
controlled by command line arguments, to affect how they operate.
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Table 5.2 A sample of system programs designed for pipeline chaining.

Program What it does

grep search for the given string

sort sorting

wc count lines, words, bytes (chars)

more interactive program to pause lengthy display

diff compare two files

5.3.2 Program Testing
Pipelining techniques can be useful for testing programs. As already discussed, a
set of inputs to a program can be stored in a file and then piped to the program
via the stdin stream. Running a program in this manner, the user does not have
to manually type input at each prompt. This can save a great deal of time while a
program is being developed. During development, it is common for the program
to be altered slightly, recompiled, and then executed. This cycle may happen
dozens of times. Each time, the input can be piped from a file instead of being
manually keyed.

This type of file can be considered a test pattern, or test input. When con-
sidering the content of a test file, there are usually two considerations. First, it is
desirable for the test file to contain a variety of inputs for which the desired out-
put is known. For example, if a program is designed to compute the square root
of a number, then a test file for that program should contain a variety of positive
whole numbers. Second, it is desirable for the test file to contain input sequences
that are improper or that could lead to errors. For example, for a square root cal-
culator, the test file should contain one or more negative numbers, nonnumber
sequences, and other potential errors.

We will use the following code to demonstrate the usefulness of pipelining
techniques for program development and debugging:

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main (int argc, char *argv[])

{

char in[80],out[80];

int i,j;
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while (1)

{

scanf("%s",in);

if (strcmp(in,".") == 0)

break;

strcpy(out,in);

for (i=0; i<strlen(out); i++)

if (out[i] == ’.’ || out[i] == ’,’ ||

out[i] == ’"’ || out[i] == ’;’ ||

out[i] == ’!’ || out[i] == ’?’ ||

out[i] == ’(’ || out[i] == ’)’ ||

out[i] == ’:’)

{

for (j=i; j<strlen(out)-1; j++)

out[j]=out[j+1];

out[j]=’\0’;

}

printf("%s\n",out);

}

}

This program removes punctuation (nine specific symbols) from any given input.
It outputs one word from the input per line with the punctuation removed. The
program ends when a single period (.) is given as input. If this code is stored in
a file named depunct.c, then compiling and executing it produces the following
output:

ahoover@video> gcc -o depunct depunct.c

ahoover@video> depunct

Turtles, frogs hello! .

Turtles

frogs

hello

ahoover@video>

In this example, the first and third words have had punctuation marks removed,
while the second word remains unchanged.

Now we consider the task of creating a test file:

This is a big test; how can I check the output?

I want to make sure it’s "perfect".

Here are some test cases:
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railroad.

don’t

.railroad

"Happy days" are here again!

stra?nge

This is (a) clue.

Have I covered enough te-st 000 cases?

.

Note that this test data includes words containing each of the punctuation marks
that the program is supposed to remove. It also contains other punctuation
marks. It contains punctuation marks at the beginning, middle, and end of var-
ious words. Some words have multiple punctuation marks. If this test data is
stored in a file named input3.txt, then piping it to stdin produces the following
output:

ahoover@video> depunct < input3.txt

This

is

a

big

test

[... long output abbreviated ...]

000

cases

ahoover@video>

Instead of having to retype each of these cases every time the program is modified,
this test file can be used repeatedly during development.

Pipelining can also be used to verify the correctness of output. This can be
seen using the preceding example. While it is possible to manually peruse the
long output and check each word carefully for errors, the manual checking is itself
prone to errors. Instead, a second test file can be created as follows:

This

is

a

[... each word manually processed ...]

000

cases

If this data is stored in a file named expected3.txt, then it can be used to verify
the correctness of the program as follows:
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ahoover@video> depunct < input3.txt > output3.txt

ahoover@video> diff output3.txt expected3.txt

18c18

< perfect.

---

> perfect

ahoover@video>

This shows that for one of the words, the output did not match the expected
output. What went wrong in the program? Finding the error is left as an exercise
for the reader at the end of the chapter. The point is that finding this sort of
problem with a program is made easier through the use of test files and pipelining
techniques.

5.4 ● Files
Every computer user is familiar with files, but what exactly is a file? A file is a
one-dimensional array of bytes. Regardless of what sort of data is inside the file,
it is always stored as a one-dimensional array of bytes. This may seem counter-
intuitive for a file that contains an image, or a movie, or a database. Chapter 3
discussed how multidimensional arrays can be stored in one-dimensional mem-
ory by writing out all the array cells in a long list. The same principle applies to file
storage. An image, movie, or database can be stored as a one-dimensional array of
bytes by writing all the elements out in a long list. Furthermore, it does not mat-
ter what sort of data is inside the file. If the file contains text, an image, a song, or
an executable program, it is still a one-dimensional array of bytes. The difference
is only in which bit model was used to group and encode the bytes. Therefore,
when we think of reading from or writing to a file, we can always consider the
process as being similar to accessing a one-dimensional array of bytes.

One of the jobs of an operating system is to manage file storage. A system
typically provides a set of function calls, for use by programs, to interact with
files. These include the operations already examined, such as the ability to read
and write data, plus additional operations. We will explore these additional op-
erations and related functions as we discuss each associated topic.

5.4.1 File Pointer
A file pointer is a marker used to keep track of the location for reading or writing
on a stream. When a file is opened, the file pointer points to the first byte in the
file. Each time a byte is read, the file pointer is automatically advanced to the
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next byte. If multiple bytes are read, then the file pointer is advanced beyond all
the bytes that have been read. For example, consider the following data in a file:

abcdef

Assuming that these bytes are stored in a file named data.txt, the following code
will be used to access the file and demonstrate the motion of the file pointer:

#include <stdio.h>

main()

{

char byte;

FILE *fpt;

fpt=fopen("data.txt","r");

fread(&byte,1,1,fpt);

fclose(fpt);

}

When the file is first opened, the file pointer has a value of 0, indicating that it
points to the first byte in the file:

abcdef

^

After the first byte is read, the file pointer is advanced to point to the second byte
in the file:

abcdef

^

The process can also be explained using a memory map of the file:

File

Byte Value

0 ’a’ (97)

1 ’b’ (98)

2 ’c’ (99)

3 ’d’ (100)

4 ’e’ (101)

5 ’f’ (102)

When the file is opened, the file pointer has a value of 0, indicating the point of
next access in the file. After the first byte is read from the file, the file pointer takes
a new value of 1.
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The value of the file pointer, and hence its location, can be manipulated
by the fseek() function. The fseek() function moves the file pointer to a new
value without reading or writing any data on the stream. The current value of
the file pointer can be obtained using the ftell() function. The following code
demonstrates the use of both these functions:

#include <stdio.h>

int main(int argc,char *argv[])

{

FILE *fpt;

char byte;

long int where,move;

if (argc != 2)

{

printf("Usage: fileseek filename\n");

exit(0);

}

if ((fpt=fopen(argv[1],"r")) == NULL)

{

printf("Unable to open %s for reading\n",argv[1]);

exit(0);

}

while (1)

{

where=ftell(fpt); /* where is file pointer? */

fread(&byte,1,1,fpt); /* moves fpt ahead one byte */

fseek(fpt,-1,SEEK_CUR); /* back up one byte */

printf("Byte %d: %d (%c)\n",where,byte,byte);

printf("Enter #bytes (+ or -) to move, or 0 to quit: ");

scanf("%d",&move);

if (move == 0)

break;

fseek(fpt,move,SEEK_CUR); /* move to desired byte */

}

fclose(fpt);

}

This program opens a file and allows the user to move the file pointer. It reads 1
byte and displays the byte value using both the ASCII and two’s complement bit
models, as well as the file pointer value for that byte. It then prompts the user as
to how to move the file pointer. This is repeated until the user enters 0 to quit.
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Assuming this code is stored in a file named fileseek.c, then compiling it and
executing it on the data.txt file from above produces the following output:

ahoover@video> gcc -o fileseek fileseek.c

ahoover@video> fileseek data.txt

Byte 0: 97 (a)

Enter #bytes (+ or -) to move, or 0 to quit: 2

Byte 2: 99 (c)

Enter #bytes (+ or -) to move, or 0 to quit: 3

Byte 5: 102 (f)

Enter #bytes (+ or -) to move, or 0 to quit: -4

Byte 1: 98 (b)

Enter #bytes (+ or -) to move, or 0 to quit: 0

ahoover@video>

The ftell() function takes only one argument, the stream, and returns its
current file pointer byte value. The fseek() function takes three arguments. The
first argument is the stream, the second and third arguments indicate where to
move the file pointer. The third argument is the base value, which can indicate
the beginning of the file (SEEK_SET), the end of the file (SEEK_END), or the
current file pointer position (SEEK_CUR). The second argument gives an offset
from the base value. These options provide some flexibility in manipulating the
file pointer.

5.4.2 File Attributes
If a file is only a one-dimensional array of bytes, where is all the other stuff that
is associated with a file? How does a system know when a file was last modified,
or if the file is an executable program, or if the file is write protected? How does
a system know the size of a file (the number of bytes)? A file listing produces a
great deal of information about a file. For example:

ahoover@video> ls -l

total 40

-rw-r--r-- ahoover fusion 808 Jul 5 16:58 fileseek.c

-rwxr-xr-x ahoover fusion 14196 May 28 16:18 ls1

-rw-r--r-- ahoover fusion 468 May 28 20:21 ls1.c

-rw-r--r-- ahoover fusion 803 Jul 5 16:58 statfile1.c

-rw------- ahoover fusion 758 Jul 5 16:58 statfile2.c

-rw-r--r-- ahoover fusion 7 Jul 5 16:58 testme.txt

ahoover@video>

In this list, each row provides information about a file. The filename itself is in the
rightmost column. The first column provides the permissions of the file, which
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indicate who is allowed to access the file, and what types of access are allowed.
The letters “r,” “w,” and “x” stand for read, write, and execute. The first rwx applies
to the owner of the file, the second rwx applies to the group of the file, and the
last rwx applies to any user. A hyphen (-) indicates that particular permission is
denied. Thus, the file ls1 in the list above can be read or executed by anyone, but
it can be written only by the owner of the file. The file statfile2.c can be read
or written only by the owner of the file and cannot be executed at all. On a Unix
system, the permissions of a file can be changed using the chmod system program.
For example:

ahoover@video> chmod g+w ls1.c

ahoover@video> ls -l ls1.c

-rw-rw-r-- ahoover fusion 468 May 28 20:21 ls1.c

ahoover@video>

This command added the write permission to the group of the file. A full descrip-
tion for the chmod program can be found in its man page.

Returning to the file listing, the second column identifies the owner of the
file and the third column identifies the group of the file. For the example listing,
all the files are owned by the user “ahoover” and belong to the group “fusion.” A
group is a name for a set of users working together, who may all need access to a
file. The fourth column identifies the size of the file, in bytes. Thus, the file ls1
is 14,196 bytes, and the file testme.txt is only 7 bytes. The remaining columns
prior to the filename indicate the date and time that the file was last modified.

This is only about half the information that a Unix system maintains about
each file. All of this information is stored in tables managed by the system. The in-
formation for a file can be accessed using the stat() function call. The following
program demonstrates its usage:

#include <stdio.h>

#include <sys/stat.h> /* needed for stat() function */

int main(int argc, char *argv[])

{

struct stat fileinfo; /* returned info about file */

int i;

if (argc != 2)

{

printf("Usage: statfile filename\n");

exit(0);

}
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i=stat(argv[1],&fileinfo);

if (i == -1)

{

printf("Unable to stat %s\n",argv[1]);

exit(0);

}

printf("size: %d\n",fileinfo.st_size);

printf("permissions: %d\n",fileinfo.st_mode);

printf("last modified: %d\n",fileinfo.st_mtime);

}

Notice that the program never opens the file. Instead, it calls stat() on the given
filename. This is because the extra file information is not contained in the one-
dimensional array of bytes that is the file; rather, it is maintained in tables man-
aged by the system. Assuming that this code is stored in a file named statfile.c,
then compiling it and executing it on the file ls1.c from above produces the fol-
lowing output:

ahoover@video> gcc -o statfile statfile.c

ahoover@video> statfile ls1.c

size: 468

permissions: 33188

last modified: 1212020479

ahoover@video>

The size of the file matches the size (468 bytes) displayed from the file listing. The
other two fields look strange because they are encoded. For the permissions, each
possible permission requires only 1 bit to store. The individual bits can be printed
out using the following code:

.

.

.

for (i=9; i>=0; i--)

if (fileinfo.st_mode & (1 << i))

printf("1");

else

printf("0");

printf("\n");

.

.

.

Recompiling and running the program now produces the following:

ahoover@video> gcc -o statfile statfile.c

ahoover@video> statfile ls1.c
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size: 468

permissions: 33188

0110100100

last modified: 1212020479

ahoover@video>

Comparing the sequence “-rw-r–r–” to the bit pattern for 33188 reveals that for
each permission granted, there is a value of 1 in the related bit:

-rw-r--r--

0110100100

The last modified date for a file is also encoded. Dates on a Unix system are
stored as a whole number giving the number of seconds since midnight (UTC)
of January 1, 1970. Thus, approximately 1.2 billion seconds after January 1, 1970,
or May 28, 2008, is when the file ls1.c was last modified.

The stat() function returns other information besides that covered in this
section. A full description can be found in its man page.

5.4.3 Directories
A directory is an organizational tool for files. It is used to group together a set of
files. Technically, a directory is a list of filenames and auxiliary information for
each file. But it can be conceptualized as a one-dimensional array of filenames.
For example, consider the following file listing:

ahoover@video> ls -a

./ ../ data.txt fileseek.c ls1 ls1.c

ahoover@video>

The directory for the above file listing can be written as follows:

Directory

Entry Filename

0 ./

1 ../

2 data.txt

3 fileseek.c

4 ls1

5 ls1.c
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The output shows ./ and ../ at the start of the list of filenames. These “file-
names” are used to provide a tree-like hierarchical structure for directories. The
filename ./ refers to the current directory, which is the directory containing the
listed files. The filename ../ refers to the parent directory, which is the directory
containing the filename of the current directory. The directory entries for these
two filenames are used to link directories together, allowing one directory to be
placed “inside” another.

The O/S manages directories in much the same manner as it manages files.
It maintains tables that contain directory filename lists as well as additional data
for each filename. These tables can be accessed using the opendir(), readdir(),
and closedir() functions. For example, consider the following code:

#include <stdio.h>

#include <dirent.h>

int main(int argc, char *argv[])

{

DIR *directory; /* the directory */

struct dirent *entry; /* each entry */

directory=opendir(".");

if (directory == NULL)

{

printf("Unable to open directory .\n");

exit(0);

}

while (1)

{

entry=readdir(directory);

if (entry == NULL)

break;

printf("%s\n",entry->d_name);

}

closedir(directory);

}

This program opens up the current working directory “.” and reads through all
its directory entries, printing out the filename for each entry. If this code is stored
in a file named ls1.c, then compiling and executing it in the same directory as
the example above produces the following output:
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ahoover@video> gcc -o ls1 ls1.c

ahoover@video> ls1

.

..

data.txt

fileseek.c

ls1

ls1.c

ahoover@video>

The function opendir() opens the given directory table (also called a directory
stream). The function readdir() reads an entry from the directory table. The
system maintains a directory pointer that is automatically advanced to the next
directory entry subsequent to a read. This behavior is similar to how a file pointer
is advanced subsequent to the reading or writing of bytes to a file. Each directory
entry contains a filename as well as other organizational information, such as
whether the filename is a regular file or a directory. Finally, the function closedir()
is used to close access to the directory.

5.5 ● Devices
One of the neat aspects of Unix is that any peripheral, device, or piece of hardware
connected to the computing system can be accessed as though it were a file. This
concept is often referred to as “file-based I/O.” An I/O transaction with a device is
handled similarly to an I/O transaction with a file. They both make use of streams
and buffers, and they both use the same I/O functions.

The following example shows how fopen() can be used to establish an I/O
connection to a terminal display through the device’s filename /dev/pts/1:

#include <stdio.h>

main()

{

FILE *fpt;

fpt=fopen("/dev/pts/1","w");

fprintf(fpt,"Hello terminal.");

fclose(fpt);

}

Assuming that code is stored in a file called fopen-term.c, then compiling and
executing it will produce the following result:
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ahoover@video> gcc -o fopen-term fopen-term.c

ahoover@video> fopen-term

Hello terminal.

ahoover@video>

The exact name of the terminal display will depend upon the system, and how
many terminals are currently running. In order to determine the name of a
terminal display, one can run the tty program at the prompt. For example:

ahoover@video> tty

/dev/pts/1

ahoover@video>

The example above can be modified accordingly using the discovered terminal
display name.

The following example shows how fopen() can be used to establish an I/O
connection to a mouse through the device’s filename /dev/psaux:

#include <stdio.h>

main()

{

FILE *fpt;

int c,buf[4];

fpt=fopen("/dev/psaux","r");

while (1)

{

c=fread(buf,4,1,fpt);

printf("Read %d bytes: %d\n",c,buf[0]);

}

fclose(fpt);

}

Assuming that code is stored in a file called fopen-mouse.c, then compiling and
executing it will produce something like the following result:

root@video> gcc -o fopen-mouse fopen-mouse.c

root@video> fopen-mouse

Read 1 bytes: 65537

Read 1 bytes: 130856

Read 1 bytes: 65064

Read 1 bytes: 130856

Read 1 bytes: 130600

... [CTRL-C] ...

root@video>
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Running this example requires some care. First, the exact name of the mouse
may differ depending on the system; a common practice is to link the filename
/dev/mouse to whatever device filename is actually used for the mouse. Second,
the user typically must be root to run the program. The mouse device filename
will typically have file permissions set so that only the root user can access it.
Finally, the user must move the mouse to see something like the output shown
above. Each time a mouse button is clicked, or the mouse is moved, a stream of
bytes should appear. The purpose of this example is not to decode or understand
the byte values but simply to demonstrate how a stream connection can be made
to a mouse.

The directory /dev is normally used to store filenames for all the devices that
the computing system might want to access. There are often literally thousands of
filenames in that directory. Many of them are simply reserved in case a particular
device is connected to the computing system, at which time it becomes accessible
through its related device filename. Sometimes a single device may have multiple
device filenames associated with it, where each filename provides access to a dif-
ferent part of the device. For example, it is common practice to access a hard drive
through the filename /dev/hda, and to access its individual partitions through
the filenames /dev/hda1, /dev/hda2, and so forth.

5.5.1 Device Drivers
A device driver is a set of functions used to access a device. These functions
include custom versions of open(), close(), read(), write(), seek(), and a small
handful of others. The functions associated with a particular device are executed
when the device is accessed through its device filename.

Determining which functions to execute is controlled by something called the
major device number. The major device number of a particular device filename
can be seen by looking at the full file information for the given filename. For
example:

ahoover@video> ls -l /dev/hda

brw-rw---- root disk 3, 0 Aug 30 2001 /dev/hda

ahoover@video> ls -l /dev/psaux

crw------- root root 10, 1 May 27 14:58 /dev/psaux

ahoover@video>

For these filenames, notice that the column in the middle that is usually used to
report the size of the file shows something different. For the file /dev/hda, part
of the file listing reports “3, 0,” and for the file /dev/psaux, part of the file listing
reports “10, 1.” For each of these number pairs, the first number is the major
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device number. It tells the operating system which set of device driver functions
to use to access the device. When the device driver is introduced to the system
(either during kernel compilation, or as a dynamically loaded module similar
to the concept of “plug and play”), it must register a major device number. It
is through this mechanism that a program can use a device filename to access the
appropriate functions for interacting with the device.

The second number in each number pair is the minor device number. It is
used to provide a unique ID for multiple device filenames that use the same
device driver functions. For example, a system may have more than one hard
drive of the same type connected to it. In order to allow access to both hard
drives, each drive would use a different device filename with the same major
device number but with a different minor device number.

Device drivers can seem complicated until a programmer attains some fa-
miliarity with them. The intent of this chapter was to provide a general un-
derstanding of how I/O works, including I/O with devices. In this context, the
most important thing to remember is that devices are accessed just like files, and
that device drivers are nothing more than a set of functions customized to each
device. For further discussion, the interested reader is directed to the excellent
book Linux Device Drivers, 3rd ed., J. Corbet, A. Rubini, and G. Kroah-Hartman,
O’Reilly, 2005.

Questions and Exercises
1. Write out the file contents for out.txt as produced by the following code. Give

specific byte values. How many total bytes will the file contain at the end of
execution?

#include <stdio.h>

main()

{

FILE *fpt;

int x;

fpt=fopen("out.txt","w");

for (x=0; x<15; x+=2)

fprintf(fpt,"%2d ",x);

fclose(fpt);

}
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2. Write out the file contents for out2 as produced by the following code. Give
specific values to bytes or ranges of bytes. The values of the same variable are
being written using fprintf() and then fwrite(). How many bytes are written by
each, and which is more efficient?

#include <stdio.h>

main()

{

FILE *fpt;

struct frog {

float d;

int x;

} henry;

henry.d=12.73;

henry.x=81925;

fpt=fopen("out2","w");

fprintf(fpt,"%7.2f %7d\n",henry.d,henry.x);

fwrite(&henry,sizeof(struct frog),1,fpt);

fclose(fpt);

}

3. Write out the memory map and file contents for the following code, providing
all values at the end of execution. What is the exact output produced by this
program?

#include <stdio.h>

main()

{

double testd;

int testi;

FILE *fpt;

struct frog {

double *x,y;

};

struct frog turtle,*apple,tv[3];

testi=21;

apple=&turtle;

turtle.y=5.2;

fpt=fopen("out3","w");

fwrite(apple,sizeof(struct frog),1,fpt);

fclose(fpt);
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apple->x=&testd;

fpt=fopen("out3","r");

fread(&(tv[1]),sizeof(struct frog),1,fpt);

fclose(fpt);

*(turtle.x)=7.3;

(*apple).y=3.6;

turtle.y=1.5;

*(tv[1].x)=6.4;

printf("%lf \n",tv[1].y);

}

4. Describe two ways in which shell pipelining can be useful during program devel-
opment.

5. Consider the code given below. Write a custom print function “cprintf()” that
implements a buffer. The function takes a single string as input and returns
nothing. All bytes in the string are buffered until the percent symbol (%) is
encountered. Upon encountering that symbol, all contents of the buffer should
be flushed (printed to the stdout stream) and the buffer should be reset to empty.
The percent symbol should not be printed; it is only a trigger. The buffer only
needs to be large enough for this example, do not worry about overflow. The
newline character should be printed but should not cause a flush.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

/* custom function cprintf() goes here */

main()

{

cprintf("Test\n");

sleep(1);

cprintf("Re%test\n");

sleep(1);

cprintf("All done\n%");

}

If your function works correctly, in what chronological manner should the
printed text appear? (Hint: in order to implement this function, the contents
of the buffer must persist through multiple calls to the function.)

6. Using the same instructions as given in Exercise 5, there is a potential problem
with flushing the buffer. If the last byte that the cprintf() function received
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before the program ends is the percent symbol, then it will work fine. However, if
the program ends with bytes still in the buffer, they will be lost and never appear
on the stdout stream.

Discuss a way in which this could be fixed so that the buffer would also flush
whenever the program ended. Your solution can take one of several approaches.
Think conceptually even if you are not sure how to code your approach.

7. Consider the variable declaration below. Write code that opens a file for output
and uses a single line of code to write out all of the declared variable(s).

struct inventory {

char name[30];

int count;

float price;

} log[75];

8. Write a program that reads a text file and reports the total count of words of
each length. A word is defined as any contiguous set of alphanumeric characters,
including symbols. For example, in the current sentence there are 10 words. The
filename should be given at the command line as an argument. The file should be
read one word at a time. A count should be kept for how many words have a given
length. For example, the word “frog” is 4 bytes in length; the word “turtle” is 6
bytes in length. The program should report the total word counts of all lengths
between 3 and 15 bytes. Words with lengths outside that range should not be
counted.

9. Write a program that reads a text file and prints out any words that begin with a
user-given string. The filename should be given at the command line as an argu-
ment. The program should prompt the user for the search string. The program
should then read the file one word at a time and print out the word if its first N
bytes match the search string, where N is the length of the search string.

10. The program listed in Section 5.3.2 did not correctly remove all the desired
punctuation marks in the given test file. Debug the program and correct it. Make
another test file and expected output file to use during debugging.

11. Consider the following structure template and variable definition:

struct rec {

char name[30];

double ppg;

int years;

} team[12];

Suppose there is a file in which the entire variable team has been written in its
natural array order. Write a program that accesses the file and reads a single entry
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of the array as selected by the user. The program should require two arguments,
one being the filename and the second being the number of the desired entry. The
program should not read the entire file; it should use other methods to access
only the desired entry. The retrived information should be displayed, and then
the program should exit.

12. Write a program that will display text on any terminal. The program should
prompt the user for the name of the device file for the terminal on which to
display output, as well the output to display. It should then perform the necessary
I/O operations. This process should repeat until the user decides to exit the
program.

13. Write a program that allows the user to search an ASCII text file loaded into main
memory. The program should be able to search by byte value, ASCII string, or
address (memory, not file). The program should report the answer, surrounded
by context, that is, part of the file on either side of the answer. The program
should run until the user selects an option to quit.

The program must use a command line argument to discover the name of the
file to load. The program must use dynamic memory allocation to create an array
(remember, arrays are pointers) of bytes in which to load and process the file. The
array should allow addressing of individual bytes from the file, and it should be
exactly the same size (in bytes) as the file.

Once loaded, the program should go into a loop, providing the user with four
options. The first option allows the user to specify a byte value (0–255). Given a
value, the program displays all occurrences in the array of that value. The display
should take the form of:

address context value context

where address is the base 10 address of the location in memory (not the array
index, and not the file address). The value and context should be displayed using
ASCII symbols. Context should be the 5 bytes immediately preceding the value,
and the 5 bytes immediately following the value. Do not be concerned if the
ASCII symbols for the context or value are nonprintable characters; simply print
them. However, printing of symbols should not go beyond the beginning of the
array, or past the end of the array. If the context reaches past these boundaries, an
appropriate message should be displayed prior to the context, or after the context,
as the case warrants.

The second program option allows the user to specify an ASCII string. Given
that string, the program displays all occurrences in the array of that string. The
display should look exactly as it did for option 1 (with the string in place of the
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value). The third program option allows the user to specify an address (memory),
and displays that address as for option 1. The fourth program option allows the
user to quit. Appropriate error checking must take place for bounds on expected
input (for example, a value must be 0–255, and an address must be within the
expected range).

14. Write two programs that encode and decode plain text files. The encryption is a
simple cipher, replacing each alphanumeric symbol with a shifted value. Here are
two examples:

Dog3 => shifted +1 => Eph4

Cat...0 => shifted -1 => Bzs...9

Only letter (upper- and lowercase) and numeric (0–9) symbols should be
affected. All other symbols should pass through encryption and decryption unaf-
fected. The shifting of a symbol should wrap around its set. For example, the sym-
bol “a” shifted -1 should become “z.” The symbol “9” shifted +1 should become
“0.” The symbol “Z” shifted +2 should become “B.” This is also demonstrated in
the examples above.

The first program should encode text. It should prompt for one word (string)
at a time, encode it, and print out the encoded version. This should continue
until the single symbol “.” is given as input, which should terminate the program.
The first program must accept a single command line argument defining the shift
delta. The value of delta must be an integer between -9 and +9, inclusive.

The second program should decode encrypted text. It should be unaware of
the value of delta used to encode the text. Instead, it must figure out the value
of delta by trying to decrypt using all possible values for delta and examining
the resulting text. To examine the result, the program must use the dictionary
stored in the linux.words file (usually found in /usr/share/dict, depending
on your system’s installation of ispell). It should compare every potential de-
crypted word with the dictionary, looking for a match. Whichever value for delta
produces the most matches with words in the dictionary should be assumed to
be the correct value for delta. The program should print out the decrypted text
using that value of delta (and it should not print out anything else).

Assume that the message being encrypted or decrypted consists of fewer than
100 words, and that no word is longer than 30 characters.

Develop the programs using shell I/O redirection techniques, including tak-
ing stdin from a file, piping stdout from the encoder to stdin on the decoder, and
placing stdout to a file. These operations should work.
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15. Write a program that provides a file listing for the given directory. The program
should list the filename, file size, and time last modified for each file within the
directory. The program should provide the user with the option to sort the listing
based on filename, on file size, or on time last modified. The program should run
once and quit (it does not loop).

The syntax (usage) for the program should be

prog_name [directory] [[-s][-t]]

where -s indicates sort by file size and -t indicates sort by time last modified.
These flags are optional but mutually exclusive. The directory is also optional;
if it is omitted, then a default directory of “.” (the current directory) should
be assumed. Every possible combination of command line arguments from the
above syntax should be tested.

The output should be displayed with fixed-width columns for the size and
date. Column orders should be size, then date, then filename. The time last
modified should be printed as a 12-character string (e.g., “Oct 10 11:37”). This
can be done by manipulating the returned string from the ctime() function and
printing only a portion of it.

If the given directory is not a directory—for example, if it is a single file-
name—then the program should report an error and quit.

Sorting of filenames should be done in a to z order. No special cases need
to be handled; simple ASCII ordering is sufficient (this means for example, that
uppercase A through Z comes before lowercase a through z; they do not need to
be interleaved). Sorting of file sizes should be done largest to smallest. Sorting of
times should be sorted most recent to least recent. Because the year is not to be
shown in the printed listing, this may look out of order, but that is not an issue
to be addressed in this exercise.



6
Program Management

P rogram management concerns the organization, building, and distribution
of programs. The organization of a program involves how the code is writ-

ten, including its logical and visual layout. The goals of good organization include
code readability and modularity. These characteristics support good design prac-
tices and make program debugging and scaling easier. The building of a program
entails how the code is compiled. Compiling involves many intermediate steps
and file types that enable the construction of an executable. The distribution of
a program is concerned with how the code is packaged and delivered to target
systems. There are a number of tools and practices designed to facilitate program
distribution and installation.

For the writers of programs, program management can seem like a chore.
Management and bookkeeping tasks seemingly take time away from the job of
actually writing programs. However, in the long run, having well-organized code
and understanding the compilation and distribution processes make program-
ming both simpler and more efficient. With practice, good management tech-
niques become incorporated into all programming work. The goal of this chapter
is to familiarize the reader with the tools and practices common to program orga-
nization, building, and distribution. The reader may be familiar with many of the
individual concepts discussed in this chapter; however, putting them all together
under the context of program management should provide new insight into how
and when all these concepts and tools should best be used.
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6.1 ● Program Building
After a program is written, it must be built into an executable so that it can be
run. Building a program consists of a series of steps. At each step, the code is
transformed to produce an intermediate form. Intermediate forms include pre-
processed, assembly code, object code, and libraries. Understanding these steps
and the intermediate forms is important for several reasons. Each offers differ-
ent strategies for saving programming time or maximizing system resources. For
example, the preprocessing step provides macros for repetitive string substitu-
tion; the assembly step provides a programmer with named memory locations;
and the linking step provides a way to reuse existing executable code in multiple
programs. The intermediate forms can be retained between program builds to
speed up subsequent rebuilds. Errors in the program can be uncovered at each
program building step. This section goes through the program building process
and discusses each step.

6.1.1 Object Code and Linking
Figure 6.1 presents a diagram of the basic steps in program building. The steps of
compiling and linking transform a source code file into an executable file. Source
code is the C program as written by the programmer. For example, assume the
following code has been written:

#include <stdio.h>

int OurSquareRoot(int n)

{

if (n == 4)

return(2);

else

{

printf("I cannot compute the square root of %d\n",n);

return(-1);

}

}

Link
a.out

Compile

Source code file Object code file Executable

main.omain.c

Figure 6.1 The basic steps in building a program.
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If this code is stored in a file named sqrt.c, then it can be compiled into object
code as follows:

ahoover@video> ls

sqrt.c

ahoover@video> gcc -c sqrt.c

ahoover@video> ls

sqrt.c sqrt.o

ahoover@video>

The -c flag tells gcc to stop after the compile stage and not to proceed to linking.
There are actually several steps during compiling, but these are addressed in the
next section; for now they are considered as a whole. This creates a file named
sqrt.o that contains object code. An object code file contains machine code,
instructions that can be run on the processor. But an object code file cannot
be directly executed. Object code files must be linked to become an executable
program that can be run. Linking is the process of bringing together multiple
pieces of object code and arranging them into an executable. Object code can
come from multiple source code files, each compiled into its own object code
file. To demonstrate, consider the following additional code:

#include <stdio.h>

int OurSquareRoot(int);

int main(int argc, char *argv[])

{

int x,s;

printf("Enter any integer: ");

scanf("%d",&x);

s=OurSquareRoot(x);

if (s != -1)

printf("The square root of %d is %d\n",x,s);

}

If this code is stored in a file named main.c, then it can be compiled as follows:

ahoover@video> gcc -c sqrt.c

ahoover@video> gcc -c main.c

ahoover@video> ls

main.c main.o sqrt.c sqrt.o

ahoover@video> gcc sqrt.o main.o
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ahoover@video> ls

a.out main.c main.o sqrt.c sqrt.o

ahoover@video>

Through these steps, two object code files were created, main.o and sqrt.o.
Following that, an executable was created, a.out, by linking together the two
object code files. The executable is the file that can actually be run:

ahoover@video> a.out

Enter any integer: 4

The square root of 4 is 2

ahoover@video>

In order to further understand the difference between an executable and an
object code file, consider the following:

ahoover@video> gcc sqrt.o

.... undefined reference to ’main’

ahoover@video>

The compiler was unable to create an executable because no main() function
was found in the given object code. An executable can contain any number of
functions, but it must contain exactly one main() function so that when the
program is run, the system knows where to begin execution of the program.
Other errors can also be uncovered during linking. For example:

ahoover@video> gcc main.o

.... undefined reference to ’SquareRoot’

ahoover@video>

In this case, the compiler was unable to create an executable because it could not
find the object code for the SquareRoot() function.

Object code files can be created from any source language, not just C. It
is possible to link object code files that were compiled from combinations of
lanauges, such as C, C++, and Fortran, as well as files originally written directly in
machine language. Once a source code file has been compiled into object code,
the original language of the source code does not matter. The source code has
been transformed into machine code that is capable of being executed on the host
system.

When compiling, unless otherwise instructed, gcc will automatically proceed
to linking, and then remove any object code files it created. This is done to
simplify the process, so that a programmer does not need to separately perform
all the compiling and linking steps. It also saves file storage space on the system by
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Link

Link

a.out
Compile

Source code file Object code file Executable

main.o

Library file

libc.a

main.c

Figure 6.2 Linking a library file with an object code file to create an executable.

removing intermediate files that may not be needed. However, when compiling
multiple files, it is often convenient to instruct the compiler to keep object code
files, so that only changed source code files need to be recompiled. Everything
else needs only to be linked. This can save time when the number of source code
files comprising a program grows large. It can also help with organization, in that
it helps track which files have had modifications made to them between program
builds.

Linking primarily serves to bring together object code files into an executable.
However, it can also bring in object code from library files. Figure 6.2 shows
this in diagram form. Library files contain object code for functions that are
frequently used. In this way, the source code can be compiled once and stored in a
permanent place, ready to link. For example, the most commonly linked library
file is libc.a, the primary library file of the C standard library. It contains the
object code for the standard functions like printf(), fopen(), and strcmp(). The
contents of this library file can be seen as follows:

ahoover@video> ls -al /usr/lib/libc.a

-rw-r--r-- 1 root root 2567960 2006-03-24 /usr/lib/libc.a

ahoover@video> ar t /usr/lib/libc.a | grep print

.

.

.

fprintf.o

printf.o

.

.

.

ahoover@video>

Since these functions are used over and over, their object code is permanently
stored in a library file, so they do not need to be recompiled every time. The
following demonstrates linking to a library file:
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ahoover@video> gcc main.o sqrt.o -lc

ahoover@video>

The flag -lc tells the gcc compiler to link to a library file named libc.a. The
details of this naming convention are further explained in Chapter 8. For now, it
is only important to see that library files can be linked into an executable similarly
to how object code files are linked. For this particular example, one might wonder
why the executable can be created with or without having to explicity link to the
libc.a library file (with or without the -lc flag). The reason is that this file is so
commonly linked, most compilers are set up to assume that it is needed and so
link to it by default.

Normally, object code files are copied into an executable; all the machine
code is rearranged a bit but is otherwise copied over into the executable. If this
were done with the object code in a library, then there would be many redundant
copies of the same machine code throughout all the executables using the library
functions. To prevent this, a library can be linked dynamically, which means that
the object code is not copied into the executable. Instead, when the program
is run, if machine code from a library file is needed, it is loaded into memory
directly from the library file. To demonstrate:

ahoover@video> gcc main.c sqrt.c

ahoover@video> ls -al a.out

-rwxr-xr-x 1 student student 7442 a.out

ahoover@video> gcc -static main.c sqrt.c

ahoover@video> ls -al a.out

-rwxr-xr-x 1 student student 476153 a.out

ahoover@video>

In the second case, the library was linked statically, causing all the needed object
code to be copied into the executable (this includes the object code for printf(),
for example). Notice how much larger the executable is when the library file is
linked statically. There are other implications of dynamic versus static linking.
Dynamically linked executables can run more slowly because multiple library
files may need to be accessed. Dynamically linked executables are also fragile to
the system in that, if a library file is removed, the executable will no longer run.
However, dynamic linking is the default for most compilers and systems, due to
the space it saves in keeping executables smaller.

6.1.2 Compiling
The compile process transforms a source code file into an object code file. Look-
ing a little deeper, the process consists of three steps: preprocessing, compiling,
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Compile

Compile

Preprocess Assemble

Source code file Object code file

main.omain.c

temp.c main.s

Figure 6.3 Steps in compiling.

and assembling. Figure 6.3 illustrates the process of compiling. The most com-
plex of the three transformations is the compiling step, and so the total process
of the three steps is often referred to simply as compiling.

The first step is preprocessing. Preprocessing provides mechanisms to sup-
port text substitutions, also called macros or macro substitutions. For example,
it is convenient to name a value that is used often during a program. Consider the
following code:

#include <stdio.h>

#define PI 3.14

#define SQRT2 1.7

int main(int argc, char *argv[])

{

printf("PI = %lf\n",PI);

printf("PI = %lf and the square root of 2 = %lf\n",PI,SQRT2);

}

The line #define PI 3.14 is a preprocessor directive. It says to replace every
occurrence of PI with 3.14. The line #define SQRT2 1.7 is similar. Assume that
this code is stored in a file named pre1.c. The gcc compiler can be commanded
to stop after preprocessing, so that the result can be seen. For example:

ahoover@video> gcc -E pre1.c

.

.

.

int main(int argc, char *argv[])
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{

printf("PI = %lf\n",3.14);

printf("PI = %lf and the square root of 2 = %lf\n",3.14,1.7);

}

ahoover@video>

The flag -E stops the compilation process after preprocessing. The occurrences of
PI within quotes are not affected because they are recognized as parts of strings.
This result can be saved to a file using the -o option. For example:

ahoover@video> gcc -E pre1.c -o temp.c

ahoover@video>

The compiling process can be resumed from this point, by running gcc on
temp.c, and everything still turns out the same. For example:

ahoover@video> gcc temp.c

ahoover@video> a.out

PI = 3.140000

PI = 3.140000 and the square root of 2 = 1.700000

ahoover@video>

Compiling the file temp.c produces the file a.out, which can be executed.

Preprocessing text substitutions can be useful in a variety of situations. Used
in place of a variable, they prevent the accidental changing of the value during
program execution. They also save storage space in that a macro takes up zero
bytes of data memory. Another common use for preprocessing is to copy source
code that is needed repeatedly, usually from an include file. For example, consider
the following code:

/* global variables */

int x;

Assume that this code is stored in a file named globals.h. This can be used in
other source code files, as follows:

#include "globals.h"

int main(int argc, char *argv[])

{

x=2;

printf("x=%d\n",x);

}
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Assume that this code is stored in a file named pre2.c. Compiling it and stopping
after preprocessing produces the following result:

ahoover@video> gcc -E pre2.c

.

.

.

/* global variables */

int x;

int main(int argc, char *argv[])

{

x=2;

printf("x=%d\n",x);

}

ahoover@video>

This copies the file globals.h, line for line, exactly in place of the #include line.
There are two places that the preprocessor can be told to search for files to include.
For example:

#include <stdio.h>

#include "globals.h"

By enclosing the filename in angle brackets (< >), the preprocessor is told to
search system paths for the include file. By enclosing the filename in double
quotes (" "), the preprocessor is told to search within the current directory for
the include file. Otherwise, both commands accomplish the same thing.

Any statement that begins with a pound symbol (#) is a preprocessor direc-
tive, not C code. Other common preprocessor directives are #if, #else, #endif,
#ifdef, and #ifndef to allow for control of what string substitutions are per-
formed. For example, a common method to include or exclude debugging code
in a program is to use preprocessing:

#include <stdio.h>

#include <stdlib.h>

#define DEBUG 1 /* debugging output */

main()

{

int x,y,s;



180 Chapter 6 ● Program Management

y=1;

s=0;

for (x=0; x<10; x++)

{

y=y<<1;

s=s+y;

#if DEBUG == 1

printf("When x=%d, y=%d\n",x,y);

#endif

}

printf("s=%d\n",s);

}

Assume that this code is stored in a file named pre3.c. Changing the value
of DEBUG to 0 will prevent the debugging printf() statement from executing.
The same thing could be accomplished using a regular C variable, but using
preprocessing prevents the code from even being included in the executable.
During preprocessing, if the #if directive is not true, then the subsequent code
is not copied into the intermediate form that is compiled.

The second step in the compilation process is the actual compiling, which
converts the C source code into assembly code. Once again, the gcc compiler can
be instructed to stop at this point. For example:

ahoover@video> ls pre3.*

pre3.c

ahoover@video> gcc -S pre3.c

ahoover@video> ls pre3.*

pre3.c pre3.s

ahoover@video>

The -S flag tells the compiler to stop after compiling. The compiler saves the
result in an assembly code file pre3.s. The contents of that file can be viewed
with a text editor:

.file "pre3.c"

.section .rodata

.LC0:

.string "When x=%d, y=%d\n"

.LC1:

.string "s=%d\n"

.text

.globl main

.type main, @function
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main:

pushl %ebp

movl %esp, %ebp

subl $24, %esp

andl $-16, %esp

movl $0, %eax

addl $15, %eax

addl $15, %eax

shrl $4, %eax

sall $4, %eax

subl %eax, %esp

[...]

The assembly code is the set of instructions that will be executed on the processor.
For example, movl and subl are processor-level instructions. The exact assembly
listing produced by compiling will depend upon the particular processor for
which the program is compiled.

The third and final step in the compilation process is called assembling. Dur-
ing this step, assembly code is translated into machine code to get it ready to run.
Assembly code is a human-readable version of machine code, much like ASCII
symbols are a human-readable version of byte values. (Imagine trying to read
text looking at the raw byte values.) Each machine code instruction is actually a
set of byte values telling the processor what to do. The assembly instruction is a
human-readable translation of those byte values.

As seen throughout this section, the gcc compiler has several options to con-
trol where to stop the build process. Table 6.1 summarizes these options. Most
compilers have similar options, as well as options that affect how compilation is
performed. One of the most important options is to include debugging informa-
tion in the executable. This option was introduced in Section 1.2.3. For the gcc
compiler, this option is given using the -g flag. A related option is to optimize

Table 6.1 The gcc compiler options for stopping the build process at various stages
(assumes code.c as input and no other options).

Stop after . . . gcc flag Output produced

preprocessing -E modified source (streamed to stdout)

compiling -S assembly code (code.s)

assembling -c object code (code.o)

linking [none] executable (a.out)
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the code for execution speed. For the gcc compiler, this option is given using the
-O flag. With this option a compiler takes slightly more time to compile the code,
searching for redundancies and rearranging some lines of code in order to make
them execute faster. Normally these two options (debugging and optimization)
are used separately. For example, by default the Microsoft Visual C tool compiles
an executable into either a Debug or Release version, where the latter is compiled
with optimization flags.

6.1.3 Makefiles
For a program that is built from a single source code file, a single execution of
a compiler is usually all that is necessary. A programmer will typically manually
type the compile command each time the program needs to be rebuilt. However,
for a program that is built from a large number of files, a number of compile
commands may need to be performed. Some of these commands may involve
multiple filenames and command line options. A makefile is a tool that allows
a programmer to organize the compile commands and intermediate files and to
execute rebuilds with less manual typing.

A makefile is a text file placed in the current working directory, usually the
directory holding the source code to be compiled. By convention, the file is
usually started with an uppercase “M” (Makefile) so that in a file listing it stands
out from the source code and object code files. However, the file can also be
started with a lowercase “m” (makefile).

A makefile has two main parts: dependencies and commands. The format of
a dependency/command block is as follows:

file : dependency

[TAB] command

[TAB] command
.
.
.

A dependency describes a relationship between files, where if the file on the right-
hand side of the dependency is changed, then the file on the left-hand side needs
rebuilding. The files on the left-hand side are usually referred to as targets, while
the files on the right-hand side are referred to as sources. The command(s) to
perform the rebuilding are listed after the dependency. Each command line must
be started with a tab character, to differentiate command lines from dependency
lines.
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For example, consider the program from Section 6.1.1. It was stored in two
source code files named main.c and sqrt.c. A makefile can be written for that
program as follows:

sqrt : main.o sqrt.o

gcc -o sqrt main.o sqrt.o

main.o : main.c

gcc -c main.c

sqrt.o : sqrt.c

gcc -c sqrt.c

This makefile defines three dependency/command blocks. In the first, the exe-
cutable file sqrt is defined as depending upon the two object code files main.o
and sqrt.o. A command is listed for creating the executable file by linking to-
gether the two object code files. The second and third blocks give dependencies
for the object code files, as well as commands to compile the source code files into
the object code files.

Assuming that neither the object code files nor the executable file exists, then
this makefile can be used to build the program as follows:

ahoover@video> ls

main.c Makefile sqrt.c

ahoover@video> make

gcc -c main.c

gcc -c sqrt.c

gcc -o sqrt main.o sqrt.o

ahoover@video> ls

main.c main.o Makefile sqrt sqrt.c sqrt.o

ahoover@video>

The make program1 looks for a file named Makefile (or makefile) in the current
directory. It parses that file for dependencies and executes the commands for
any dependency that needs updating. Updating is determined by comparing the
system’s last modified times for the files; if the file on the right-hand side of
the dependency has been modified more recently than the file on the left-hand
side, then the subsequent commands are executed. Notice that with the makefile,
the only command that needs to be typed is “make”; all the others are executed
automatically.

1. The make program is commonly installed on systems with gcc or a related compiler. An open

source version of make, as well as a full manual, can be obtained at www.gnu.org/software/make/

and is managed by the GNU project.

www.gnu.org/software/make/
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Continuing with this example, if make is immediately executed again, noth-
ing happens:

ahoover@video> make

ahoover@video>

This is because all of the dependencies are up to date. However, if the source code
file sqrt.c is modified (the reader is encouraged to perform a simple modifica-
tion on the file to see how this works), then executing make causes some actions
to be taken:

ahoover@video> vi sqrt.c

[... modifying file sqrt.c ...]

ahoover@video> make

gcc -c sqrt.c

gcc -o sqrt main.o sqrt.o

ahoover@video>

Notice that the only commands executed are those needed to update the depen-
dant files, in this case sqrt.o and then sqrt. For programs having a large number
of files and build commands, this can save a great deal of time on repeated re-
builds.

Makefiles can have other lines in them besides dependencies and commands.
Comments can be written after the # character. For example:

# This is a comment.

sqrt : main.o sqrt.o # another comment

Macros can be written to define string substitutions. For example:

EXEC = sqrt

$(EXEC) : main.o sqrt.o

This example defines a macro named EXEC for the string sqrt. At any later place
in the makefile, the macro can be used by giving its name inside parentheses and
preceded by the $ symbol. Macros are useful for file lists that get long but are used
in multiple dependencies or commands. Two of the most commonly used macros
are all and clean. The former typically defines all the final targets to be created
by all the commands in the makefile; the latter typically executes commands to
remove all intermediate files created during building, such as object code files.
Makefiles can also make use of a few special characters and default rules defined
in a system wide ruleset. (The interested reader is encouraged to consult the
online reference listed in footnote 1 for full details.)
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6.1.4 Other Build Tools
When moving the source code for a program from one system to another, the
second system may have different compilers or system programs needed for the
build process. Becauase of this, the makefile for the program may need to be
modified. Tools have been developed to parse system files and automatically
generate a makefile using the available compilers and system programs. One of
the first examples of such a tool is imake, although this program is no longer
actively under development. Current tools with similar goals include Automake,
managed by the GNU Project, and CMake, which has been used for several large
open source projects.

Integrated development environments (IDEs) commonly use a graphical in-
terface to manage the build process. Dependencies, commands, and command
line options are normally configured through an interface custom to the par-
ticular IDE. However, underneath that interface, an IDE will typically create a
makefile that can be manually edited by the programmer. It is not uncommon
for an advanced programmer to go underneath the IDE’s graphical build config-
uration in order to fine-tune the control of the build process.

6.2 ● Code Organization
Organizing code is not easy. Programmers probably spend as much time organiz-
ing code as they do actually writing new code. Making code modular, readable,
and understandable helps a programmer in several ways. First, these practices as-
sist with design. Writing well-organized code generally leads to a cleaner program
design, which in turn generally leads to fewer flaws and bugs. Second, these prac-
tices assist with debugging. It is much easier to find errors in well-organized code,
particularly if a bug is uncovered long after the code was written and the author
has forgotten much of the design. Third, these practices promote code reuse and
future program extension. Programmers sometimes curse having to write com-
ments and spend time doing bookkeeping chores, yet praise the fruits of those
efforts when they revisit previously written code. There are several methods and
tools that assist code organization. Although this section examines them from the
perspective of the C programming language, the same concepts can be found in
almost all programming languages.

6.2.1 Functions
Writing a program using multiple functions is the most classic approach to mak-
ing a program modular. Modular code is desirable for two reasons. First, it breaks
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a coding problem into pieces, where each piece can be tackled independently
(divide and conquer). Second, it allows code pieces to be reused in future pro-
gramming tasks. For example, consider the following code:

#include <stdio.h>

#include <string.h>

int main(int argc, char *argv[])

{

FILE *fpt;

char first[20][30],last[20][30];

int i,j,total;

if (argc != 2)

{

printf("Usage: capfix [filename]\n");

exit(0);

}

if ((fpt=fopen(argv[1],"r")) == NULL)

{

printf("Unable to open %s for reading\n",argv[1]);

exit(0);

}

total=0;

while (1)

{

if (fscanf(fpt,"%s %s",last[total],first[total]) != 2)

break;

total++;

}

for (i=0; i<total; i++)

{

if (first[i][0] >= ’a’ && first[i][0] <= ’z’)

first[i][0]=first[i][0]-’a’+’A’;

for (j=1; j<strlen(first[i]); j++)

if (first[i][j] >= ’A’ && first[i][j] <= ’Z’)

first[i][j]=first[i][j]-’A’+’a’;

}
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for (i=0; i<total; i++)

{

if (last[i][0] >= ’a’ && last[i][0] <= ’z’)

last[i][0]=last[i][0]-’a’+’A’;

for (j=1; j<strlen(last[i]); j++)

if (last[i][j] >= ’A’ && last[i][j] <= ’Z’)

last[i][j]=last[i][j]-’A’+’a’;

}

for (i=0; i<total; i++)

printf("%s %s\n",first[i],last[i]);

}

This program reads a text file containing the last and first names of people. It then
checks each first name to make sure that it begins with an uppercase letter and
uses lowercase for the rest of the letters. It repeats this process for the last name.
Finally, the program prints out the corrected first and last names. For example,
consider the following data:

smith john

WALTERS sally

jones STeve

If that data is stored in a file named data.txt, and the program code is stored
in a file named capfix.c, then compiling and executing the program as follows
would produce the following output:

ahoover@video> gcc -o capfix capfix.c

ahoover@video> capfix data.txt

John Smith

Sally Walters

Steve Jones

ahoover@video>

The above program was written using only a single function, main(), to do
all the work. How could the code be broken into multiple functions to support
modularity and good design practices? First, the code that checks each word
for proper capitalization could be put into a function. It is used twice in this
program, each time on a different variable. Second, the code that reads in the
data from a file could be put into a function. Although it is used only once in this
program, the code may find use in additional programs written in the future.
When dealing with data files, it is common to have multiple programs that all
need to read the particular format of that data. Encapsulating the data-reading
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code into a function promotes modularity and supports the reuse of the code in
the future. Taking both these observations into account, the above code can be
rewritten using multiple functions as follows:

#include <stdio.h>

#include <string.h>

int ReadData(FILE *fpt,

char first[20][30],

char last[20][30])

{

int total;

total=0;

while (1)

{

if (fscanf(fpt,"%s %s",last[total],first[total]) != 2)

break;

total++;

}

return(total);

}

void CapFix(char word[30])

{

int i;

if (word[0] >= ’a’ && word[0] <= ’z’)

word[0]=word[0]-’a’+’A’;

for (i=1; i<strlen(word); i++)

if (word[i] >= ’A’ && word[i] <= ’Z’)

word[i]=word[i]-’A’+’a’;

}

int main(int argc, char *argv[])

{

FILE *fpt;

char first[20][30],last[20][30];

int i,j,total;

if (argc != 2)

{

printf("Usage: capfix [filename]\n");
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exit(0);

}

if ((fpt=fopen(argv[1],"r")) == NULL)

{

printf("Unable to open %s for reading\n",argv[1]);

exit(0);

}

total=ReadData(fpt,first,last);

for (i=0; i<total; i++)

CapFix(first[i]);

for (i=0; i<total; i++)

CapFix(last[i]);

for (i=0; i<total; i++)

printf("%s %s\n",first[i],last[i]);

}

Functions are a good tool for organizing code, but like any tool they can be
used inappropriately. One mistake is to use a function for a tiny piece of code.
Calling a function takes extra program execution time, both for copying values
into and out of the function, and for jumping to and from the function code for
execution. The extra overhead for executing a function is sometimes not worth it
for a tiny piece of code. Instead, other organizational tools should be examined,
such as macros (discussed in Section 6.2.5). Another mistake is to overuse func-
tions. Just because some code can be encapsulated into a function doesn’t mean
it should be encapsulated into a function. Debugging and modifying code that
has been “over-functionalized” can be frustrating. Imagine reading a book where
every other paragraph refers to a paragraph on another page. Trying to read the
book becomes an exercise in following misdirections bouncing back and forth
throughout all the pages. Some references to other parts of the book can be help-
ful in organizing the ideas, but too many references can lead to obscurity rather
than clarity.

One of the limitations of C is that it explicitly supports modularity only in
functions. Sometimes, it is desirable to modularize data or bring modularity to
other abstractions in programming. The C language provides some support for
data modularity; for example, a structure can be used to create a new modular
data type. However, other languages such as C++ and Java have pushed the mod-
ularity principle further, providing additional language constructs. Regardless of
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the language, the principle remains the same: tools designed to support modu-
larity should be used thoughtfully and not just because they are available.

6.2.2 Multiple Files
As the number of functions in a program increases, it is convenient to break
them up into multiple files. It makes it easier to edit a file, because there are
fewer lines of source code to scroll through to find the function of interest. It
also makes program building more efficient. After changing code within a single
function, only the file containing that code needs to be recompiled. The other
files (assuming the object code files are kept between program builds) need only
to be linked to create a new executable.

A common way to group functions is by the sort of actions they accomplish.
For example, functions that read and write data to files might be collectively
stored in a file named file.c. Another way to group functions is by the type of
data upon which they operate. For example, in a file named vector.c, one could
expect to find functions that perform mathematical operations with vectors. Just
as with multiple functions, the separation of functions into multiple files can be
overused. Although it is common for a file named main.c to contain only one
function (the main() function), populating a large number of files with a scarce
number of functions in each is in general a bad practice.

6.2.3 Variable Scope
The scope of a variable defines which parts of a program can access and use the
variable. When breaking a program into multiple functions and files, scope is a
tool that can help organize variable usage. It is possible to have all variables be
global variables, accessible throughout the entire program. However, providing
different scope to different variables helps organize the extent to which each
variable is needed. For example, some variables might be needed for only one
function, others for a handful of functions, others for only part of a function,
and still others for the entire program.

The scope of a variable is defined in its declarataion. A C variable declaration
can have four parts:

1. Data type: int, float, char, double. These describe how many bytes of
storage are used by the variable and what bit model is used to represent
values.

2. Modifiers: signed, unsigned, short, long. These modify how many bytes
are used and how the bits may be used.
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3. Qualifiers: const, volatile. These provide information to the compiler
as to how the variable will be used so that it may optimize appropriately.

4. Storage class: auto, static, extern. These affect the scope of the variable,
that is, the visibility of the variable throughout the program.

Data types and modifiers are explained in Chapter 2. Qualifiers belong to a
discussion on optimization. This section focuses strictly on scope, as defined by
the storage class. We will look at each possible storage class and how it can be
used.

The first storage class keyword is auto. An auto variable is visible only within
its code block. This is the default storage class for variables inside a function, and
as such the keyword auto is usually omitted. For example:

int Function1(float e)

{

int x;

auto int y;

[...]

}

The variables x, y, and e all have the auto storage class and the same variable
scope. These variables are visible only inside the function, and when the function
ends, the variables (and their values) disappear.

The auto storage class can be used within a set of braces to provide an even
smaller variable scope. For example:

main()

{

int x;

x=42;

{

int x;

x=7;

printf("x=%d\n",x);

}

printf("x=%d\n",x);

}

This code defines two variables, each with the name x but each having a different
scope. If this code is stored in a file named block-scope.c, then compiling it and
executing it produces the following output:
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ahoover@video> gcc -o block-scope block-scope.c

ahoover@video> block-scope

x=7

x=42

ahoover@video>

The second declaration of the variable named x takes place within a block delim-
ited by a set of braces. Therefore, this variable has scope only inside this block.
Once that block is finished, that particular variable disappears, and the variable
name x reverts to the original declaration and value.

Note that the nested use of block variable scope is easy to abuse. The example
given above is not to be emulated, particularly using the same variable name in
nested blocks. Novice programmers are often tempted by the ease with which
new variables can be declared on the fly while writing code, simply by creating a
nested block with additional braces. This practice is bad for several reasons. First,
it adds block delimeters not for sound principles of modularity and program
design, but because a programmer is too lazy to scroll back to the top of the code
block (usually a function) to declare the newly-thought-of variable. The extra
block delimeters make the code less organized and readable. It also makes it more
difficult to find variable declarations for others trying to read, debug, or extend
the code. Using block variable scope can be a good thing, for example, when a
programmer wants to modularize a piece of code without paying the execution
cost of placing it in a function. However, this use of block scope should be used
rarely.

The second storage class keyword is static. A static variable has a larger
variable scope. The static keyword can be used in two contexts, either within a
single function or within an entire file. In the first case, the static storage class
makes the value of the variable persistent through consecutive function calls. For
example, consider the following code:

#include <stdio.h>

int summer(int x)

{

static int sum=0;

sum=sum+x;

return(sum);

}
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main()

{

int i,j;

for (i=0; i<5; i++)

{

j=summer(i);

printf("%d\n",j);

}

}

The variable sum has function static scope. If this code is stored in a file named
function-static.c, then compiling it and executing it produces the following
output:

ahoover@video> gcc -o function-static function-static.c

ahoover@video> function-static

0

1

3

6

10

ahoover@video>

Each time the function summer() is called, the value of the variable sum is re-
tained. This can be useful when a function needs to maintain knowledge of a
local variable through repeated calls. For example, a function may keep the con-
tents of a local array, adding to it or taking from it some of its contents through
successive calls.

The static storage class provides a second scope that is similarly persistent but
has a larger scope. For example:

#include <stdio.h>

static int sq=0;

int summer(int x)

{

static int sum=0;



194 Chapter 6 ● Program Management

sum=sum+x;

sq=sq-1;

return(sum);

}

main()

{

int i,j;

for (i=0; i<5; i++)

{

sq=sq+(i*i);

j=summer(i);

printf("%d %d\n",j,sq);

}

}

The variable sq has file static scope. If this code is stored in a file named file-
static.c, then compiling it and executing it produces the following output:

ahoover@video> gcc -o file-static file-static.c

ahoover@video> file-static

0 -1

1 -1

3 2

6 10

10 25

ahoover@video>

The value of sq is retained throughout all the function calls for this program.
A file static variable has scope only for the functions that appear following its
declaration; however, in practice, file static variables are normally declared at the
top of the file and so are visible to all functions in the file. This can be useful when
there is data that needs to be shared between multiple functions, but which needs
to be protected from functions in other files. For example, in a file dealing with
the reading and writing of data, a program may use file static variables to track a
file pointer or buffer used to access a data file.

The third storage class keyword is extern. An extern variable is a global
variable being shared between multiple files. In order to use the extern keyword,
a variable must first be declared with file scope. For example:
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#include <stdio.h>

int x;

int main(int argc, char *argv[])

{

x=1;

printf("main: %d\n",x);

function();

printf("main: %d\n",x);

}

The variable x has file scope. Assume that this code is stored in a file named
ext1.c. Now consider the following code:

#include <stdio.h>

extern int x;

void function()

{

printf("function: %d\n",x);

x=7;

printf("function: %d\n",x);

}

Assume that this code is stored in a file named ext2.c. In this file, the variable x
is declared using the extern storage class, so that it has global scope. Compiling
and executing this code produces the following output:

ahoover@video> gcc -o ext ext1.c ext2.c

ahoover@video> ext

main: 1

function: 1

function: 7

main: 7

ahoover@video>

Note that the value of x is maintained through all functions in both files. In order
to create a variable with global scope, it must be declared in one file, and then
referenced as an extern in all other files that want to access it. An object code
linker normally tries to merge variable declarations that have the same name and
all use file scope into a single variable with global scope, so that programmers
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sometimes omit the extern keyword. However, in order to avoid a linker doing
something unexpected, and to promote code clarity, it is best to explicitly declare
the scope of variables intended to be global.

6.2.4 Comments, Indentation, and Variable Names
The most basic organizational tools for a programmer involve the readability and
visual layout of the code. Comments are annotations made by the programmer,
like small notes used to document ideas throughout a project. Indentation refers
to the amount and regularity of spacing used to start lines of code in nested
blocks. Variable names should be chosen to help describe what the variable is
doing, thus making the code easier to read. All of these practices promote clarity
and organization.

It is important to note that there is no universally accepted “best” way to use
any of these tools. The proper use of these tools is something of an art. It can be
compared to the organization of a kitchen. Different people may prefer placing
cooking equipment in various drawers or cupboards, organizing foodstuffs in
different ways, and so on. Regardless of the organization chosen, however, the
common goal is to arrange materials in a way that facilitates cooking. A cook
arriving in a new kitchen may not immediately recognize or be comfortable with
all the arrangements, but if the kitchen is well organized, the new cook will be
able to work. Keeping code well organized is a comparable undertaking with
similar rewards. Most programmers develop an individual style; consistency is
an important trait regardless of the details. The following are some conventions
commonly adopted.

Comments can be used throughout a program for a variety of reasons. Most
functions should have a few sentences near the beginning that describe the sub-
task solved by the function. It is also common to describe the function inputs and
outputs in comments. Within a function, code blocks may have single sentence or
phrase descriptions, serving as a plain text outline for the code. The program us-
age, history (revisions), to-do list, and authorship are commonly commented at
the top of the main source code file. Variables with overlapping names or complex
uses may have comments defining their purpose or expected ranges of values. In
code that is complex or critical to the problem, comments may be written line by
line. The following demonstrates some of these uses:

/*

** This program prompts the user for a number,

** and then determines if the number is a sum

** of the squares of two unique integers.

*/
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#include <stdio.h>

main()

{

int i,j; /* used to test all pairs of squares */

int number;

printf("Enter a number: ");

scanf("%d",&number);

i=1;

while (i*i <= number) /* i = 1 ... sqrt(number) */

{

j=1;

while (j < i) /* j = 1 ... i-1 */

{

if (i*i + j*j == number)

printf("Found: %d + %d\n",i*i,j*j);

j++;

}

i=i+1;

}

}

The multiple-line comment at the beginning of the file describes the purpose of
the program. The comment for the variables i and j describes their purpose,
since their names are nondescriptive. Some simple comments at the beginning of
each loop help describe the purpose of each clode block.

Indentation refers to the amount of space at the beginning of each line of
code. In general, lines of code within the same block should be indented the
exact same amount, in order to allow a programmer to more easily perceive
the grouped statements. Lines of code defining the boundary of a block can be
indented with the lines of code inside the block. For example:

i=0;

while (i < 3)

{

printf("Hello turtle %d\n",i);

i++;

}

printf("How are you?\n");
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This is the style used by the author throughout this book. Some programmers
prefer to line up block denoters with the enclosing block instead of the enclosed
block. For example:

i=0;

while (i < 3)

{

printf("Hello turtle %d\n",i);

i++;

}

printf("How are you?\n");

Still other programmers prefer to concatenate some block denoters with other
lines of code. For example:

i=0;

while (i < 3) {

printf("Hello turtle %d\n",i);

i++;

}

printf("How are you?\n");

This last style increases the number of lines of code that can be seen simultane-
ously onscreen. All of these styles are acceptable, although some programmers
(like some cooks) can remain ardent about their preferred organizational style.

Variable names should usually describe the purpose of the variable. For ex-
ample:

int ProgramRunning=1; /* 0 => end program, 1 => continue */

Sometimes the variable name describes the process it manages, as in the example
above, and sometimes it describes the quantity stored, such as int age. Simple,
brief variables names are okay to use when the meaning is obvious. For example,
loop indices often use single letters, as most programmers recognize the conven-
tion.

6.2.5 Preprocessing
Preprocessing is not strictly a C language construct; it can be supported by any
language since it happens before compiling. The text substitutions provided
through preprocessing can be used in several ways to support code organization.
First, they can make code more readable. It is much easier to view short strings
that are to be substituted by longer strings when the meaning is still clear in the
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shorter string. For example, it can be convenient to read that some operation is
being performed on a variable instead of verifying all the details each time:

#define KAZAM(x) (((x)*3/4)-2)/5)

Using the string KAZAM(x) throughout a program would be easier to read, under-
stand, and debug as compared to typing out the full operation each time.

Second, a program can be written with scalability in mind by using macros.
It is much easier to change a constant using a text substitution. For example:

#define MAX_LINES 20

In a program that is working with data and expects a maximum amount, coding
that constant using a macro would allow it to be easily changed to a different
value at a later time.

Third, text substitutions can be useful for portability. They help in compiling
the same source code for different processors or operating systems. For example,
an int is usually 4 bytes, but on some systems it may be 2 or 8 bytes. One can use
text substitutions to name a 4-byte entity that is replaced by the appropriate data
type depending on which machine the code is compiled for as follows:

#define four_bytes int /* use on 32-bit machines */

#define four_bytes long int /* use on 16-bit machines */

#define four_bytes short int /* use on 64-bit machines */

main()

{

four_bytes x,y,a;

.

.

.

}

In this example, the variables x, y, and a will be 4 bytes (either an int, a long
int, or a short int), regardless of the system architecture, so long as the appropri-
ate preprocessor directive is executed before compiling. (Only one of the above
directives should be kept as shown; the other two should be commented out or
ommitted using additional preprocessor directives.)

6.2.6 Typedefs
A typedef is a tool in the C language for providing an alias for an existing data
type. It provides a new name for a data type that already has a name:

typedef SomeExistingType MyNewNameForIt;
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For example, suppose a programmer wanted int to have a second name, “frog”:

typedef int frog;

Now code can be written using “frog” as an alias for int:

main()

{

int a;

frog b;

.

.

.

}

Both the variables a and b are ints; “frog” is only an alias for int.

There are two reasons why aliases for existing data types can be useful. First,
they can make code more readable. For example, code involving structures can
be difficult to read because structure definitions require at least two words (e.g.,
“struct x”). A typedef can be used to give this multiword tag a single word alias:

struct TemplateName {

int field1;

float field2;

} ;

typedef struct TemplateName NewStructType;

“NewStructType” is not a variable name, it is now an alias for struct Template-
Name. Variables of type struct TemplateName can now be defined in two ways:

struct TemplateName s1;

NewStructType s2;

Both variables s1 and s2 are of the same data type, struct TemplateName. A
typedef and a structure definition are often clumped together:

typedef struct TemplateName {

int field1;

float field2;

} NewStructType;

This has the same net result as the example above.

A second use for typedefs is portability. Typedefs are often used to achieve
the same portability goals as described for preprocessing in the last section. For
example:

typedef int Int32; /* 4 byte variable */

typedef short int Int16; /* 2 byte variable */
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Now code can be written using the data type names Int32 and Int16. If the code is
moved to another system architecture, only the typedef lines need to be changed.

6.2.7 Discussion
In summary, there are many tools that help a programmer organize code. When
used properly, they can be a great help. When used improperly, or when not well
understood, they can be a great pain. It can be frustrating trying to read code
that is riddled with typedefs when the code is absolutely never going to be ported
to any other system. It can be painful trying to read code that is broken up into
multiple functions when the entire program is less than 20 lines. Files containing
a single function are usually superfluous. Multiple levels of preprocessing text
substitutions can be arduous to work with and are unnecessary when they do
not provide any real flexibility. These tools do not exist to demonstrate the wit
of the programmer; they exist to help organize code. They should be used, but
they should be used with care and respect for the original goals of organizing
code.

A related discussion concerns abstraction. Abstraction refers to the level of
detail required by a programmer to implement an idea in code. The more ab-
stract a language construct, the less a programmer needs to understand how the
machine actually implements the idea. In turn, the more concrete a language
construct, the more a programmer needs to understand how the machine imple-
ments the idea. The C language is not very abstract. Some of the tools developed
to help organize code also attempt to abstract out the details. While this is a laud-
able goal, it should again be used with prudence. Abstraction does not necessarily
make a program better organized. Sometimes it is better to leave the details clearly
visible so that the program can be better managed.

6.3 ● Program Distribution Methods
Once a program has been written, it is convenient to package the code in a man-
ner that facilitates its distribution to other computers and systems. If the target
distribution is systems that are exactly the same as the one on which the program
is written, than the executable can be distributed. If the target computers run dif-
ferent operating systems or have different hardware, then either the source code
must be compiled for all the desired platforms prior to distribution, or the source
code itself needs to be distributed so that it can be compiled on the target sys-
tems. This section discusses some common methods and tools for packaging and
distributing programs.
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6.3.1 Archives
The most basic tool for program distribution is an archive. An archiving tool
groups together a set of files into a single file called an archive file. An archive file
contains the contents of all the individual files plus some metadata. The metadata
usually details the sizes of the files, the last modified dates and times of the files,
each file’s path or subdirectory, and possibly additional information. An archive
file also typically contains some parity or error checking content so that the
validity of the files afer unpackaging can be verified.

Most archive tools also include a lossless compression capability. As a file is
added to the archive, it is compressed, so that the archive file takes up much less
space than the sum of the original files. This is convenient for long-term stor-
age as well as program distribution. Some archive tools rely upon external or
postarchive compression, and therefore the entire archive file is compressed or
decompressed in one step. This generally results in smaller archive files as the
compression can search for redundancy across all individual files within the ar-
chive. However, it also tends to be slower to use because individual modifications
or accesses to the archive must decompress and recompress the entire archive.

Example archive tools commonly found on a Unix system include ar and tar.
The ar program is most commonly used for library files, placing multiple object
code files into a single library file. The tar program is used more generically for
almost any type of file. For example:

ahoover@video> ls

main.c Makefile sqrt.c

ahoover@video> tar cf dist.tar *

ahoover@video> ls

dist.tar main.c Makefile sqrt.c

ahoover@video>

In this example, tar was used to create an archive file named dist.tar containing
all files in the current directory. The contents of the archive file can be listed as
follows:

ahoover@video> tar tf dist.tar

main.c

Makefile

sqrt.c

ahoover@video>
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Other command line options can be used to extract files, add more files to the
archive file, and perform a variety of other operations. Full details can be found
within the man page for tar.

The tar program does not provide compression. Instead, it relies upon the
gzip compression tool2 for postarchiving compression and decompression. For
example:

ahoover@video> ls -l

-rw-r--r-- 1 ahoover fusion 10240 Oct 15 2008 dist.tar

-rw-r--r-- 1 ahoover fusion 221 Oct 15 2008 main.c

-rw-r--r-- 1 ahoover fusion 125 Oct 15 2008 Makefile

-rw-r--r-- 1 ahoover fusion 171 Oct 15 2008 sqrt.c

ahoover@video> gzip dist.tar

ahoover@video> ls -l dist.tar.gz

-rw-r--r-- 1 ahoover fusion 485 Oct 15 2008 dist.tar.gz

ahoover@video>

Note that the archive file was originally larger than even the sum of the contents
of the individual files inside it. This is because of the metadata information
described above.

Other example archive tools include PKZIP, WinZip, and WinRar, which all
include built-in compression. They are proprietary but have achieved a notable
level of popularity. The .zip archive file format, whose specification is public
domain, is also inherently supported by the MS Windows Explorer tool.

6.3.2 Packages
A package management system is a more advanced program distribution tool. A
package file is similar to an archive file, but it contains additional information. It
may describe how to compile or execute files extracted from the package file. It
may describe how to install or organize files on a target system, where the exact
destination of each file depends upon how the target system is configured. For ex-
ample, if a target system contains an older version of a library file, but the older
library file is needed by an already installed program, then the package installer
may rename the extracted newer version of the library file so as to maintain ver-
sions for both programs. Typically, the dependency information for all programs
installed by a package manager is kept in a local file on the target system. This
file also typically contains history metadata about all the programs installed and
their interdependencies.

2. Free versions of tar and gzip are available from the GNU Project at www.gnu.org.

www.gnu.org
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Packages are usually maintained at web sites organized for specific package
management tools. The packages stored there sometimes contain executables
built for specific target systems. Using packages in this manner is not very differ-
ent from using more traditional archive files. The advantage is that installation
of such a package is quick; the disadvantage is that the build contained within
the package must exactly match the specifications of the target system. In con-
trast, many package files contain source code and instructions on how to build
executables from the extracted files. Some package management systems contain
tools that automatically interact with one or more web sites to obtain packages.
This further automates the program distribution process in that the target user
need know only the name of the desired package, and not even necessarily where
to get it. Most package management systems have graphical interface front ends
to command line tools. This allows even relatively inexperienced users to use the
program distribution tools.

Example package management systems include rpm, deb/dpkg, and
portage/emerge. The rpm package format is used by both the Fedora (Red-
Hat) and openSUSE Linux distributions. The deb package file format and dpkg
software tool are used by both the Debian and Ubuntu Linux distributions. The
portage package file format and emerge software tool are used by the Gentoo
Linux distribution. At the time of this writing, all these Linux distributions are
among the most popular; one of the main reasons (if not the main reason) for
their popularity is the ease of software distribution and installation provided by
their package management systems. On an MS Windows system, the proprietary
tools InstallShield and WISE Installer perform similar operations. However,
MS Windows systems have less diversity than Unix systems, in terms of kernels
and system file arrangements, so that software distribution and installation is less
complex to manage.

Questions and Exercises
1. Consider the following code:

#include <stdio.h>

char * Flip_A_Coin(int x)

{

if (x%2 == 0)

return("heads");
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else

return("tails");

}

Assume that this code is stored in a file named coin1.c and compiled as follows:

ahoover@video> gcc -o coin1 coin1.c

What sort of error would you expect to see? At what stage of building the program
does this error occur?

2. Consider the following code:

#define HEADS 0

#include "some_library.h"

char * Flip_A_Coin(int x)

{

if (x%2 == HEADS)

return("heads");

else

return("tails");

}

main()

{

printf("%s\n",Flip_A_Coin(1));

}

Assume that this code is stored in a file named coin2.c and compiled as follows:

ahoover@video> gcc -o coin2 coin2.c

What sort of error might you expect to see? On what situation does this error
depend? At what stage of building the program does this error occur?

3. Consider the following code:

#define HEADS "heads"

#define TAILS "tails"

char * Flip_A_Coin(int x)

{

if (x == heads)

return(HEADS);
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else

return(TAILS);

}

Assume that this code is stored in a file named coin3.c and compiled as follows:

ahoover@video> gcc -c coin3.c

What sort of error would you expect to see? At what stage of building the program
does this error occur?

4. Write out the memory map for the following code, providing all values at the end
of execution. What is the exact output produced by this program?

#include <stdio.h>

int x;

int Magic(int z)

{

z=x*3;

return(z);

}

int main()

{

int y;

x=4;

y=6;

x=Magic(y);

printf("%d %d\n",x,y);

}

5. Consider the following program:

#include <stdio.h>

main()

{

int a,b,c,d;

a=0;

while (1) {

printf("%d\n",a);
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printf("Input? ");

scanf("%d",&c);

if (c == 0) break;

d=0;

for (b=1; b<=c; b++)

if (c%b == 0) d++;

if (d == 2 || c == 1) a=a+c;

}

}

What does this program do? Rewrite the code, organizing it using sound princi-
ples. Include comments and redo variable names and indentation. Use multiple
functions, blocks, and/or preprocessing if you deem it necessary.

6. Write out the memory map for the following code, providing all values at the end
of execution. How many total bytes does this code declare for variables?

#include <stdio.h>

typedef struct amount {

int dollars;

char cents;

} money;

main()

{

money a,*b;

a.dollars=1;

a.cents=99;

b=&a;

b->cents=75;

}

7. Name four methods to organize code.

8. Write out the memory map for the following code, providing all values at the end
of execution. What is the exact output produced by this program?

#include <stdio.h>

#define MAX 5

#define MAGIC 9
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main()

{

int n[MAX];

int i;

for (i=0; i<MAX; i++)

{

n[i]=i*i;

printf("MAGIC = %d ? ",n[i]);

if (n[i] == MAGIC)

printf("yes\n");

else

printf("no\n");

}

}

9. Write out the memory map for the following code, providing all values at the end
of execution. What is the exact output produced by this program?

#include <stdio.h>

main()

{

int i,s;

int a[6];

typedef int * stair;

stair b;

a[0]=83;

a[1]=13;

b=&(a[2]);

s=0;

for (i=2; i<5; i++)

{

*b=a[i-2]%a[i-1];

s+=(*b);

b++;

}

printf("%d\n",s);

}
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10. Consider the lines of code below. Indicate which are invalid, meaning either they
would not compile or they may produce a memory fault.

#define TOTAL 5

#define TURTLE 2;

typedef struct automobile {

char name[TOTAL];

int vehicle_id;

float kpg;

double *manuf_code;

} Entry;

Entry list[3],*passenger;

char who[7],a,*b;

double *d,d2;

Entry.kpg=35.6;

list[1].kpg=39.1;

passenger->kpg=42.2;

who[TOTAL]=TURTLE

list[2].manuf_code=&d2;

list.kpg=28.7;

Entry->manuf_code=11;

list[3].name[0]=who[1];

list[TURTLE].vehicle_id=7;

list[TOTAL].vehicle_id=3;

passenger=&(list[0]); passenger->vehicle_id=3;

11. Write a program that displays a clipped version of the contents of a text file. The
clipped display should show the first N letters of each word, with even spacing
between all words. For example, if the previous sentence were clipped to three
letters, it would look like this:

The cli dis sho sho the fir N let

of eac wor wit eve spa bet all wor

The filename to display should be given by the user as a command line argument.
Punctuation marks should not be treated specially; they should be included in
letter counts. The program should use preprocessing to define the number of
letters to clip, the amount of extra spacing between clipped words, the number of
words to display per line, and the maximum number of words to display before
stopping.
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12. Write a program that maintains a database of telephone book entries. An entry
should be stored and processed using the following structure:

struct entry {

char name[32];

int telephone;

char address[32];

};

The program should use several different functions. One function should allow
the user to add an entry to the database. Another function should allow the user
to search the database for an entry. The search could be initiated from a name
or telephone number; in either case, the search should return all information
for the entry. A third function should allow the user to delete an entry from the
database. Whenever the database is updated, another function should write the
entire database to a file for storage. Whenever the program is started, it should
read this file to initialize the database. The main function should provide an
interactive menu of options to the user. The display of information within an
entry should be handled by yet another function.

Organize the functions into at least two source code files and one header file.
Program correctness is important, but a strong effort should be made to organize
the code using sound principles.

13. For the program described in the preivous problem, create a makefile. The make-
file should allow the user to issue the make command to initiate a rebuild for any
portion of the program modified since the last build. However, it should only re-
build the portions of the program affected by modifications since the last build.

14. Write a program that asks a user for an input string and then prints it out in the
following radial manner. The last letter of the word should be at the center of the
printout. Horizontally, vertically, and along each diagonal, the word should be
printed starting from the outside and ending with the last letter in the middle.
For example, for the word “cat,” the output should look like:

c c c

aaa

catac

aaa

c c c

For the word “frog,” the output should look like:
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f f f

r r r

ooo

frogorf

ooo

r r r

f f f

Program correctness is important, but the following organizational tools should
be applied appropriately. The program should use preprocessing to define a max-
imum word size and to test its correct usage by the user. Comments should
be used, at an appropriate level of detail, to describe the method(s) for storing
and/or displaying the radial printout.

15. Write a program that creates and unpacks a custom archive file. The archive
file should be a simple concatenation of bytes of the individual files that are
added to it. Some information should be stored at the beginning of the archive
file describing the number of files within the archive file, along with the names
and sizes of the individual files within the archive file. The program should use
command line arguments to allow the user either to create an archive file, to
list the contents of the archive file, or to unpack the archive file. Each time the
program is run, only one of these three options should be allowed. For the first
of these options (creating the archive file), the user should be able to specify any
number of filenames on the command line. The program does not need to work
with subdirectories; if any of the filenames given to archive is a directory, then the
program should report an error and quit.

Optional: include a fourth option to add files to an existing archive. In order
to make this work, the information describing the contents of the archive must be
updated, in addition to adding the new file(s). One way to do this is to recreate
the entire archive. Another option is to make the front of the archive file large
enough to hold additional contents information. Yet another option is to space
contents information throughout the archive file, instead of placing it all at the
beginning.

16. What is the difference between an archive file and a package file in terms of
program distribution?
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7
System Calls

A n operating system (O/S) is a program that has two main jobs: it manages
the resources of the computer, including peripherals, files, and memory,

and it coordinates all other programs running on the computer. Figure 7.1 shows
a conceptual diagram. In reality, an O/S is a collection of programs, the heart of
which is the kernel. After bootloading (i.e., loading the O/S from a hard drive or
other secondary memory), the kernel is executed. The kernel eventually runs the
init process, which is what spawns all other processes. The kernel also acts as the
moderator between applications and the resources of the computer.

The kernel provides a set of functions to other programs called system calls.
System calls are used to request access to the resources of the machine, to com-
municate with other currently running programs, and to start new programs. A
collection of system calls is sometimes referred to as an application programming
interface (API). Different operating systems provide different sets of system calls.
Over the years, standards have been developed to regularize at least a subset of
system calls common to all systems, for example, POSIX. It is beyond the scope
of this book to detail the full POSIX standard, or to contrast differences in system
calls from various kernels.1 Instead, this chapter focuses on explaining some of
the primary families of operations provided by system calls. Detailed examples
are provided for some families to familiarize the reader with the use of system
calls. This coverage is intended to complement (or prepare for) what is typically
seen in an operating systems textbook.

1. The interested reader is directed to Advanced Programming in the UNIX Environment , 2nd ed.,

R. Stevens and S. Rago, Addison-Wesley, 2005, ISBN 0201433079. This excellent book provides a

history of many Unix APIs and provides a comparative coverage of many system calls.
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Printer Files

Resources of computer

O/S
(kernel)

Application
(process)

Application
(process)

Application
(process)

Memory

System calls

. . .

Figure 7.1 A conceptual diagram of system calls.

7.1 ● Families of Operations
Modern Unix kernels provide several hundred different system calls. These sys-
tem calls are typically broken up into families of functions, each of which target
a specific purpose or type of operation. This section overviews some of the com-
mon taxonomy of system calls. Later sections will take a detailed look at a few of
these families.

Memory management system calls ask the O/S to manipulate a block of mem-
ory in some manner, typically so that the memory can be used by an appli-
cation program. Example system calls include mmap(), shmget(), mprotect(),
mlock(), and shmctl(). These operations involve manipulating the low-level at-
tributes of memory as managed by the operating system. For example, an O/S
typically maintains levels of memory protection, where the lower levels (such as
that used by the O/S) cannot be accessed by other programs. Some of these sys-
tem calls allow the access permissions of portions of memory to be changed so
that application programs can use it.

Time management system calls ask the O/S to access the system clock, in some
cases taking action based upon its value. Examples include time(), gettimer(),
settimer(), settimeofday(), and alarm(). These system calls either retrieve
values from the system clock, or start or stop timers based upon the system clock.
The alarm() function arranges for a signal (signals are discussed in Section 7.4)
to be sent to a process once the given amount of time has passed.

File system calls ask the O/S to access a file or device. Example system calls
include open(), read(), write(), close(), creat() (not a typo—there is no
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“e” at the end), lseek(), and link(). These bear a resemblance to the C standard
library functions fopen(), fread(), fwrite(), and fclose(), which are covered
in detail in Chapter 5. The relationship between library functions and system calls
is explored in the next section.

Three families of system calls are examined in detail in later sections of this
chapter. Process system calls ask the O/S to run another program, or control how
it runs. Examples include fork(), execl(), execv(), and wait(). These func-
tions are discussed in Section 7.3. Signal system calls provide a rudimentary form
of interprocess communication. Examples include signal(), pause(), kill(),
and sigaction(). They are typically used to send a message to a process, telling
it about an error it has committed and asking it to terminate. These functions are
discussed in Section 7.4. Socket system calls allow a program on one computer to
communicate with a program on a second computer through a network. Exam-
ples include socket(), bind(), connect(), listen(), accept(), send(), and
recv(). These functions are discussed in Section 7.5.

Other system calls include those used for message passing, shared memory,
semaphores, and thread management. Some of these families of system calls have
entire books devoted to their theory and usage. It is not the goal of this chapter
to cover all system calls and their potential applications. The goal is to make the
reader aware of system calls and show, through many examples, how and when
they can be used to help solve problems.

7.2 ● Libraries and System Calls
Many standard library functions are built on top of system calls, meaning that
the library functions use system calls as part of their code. For example, the
malloc() family of functions is built on top of the mmap() and brk() functions,
meaning that the latter are called upon to get the job done. The malloc() function
is in the C standard library, while mmap() is a system call. As another example,
the sleep() library function is implemented by calling a few time management
system calls, such as alarm(). The sleep() function provides a single function to
pause a program for a specified amount of time. The fopen(), fread(), fwrite(),
and fclose() library functions build on top of the open(), read(), write(), and
close() system calls. This is a common hierarchical relationship between library
functions and system calls.

The library functions tend to hide the details of how the resources of the sys-
tem are managed, and they provide a simpler interface to application programs.
This is usually advantageous for application programming. As an example, oper-
ating systems use a variety of techniques to manage the available physical memory
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and present it to application programs as one contiguous virtual memory. The
memory management system calls allow a programmer to get into these details
and manipulate memory at the lowest level. Most of the time, applications are
not interested in these operations and simply want to request a chunk of memory.
The malloc() family of functions in the C standard library provides this capability
by building on top of the memory management system calls. However, for some
types of programming, getting into the lowest level of detail is very important.
The programming for a device driver, for instance, usually involves getting into
the details of the machine through system calls.

Library functions sometimes provide additional capabilities not available
directly through system calls. For example, the C standard library functions
fopen(), fread(), fwrite(), and fclose() provide buffering, whereas the system
calls open(), read(), write(), and close() generally do not. When an fread() call
is made, more than the requested amount is read() from the file. The extra bytes
are held in a buffer managed by the library code. When the program next calls
fread(), the system may be able to satisfy the request using bytes already in the
buffer, eliminating the need for another read() system call. Standard library func-
tions often optimize operations to minimize the number of system calls, thus
speeding up program execution.

Library functions tend to be more portable than system calls. They both have
standards: the ANSI C standard defines many library functions, while the POSIX
standard defines many system calls. However, since system calls provide direct
access to the kernel, different operating systems (including different variations
of Unix) will have at least slightly different system calls. Therefore, applications
that are intended to be ported to many different systems are usually coded using
library functions instead of system calls whenever possible.

The man pages for system calls, library calls, and system programs are all
stored in different directories, often called sections or chapters. The man pages
for system programs are in section 1, those for system calls in section 2, and those
for library functions in section 3. Using man, the section can be specified by a
command line argument. For example:

man 2 stat

[... provides man page for system call stat() ...]

man 3 printf

[... provides man page for library function printf() ...]

man 1 ls

[... provides man page for system program ls ...]
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By default, the man program will start in section 1 and look upward. If the section
number is omitted, the result is the lowest section number that has a man page
with the given name. This can be confusing because, to take one example, there
is a stat program in section 1 as well as the stat() system call in section 2.

System calls can fail for a variety of reasons. For example, a requested resource
may be busy or temporarily unavailable, or the application may not have permis-
sions to access the requested resource. When a system call fails, it typically returns
a value of −1. If a programmer wants to find out why the system call failed, then
the perror() function can be called to display a string associated with the error
number. This is often helpful during program development and debugging.

7.3 ● Process System Calls
Process system calls deal with the starting up of new programs. Example process
system calls include fork(), execl(), execv(), and wait(). The paradigm be-
hind these functions can seem a little strange. In order to start a new program, a
currently running program makes a clone of itself; the clone then replaces its code
with the code of the new program. All programs are therefore clone-descendants
of the first program run on the system after the kernel boots. In order to under-
stand this paradigm, this section will first provide some needed background on
processes, and then look at the system calls in detail.

7.3.1 Processes
A process is a running program, that is, a program currently in execution. On a
modern computing system, dozens of processes are often running concurrently.2

Most operating systems have system programs that allow the user to look at the
current process list. On a Unix system, one can run the ps program:

ahoover@video> ps

PID TTY TIME CMD

15461 pts/3 00:00:00 tcsh

15794 pts/3 00:00:00 ps

ahoover@video>

Each line in the output lists a process, along with some information about the
process. The PID is the process identifier, a unique number assigned to each

2. Technically, processes swap in and out of the processor or processor cores at a rapid rate, providing

the illusion that they are running concurrently.
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process. The TTY is the terminal in which the program was run. The TIME is
the cumulative execution time, or how long the program has been running. The
CMD is the command, including command line options, that was used to start
the program.

The previous example showed only two processes because by default ps will
show only processes started in the current terminal. It can also be run with
appropriate flags to show all processes currently running on the system:

ahoover@video> ps -ef

UID PID PPID TTY TIME CMD

root 1 0 ? 00:00:09 init [5]

root 2 1 ? 00:00:00 [keventd]

root 3 1 ? 00:00:09 [ksoftirqd_CPU0]

root 4 1 ? 00:00:00 [kswapd]

root 5 1 ? 00:00:00 [bdflush]

[...]

liy 14276 14273 pts/1 00:00:00 -tcsh

liy 14297 14276 pts/1 00:00:00 pine

[...]

root 15460 875 ? 00:00:00 /usr/sbin/sshd

ahoover 15461 15460 pts/3 00:00:00 -tcsh

ahoover 16824 15461 pts/3 00:00:00 ps -ef

ahoover@video>

The full listing (-e flag) is abbreviated by [...] for the sake of space. The extra
columns (-f flag) provide additional information about each process. The UID is
the user identifier of the user who started the process. In this listing, one can
see that two users (ahoover and liy) are currently running programs on this
system, as well as processes started by the root user when the machine booted.
The PPID is the parent PID, which shows which process was cloned to start each
new process. The init process is the first program run by the kernel after it has
finished initializing, so it has a PPID of 0 and a PID of 1. It then starts a lot of
other root processes, which in turn can start others, and so on. At the bottom of
the listing, one can see that the shell program tcsh is the parent process of the
ps program executed to generate that list. The system program top shows some
of the same information, but sorts it by resources used and continuously updates
it. On an MS Windows system, a similar process table can be seen by pressing
CTRL-ALT-DEL and then selecting the task manager.

Within a shell, there are several commands that can be used to alter how a
program is running. Table 7.1 lists the commands that affect how the process



7.3 ● Process System Calls 219

Table 7.1 Shell commands used to alter how a program is run.

Command/key stroke Effect

CTRL-C terminate process currently connected to stdin

& run program in background; stdin stream is disconnected

CTRL-Z suspend process currently connected to stdin

bg restart suspended process; stdin still disconnected

fg reconnect suspended/background process to stdin

kill # terminate the given process ID

connects its stdin stream. To demonstrate these commands, consider the follow-
ing code:

main()

{

while (1);

}

This program executes an endless loop. Assuming the code is stored in a file
named loop.c, then it can be compiled and executed as follows:

ahoover@video> gcc -o loop loop.c

ahoover@video> loop

[]

The square brackets represent the cursor, and the fact that the program is running
indefinitely. It can now be suspended by pressing CTRL-Z:

ahoover@video> loop

[]

[CTRL-Z]

Suspended

ahoover@video>

The program is still in the process table, but it has been paused:

ahoover@video> ps

PID TTY TIME CMD

15461 pts/3 00:00:00 tcsh

16904 pts/3 00:00:01 loop

16905 pts/3 00:00:00 ps

ahoover@video>
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Using the bg command, the program can be moved to the background with
execution resumed:

ahoover@video> bg

[1] loop &

ahoover@video> ps

PID TTY TIME CMD

15461 pts/3 00:00:00 tcsh

16904 pts/3 00:00:06 loop

16906 pts/3 00:00:00 ps

ahoover@video>

The program can be moved back to the foreground and have its stdin stream
reconnected to the keyboard, by issuing the fg command:

ahoover@video> fg

loop

[]

[CTRL-C]

ahoover@video>

The last command shown, CTRL-C, terminates a program currently running
in the foreground. For a program running in the background, it must either
be moved to the foreground, or be terminated using the kill command. For
example:

ahoover@video> loop

[]

CTRL-Z

Suspended

ahoover@video> bg

[1] loop &

ahoover@video> ps

PID TTY TIME CMD

15461 pts/3 00:00:00 tcsh

16974 pts/3 00:00:06 loop

16975 pts/3 00:00:00 ps

ahoover@video> kill 16974

[1] + Terminated loop

ahoover@video> ps

PID TTY TIME CMD

15461 pts/3 00:00:00 tcsh

16976 pts/3 00:00:00 ps

ahoover@video>
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In this example, the PID of the loop program was found by running the ps pro-
gram. The PID was then used in a kill command to terminate the loop program.
Finally, a program can be placed into background execution immediately upon
running it from a shell using the & command:

ahoover@video> loop &

[1] 16909

ahoover@video>

The loop program is started executing in the background, and its PID (16909) is
displayed by the shell.

Why would a program need to be run in the background? Some programs re-
quire no keyboard input. For example, many system programs monitor resources
or record logs without ever needing input from a user. This can be seen in the
longer ps listing shown earlier in the section, where several root processes have no
associated terminal (they have a “?” in the TTY field). Some user application pro-
grams may also be pushed to the background. For example, suppose a program
was started that was going to sort a database of millions of records, perhaps run-
ning for hours. There is no need for this program to use up the terminal keyboard
and screen streams while it is running. Instead, it can be run in the background.
The shell will report whenever a background process terminates.

7.3.2 fork()
The fork() system call creates a clone of the currently running program. The
original program continues execution with the next line of code after the fork()
function call. The clone also starts execution at the next line of code. For example,
consider the following code:

#include <stdio.h>

#include <unistd.h>

main()

{

int i;

printf("Ready to fork...\n");

i=fork();

printf("Fork returned %d\n",i);

while (1);

}
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Parent process

...
printf("Ready to fork...\n");
i=fork();
printf("Fork returned %d\n",i);
...

Child process

...
printf("Ready to fork...\n");
i=fork();
printf("Fork returned %d\n",i);
...

...
printf("Ready to fork...\n");
i=fork(); i=18077
printf("Fork returned %d\n",i);
...

   i=0
printf("Fork returned %d\n",i);
...

Figure 7.2 A timeline of events during a fork system call.

This program calls the fork() function and then goes into an infinite loop. As-
suming the code is stored in a file named fork1.c, then it can be compiled and
executed as follows:

ahoover@video> gcc -o fork1 fork1.c

ahoover@video> fork

Ready to fork...

Fork returned 18077

Fork returned 0

[]

Figure 7.2 displays a timeline of events. The original program (the parent process)
displays the output “Ready to fork . . . ” and then calls the fork() function.
At that point, the program is cloned (the child process starts) and there are
two copies of it running. Each executes the line to display the code “Fork
returned . . . ”. However, notice that the return values are different. The par-
ent process (the original) gets a different return value from fork() than the child
process (the clone) does. In the parent process, fork() returns the PID of the new
child process, while in the child process, fork() returns zero. Continuing the ex-
ample, the foreground process can be suspended so that the process table can be
seen:



7.3 ● Process System Calls 223

[]

[CTRL-Z]

Suspended

ahoover@video> ps

PID TTY TIME CMD

15461 pts/3 00:00:00 tcsh

18076 pts/3 00:00:01 fork1

18077 pts/3 00:00:01 fork1

18078 pts/3 00:00:00 ps

ahoover@video> kill 18076

[1] + Terminated fork1

ahoover@video> ps

PID TTY TIME CMD

15461 pts/3 00:00:00 tcsh

18079 pts/3 00:00:00 ps

ahoover@video>

Note that there were two copies of fork1 running. The kill command was used
on the parent process, causing it to terminate, along with the child process.
The termination of both processes, however, is a system-dependent behavior; on
some systems, it may be necessary to kill child processes independently.

Cloning a program and running it identically is not very useful. The return
value from fork() allows a program to affect which code its clone will execute. For
example, consider the following code:

#include <stdio.h>

#include <unistd.h>

main()

{

int i,j;

j=0;

printf("Ready to fork...\n");

i=fork();

if (i == 0)

{

printf("The child executes this code.\n");

for (i=0; i<5; i++)

j=j+i;

printf("Child j=%d\n",j);

}

else
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{

printf("The parent executes this code.\n");

for (i=0; i<3; i++)

j=j+i;

printf("Parent j=%d\n",j);

}

}

This program uses the return value from fork() to decide what to execute next.
The parent and child processes will each go into different code blocks. If this code
is stored in a file named fork2.c, then compiling it and executing it produces
output like the following:

ahoover@video> fork2

Ready to fork...

The parent executes this code.

The child executes this code.

Child j=10

Parent j=3

ahoover@video>

The order of the lines of output will vary from run to run. This is because after
the fork(), both processes are running concurrently and the order of execution is
not predictable. All we know for certain is the relative order of the “ . . . executes
this code” and “j=” lines (the former precedes the latter for each code block).
However, the important thing to note is that each process has its own variables,
and they are executing different code.

The fork() function can be called iteratively, meaning that one process can
start up multiple new processes, which can in turn start multiple new processes,
and so on. For example, consider the following code:

#include <stdio.h>

#include <unistd.h>

main()

{

int i;

i=getpid();

printf("Parent=%d\n",i);

fork();

fork();

i=getpid();

printf("Who am I? %d\n",i);

}
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The getpid() function is a system call that returns the PID of the current process.
This program calls fork(), creating a clone. Then each of those programs calls
fork(), creating another clone each. Assuming this code is stored in a file named
fork3.c, then compiling and executing it produces output like the following:

ahoover@video> gcc -o fork3 fork3.c

ahoover@video> fork3

Parent=18210

Who am I? 18210

Who am I? 18211

Who am I? 18212

Who am I? 18213

ahoover@video>

Again, the order of the lines of output will vary from run to run because all the
processes are executing concurrently. Caution should be exercised when using
fork() in a loop or nested fashion. If coded in error, it may result in a “fork-bomb”
where processes are continually spawned until the process table is filled, crashing
the system or bringing it to an unusable state.

7.3.3 exec() Family
The exec() family of system calls replaces the currently executing code of a
process with another piece of code. The process retains its PID but otherwise
becomes a new program. For example, consider the following code:

#include <stdio.h>

#include <unistd.h>

main()

{

char program[80],*args[3];

int i;

printf("Ready to exec()...\n");

strcpy(program,"date");

args[0]="date";

args[1]="-u";

args[2]=NULL;

i=execvp(program,args);

printf("i=%d ... did it work?\n",i);

}
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This program calls the execvp() function to replace its code with the date pro-
gram. If the code is stored in a file named exec1.c, then compiling it and execut-
ing it produces the following output:

ahoover@video> gcc -o exec1 exec1.c

ahoover@video> exec1

Ready to exec()...

Tue Jul 15 20:17:53 UTC 2008

ahoover@video>

The program outputs the line “Ready to exec() . . . ” and after calling the ex-
ecvp() function, replaces its code with the date program. Note that the line “ . . .
did it work” is not displayed, because at that point the code has been replaced.
Instead, we see the output of executing “date -u.”

If the execvp() function is unable to find or execute the replacement code,
then the function fails and the original code continues execution. This can be
seen by changing a line of code in the above example, as follows:

strcpy(program,"find_a_date"); /* changed program */

Recompiling and executing this program produces the following output:

ahoover@video> gcc -o exec1 exec1.c

ahoover@video> exec1

Ready to exec()...

i=-1 ... did it work?

ahoover@video>

Because the program “find_a_date” could not be found, the execvp() function
failed and the original code was continued.

There are several variations in the exec() family of functions, including ex-
ecl(), execlp(), execle(), execv(), and execvp(). They all achieve the same
effect but differ in how the replacement code and arguments are named or
called.

7.3.4 wait()
The wait() system call suspends a process, waiting for a child process to finish.
This allows some control of the synchronicity actions of parent and child pro-
cesses. For example, consider the following code:

#include <stdio.h>

#include <unistd.h>
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main()

{

int i,j;

j=0;

printf("Ready to fork...\n");

i=fork();

if (i == 0)

{

printf("The child executes this code.\n");

for (i=0; i<5; i++)

j=j+i;

printf("Child j=%d\n",j);

}

else

{

j=wait();

printf("The parent executes this code.\n");

printf("Parent j=%d\n",j);

}

}

This code is very similar to an example from Section 7.3.2. However, the wait()
function is executed in the block reached by the parent process. This causes the
parent process to pause until the child process has finished, at which time the
parent process resumes execution. If this code is stored in a file named wait1.c,
then compiling and executing it produces the following output:

ahoover@video> gcc -o wait1 wait1.c

ahoover@video> wait1

Ready to fork...

The child executes this code.

Child j=10

The parent executes this code.

Parent j=24148

ahoover@video>

Unlike the similar example from Section 7.3.2, executing this code will always
produce its output in this order. Note that the return value of the wait() function
is the PID of the child process.

The wait() function pauses until any child process has completed. Finer con-
trol over synchronization can be obtained using the waitpid() function, which
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can wait on a process with a specific PID, or can wait until a process terminates
in a specific manner or with a specific condition. Even finer synchronization and
process control can be obtained by using mutexes and other concepts provided
by a threads library, such as pthreads. However, these topics are beyond the scope
of this text. The interested reader is encouraged to look at the book UNIX Systems
Programming: Communication, Concurrency and Threads, 2nd ed., K. Robbins
and S. Robbins, Prentice Hall, 2003, ISBN 0130424110, for coverage of pthreads
and related system calls.

The system() function is a C standard library function that puts the fork(),
exec(), and wait() functions together into a single convenient call. For example,
consider the following code:

#include <stdio.h>

#include <stdlib.h>

main()

{

char text[80];

printf("Ready to system()...\n");

sprintf(text,"date -u");

system(text);

printf("Did it work?\n");

sleep(4);

printf("Indeed it did.\n");

}

This program prints out a “ready” message, and then uses system() to execute the
date program. The sleep() function is then called to emphasize the continuing
execution of the original program. The sleep() function pauses the program for
the given number of seconds (in this case 4). Assuming this code is stored in a
file named system1.c, then compiling it and executing it produces the following
output:

ahoover@video> gcc -o system1 system1.c

ahoover@video> system1

Ready to system()...

Tue Jul 15 20:23:57 UTC 2008

Did it work?

Indeed it did.

ahoover@video>
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There will be a noticeable pause between the last two lines of output, caused by
the sleep() function call.

7.4 ● Signal System Calls
As described at the beginning of this chapter, an operating system (O/S) has two
main jobs: it manages the resources of the computer (peripherals, files, memory,
etc.) and it manages all other programs running on the computer. One of the
most important aspects of managing programs is supporting communication
between them. Communication between running programs is called interprocess
communication (IPC). Since the O/S is itself a program, there are a set of system
calls designed primarily to facilitate communication between the O/S and an
application. These communications are called signals. Most commonly, they are
used by an O/S to tell a program that it needs to terminate.

IPC using signals is limited to an alphabet of signal types. Modern operating
systems typically provide 30–40 different signal types.3 Table 7.2 lists the names
and IDs from the POSIX.1 standard for the most common signals. Each signal
communication involves sending one of these signals, referenced by signal name
or ID, to a process.

A process decides what to do with a signal by declaring or installing a signal
handler. A signal handler is a function that is executed when a signal is received.
Different signal handlers can be executed for different signal IDs. A signal handler
is executed asynchronously, meaning that it interrupts the process at its current
execution point and execution is jumped to the signal handler function. Each
process is given a default signal handler for each signal, usually containing code
that terminates the process. The following subsections explain how to set up
custom signal handlers and how to send signals between processes.

7.4.1 signal()
The signal() function asks the O/S to install a signal handler function for a
given signal. Installation means that the O/S successfully associates that function
with the given signal and readies it for execution should that process receive the
given signal. For example, consider the following code:

3. On a Unix system, the command man 7 signal will show a man page listing all signals for

the system. They can also be listed by executing the command kill -l, or they can be found in

/usr/include/signal.h or a derivative system header file.
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#include <stdio.h>

#include <signal.h>

main()

{

void f(int); /* prototype for signal handler function */

int i;

signal(SIGFPE,f); /* install the handler */

for (i=-3; i<=3; i++)

printf("%d\n",12/i);

}

void f(int signum)

{

printf("You can’t divide by zero!\n");

exit(SIGFPE);

}

This code installs a signal handler for the SIGFPE signal. Whenever the program
causes a floating point exception (a type of arithmetic error), then the function

Table 7.2 Common signal names and IDs from the POSIX.1 standard.

Name ID Usually used for . . .

SIGHUP 1 hangup or death of controlling process

SIGINT 2 interrupt from keyboard

SIGQUIT 3 quit from keyboard

SIGILL 4 illegal instruction

SIGABRT 6 abort signal from abort() function

SIGFPE 8 floating point exception

SIGKILL 9 kill signal (cannot be ignored/trapped)

SIGUSR1 10 user-defined signal 1

SIGSEGV 11 invalid memory reference

SIGUSR2 12 user-defined signal 2

SIGPIPE 13 broken pipe: write to pipe with no readers

SIGALRM 14 timer signal from alarm() function

SIGTERM 15 termination signal
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f()will get executed. If this code is stored in a file named sig1.c, then compiling
it and executing it produces the following output:

ahoover@video> gcc -o sig1 sig1.c

ahoover@video> sig1

-4

-6

-12

You can’t divide by zero!

ahoover@video>

When the value of the variable i reaches zero, the program attempts to divide by
zero, and a SIGFPE signal is generated. The program jumps to the f() signal
handling function, and its code is executed. By tradition the exit() function
should return the value of the signal indicating why the program terminated.

An application can also request that a signal be ignored. For example, con-
sider the following code:

#include <stdio.h>

#include <signal.h>

main()

{

signal(SIGINT,SIG_IGN); /* tell the O/S to ignore the signal */

printf("I’m running ...\n");

while (1)

{

printf("Still going ...\n");

sleep(1);

}

}

The second argument for signal() in this example is given the value SIG_IGN,
which asks the O/S to ignore that signal. The SIGINT signal is normally generated
when the user presses CTRL-C to terminate a program. If this code is stored in
a file named sig2.c, then compiling it and executing it produces the following
output:

ahoover@video> gcc -o sig2 sig2.c

ahoover@video> sig2

I’m running ...

Still going ...

[... CTRL-C ... nothing happens ...]
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Still going ...

Still going ...

[... CTRL-\ ...]

Quit

ahoover@video>

This program will run indefinitely unless terminated by the user. However, when
the user presses CTRL-C, nothing happens. The user can press the CTRL-\ key
sequence to force the program to terminate. This generates the SIGQUIT signal,
which has much the same effect as the SIGINT signal.

Finally, a program that has previously defined an alternate signal handling
function can use signal() to return the signal handler to its default. For example,
consider the following code:

#include <stdio.h>

#include <signal.h>

main()

{

int i;

signal(SIGINT,SIG_IGN); /* ignore the signal */

printf("I’m running ...\n");

for (i=1; i<10; i++)

{

printf("Still going ...\n");

sleep(1);

if (i == 3)

signal(SIGINT,SIG_DFL); /* re-install default handler */

}

}

If this code is stored in a file named sig3.c, then compiling it and executing it
while repeatedly pressing CTRL-C produces the following output:

ahoover@video> gcc -o sig3 sig3.c

ahoover@video> sig3

I’m running ...

Still going ...

Still going ...

Still going ...

Still going ...

ahoover@video>
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The program displays the output from within the loop three times before the
default signal handler is reinstalled, and then normally a fourth time before the
user is quick enough to press CTRL-C and cause the program to terminate.

7.4.2 kill()
Signals can be generated by users, the operating system, or other processes. A
user can generate a signal through a keyboard sequence, for example, by press-
ing CTRL-C. This signal is usually used by a user to ask the operating system to
terminate a process. An O/S typically generates a signal when a program does
something wrong, such as dividing by zero or attempting to access an invalid
or restricted memory location. Usually these signals also cause the process to
terminate. Another process can generate a signal by calling the kill() system
function call. Such a signal is usually sent from a parent to a child process, telling
the child to terminate. However, these signals can be sent in either direction and
can be used to provide a limited form of interprocess communication (IPC). For
example, consider the following code:

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

int running;

main()

{

void f(int);

int i,j;

char text[80];

i=fork(); /* parent & child process running now */

if (i == 0)

{ /* child process */

signal(SIGUSR1,f); /* install the handler */

printf("Child waiting...\n");

running=1;

while (running == 1)

sleep(1);

}

else
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{

while (1)

{

sleep(1);

printf("Command? ");

scanf("%s",text);

if (strcmp(text,"frog") == 0)

kill(i,SIGUSR1);

if (strcmp(text,"quit") == 0)

break;

}

}

}

void f(int signum)

{

printf("Child received a frog!\n");

running=0;

}

This program first executes a fork(), creating a child process. The child process
installs a signal handler for the SIGUSR1 signal that displays a simple line of text.
The child process then goes into an infinite loop. The parent process enters its
own loop, asking the user for an input string. If the user enters “frog”, then the
parent process uses the kill() function to send the SIGUSR1 signal to the child
process. If this code is stored in a file named kill1.c, then compiling it and
executing it produces the following output:

ahoover@video> gcc -o kill1 kill1.c

ahoover@video> kill1

Child waiting...

Command? turtle

Command? frog

Child received a frog!

Command? quit

ahoover@video>

This program also uses a global variable to communicate between the f() signal
handler function and the main() function.

The kill shell command, introduced in Section 7.3, calls the kill() system
call. It allows a user to send a signal to a process from the shell. It can be used to
send a specific signal to a given process through a command line argument. For
example, consider the following code:
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#include <stdio.h>

#include <signal.h>

main()

{

void f(int),g(int);

signal(SIGUSR1,f); /* install the handler */

signal(SIGUSR2,g); /* install the handler */

while (1)

sleep(1);

}

void f(int signum)

{

printf("Received a frog!\n");

}

void g(int signum)

{

printf("Received a giraffe!\n");

exit(SIGUSR2);

}

This program installs custom signal handlers for the SIGUSR1 and SIGUSR2
signals, and then goes into an infinite loop. If this code is stored in a file named
kill2.c, then compiling and executing it produces the following output:

ahoover@video> gcc -o kill2 kill2.c

ahoover@video> kill2 &

[1] 20166

ahoover@video> kill -USR1 20166

ahoover@video> Received a frog!

ahoover@video> kill -USR2 20166

ahoover@video> Received a giraffe!

[1] Exit 12 kill2

ahoover@video>

The program is run in the background using the & command, at which time the
shell prints out the PID, 20166. The kill command is then used to send a SIGUSR1
signal to process 20166. The kill command is also used to send a SIGUSR2 to the
process, which causes the process to print a line of output and exit().
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7.5 ● Socket System Calls
Socket system calls are used for interprocess communication over a network.
They allow a process on one computer to communicate with a process on another
computer. In order to communicate, each process makes some socket system calls
to set itself up for sending or receiving data. Additional system calls are then
made to actually send or receive the data. Finally, each process makes a system call
to terminate the communication. These three steps (connect, send/receive data,
terminate) bear a resemblance to basic file I/O (open, read/write data, close). The
main difference is that a file and a program accessing that file are on the same
system, and so the options in the communication are more limited. The socket
system calls act similarly to those used for file I/O, but they provide a greater set
of options to facilitate communication between processes on different machines.

In order to explain socket system calls, this section will first cover some ba-
sic networking concepts and system commands. The client-server model is then
explained, and the most common socket system calls are examined. At the end
of the section, two process-to-process communication problems are examined to
show how the socket system calls can solve these problems. Note that this sec-
tion does not provide a detailed explanation of every possible scenario or use of
the socket system calls, as that is beyond the scope of this text. The interested
reader is referred to Unix Network Programming, Volume 1: The Sockets Network-
ing API , 3rd ed., R. Stevens, B. Fenner, and A. Rudoff, Addison-Wesley, 2003,
ISBN 0131411551, for a book that covers the entire sockets API and networking
background in general. The goal of this section is to introduce the reader to the
concepts involved in network process communication and socket system calls.

7.5.1 Network Concepts and System Commands
The network interface of a computer is identified by its Internet Protocol (IP)
address. An IP address is a numeric identifier unique to a single machine on the
network. At the time of this writing, the Internet is beginning a transition from
32-bit identifiers (IPv4) to 128-bit identifiers (IPv6) to allow for the large growth
in the number of computers connected to the Internet. However, most of the
Internet still uses IPv4 and all the concepts are similar regardless, so the examples
used in this section will be demonstrated using IPv4 addressing. The 32 bits of
an IPv4 address are commonly written as a set of four 8-bit numbers separated
by periods; for example, 192.168.0.100. Historically, the leading portion of an
IPv4 address (usually the first two or three 8-bit numbers) has been used to
designate a network of computers collocated or coadministered, while the last
8-bit number designates a specific machine on the local network, also called a
subnetwork or subnet. Using the Domain Name System (DNS), an IP address is
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given a corresponding human readable name. For example, 130.127.69.75 has the
domain name of www.clemson.edu.

A port is an identifier on a computer through which network process com-
munication takes place. A computer may have multiple processes involved in
separate network communications at the same time; each is assigned a different
port number. A port is identified by a 16-bit, nonnegative integer. The port val-
ues in the range 0–1023 are generally reserved for system processes. Most of these
are standardized to traditional services, such as telnet (port 23), secure shell (port
22), web server (port 80), and the like. On a Unix system, the file /etc/services
contains a full list of standardized ports. The port values in the range 1024–49151
are generally assigned to applications. The port values in the range 49152–65535
are unreserved and are generally used for transient connections. The ports used
on each of the two computers having a network communication do not need
to match. But when establishing a connection, the calling computer must know
both the IP address of the computer it wishes to call and the port number of the
process to which it wishes to communicate.

There are a number of system programs that manage and report IP and
port number information. On a Unix system, the ifconfig program reports the
machine’s IP address. For example:

ahoover@video> ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:D0:09:F7:C1:07

inet addr:130.127.24.92 Bcast:130.127.24.255 [...]

UP BROADCAST RUNNING MULTICAST MTU:1500 [...]

RX packets:31351262 errors:1 dropped:0 [...]

TX packets:34052244 errors:0 dropped:0 [...]

collisions:0 txqueuelen:1000

RX bytes:3858447315 (3679.7 Mb) TX bytes: [...]

Interrupt:5 Base address:0xf00

ahoover@video>

The IP address of the system, 130.127.24.92, can be seen in the second line of
output (some of the output is clipped to fit the page). On an MS Windows system,
the program ipconfig produces similar output. The nslookup program can be
used to look up the DNS name of an IP address, or vice versa. For example:

ahoover@video> nslookup -silent 130.127.24.92

Server: 130.127.24.10

Address: 130.127.24.10#53

92.24.127.130.in-addr.arpa name = video.parl.clemson.edu.

ahoover@video>

www.clemson.edu
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The name of the system, video.parl.clemson.edu, can be seen in the output. The
netstat program can be used to display all the ports on a system currently being
used for network process communication. For example:

ahoover@video> netstat --protocol=inet

Active Internet connections (w/o servers)

Proto Local Address Foreign Address State

tcp video:736 shredder:914 TIME_WAIT

tcp video:42961 video:60000 ESTABLISHED

tcp video:ssh ahoover-pc.ces.cle:3260 ESTABLISHED

tcp video:ssh cerberus.parl.cle:39644 ESTABLISHED

tcp video:ssh cerberus.parl.cle:47362 ESTABLISHED

tcp video:ssh cerberus.parl.cle:58697 ESTABLISHED

tcp video:ssh cerberus.parl.cle:58699 ESTABLISHED

tcp video:739 shredder:sunrpc TIME_WAIT

tcp video:737 shredder:sunrpc TIME_WAIT

tcp video:741 shredder:sunrpc TIME_WAIT

tcp video:60000 video:42961 ESTABLISHED

tcp video:741 shredder:sunrpc TIME_WAIT

tcp video:60000 video:42961 ESTABLISHED

ahoover@video>

Each row of the output represents a different communication. The local address
is the local system’s name and port number. The foreign address is the remote
system’s name and port number. The state is used by the system to manage the
opening and closing of a network communication, as well as the active commu-
nication itself.

The iptables program manages a firewall for the system. A firewall is a com-
mon security tool that can be used to block specific ports from participating in
network communications. For example, a firewall could be configured to prevent
any network packets addressed to port 23 on a machine from being delivered.
Even if the machine is running a telnet server that is listening on port 23, it will
not be able to connect to clients because of the firewall blocking that port. The
iproute2 package of programs4 is a modern rewrite of network management
utilities that performs similar operations to all those just described.

4. The iproute2 package is freely available from the Linux Foundation at www.linuxfoundation.org/

en/Net:Iproute2.

www.linuxfoundation.org/en/Net:Iproute2
www.linuxfoundation.org/en/Net:Iproute2
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Figure 7.3 A server-client interaction.

7.5.2 Client-Server Model
Most network process communications follow a client-server model. In this
model, a process on one computer acts as a server, and a process on the second
computer acts as a client. The server opens up a port for listening and waits for a
client to attempt to establish a connection. The client calls the server by connect-
ing to the port on which the server is listening. When establishing a connection,
a process must identify the IP and port to which it wishes to communicate. An
analogy can be drawn to making a phone call to a house where multiple people
live. The IP is like the phone number that identifies the house, while the port
is like the name of the person to which the caller wishes to speak. Figure 7.3
shows a diagram of the idea. In this example, a server process is listening on its
local port 42. The client process uses its local port 93 to attempt a connection. In
the connection call, it specifies that it wishes to communicate with a process at
192.168.0.1:42, indicating both the server IP and port on which the server process
is listening.

The following subsections explain the steps in creating, using, and closing a
network communication from the perspectives of both a server and a client.

7.5.2.1 socket()

The first step in establishing a network communication is to create a socket. A
socket provides an integer identifier through which a network communication is
going to take place. The newly created socket is analogous to a telephone that has
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not yet been used to place a call; the socket identifier has not yet been used to
connect to anything. The following code demonstrates this first step:

#include <sys/types.h> /* system type definitions */

#include <sys/socket.h> /* network system functions */

#include <netinet/in.h> /* protocol & struct definitions */

int sock;

sock=socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

if (sock < 0)

printf("socket() failed\n");

The socket() system call has three arguments: the domain, the type of commu-
nication, and the protocol. Together these parameters describe how the socket
will be used for communication. It is beyond the scope of this text to explain all
possible values for these arguments; that would involve a detailed study of net-
work protocols and layers. However, the values listed in this example provide the
most common, stable connection for an IPv4 network communication.

7.5.2.2 bind()

The second step in establishing a network communication depends upon whether
the process will act as a server or a client. A server will typically bind the socket,
defining the IP and port on which it will listen for connections. For example:

int i,sock;

struct sockaddr_in my_addr;

unsigned short listen_port=60000;

/* ... socket has been created ... */

/* make local address structure */

memset(&my_addr, 0, sizeof (my_addr)); /* clr structure */

my_addr.sin_family = AF_INET; /* address family */

my_addr.sin_addr.s_addr = htonl(INADDR_ANY); /* my IP */

my_addr.sin_port = htons(listen_port);

/* bind socket to the local address */

i=bind(sock, (struct sockaddr *) &my_addr, sizeof (my_addr));

if (i < 0)

printf("bind() failed\n");
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The struct sockaddr_in holds information about the connection, including the
IP and port number. It is then used in the bind() function to give the socket the
equivalent of a telephone number. At a detailed level, the structure is first zeroed
out (all bytes in the structure given a value of zero) using the memset() function.
This is done to ensure that all unused portions of the structure have a value of
zero. The structure is then filled with information about how the socket will be
used. The htonl() function is one of a family of functions that makes sure bytes
are in the correct order for network transport. In a bind() function call, the value
of INADDR_ANY as an address indicates that the socket should be bound to the
IP of the machine on which the process is currently executing. In this example,
the server will look for communication on its own IP on port number 60000.

7.5.2.3 listen()

After binding, a server will typically call the listen() function to await commu-
nication:

int i,sock;

/* ... socket has been created and bound ... */

/* listen */

i=listen(sock,5);

if (i < 0)

printf("listen() failed\n");

The second parameter of the listen() function describes how many connections
can be queued while the server is handling another communication. In this ex-
ample, the operating system will queue up to five connection attempts before
returning an error value to additional clients trying to connect.

7.5.2.4 connect()

A client performs a step similar to binding, but instead of listening, it actively
makes a call, establishing a connection. For example:

int i,sock;

struct sockaddr_in addr_send;

char *server_ip="130.127.24.92";

unsigned short server_port=60000;

/* ... socket has been created ... */
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/* create socket address structure to connect to */

memset(&addr_send, 0, sizeof (addr_send)); /* clr structure */

addr_send.sin_family = AF_INET; /* address family */

addr_send.sin_addr.s_addr = inet_addr(server_ip);

addr_send.sin_port = htons(server_port);

/* connect to the server */

i=connect(sock, (struct sockaddr *) &addr_send,

sizeof (addr_send));

if (i < 0)

printf("connect() failed\n");

In this example, the struct sockaddr_in is filled with information about the
server to which the client wishes to connect. The connect() function is used to
call the server in an attempt to establish a connection.

7.5.2.5 accept()

Once a server has received an incoming connect attempt, it can accept the con-
nection. For example:

int i,sock,sock_recv,addr_size;

struct sockaddr_in recv_addr;

/* ... socket created, bound and listening ... */

/* incoming xion -- get new socket to receive data on */

addr_size=sizeof(recv_addr);

sock_recv=accept(sock, (struct sockaddr *) &recv_addr,

&addr_size);

The accept() function returns a second socket (in this example, sock_recv) on
which data will be transmitted. This allows the original socket (in this example,
sock) to continue to listen for additional connections.

7.5.2.6 send() and recv()

After a connection has been established between the client and server, data can
be transmitted and received. For example, the client could execute the following
code:

int sock,bytes_sent;

char text[80];

/* ... socket has been created and connected ... */
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/* send some data */

printf("Send? ");

scanf("%s",text);

bytes_sent=send(sock,text,strlen(text),0);

The send() function call takes four arguments: the socket identifier, an address
pointing to data, the number of bytes to send, and a flags setting. Normally the
flags value is set to zero. The server executes similar code, receiving the sent data.
For example:

int sock_recv,bytes_received;

char text[80];

/* ... socket created, bound and accepted ... */

/* receive some data */

bytes_received=recv(sock_recv,text,80,0);

text[bytes_received]=0;

printf("Received: %s\n",text);

The parameters for the recv() function call are similar to those for send(),
except that the third argument (in this example, 80) indicates the maximum
number of bytes that can be received. Both the server and client can execute
send() and recv(); the communication can go both ways. Also note that the data
does not have to be text. The send() and recv() functions are similar to the fread()
and fwrite() functions in that the arguments define an address and a number of
bytes, rather than the type of data at the given address.

7.5.2.7 close()

Once communication is finished, both the server and client should close their
respective sockets. For example:

int i,sock_recv;

/* ... socket communication is finished ... */

i=close(sock_recv);

if (i < 0)

printf("close() failed\n");

A close() system call initiates a series of operations within the O/S to terminate
the connection. Thus, the socket may still appear in a netstat listing for several
seconds, until the O/S has finished the close.
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7.5.3 Examples
In the previous section, an analogy was made between initiating a network com-
munication and placing a telephone call. Unlike telephony, however, in which
communications are mostly one person to one person, in the case of network pro-
gramming, there are a variety of situations besides one-to-one network process
communications. The caller may want to broadcast an announcement, calling a
whole subnetwork of computers at the same time. The caller may open a socket
and use it to communicate with several remote processes at the same time. The
server may take only one call at a time, or open itself up to multiple simultaneous
calls. The calls may be managed all through the same port, or the server might
take multiple incoming calls on one port and then manage the communication
for each on a different transient port. These are only some of the situations for
which socket system calls can be used. The following two examples demonstrate
two specific situations and detail a client and server program for each.

7.5.3.1 Single server-client connection

The following programs put together all the ideas from Section 7.5.2 into a server
program and a client program. The server listens on port 60000 for a client. When
a client connects, the server reads any incoming data as text and prints it out one
line at a time. If the server receives the string “shutdown,” then it closes the socket
and exits.

The following code is for the server:

#include <stdio.h>

#include <sys/types.h> /* system type definitions */

#include <sys/socket.h> /* network system functions */

#include <netinet/in.h> /* protocol & struct definitions */

#define BUF_SIZE 1024

#define LISTEN_PORT 60000

int main(int argc, char *argv[])

{

int sock_listen,sock_recv;

struct sockaddr_in my_addr,recv_addr;

int i,addr_size,bytes_received;

fd_set readfds;

struct timeval timeout={0,0};
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int incoming_len;

struct sockaddr remote_addr;

int recv_msg_size;

char buf[BUF_SIZE];

int select_ret;

/* create socket for listening */

sock_listen=socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

if (sock_listen < 0)

{

printf("socket() failed\n");

exit(0);

}

/* make local address structure */

memset(&my_addr, 0, sizeof (my_addr)); /* clr structure */

my_addr.sin_family = AF_INET; /* address family */

my_addr.sin_addr.s_addr = htonl(INADDR_ANY); /* current IP */

my_addr.sin_port = htons((unsigned short)LISTEN_PORT);

/* bind socket to the local address */

i=bind(sock_listen, (struct sockaddr *) &my_addr,

sizeof (my_addr));

if (i < 0)

{

printf("bind() failed\n");

exit(0);

}

/* listen ... */

i=listen(sock_listen, 5);

if (i < 0)

{

printf("listen() failed\n");

exit(0);

}

/* get new socket to receive data on */

addr_size=sizeof(recv_addr);

sock_recv=accept(sock_listen, (struct sockaddr *) &recv_addr,

&addr_size);

while (1)

{
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bytes_received=recv(sock_recv,buf,BUF_SIZE,0);

buf[bytes_received]=0;

printf("Received: %s\n",buf);

if (strcmp(buf,"shutdown") == 0)

break;

}

close(sock_recv);

close(sock_listen);

}

Note that the server does not manage multiple clients. It lets a single client con-
nect and communicates with that client only.

The following code is for the client:

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define BUF_SIZE 1024

#define SERVER_IP "130.127.24.92"

#define SERVER_PORT 60000

int main(int argc, char *argv[])

{

int sock_send;

struct sockaddr_in addr_send;

int i;

char text[80],buf[BUF_SIZE];

int send_len,bytes_sent;

/* create socket for sending data */

sock_send=socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

if (sock_send < 0)

{

printf("socket() failed\n");

exit(0);

}
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/* create socket address structure to connect to */

memset(&addr_send, 0, sizeof (addr_send)); /* clr structure */

addr_send.sin_family = AF_INET; /* address family */

addr_send.sin_addr.s_addr = inet_addr(SERVER_IP);

addr_send.sin_port = htons((unsigned short)SERVER_PORT);

/* connect to the server */

i=connect(sock_send, (struct sockaddr *) &addr_send,

sizeof (addr_send));

if (i < 0)

{

printf("connect() failed\n");

exit(0);

}

while (1)

{

/* send some data */

printf("Send? ");

scanf("%s",text);

if (strcmp(text,"quit") == 0)

break;

strcpy(buf,text);

send_len=strlen(text);

bytes_sent=send(sock_send,buf,send_len,0);

}

close(sock_send);

}

The client attempts to connect to a server at a specific IP and port. If that con-
nection is successful, then the client prompts the user for text, sending each line
of text to the server. If the user provides “quit” as input, then the client closes its
socket and exits.

7.5.3.2 Multiple simultaneous clients

This example operates similarly to the previous example, but the server manages
multiple concurrent connections on the same port. The server creates a socket
and binds exactly as in the previous example. However, instead of using the
listen() function, the server uses the select() function to listen for traffic on
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the socket. The select() function is given a timeout value of zero so that it does
not block. If nothing has been received on the socket, the program continues.
If something has been received, then the server uses the recvfrom() system call
to read the incoming data directly. It does not create a second socket on which
to manage the communication. This allows the server to receive data from any
number of clients on a single socket.

The following is the code for the server:

#include <stdio.h>

#include <sys/types.h> /* system type definitions */

#include <sys/socket.h> /* network system functions */

#include <netinet/in.h> /* protocol & struct definitions */

#define BUF_SIZE 1024

#define LISTEN_PORT 60000

int main(int argc, char *argv[])

{

int sock_recv;

struct sockaddr_in my_addr;

int i;

fd_set readfds;

struct timeval timeout={0,0};

int incoming_len;

struct sockaddr_in remote_addr;

int recv_msg_size;

char buf[BUF_SIZE];

int select_ret;

/* create socket for receiving */

sock_recv=socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);

if (sock_recv < 0)

{

printf("socket() failed\n");

exit(0);

}

/* make local address structure */

memset(&my_addr, 0, sizeof (my_addr)); /* clr structure */
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my_addr.sin_family = AF_INET; /* address family */

my_addr.sin_addr.s_addr = htonl(INADDR_ANY); /* current IP */

my_addr.sin_port = htons((unsigned short)LISTEN_PORT);

/* bind socket to the local address */

i=bind(sock_recv, (struct sockaddr *) &my_addr, sizeof (my_addr));

if (i < 0)

{

printf("bind() failed\n");

exit(0);

}

/* listen ... */

while (1)

{

do

{

FD_ZERO(&readfds); /* zero out socket set */

FD_SET(sock_recv,&readfds); /* add socket to listen to */

select_ret=select(sock_recv+1,&readfds,NULL,NULL,&timeout);

if (select_ret > 0) /* anything arrive on any socket? */

{

incoming_len=sizeof(remote_addr); /* who sent to us? */

recv_msg_size=recvfrom(sock_recv,buf,BUF_SIZE,0,

(struct sockaddr *)&remote_addr,&incoming_len);

if (recv_msg_size > 0) /* what was sent? */

{

buf[recv_msg_size]=’\0’;

printf("From %s received: %s\n",

inet_ntoa(remote_addr.sin_addr),buf);

}

}

}

while (select_ret > 0);

if (strcmp(buf,"shutdown") == 0)

break;

}

close(sock_recv);

}



250 Chapter 7 ● System Calls

In addition to allowing multiple clients to communicate with the server simulta-
neously, this example also demonstrates a different type of network communica-
tion. In the socket() system call, the communication type is SOCK_DGRAM
and the protocol is IPPROTO_UDP. These values make the communication
slightly less reliable, but also faster because it uses less protocol overhead. This
can be useful on a local network where congestion is known and controlled, or
for applications that do not require perfect delivery of data, such as streaming
multimedia.

The following is the code for the client:

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define BUF_SIZE 1024

#define SERVER_IP "130.127.24.92"

#define SERVER_PORT 60000

int main(int argc, char *argv[])

{

int sock_send;

struct sockaddr_in addr_send;

char text[80],buf[BUF_SIZE];

int send_len,bytes_sent;

/* create socket for sending data */

sock_send=socket(PF_INET, SOCK_DGRAM, IPPROTO_UDP);

if (sock_send < 0)

{

printf("socket() failed\n");

exit(0);

}

/* fill the address structure for sending data */

memset(&addr_send, 0, sizeof(addr_send)); /* clr structure */

addr_send.sin_family = AF_INET; /* address family */

addr_send.sin_addr.s_addr = inet_addr(SERVER_IP);

addr_send.sin_port = htons((unsigned short)SERVER_PORT);
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while(1)

{

printf("Send? ");

scanf("%s",text);

if (strcmp(text,"quit") == 0)

break;

strcpy(buf,text);

send_len=strlen(text);

bytes_sent=sendto(sock_send, buf, send_len, 0,

(struct sockaddr *) &addr_send, sizeof(addr_send));

}

close(sock_send);

}

The client creates a socket but does not use the connect() system call to talk to
the server. Instead, it uses the sendto() system call with an appropriately filled
struct sockaddr_in that contains the IP and port for which the data is to be
sent. The client program can be run multiple times, concurrently, and each will
communicate simultaneously with the server.

Questions and Exercises
1. What is a system call? For what are system calls used?

2. Write out the memory map for the following code, providing all values at the end
of execution. It can be written using multiple maps, or areas of memory, one for
each process. What is the exact output produced by this program?

#include <stdio.h>

#include <unistd.h>

main()

{

int i,j,k;

k=0;

for (j=0; j<4; j++)

k=k+j;

i=fork();
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if (i == 0)

for (i=3; i<k; i++)

j=j-i;

else

i=k%3;

printf("%d %d %d\n",i,j,k);

}

3. What is a signal? What are signals most commonly used for?

4. What is the exact output of the following code?

#include <stdio.h>

#include <unistd.h>

main()

{

int i,j;

i=fork();

for (j=0; j<3; j++)

{

if (i == 0 && j == 0)

{

sleep(3);

printf("Cats\n");

}

else if (i == 0)

{

sleep(2);

printf("Dogs\n");

}

else

{

sleep(2);

printf("Raining\n");

}

}

}

5. Which of the following is the code for a set of functions, and which is not? (a)
library, (b) device driver, (c) application programming interface (API).

6. What is the exact output of the following code? (Hint: a SIGSEGV is generated
on an illegal storage access.)
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#include <stdio.h>

#include <signal.h>

main()

{

void f(int);

int i;

double *t,x[5];

signal(SIGSEGV,f);

x[0]=0.0;

t=0;

for (i=1; i<5; i++)

{

x[i]=(double)i+11.0;

if (x[i-1] > 12.0)

*t=42.3;

printf("Ok\n");

}

}

void f(int signum)

{

printf("Bad!\n");

exit(SIGSEGV);

}

7. Write a C program that uses a system function call to sort itself, piping the sorted
version to a file called sorted-code. For sorting, the system call should use the
sort system program. Assume that your code is saved in a file named code.c.

8. Write a program that spawns and controls multiple processes. The program
should use system calls such as fork(), wait(), execvp() to manage the processes.
The program should use signal system calls to communicate between the pro-
cesses. The processes should coordinate a simple command structure where the
main process is “base” and the child processes are “planes”.

The base process is the main process. It should run in a simple loop, prompt-
ing the user for an input command. Valid input commands include “launch”,
“bomb N”, “status”, “refuel N”, and “quit”. Invalid commands should produce a
suitable error message. Upon receiving the command to quit, the program should
end.
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The launch command should cause a child process to start. All child processes
should execute the same code. A child process should execute a simple loop,
counting “fuel” downward from 100 at a rate of 5 fuel/second. Every 3 seconds
it should report its fuel status by printing out the line “Bomber N to base, # fuel
left,” where N is the child’s process ID. Upon receiving the signal SIGUSR1, the
child process should print out the line “Bomber N to base, bombs away!” where
N is the child’s process ID. Upon receiving the signal SIGUSR2, the child process
should “refuel,” resetting its fuel value to 100. Upon reaching zero fuel, the child
process should send the signal SIGUSR2 to the main process, and then exit.

The main process must maintain a list of process IDs of the child processes.
Given the bomb N command, the main process should send the signal SIGUSR1
to child process ID = N. Given the refuel N command, the main process should
send the signal SIGUSR2 to child process ID = N. Given the status command, the
main process should list the child processes IDs. Upon receiving the SIGUSR2
signal, the main process should print out “SOS! Plane has crashed!” The main
process will not know which child process sent the signal, so if this happens the
status list will thereafter be in error.

9. What is a socket? What does it mean to bind a socket?

10. The htons() and related functions convert the byte orders of multibyte integers
for network transport, making sure that, on the network side, they are always
stored most-significant-byte first. Write a program that queries the user for a
32-bit integer value. The program should then print out the value of the same
bytes but sorted in reverse order. For example, if the user inputs 257, the program
should print out 16842752. (Hint: what should the program print out if the user
inputs 16842752?)

11. Write two programs, a client and a server, that implement file transfer through a
network. Upon startup, the server should listen and wait for a client to connect
to it. The client should connect to the server and then go into a loop. In this loop,
the user should be able to type “get [file]”, “put [file]”, or “quit”. The first option
should cause the server to send the bytes contained in the named file. The client
should open a file locally with the same name and save the received bytes. The
second option should work the same but in reverse, resulting in a copy of the file
being saved at the server. The third option exits the client. Both programs can
be run on the same system and have their IPs and ports hard-coded, but they
should be run in separate directories so that file operations can be tested. The
client should report an appropriate error message if the requested file does not
exist, or if it cannot connect to the server.
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Libraries

A library is a set of functions, packaged as a system resource and intended
for use by other programs on the system. Normally, a library is not written

for a single program but is intended for use by many programs. By packaging the
functions as a system resource, the code does not need to be rewritten for every
program that uses it. Although a library may include any number of functions, it
does not include one important function: main(). A library is not an executable
program. A library consists of functions that can be combined with a main() to
form a complete executable program.

On a typical computing system, there are many libraries. A single library
tends to contain functions concerning a single topic, such as mathematical calcu-
lation, memory debugging, network operations, or graphics. Some libraries are
small, containing 10 or so functions, while other libraries may contain a thousand
functions. Some libraries are considered standard, having become common to a
large number of computing systems. Examples include the C standard library and
the X library. Some libraries are developed by individuals or companies to sup-
port their specific product line and are found only on computing systems related
to those products.

When using a library, a program need not use every function inside it. A
program may call only a single function within that library, or it may use them
all, or any number in between. A program may use multiple libraries. A library
may be built on top of another library, calling upon its functions. In the latter
case, a program using the top-level library must also make use of the lower-level
library. Graphics libraries, in particular, have developed this way.
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This chapter covers libraries from the perspective of a system resource. A
serious programmer must know how and when to use libraries. Using a library
saves time in programming, because a programmer can make use of existing
code. Library code tends to be written by experts and thus tends to have good
design and performance. Because a library is used by many programmers, it
is usually debugged by a wide audience, and so a programmer can use it with
confidence.

Basic knowledge of some of the common libraries is also useful. In order to
understand how libraries work, and to become comfortable with them, this chap-
ter will describe three libraries in some detail. The C standard library provides
hundreds of functions for common text processing and mathematical operations.
The curses library provides functions for creating a character-based graphical in-
terface. The X library provides functions for a pixel-based graphical interface,
including windows and mouse interaction. However, the coverage of these li-
braries is not intended to turn the reader into an expert with these particular
libraries. Rather, they are intended to familiarize the reader with the process of
using a library. A programmer typically becomes an expert with a specific library
only through exposure to extensive code or product development that makes use
of that library. Such familiarity is generally a goal only when tackling a specific
job.

8.1 ● Using a Library
There are two basic steps to using a library. First, one or more header files must
be included in the C program code. Second, the library must be linked into
the executable. These concepts can be demonstrated with the following code
example:

#include <stdio.h>

#include <math.h>

main()

{

double x,s;

s=8.0;

x=sqrt(s);

printf("%lf\n",x);

}
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In this example, we are making use of the sqrt() function, which is one of the
functions in the math library. Assume that this code is stored in a file named sq.c.
First, the header file math.h is included in order to use the math library. Second,
when compiling, we must link to the math library:

gcc -o sq sq.c -lm

The command line argument -lm tells the compiler to link (-l) to a library file
named m. This library file is what actually contains the code for the sqrt() function
and all the other functions in the math library. In the following two sections, we
take a look at what is inside a header file and why it is needed, and at a library file
and how it works.

8.1.1 Header Files
A header file does not contain the code for any of the functions in the library. That
code is contained in the library file, which is brought in during linking. Why then
do we need to include the header file? For example:

#include <math.h>

One can think of a header file as the instructions for how to use the library. It
contains function prototypes, which describe the inputs and outputs of all the
functions, including how many and what types of parameters each function
takes, and what type of value each function returns. For example, in math.h we
can trace the following code:1

double sqrt(double x);

This prototype tells us that the sqrt() function takes in one argument, a double,
and also returns a double. By including the header file into our own program, we
inform the compiler of how the function works so that it can properly compile
our use of the function. Remember, our program does not include the code for
the sqrt() function. Therefore the compiler needs the function prototype in order
to properly align our code, which calls the function.

A header file can also contain constants. For example, within math.h we can
find the following code:

#define M_PI 3.14159265358979323846 /* pi */

1. Function prototypes are often written using nested preprocessing substitutions to provide for

flexibility in implementation and system independence. However, the net effect of expanding the

preprocessing substitutions is to produce a line of code like the one given here.
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This provides a constant value for pi, often used in trigonometric and other
mathematical calculations. A programmer can use this constant without having
to redefine it for every program. Within the header file X.h, the primary include
file for the X library, we find another use for constants:

#define KeyPress 2

#define KeyRelease 3

#define ButtonPress 4

#define ButtonRelease 5

#define MotionNotify 6

/* ... list continues for 34 entries ... */

These constants provide phrases in plain English for values commonly passed
to and from functions within the library. This particular list continues, defin-
ing 34 different possible values for a common function parameter. Programmers
typically find it easier to remember text phrases, as opposed to numeric val-
ues, for oft-used parameter values. For example, one could write the following
code:

if (SomeEvent.type == 2)

/* process key press event */

However, it is more common to write that code as follows:

if (SomeEvent.type == KeyPress)

/* process key press event */

This code takes advantage of the constant definitions in the header file to make
the code easier to write, and more readable.

A header file may use typedef and struct definitions to create library-specific
aliases for common data types or to create new data types. For example, within
the X.h header file, we find:

typedef unsigned long Mask;

This code creates an alias called “Mask” for the unsigned long int. Why is this
done? The X library uses bitwise operations to send and receive data through
many functions. Since a bitmask will be used as a parameter for many of these
functions, the X library provides a data type named “Mask” to promote code
readability, by more strongly identifying what a particular variable is intended
to do.

Another example can be seen in the FILE data type. By including the header
file stdio.h, we eventually find the following lines of code:



8.1 ● Using a Library 259

struct _IO_FILE {

int _flags;

int _fileno;

int _blksize;

/* ... many additional fields not printed here ... */

}

typedef struct _IO_FILE FILE;

This code defines a structure that contains information about accessing a file. The
code then defines an alias for that structure to simplify writing code. These lines
of code explain the commonly seen:

#include <stdio.h>

FILE *fpt;

First, without including the stdio.h header file, the compiler will not under-
stand the keyword “FILE”. Second, by tracing through the definition, we find that
the variable fpt is nothing more than a pointer to a structure. When using a li-
brary, it is common to make use of seemingly exotic and unknown data types.
However, they are nothing more than typedefs, aliases, and structure definitions,
written out within the header file, to make code more readable and portable.

Header files for the C standard libraries are usually stored in /usr/include
on a Unix system. On an MS Windows system, the storage location depends on
which compiler is being used. Different compilers store the header files in dif-
ferent locations. The MS Visual C compiler typically places those header files in
C:\Program Files\Microsoft Visual Studio\VC98 \Include. It does not par-
ticularly matter where header files are placed, as long as the compiler knows
where to find them. By default, a compiler will look in its preferred location(s),
defined during installation. If a header file is placed in a different location, for
example, by installing a new library in a nonstandard location, then the com-
piler must be told where to find the header file. Using the gcc compiler, this is
accomplished by using the -Ipath command line argument. For example:

gcc -o sq sq.c -I/usr/include/mathlib -lm

The option -I/usr/include/mathlib tells the compiler to look in the /usr /in-
clude/mathlib directory, in addition to the standard locations, for any requested
include files. We will see this again when we look at the X library.
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8.1.2 Library Files
A library file contains the actual code for the functions in the library. During
compiling, we must link to the library file to bring the code together with our
own, to make the executable program. In the example at the beginning of section
8.1, we used the command line argument -lmwhile compiling to tell the compiler
to link to the m file, which is the math library file. But where is this m file, and what
exactly is inside it?

On a Unix system, library files are typically stored in /usr/lib. Unix systems
use the following convention for naming library files: they begin with the letters
lib and have a filename suffix of .a. The only part of a library filename that is
unique lies in between these parts. Thus, the math library file, which we called
m when compiling, is actually named libm.a on the system. We can find it as
follows:

ls -l /usr/lib/libm.a

-rw-r--r-- 1 root root 3092430 Sep 4 2001 /usr/lib/libm.a

Notice that the file is fairly large, about 3 MB (file size will vary from system to
system). This shows that there is quite a bit of code in the library file. The math
library contains dozens of functions, some of which are quite complex.

On an MS Windows system, library files have no fixed prefix, but they do all
end with either the .lib or .dll suffix. They may be found in several directo-
ries, including C:\Winnt\system32, C:\Winnt\system, and a \lib subdirectory
installed as part of a compiler (for the MS Visual C compiler, this would be
C:\Program Files\Microsoft Visual Studio\VC98\Lib).

When linking, a compiler knows to look for library files in the standard
directories, usually defined when the compiler is installed. It is also aware of any
naming conventions, such as expanding m to libm.a. However, some library files
may be stored in nonstandard directories. For example, a new library may be
added to a system and stored in its own folder to make maintenance of the library
easier. The X library is commonly stored in /usr/X11R6, with subdirectories for
its include (/usr/X11R6/include) and library (/usr/X11R6/lib) files. In order
to link with that library, we must tell the compiler to look in that directory, in
addition to the standard directories, when looking for library files:

gcc -o xprog1 xprog1.c -lX11 -L/usr/X11R6/lib

The command line argument -L/usr/X11R6/lib tells the compiler to add the
path /usr/X11R6/lib to the set of directories in which to find library files.
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A library file contains the actual code for all the functions in the library. The
code for the library functions is static, in the sense that it is not expected to change
(ignoring for the moment library upgrades). Therefore, it is precompiled and
stored in an intermediate format called a library file. For the present discussion,
the detailed format of a library file is not important; it is enough to know that it
is code that has previously been compiled and is ready to be linked. If one tries to
open the file /usr/lib/libm.a with a text editor, it will look like garbage, since it is
not source code (ASCII text).

8.2 ● Purpose of Libraries
There are several reasons to package a set of functions into a library:

Convenience, repetition. An example in this category is the string function
library. Many of the string functions are easy to code. For example, the strlen()
function is only a couple lines of code. However, string functions are used fre-
quently, and even though they may be easy to code, it is convenient to put them
in a library to avoid rewriting them every time a new program is written.

Difficult to code. An example in this category is the math library. The func-
tions in the math library, such as sqrt() and cos(), are iterative in nature and
very difficult to code. For example, to solve for the square root of a number, one
could continually multiply a number by itself, lowering or raising the value, until
it is close enough to the value whose square root is being sought. Because these
functions are difficult to write, we prefer to utilize the expertise of people who
have studied these problems extensively and have already written code for us to
use. While we might be able to write a method that works, the experts have writ-
ten more efficient, precise methods based on a detailed study of computational
mathematics.

Hardware/system independence. An example in this category is a graphics
library, such as the X library or the OpenGL library. In order to access a piece of
hardware, a program must go through a device driver in the O/S (see Chapter 5
on I/O). The program can call the open() function for the specific piece of hard-
ware, and then call the write() function to send it data. If we were developing
an application only for one system (defined as the O/S plus hardware), then this
is a viable method for graphical output. However, most of the time, we want an
application to be capable of running on a variety of graphics displays or graphics
cards.

Figure 8.1 shows an example. Suppose that on system A we have a state-of-
the-art graphics card that can render three-dimensional primitives with shaded
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Figure 8.1 A program must be written to work with multiple device drivers if it is
intended to work on different hardware or systems.

lighting, textures, and other advanced features. System B, on the other hand, has
an inexpensive, low-resolution, straight pixel display card. Each of these systems
uses a different device driver, specific to its hardware. The data that is sent via a
write() function call on system A will look very different from the data that is sent
using write() on system B. Should the application need to know about different
device drivers, and change how it calls write() depending on what hardware is
available?

Instead, we use a graphics library to perform this job. Figure 8.2 demonstrates
the process. The graphics library contains generic graphics functions, such as
“DrawLine().” Within its functions, a graphics library implements the code spe-
cific to different graphics hardware to carry out that operation. The details of how
and when the graphics library calls write() to actually implement DrawLine() are
hidden from us. This is very similar to how the details of the write() function call
are hidden in the device driver.

Graphics libraries primarily provide us with hardware independence, but
they can also provide us with O/S independence. Some of the more generally
accepted and popular graphics libraries are available on a variety of operating
systems, and support a large variety of hardware. Examples include the X library
and the OpenGL library.
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Figure 8.2 A graphics library allows an application to call system or hardware-
independent functions.

8.3 ● The C Standard Library
The most important library in C programming is called the C standard library. It
includes hundreds of functions for doing common operations, such as basic text
I/O, file I/O, string manipulation, and mathematical calculations. Its functions
include many of the most well known: printf(), strlen(), fopen(), and sqrt(). Very
few programs are written without making at least some use of this library.

The C standard library is really a collection of libraries that have been grouped
together. It makes use of multiple header files (24 as of the 1999 ANSI standard)
and multiple library files (depending on system implementation). Because it in-
cludes functions covering a wide variety of topics, and because it is organized
into multiple files, different parts of it are sometimes referred to in isolation. For
example, it is not uncommon to call the math functions portion of the C stan-
dard library as simply the “math library.” Similarly, it is not uncommon to call
the string functions portion as simply the “string library.” Table 8.1 summarizes
the most commonly used parts of the C standard library.
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Table 8.1 Common header files in the C standard library.

Header file Contents

stdio.h I/O functions, such as printf() and scanf()

stdlib.h large variety of functions, including memory allocation

string.h the string functions, such as strlen() and strcpy()

math.h the math functions, such as fabs() and sqrt()

time.h functions for converting various time and date formats

Because the C standard library is so commonly used, many compilers simplify
the operations required to use it. For example, most C compilers link to the core
of the C standard library by default, without requiring the user to specify it. Thus,
either of the following lines does the same thing:

gcc -o prog1 prog1.c

gcc -o prog1 prog1.c -lc

Most compilers include the option -lc by default so that a programmer does
not have to type it every time a program is compiled. Some compilers also include
the most common C standard library header files by default. While both of these
practices are convenient for experienced programmers, they often confuse novice
programmers. Hiding the basic steps necessary in using a library can cause a
novice programmer to make simple mistakes when moving on to additional
libraries.

One of the most common mistakes is to forget to include a header file. This
can lead to some unexpected and often confusing behavior on the part of a
program. For example:

main()

{

double a,b;

b=9.0;

a=sqrt(b);

printf("%lf\n",a);

}

On some systems, compiling and executing this code may produce the following
output:

1075970687.000000
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This, of course, is not the square root of 9. A novice programmer, upon seeing
this, is often confused by the source of the error. Where did the garbage value
come from? The answer is that the header file math.h was not included, so that
the compiler did not know the type of value returned by the sqrt() function.
By default, the compiler assumes that all functions return an int. However, the
sqrt() function actually returns a double. This causes a mismatch, where the
return value is interpreted erroneously, causing the garbage value to appear.

Some compilers will warn of this potential problem. For example, a compiler
may produce the following warning:

main.c(8) : ’sqrt’ undefined; assuming extern returning int

With a little practice, a programmer will come to recognize this type of warn-
ing as a potentially serious problem, and will try to alleviate its cause. However,
some programmers take advantage of the “int-by-default” return value and code
without proper function prototypes or header-file usage. An experienced pro-
grammer should be aware of this practice and prepared to work with code written
in that manner.

8.4 ● The Curses Library
Curses2 is a basic graphics library for use on a character terminal screen. It pro-
vides the lowest level of graphics and dates back to the time when most computer
displays could print only text (they could not display images or other graphics).
These displays were called terminals. Although most modern computer displays
can show images and other graphics, the curses library and character graphics are
still useful. For example, many computing systems use a “boot loader” when first
powered. This boot loader runs before the O/S is loaded. Without the O/S, and
its device driver used to operate the advanced graphics functions, the computing
system is only capable of character graphics. Similarly, when installing an O/S,
the more advanced graphics capabilities are typically not yet available. In some
embedded systems, a simple character-based display may be all that is required.
A library like curses is useful in all these cases.

The following code serves to demonstrate the basic operations of the curses
library:

2. The ncurses library is managed by the GNU project. The library and online documentation can

be found at www.gnu.org/software/ncurses/ncurses.html.

www.gnu.org/software/ncurses/ncurses.html
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#include <curses.h>

main()

{

initscr(); /* turn on curses */

clear(); /* clear screen */

move(10,20); /* row 10, column 20 */

addstr("Hello world"); /* add a string */

move(LINES-1,0); /* move to LL */

refresh(); /* update the screen */

getch(); /* wait for user input */

endwin(); /* turn off curses */

}

If this code is stored in a file called hello.c, then the following compiles the
program:3

gcc -o hello hello.c -lncurses

Note that the header file curses.hmust be included, and that the library is linked
through the command line argument -lncurses (ncurses is the “new curses”
library, a rewrite of the traditional curses library and the most current at the time
of this writing).

Most graphics libraries use a function to initialize their internal global vari-
ables. For example, the library might discover what sort of graphics card or ca-
pability the system has, open the device driver for it, and initialize some variables
recording its size and other properties. These values will in turn be available to the
program using the library through those variables. In the case of curses, the func-
tion initscr() performs the initialization. After that, the program can access the
global variables COLS and LINES to see the size of the terminal. The program can
also access the variable stdscr as the default “window,” which can be thought of
as the library’s name for the terminal. The library is closed (the device driver is
closed, and any dynamic memory allocated is freed) through the endwin() func-
tion call. Curses functions cannot be used prior to calling initscr(), and a program
should always call endwin() to close out use of the library.

3. The reader is strongly encouraged to run this program, and all examples in this section, to better

learn the concepts.
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The basic functions in curses are:

move(10,20); /* move cursor to row=10, column=20 */

addstr("Hello"); /* draw string Hello at cursor location */

While drawing text, the cursor is moved ahead (incremented one column) per
character drawn, similar to standard typing.

8.4.1 I/O Control
There are three important concepts in I/O control: buffering, echoing, and block-
ing. This section studies each of these concepts and shows how they can be im-
plemented using the curses library.

8.4.1.1 Buffering

Buffering refers to the process of temporarily storing bytes on a stream, and
grouping them up before transferring them to the destination. Figure 8.3 demon-
strates the process. A buffer can be used on any stream; this particular example
shows buffers on both the input and output streams.

By default, characters sent to the curses output window are buffered. This
means that the characters are not actually displayed until the buffer is flushed,
sending all the characters to the terminal display. Flushing is accomplished by
the refresh() function call.

Character input is unbuffered by default. This means that functions which
read the keyboard, such as getch(), return immediately after any key is pressed.
This differs from how the C standard input function, scanf(), works. The scanf()
function is line buffered, meaning that it does not return until the user presses
[ENTER]. The advantage to line buffering is that a user can correct typing mis-
takes using the backspace or delete key before actually committing the input to
the program. These operations are handled by the O/S working on the data in the

Keyboard Program

Line buffer Buffer

(refresh() to flush)(CR to flush)

Display

Figure 8.3 Buffering on both the input and output streams.
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Figure 8.4 Echoing the input stream to the output stream.

buffer. Line buffering can be turned on in curses using the nocbreak() function.
For example:

#include <curses.h>

main()

{

initscr(); /* turn on curses */

nocbreak(); /* turn on line buffering */

/* by default keyboard input is unbuffered */

getch(); /* wait for user input */

endwin(); /* turn off curses */

}

Seemingly, this program waits for one character of input from the user and then
terminates. However, when this program is run, the user can type any number
of keystrokes; the program will not end until [ENTER] is pressed. This is because
the input is line buffered. Line buffering can be turned off by calling the cbreak()
function.

8.4.1.2 Echoing

Echoing refers to the process of copying bytes from the input stream to the output
stream. Figure 8.4 shows the process. When echoing is turned on, every byte that
appears on the input stream is copied directly to the output stream, in addition
to being given to the program for processing. Echoing is how a user can see what
he or she is typing while providing input to a program.

By default, keyboard input in curses is echoed. The following example
demonstrates turning echoing off:

#include <curses.h>

main()

{

int i;
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initscr();

noecho(); /* turn off echoing */

for (i=0; i<5; i++)

getch(); /* wait for user input */

endwin();

}

The noecho() function call turns echoing off. When this program is run, char-
acters typed are not seen on the screen. Echoing can be turned back on using the
echo() function.

8.4.1.3 Blocking

Blocking refers to the process of how the program will wait for bytes to appear
on the input stream. Figure 8.5 shows the process. When blocking is turned on,
every function call for input will wait until data appears on the input stream.
The program will not continue until input is received. When blocking is turned
off, the function call will check to see if data is present. If data is present, the
read occurs normally, just as if blocking were turned on. However, if no data is
present, the function call will return immediately and inform the program that
no data was present. This allows the program to continue whether input data is
present or not.

By default, the scanf() function is a blocking function; it will wait until
input is received. The same is true of the curses library. The following example
demonstrates turning blocking off:

#include <curses.h>

main()

{

int i;

Keyboard

Blocking

(wait)

Program

...
get input
...

Keyboard

Nonblocking

(continue
if no data
present)

Program

...
get input
...

Figure 8.5 Types of blocking on an input stream.
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initscr();

nodelay(stdscr,TRUE); /* turn off blocking */

for (i=0; i<5; i++)

{

getch(); /* wait for user input? */

sleep(1);

}

endwin();

}

When this program is run, even if the user does not touch the keyboard, the
program finishes in 5 seconds.

Blocking does not have to be on (indefinite) or off (immediate). Blocking can
occur for a preselected amount of time, allowing the program to continue if no
input is received during that time. The following example demonstrates timed
blocking:

#include <curses.h>

main()

{

int i;

initscr();

halfdelay(5); /* blocking = 5/10 second */

for (i=0; i<5; i++)

getch(); /* wait for user input */

endwin();

}

In this example, blocking is set to 0.5 seconds. Each getch() function call will
wait 0.5 seconds for input to appear, but if nothing appears in that time, the
function returns and the program continues. Thus, if this program is run without
touching the keyboard, it will run for 2.5 seconds and then end.

Being able to control blocking is important in a number of situations. For
example, a banking machine typically does not wait forever for a user to provide
a password, or to command a transaction. After waiting a fixed amount of time,
a banking machine program typically continues to a portion of the program that
ends the banking session, in order to protect the user. This is an example of
timed blocking. For another example, consider a movie-playing program. A user
expects to be able to rewind, pause, and interact with a film while it is playing
back. This can be accomplished through nonblocking input. This will be explored
more in the next section.
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8.4.2 Dynamic Graphics
The curses library is most commonly used for menus and basic user interaction.
However, it can be used to create dynamic or moving graphics, albeit of a limited
nature. In this section, we study a few techniques to create dynamic graphics.
Although the techniques are demonstrated using the curses library, the same
techniques can be applied using other graphics libraries as well.

8.4.2.1 Motion

The most basic technique in creating a moving graphic is to erase the screen at the
graphic’s previous location, immediately redrawing it at an adjacent location. Re-
peating this process over and over provides the illusion of motion. The following
code demonstrates the technique:

#include <curses.h>

main()

{

int i;

initscr();

clear(); /* clear screen */

for (i=0; i<30; i++)

{

move (10,i);

addstr("Hello world");

refresh(); /* flush buffer */

usleep(100000); /* pause 0.1 seconds */

move (10,i); /* back to previous spot */

addstr(" "); /* draw empty space */

}

getch();

endwin();

}

Running this program, the user will see the phrase “Hello world” move hori-
zontally across the screen. The usleep() function call is used to control the rate
of motion. The usleep() function pauses the program for the given number of
microseconds, allowing for finer control of pausing as compared to the sleep()
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Figure 8.6 Steps in creating a moving graphic. It is often convenient to start the loop
with the “erase graphic” step.

function. Note that the output buffer must be flushed (using the refresh() func-
tion) at the appropriate time or the technique will not work. If the refresh()
function call were moved to the bottom of the loop, then the graphic would never
be seen. The same is true of the pause (using the usleep() function). The correct
order of operation is (1) draw the graphic, (2) flush the buffer, (3) pause the pro-
gram, (4) erase the graphic, and (5) move to a new location. Figure 8.6 illustrates
these steps. Because it is cyclical, the process can be started at any point. It is often
convenient to put all the code involving a single graphic together, with the flush
and pause at the end. In this case, the loop would start with the step that erases
the graphic. We will see this again below.

8.4.2.2 User Input During Motion

Moving graphics generally require loops, as described above. The graphic stays
in motion only as long as the loop keeps iterating. If we require that the user
be able to provide input to the program while the graphic is in motion, then
we must turn blocking off. Otherwise, any function call for input will wait until
input is received. Meanwhile, the motion of the graphic will seem to pause. Using
a fixed time blocking is also generally a bad idea, unless the fixed-time is very
small. Otherwise, during iterations where the user immediately provides input,
the graphic will move faster than during iterations where the program waits for
the blocking to time out.

The following code demonstrates polling for user input while a graphic is
in motion. Polling refers to the process of using a nonblocking function call to
check for user input, and acting upon the input if given, but otherwise continuing
program execution.
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#include <curses.h>

main()

{

int i,row;

char ch;

initscr();

clear();

nodelay(stdscr,TRUE); /* turn off blocking */

row=10;

for (i=0; i<30; i++)

{

move (row,i);

addstr("Hello world");

refresh();

usleep(100000);

move (row,i);

addstr(" ");

ch=getch(); /* poll for input */

if (ch == ’z’) /* act on input */

row++;

}

getch();

endwin();

}

This program works similarly to the last example, but if the user presses “z,”
then the graphic will move down a line. With or without input, the graphic will
continually move rightward across the screen. Executing this program, the user
will notice that when the input “z” is given, it is also displayed on the screen, near
the moving graphic. This is a consequence of echoing. In most programs that use
dynamic graphics, echoing is turned off. This feature can easily be added to this
example by calling noecho() before the loop starts.

8.4.2.3 Varying-Rate Graphics

Using the basic loop structure outlined above, graphics move at the rate defined
by the amount of time spent paused in each iteration. Increasing the usleep()
causes the graphics to move more slowly, while decreasing the usleep() causes
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the graphics to move faster. However, if multiple graphics are displayed, they
would all move at the same rate. How can different graphics be moved at different
rates?

One answer is to use modulus arithmetic on the loop counter to control when
the motion of each graphic occurs. If one graphic moves every iteration, but
another graphic moves only every other iteration, then the first graphic is moving
twice as fast as the second. The following code demonstrates this technique:

#include <curses.h>

main()

{

int i;

initscr();

clear();

for (i=0; i<30; i++)

{

move (10,i);

addstr(" ");

move (10,i+1);

addstr("Hello");

if (i%2 == 0) /* every 2nd iteration */

{

move (12,i/2);

addstr(" ");

move (12,i/2+1);

addstr("world");

}

move (LINES-1,0);

refresh();

usleep(100000);

}

getch();

endwin();

}

As mentioned previously, it is convenient to start the loop with the step that
erases the graphic. In this way, all the code involving a single graphic can be
grouped together, and the flush and pause happen at the end of the loop. The
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line move(LINES-1,0); puts the cursor at the bottom left corner of the screen so
that it does not bounce around following the graphics as they move.

8.5 ● The X Library
In order to understand the X library,4 this section first describes how graphics
libraries in general have developed. It is beneficial to examine the graphics li-
braries used on both a Unix system and an MS Windows system. There are many
similarities and some differences, which help to highlight some things a system
programmer needs to know.

In Section 8.2, we saw that a graphics library serves as a standarized set of
function calls between an operating system (in particular, a device driver) and an
application. This allows the same application to work with different graphics dis-
plays having varying capabilities. Recent times have seen a tremendous growth in
these capabilities, from simple two-dimensional raster buffering to full texturing,
lighting control, and complex rendering of three-dimensional objects and scenes.
Applications depend upon graphics libraries to implement all of these capabili-
ties, either in hardware (if supported by the available graphics hardware) or in
software in the library itself.

As graphics hardware capabilities have expanded, a hierarchy of graphics
libraries has evolved that somewhat resembles the progression of capabilities.
Figure 8.7 shows this hierarchy and some of the popular graphics libraries. On
a Unix system, the X library is at the bottom level. The X library provides for
the creation and manipulation of windows. Each window can serve as a separate
“screen” or “display.” This allows a user to run a number of different applications
at the same time, each having its own graphical display, even though the system
itself has only one monitor or hardware display. This capability has become so
commonplace that users of desktop computers expect it by default. However, it
would not be available without the X library or an equivalent.

In addition to windows functions, the X library provides functions for draw-
ing simple two-dimensional graphics, such as lines, circles, and rasters (images).
The basic properties of these primitives can be manipulated, for example, line
color, width, and type (e.g., dotted, dashed, or solid). The X library also provides
functions for interacting with user input devices, particularly a keyboard and a

4. There are several distributions of the X library. At the time of this writing, the most prevalent

distribution is maintained by the X.Org Foundation. The library and documentation can be found

at www.x.org/wiki/.

www.x.org/wiki/
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Figure 8.7 Hierarchy and content of popular graphics libraries.

mouse. Most important, input can be directed to the appropriate window (and
program) depending on how the user is interacting with the overall system.

The equivalent library on an MS Windows system is the Win32 library. It
provides all the above-described capabilities: window creation and manipulation,
drawing of two-dimensional graphics, and control of user input. However, it pro-
vides an additional capability not available in the X library: the user interface. On
an MS Windows system, all menus look and operate similarly. All dialog and mes-
sage boxes look and operate similarly. When opening a file, the interface looks
similar from application to application. This is because the Win32 library pro-
vides a set of functions to create and interact with menus, dialog boxes, message
boxes, and other aspects of a standard user interface. The X library does not pro-
vide an equivalent set of functions. The developers of the X library wanted all
parts of the system to remain modular. Any system operator is free to install and
set up the user interface of his or her choice. Since there are no functions available
in the X library for a standard user interface, additional libraries have been devel-
oped that provide different user interfaces. These libraries include GTK+, Motif,
and Qt. While this initially seemed like a good idea, and in the spirit of modular
system development, it turned out to be problematic. Only a small percentage of
computer users want the capability to change the standard user interface. Most
application developers rely upon a standard user interface. Even experienced sys-
tem programmers typically prefer to rely upon a standard user interface. Many
users take advantage of the capability to fine-tune or adjust a user interface to
suit individual preferences, but there does not seem to be any advantage to pro-
viding completely unique user interfaces to all users. At the time of this writing,
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the GTK+ library is a popular user interface library on a Unix system, but there
is no consensus standard.

Another important difference between the X library and the Win32 library is
the separation of “display” from the hardware. Using the X library, an application
can open a window and interact with a user on hardware that is separate from
the hardware on which the application is running. This is accomplished through
networking. For example, a user can remotely log into a machine, run an applica-
tion on that machine, and yet graphically display its output on the local monitor.
This process can also be done in reverse, displaying output on a remote machine.
The Win32 library does not provide for separation of window and display. The
library can only interact with hardware directly connected to the system. While
this capability can sometimes be useful, it is rarely used by system programmers.
As emphasized throughout this book, experienced system programmers prefer to
interact with programs through a shell interface. A remote text-display capability
is usually sufficient for interacting with programs through a network.

As three-dimensional graphics have become popular, particularly for games,
another level of libraries has developed to satisfy the need for hardware-
independent application development. On a Unix system, the OpenGL library
is commonly used. It provides functions for manipulating and rendering three-
dimensional meshes, applying textures, and controlling lighting. On an MS Win-
dows system, the DirectX library is commonly used. It provides a similar set of
functions for manipulating and displaying three-dimensional graphics. Although
primarily developed for specific systems, there are implementations of both li-
braries available for other platforms. The main difference is that the OpenGL
library is open source while the DirectX library is proprietary. At the time of this
writing, both are available for free.

There is one last important difference to discuss between a Unix system and
an MS Windows system. On an MS Windows system, not only is the user in-
terface standardized but the system interface is standardized as well. All win-
dows look and operate similarly. The titlebar is a standard size with a standard
font. The application menu always lists from the top-left corner, rightward, and
each is a pull-down menu. The system menu for each window always appears
in the top-right corner and consists of three consistent icons: lower horizontal
line (minimize window), square (maximize window), and X (close window). The
mouse always uses the same cursor. The overall system menu is always in the
bottom-left corner, and the clock is always displayed in the bottom-right corner.
Right-clicking on the background (or desktop) brings up a menu to control desk-
top appearance, while left-clicking on the desktop allows the user to drag icons or
start applications. On a Unix system, the system interface is not standardized. The
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gnome desktop is popular, but at the time of this writing, there is no consensus
standard.

The lack of standardization on Unix systems is a result of modular develop-
ment. This allows users maximum flexibility and, to some degree, provides for
more consistent interfacing between the various parts of the system. The system
software for an MS Windows system is largely monolithic and integrated. The ad-
vantage to this approach is that a user can expect a system and its applications to
appear and operate in a somewhat predictable manner. This typically decreases
the time necessary for a user to become proficient with a new computer, or even
a new application. The user does not need to spend time becoming familiar with
new icons, menu operations or placements, or appearances. This is one of the
strengths of an MS Windows system; it helps allow relatively inexperienced users
to operate the system. At the time of this writing, there is growing momentum
toward standardizing the Unix user and system interfaces. These decisions, of
course, have direct impact upon the libraries a system programmer can expect
to use.

8.5.1 Windows
The basic construct in X library programming is a window. A window is a virtual
monitor or display created for a program. It allows multiple programs to operate
sharing the same physical monitor or display, each using its own window. In this
paradigm, a program must create and manage a window where the output will
be displayed. The window also controls input to the program. Typically, a system
will send keyboard and mouse input to a program only when the program’s win-
dow is active. Commonly, a window is active when the user selects the window
by clicking on it, or when the user moves the mouse into the onscreen area of the
window. Window activation depends upon the particular system interface.

The following code demonstrates the basic steps involved in a program using
the X library to create a window:

#include <stdio.h>

#include <stdlib.h>

#include <X11/Xlib.h> /* X library definitions */

main(int argc, char *argv[])

{

Display *Monitor; /* screen to display on */

Window DrawWindow; /* the window to be created */

GC WindowGC; /* graphics context */



8.5 ● The X Library 279

/* First, every X program must connect to a display */

Monitor=XOpenDisplay(NULL);

if (Monitor == NULL)

{

printf("Unable to open graphics display\n");

exit(0);

}

/* Create a window - describe a few attributes */

DrawWindow=XCreateSimpleWindow(Monitor,RootWindow(Monitor,0),

10,10, /* x,y on screen */

100,50, /* width, height */

2, /* border width */

BlackPixel(Monitor,0), /* foreground color */

WhitePixel(Monitor,0)); /* background color */

/* Create a default graphics context */

WindowGC=XCreateGC(Monitor,DrawWindow,0,NULL);

/* Place the window onscreen, and flush buffer */

XMapWindow(Monitor,DrawWindow);

XFlush(Monitor);

/* wait 2 seconds, then close X library */

sleep(2);

XCloseDisplay(Monitor);

}

Assuming this code is stored in a file called window.c, then the following com-
mand compiles the code:

gcc -o window window.c -L/usr/X11R6/lib -lX11

The -L/usr/X11R6/lib command tells the compiler to search in the path
/usr/X11R6/lib for additional library files. Depending on how the compiler is
configured, this option may or may not be necessary (the compiler may already
have that path added to its default list of places to look for linking to library files).
The command -lX11 tells the compiler to link to the X11 library file.

In the example above, the first function called is XOpenDisplay(), which
initializes the library for use by the program. The function also creates a connec-
tion to a physical display (this example uses the default display), discovering its
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properties and using them to initialize the library. The second function called is
XCreateSimpleWindow(), which creates a window for use by the program. There
are several function calls that create a window, with varying degrees of control
over the window’s appearance. This one is the simplest. The third function called
is XCreateGC(), which creates a graphics context . A graphics context contains
information about how graphics should be drawn in the window. This informa-
tion includes things like which font to use, how thick to draw lines and other
primitives, and which color to use when drawing. This example demonstrates
creating a graphics context having all default values. The XMapWindow() function
call draws the window on the given display (remember that in the X library, the
concepts of window and display are separated, such that a window can be drawn
on multiple different displays). Since the output display is buffered, the XFlush()
function call is needed to force flushing of the buffer, to insure that the window
actually appears onscreen. Finally, the example program sleeps for 2 seconds and
then closes its use of the X library.

Both Window and GC (graphics context) variables are actually structures. Each
contains a list of variables, the former about how the window appears, and the
latter about how to draw into the window. A program can create any number
of windows and graphics contexts, each having a different variable name. It is
possible to use a single graphics context for all windows.

When running this program, it is possible that the window will not appear
at the specified location (10,10). This is due to the involvement of a window
manager. A window manager is a program that runs on the system and actually
controls the placement of windows. It typically tries to place windows so that
they all have minimal overlap. It may therefore override a program’s request for
a specific window location, in favor of another position. There are function calls
in the X library that can override the window manager, and force placement of
the window according to the program’s specifications, such as XSetWMHints().
These functions are beyond the scope of this text.

8.5.2 Two-Dimensional Graphics
There are a large number of functions in the X library that draw two-dimensional
graphics. The following code demonstrates the drawing of a line:

#include <stdio.h>

#include <stdlib.h>

#include <X11/Xlib.h>



8.5 ● The X Library 281

main(int argc, char *argv[])

{

Display *Monitor;

Window DrawWindow;

GC WindowGC;

int x1,y1,x2,y2;

Monitor=XOpenDisplay(NULL);

DrawWindow=XCreateSimpleWindow(Monitor,RootWindow(Monitor,0),

10,10, /* x,y on screen */

100,50, /* width, height */

2, /* border width */

BlackPixel(Monitor,0),

WhitePixel(Monitor,0));

WindowGC=XCreateGC(Monitor,DrawWindow,0,NULL);

XMapWindow(Monitor,DrawWindow);

XFlush(Monitor);

while (1)

{

printf("Line coordinates? ");

scanf("%d %d %d %d",&x1,&y1,&x2,&y2);

if (x1 == -1)

break;

XDrawLine(Monitor,DrawWindow,WindowGC,x1,y1,x2,y2);

XFlush(Monitor);

}

XCloseDisplay(Monitor);

}

After initializing the library and creating and mapping a window, this program
goes into a loop. The loop uses the traditional printf() and scanf() functions to get
the desired endpoints of the line segment from the user. It then calls XDrawLine()
with the given coordinates. The origin of the coordinate system is the top left,
with the x-axis positive rightward and the y-axis positive downward. Units are
pixels; for reference, the window created in this example is 100 × 50 pixels in
size.

Additional functions for drawing two-dimensional graphics include XDraw-
Rectangle(), XDrawPoint(), and XDrawArc(). The latter can be used to draw a
circle, an ellipse, or any portion of an arc.
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8.5.3 Graphics Properties
The properties controlling how graphics are drawn are stored in the graphics
context (GC). The Win32 library has a similar construct called a device context
(DC). The following code demonstrates changing the color of the lines drawn
from the default (black) to blue:

#include <stdio.h>

#include <stdlib.h>

#include <X11/Xlib.h>

main(int argc, char *argv[])

{

Display *Monitor;

Window DrawWindow;

GC WindowGC;

int x1,y1,x2,y2;

XGCValues GCValues;

unsigned long GCmask;

int i;

Monitor=XOpenDisplay(NULL);

DrawWindow=XCreateSimpleWindow(Monitor,RootWindow(Monitor,0),

10,10,

100,50,

2,

BlackPixel(Monitor,0),

WhitePixel(Monitor,0));

WindowGC=XCreateGC(Monitor,DrawWindow,0,NULL);

XMapWindow(Monitor,DrawWindow);

XFlush(Monitor);

/* change the foreground color to blue */

GCmask=GCForeground;

GCValues.foreground=0x0000FF; /* red is 0xFF0000 .... */

i=XChangeGC(Monitor,WindowGC,GCmask,&GCValues);

if (i == 0)

{

printf("Unable to change GC values\n");

exit(1);

}
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while (1)

{

printf("Line coordinates? ");

scanf("%d %d %d %d",&x1,&y1,&x2,&y2);

if (x1 == -1)

break;

XDrawLine(Monitor,DrawWindow,WindowGC,x1,y1,x2,y2);

XFlush(Monitor);

}

XCloseDisplay(Monitor);

}

The XChangeGC() function call takes in three relevant arguments: the GC in
which values are to be changed, a new set of values, and a mask. The new set of
values is stored in an XGCValues variable, which is another structure. The mask
variable indicates which values in that structure are to be used to change the given
GC. Multiple values can be changed in a single XChangeGC() function call. For
example:

GCmask=GCForeground | GCLineStyle | GCLineWidth;

GCValues.foreground=0x0000FF;

GCValues.line_style=LineDoubleDash;

GCValues.line_width=4;

/* man XChangeGC to see all GC properties */

XChangeGC(Monitor,WindowGC,GCmask,&GCValues);

This code changes the foreground color, the line style, and the line width. The
man page for XChangeGC() or a similar reference can be used to see all the
properties that are changeable in a graphics context.

8.5.4 User Input
Using the X library, user input is provided to a program through events. An event
occurs every time the user manipulates an input device. This includes keypresses,
key releases, mouse motion, and mouse button presses and releases. An event
can also be generated by the operating system in response to actions taken by
another program. For example, if a program ends, destroying its window and
thereby uncovering another window, the operating system will send an event to
the program associated with the newly uncovered window.

The following code demonstrates using events to obtain user input:
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#include <stdio.h>

#include <stdlib.h>

#include <X11/Xlib.h>

main(int argc, char *argv[])

{

Display *Monitor;

Window DrawWindow;

GC WindowGC;

XEvent SomeEvent;

long int EventMask;

Monitor=XOpenDisplay(NULL);

DrawWindow=XCreateSimpleWindow(Monitor,RootWindow(Monitor,0),

10,10, 100,50, 2,

BlackPixel(Monitor,0),

WhitePixel(Monitor,0));

WindowGC=XCreateGC(Monitor,DrawWindow,0,NULL);

XMapWindow(Monitor,DrawWindow);

XFlush(Monitor);

/* Tell X server which events to pass to program */

EventMask=ButtonPressMask;

XSelectInput(Monitor,DrawWindow,EventMask);

while (1)

{

XNextEvent(Monitor,&SomeEvent); /* get user input */

if (SomeEvent.type == ButtonPress)

printf("Button pressed!\n");

}

XCloseDisplay(Monitor);

}

In this example, if a mouse button is pressed, then the program prints out a
message to the user. The XSelectInput() function call tells the system which
events the program is interested in receiving. For example, a program may use
only the mouse, and so would not include keyboard-related events in its event
mask. The XNextEvent() function can be used to obtain input from the user.
Once it returns, a program can decide what to do with the given event.
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There are several functions that vary in how events are received by a pro-
gram. The XNextEvent() function is a blocking function; it will not return until
an event has been received. The XPeekEvent() function can be used with appro-
priate coding to implement nonblocking input polling.

A program can request that multiple types of events be sent to it, and then
process them differently. For example:

EventMask=ButtonPressMask | KeyPressMask | PointerMotionMask;

/* see /usr/include/X11/X.h for list of all masks */

XSelectInput(Monitor,DrawWindow,EventMask);

while (1)

{

XNextEvent(Monitor,&SomeEvent);

/* man XEvent, and its derivatives (e.g., XButtonEvent)

** for complete lists of event types and contents */

if (SomeEvent.type == ButtonPress)

printf("Button pressed!\n");

if (SomeEvent.type == KeyPress)

printf("Key pressed!\n");

if (SomeEvent.type == MotionNotify)

printf("Mouse is moving!\n");

}

Using these concepts, we can use mouse input to control the drawing of
lines. The following code can replace the text-based interface from the example
in Section 8.5.2:

int WhichPoint;

WhichPoint=0; /* 0=>first point, 1=>second point */

while (1)

{

XNextEvent(Monitor,&SomeEvent);

if (SomeEvent.type == ButtonPress)

{

if (WhichPoint == 0)

{

x1=SomeEvent.xbutton.x;

y1=SomeEvent.xbutton.y;

WhichPoint=1;

}
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else

{

x2=SomeEvent.xbutton.x;

y2=SomeEvent.xbutton.y;

WhichPoint=0;

if (x1 == x2 && y1 == y2)

break; /* exit loop and program */

XDrawLine(Monitor,DrawWindow,WindowGC,x1,y1,x2,y2);

XFlush(Monitor);

}

}

}

8.5.5 Fonts
A terminal display uses a fixed grid of character graphics. Characters can be
drawn only inside the grid cells. For example, a character cannot be drawn
halfway between two lines of text. In addition, the font is fixed and is typically
Courier, in which every character fills the same amount of space. With the X li-
brary, a program can draw text at any location in a window, using any font. There
is no character grid; instead, the units of location are pixels. In order to draw text
using a specific font, a program must first set up the graphics context to know
how to draw with that font. The following code demonstrates using the X library
to draw text:

#include <stdio.h>

#include <string.h>

#include <X11/Xlib.h>

main(int argc, char *argv[])

{

Display *Monitor;

Window DrawWindow;

GC WindowGC;

int x1,y1;

XGCValues GCValues;

unsigned long GCmask;

XEvent SomeEvent;

char text[80];

Font NewFont;
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Monitor=XOpenDisplay(NULL);

DrawWindow=XCreateSimpleWindow(Monitor,RootWindow(Monitor,0),

10,10, 100,50, 2,

BlackPixel(Monitor,0),

WhitePixel(Monitor,0));

WindowGC=XCreateGC(Monitor,DrawWindow,0,NULL);

XMapWindow(Monitor,DrawWindow);

XFlush(Monitor);

NewFont=XLoadFont(Monitor,"r14");

GCmask=GCForeground | GCFont;

GCValues.foreground=0xFF0000;

GCValues.font=NewFont;

XChangeGC(Monitor,WindowGC,GCmask,&GCValues);

XSelectInput(Monitor,DrawWindow,ButtonPressMask);

while (1)

{

XNextEvent(Monitor,&SomeEvent);

if (SomeEvent.type == ButtonPress)

{

x1=SomeEvent.xbutton.x;

y1=SomeEvent.xbutton.y;

strcpy(text,"Hello!");

XDrawString(Monitor,DrawWindow,WindowGC,x1,y1,

text,strlen(text));

XFlush(Monitor);

}

}

XCloseDisplay(Monitor);

}

This program will draw “Hello!” at the current mouse location whenver the user
presses a mouse button. The program uses the XLoadFont() function to load
information from the system about the “r14” font. It then assigns that font to the
graphics context for the created window. The program uses the XDrawString()
function to actually draw the text. The properties of the text are controlled by the
values previously set in the graphics context.
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The information about how to draw text using a particlar font is stored in a
font file on the system. Font files use a variety of formats, but they all contain
the same basic information: the appearance of all characters in the given font. In
order to use a font, a program must identify that font by its name. The X library
provides functions to identify the fonts available on a system. The following code
demonstrates these functions:

#include <stdio.h>

#include <X11/Xlib.h>

main()

{

char text[80],partial[80];

char **AvailableFonts;

int font_count,i;

Display *Monitor;

Monitor=XOpenDisplay(NULL);

printf("Enter a string to search: ");

scanf("%s",partial);

sprintf(text,"*%s*",partial);

AvailableFonts=XListFonts(Monitor,text,10,&font_count);

for (i=0; i<font_count; i++)

printf("%s\n",AvailableFonts[i]);

XFreeFontNames(AvailableFonts);

XCloseDisplay(Monitor);

}

The XListFonts() function searches the system for fonts matching the given
string, and returns a list of all font names that partially match. The example pro-
gram asks for at most 10 matches and prints them out. The XFreeFontNames()
function should be called to free up the memory allocated for storing the font
names in the XListFonts() function. There are additional functions related to
loading and handling fonts; however, they are beyond the scope of this text.

8.6 ● Making a Library
Creating a library involves a handful of steps. First, source code for the desired
functions must be compiled and stored in object code files. Second, the object
code files are packaged together to create a library file. Third, an include file is
normally written defining the prototypes of the functions in the library file. The
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include file may also define constants, structure definitions, macros, and global
variable definitions used within the library. Once completed, the include and
library files can be used like any other library.

The following code will be used to demonstrate the creation of a library:

int Largest(int first, int second)

{

if (first > second)

return(1);

else if (second > first)

return(2);

else

return(0);

}

This function takes two integers as input, and returns 1 if the first is larger than
the second, 2 if the second is larger than the first, and 0 if they are equal. If this
code is stored in a file named largest.c, then it can be compiled into object code
as follows:

ahoover@video> ls

largest.c

ahoover@video> gcc -c largest.c

ahoover@video> ls

largest.c largest.o

ahoover@video>

Normally, a library contains multiple object code files. The following additional
code will be used to demonstrate:

void HelloWorld()

{

printf("Hello world\n");

}

double SevenPointSeven()

{

return(7.7);

}

The code for these two functions does not do anything particularly useful; it is
used here only to demonstrate the creation of a library. If this code is stored in a
file named two.c, then it can be compiled into object code as follows:
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ahoover@video> gcc -c two.c

ahoover@video> ls

largest.c largest.o two.c two.o

ahoover@video>

On a Unix system, the program ar is most commonly used to package object code
files into a library file. For example:

ahoover@video> ar r libcustom.a largest.o two.o

ahoover@video> ls

largest.c largest.o libcustom.a two.c two.o

ahoover@video>

In this example, the library file libcustom.a was created. The ar program can
also be used to list the contents of a library file. For example:

ahoover@video> ar t libcustom.a

largest.o

two.o

ahoover@video>

The following code defines the prototypes of the functions in the library file:

int Largest(int,int);

void HelloWorld();

double SevenPointSeven();

Assume this code is stored in a file named custom_lib.h.

After the above steps have been completed, programs can be written that use
the newly created library. For example, consider the following code:

#include <stdio.h>

#include "custom_lib.h"

int main()

{

printf("%lf\n",SevenPointSeven());

HelloWorld();

}

This code calls two of the functions in the custom library. The file custom_lib.h
is included in order to provide function prototypes. Note that it is surrounded by
quotes, indicating the search path is the current directory rather than the system
include path. Assuming this code is stored in a file named testprog.c, then it
can be compiled and linked to the custom library as follows:
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ahoover@video> gcc -o testprog testprog.c -lcustom -L.

ahoover@video>

The command line option -lcustom tells gcc to link to the library file libcus-
tom.a, while the command line option -L. tells gcc to search for libraries in the
current directory in addition to the usual system library path. Executing the pro-
gram produces the following output:

ahoover@video> testprog

7.700000

Hello world

ahoover@video>

If the library is intended to be used repeatedly, it is common practice to copy
the library and include files to the appropriate system directories, to simplify the
compiling of programs that use them.

8.7 ● Library Pitfalls
Once a programmer gets used to the idea of using libraries, it is easy to get en-
thralled by them. They save time and allow us to code things that might otherwise
be very difficult. It is important to remember that a library is just a tool. Libraries
should be used to help overcome problems, not just because they are available. A
programmer can make the mistake of using a library when its utility to a given
problem is minimal. This is bad, because now an application is tied to a library
that it doesn’t really need. Programs can become bloated and difficult to maintain
simply because they have been linked to too many libraries.

Another common pitfall is to spend too much time looking for a library to
solve a problem. It can be enticing to think that somebody “out there somewhere”
has already written code to tackle the problem at hand. This leads to a program-
mer’s reluctance to solve a given problem from scratch, and a dependence on
searching for existing library-supported solutions. Searching can end up taking
more time than simply writing code from scratch. It can also cause a program-
mer to use a library that does not quite fit the problem at hand, but which can
be forced to provide a hacked solution. This leads to inefficient and sometimes
error-prone applications.

A library is just another tool in the arsenal of an experienced system pro-
grammer. Like a debugger, a shell, or a system call, a library is there to help solve
problems. A carpenter may use a hammer, a wrench, or a screwdriver to work
on something, but (hopefully) only in the appropriate circumstances. Similarly,
a programmer should only use the tools at hand when the job calls for them.
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Questions and Exercises
1. During the writing and compiling of a program, what two steps must be taken to

make use of a library?

2. A program has been written that makes use of both the math library and a custom
widget library. The code for the program is stored in a file named myprog.c. The
math library file resides in a standard system directory but the widget library
file, named libwidget.a, resides in a custom directory /lib/widget. For the
gcc compiler, write the command necessary to compile the code and build an
executable, including all command line arguments.

3. What, if any, are the similarities and differences between a device driver and a
system library?

4. The following code snipet contains some unfamiliar text:

#include <stdio.h>

#include <stdlib.h>

#include <wintrust.h>

/* ... */

WINTRUST_FILE_INFO FileData;

memset(&FileData, 0, sizeof(FileData));

FileData.cbStruct = sizeof(WINTRUST_FILE_INFO);

FileData.pcwszFilePath = pwszSourceFile;

FileData.hFile = NULL;

FileData.pgKnownSubject = NULL;

How could one go about discovering the definition of WINTRUST_FILE_INFO, and
how to interpret it?

5. The following formula can be used to describe how an investment increases in
value over time through the accumulation of compound interest:

F = Iery

where I is the amount initially invested, r is the interest rate, y is the number of
years of interest accumulation, and F is the final value accumulated. For example,
given an initial investment I of 941.76, accumulating interest at a rate r of 0.03
for a period y of 2 years results in a final value F of 1000.00. Write a program that
calculates the needed initial investment given values for the other three variables.
The program should prompt the user for the needed values, and then report the
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needed initial investment. The program should make use of the math library for
the value of e (use the macro defined as M_E) and the pow() function to calculate
the power.

6. The following formula can be used to describe the dimensions of a loading ramp:

sin(θ) = h

l

where θ is the incline angle of the ramp, h is the height of the ramp, and l is the
length of the ramp. Write a program that calculates the needed length of a ramp
given a desired incline and height. For example, given an incline of 9.5 degrees
and a height of 0.5 m, a ramp needs to be 3.03 m in length. The program should
prompt the user for the needed values and calculate and report the required
length. The program should make use of the math library for the sin() function,
and should use the macro M_PI for the value of π to convert degrees to radians
(radians = degrees × π

180 ).

7. Write a program that makes use of the math library to solve triangles. A triangle
has six values of interest, which are the lengths for each of its sides, and the angles
of each corner:

A

a

b

c

B

C

The Law of Cosines states that

A2 = B2 + C2 − 2BC cos a

B2 = A2 + C2 − 2AC cos b

C2 = A2 + B2 − 2AB cos c

(8.1)

The Law of Sines states that

A

sin a
= B

sin b
= C

sin c

Given any three of the six unknown values, it is possible to solve for the remaining
three values using these equations. That is the goal of the program. The program
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should be menu driven, with options for entering a value for a triangle’s side or
angle, displaying the known values, solving for the unknown values, resetting (so
that all values are unknown), and exiting. No graphics are expected; everything
should be text driven. When solving for the unknown values, the program should
check to make sure that exactly three values have been entered; any more or less
and the program should provide the user with an appropriate error statement.
It should also check for and reject values for negative lengths or angles, all equal
lengths, one length greater than the sum of the other two, and angles outside
allowed ranges.

8. Write a program that allows the user to enter data into a form. The program
should use character graphics and capabilities provided by the ncurses library.
The program should display the prompts of the form continuously in the same
positions (the specific prompts and positions are at the discretion of the pro-
grammer). After each keypress by the user, the data entered into the form should
be updated and displayed. The fields of the form should include the first name,
last name, and street address for a person. The two name fields should be lim-
ited to 20 characters, the street address field should be limited to 30 characters.
Pressing the [ENTER] key should cause the cursor (current point of data entry)
to jump to the first character in the next field. If the current field is the street
address, then pressing [ENTER] should cause the program to report the entered
data and then exit. Optional: Pressing the backspace key should allow the user to
delete the last character entered in the current field.

9. Write a program that allows the user to verify entry of a 4-digit personal iden-
tification number (PIN). The program should use character graphics and capa-
bilities provided by the ncurses library. The program should clear the screen and
display a prompt to enter a 4-digit PIN. As the user types a digit, an X should
be displayed to represent each digit. Only the characters 0 through 9 should be
accepted, any others should be ignored. If the user presses the backspace key,
then the last digit entered should be deleted and the display updated to reflect
the deletion. When the user presses [ENTER], the system should compare what
has been entered (may be 0 to 4 digits) against the value 5309. If it matches, the
program should report success and end; otherwise the program should report
that the code entered is incorrect, and then start over from the beginning.

10. Write a program that uses the curses library to let the user play a video game.
The game should use character graphics and capabilities provided by the ncurses
library. The action is to be modeled after the classic Space Invaders game. The
basic action is that a ground tank controlled by the user fires at aliens that are
attempting to land.
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All objects in the game, including the tank, the aliens, and any shots fired,
should occupy 1 character of space each. Use easily identifiable characters for all
objects. The tank should be made to move left or right on the bottom row of
the screen by using the arrow keys of the keypad. The tank should also be made
to fire a shot by using the spacebar. The initial position of the tank should be the
center bottom. The initial position of any shot fired should be immediately above
the tank. Shots fired should move upward only, one position at a time. The tank
should move horizontally only, one position at a time. The game should limit
the user to having three shots active at any time. If the spacebar is pressed while
three shots are still active, nothing should happen. Upon reaching the top of the
screen, shots should disappear. Tank motion should be bounded by the edges of
the screen.

Aliens should appear immediately when the game starts. They should initially
number 30 in count. They should be positioned in three rows, 10 per row, starting
on the second row. The first row is reserved (as discussed below). On each row
they should be somewhat spaced out—they cannot be side by side. The exact
configuration is left to the programmer. Every alien should move sideways only,
starting by moving to the right, until it hits an edge. Upon hitting an edge,
the alien should drop down one row and change directions, moving toward the
other side. Thus, the overall motion is zig-zag across the screen. Aliens should
randomly drop bombs. There should be a 1% chance of an alien dropping a bomb
each time it moves to a new location. Bombs should fall vertically downward
one position at a time. Upon reaching the bottom of the screen, bombs should
disappear.

Bombs should pass through (not affect) other aliens or shots fired by the tank.
Similarly, shots fired by the tank should not affect bombs. If a shot fired by the
tank occupies the same location as an alien, the alien dies (disappears). If a bomb
dropped by an alien occupies the same location as the tank, the tank dies. The
game is won when the user kills all the aliens. The game is lost if the tank dies, or
if an alien reaches the ground.

A score should be reported on the top (first) row of the screen, in the leftmost
position. The score should give 20 points for each alien killed, minus 1 point for
each shot fired by the tank. The cursor should be kept unobtrusively out of the
action, located at the top right corner of the screen. The user should be able to
press “q” at any time to quit the game.

The keyboard control of the tank should be nonechoing, unbuffered, and
nonblocking. The overall speed of the game, as defined by an iteration in which
objects move and user input is polled, should be a variable with a fixed value in
milliseconds. This can be controlled by a usleep() function call each iteration,
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with the appropriate value. Object speeds should be integer scalars of the timing
of the main loop. For example, if the tank motion scalar is 3, then the tank
would move every third iteration through the loop. The control values include the
overall speed of the game, the speed of alien motion, the speed of the tank shots,
the speed of the alien bombs, and the percentage chance of an alien dropping a
bomb. These control values should all be set to fixed values.

11. Write a program that uses the X library to display a screen saver. The screen saver
should show a circle bouncing vertically in the window. The window should be
large enough to fill most of the screen, but a specific size is not required. The
circle should start in the center of the window, moving upward. The radius of
the circle is at the discretion of the reader. The center of the circle should move
1 pixel per 0.1 seconds, controlled via use of the usleep() function. The circle
should be “erased” (drawn in the background color) and then redrawn (in the
foreground color) to create the illusion of motion. When the boundary of the
circle hits the boundary of the window (top or bottom), then the circle should
reverse direction. The program should run indefinitely.

12. Write a program that uses the X library to display a clock. The program should
use the ctime() function to obtain the current time. The time should be display
as text in HH:MM:SS format, where HH is the current hour, MM is the current
minute, and SS is the current second. The display should be updated once per
second, controlled using the sleep() function. The time should be displayed
using the XDrawString() function in the center of a window created by the
program. The program should run indefinitely.

13. Write a program that uses the X library to allow the user to paint simple two-
dimensional primitives in a window. Various properties of the primitives should
be selectable through mouse clicks in a second window. The program should run
indefinitely until the user presses the system “X” to close a window, thus killing
the program.

The program should open two windows. Neither window should fill the en-
tire screen; both windows should be of reasonable size to accommodate the de-
sired content. The first window will serve as a canvas in which to draw; it should
otherwise be empty. The second window will serve as a palette, containing icons.
These icons will allow the user to select various properties to control the drawing.
There should be four groups of icons. The exact appearance and distribution of
the icons is left to the reader.

The first set of icons should show a straight line, an arc, and a circle. This set
controls what shape the user is drawing. If a line is selected, the user draws a line
by pressing any button twice, once for each endpoint. If an arc is selected, the user
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draws an arc by pressing any button four times, first and second for the corners of
the bounding box, and second and third for the beginning and ending angles of
the arc (see XDrawArc() for how this works). If a circle is selected, the user draws
a circle by pressing any button twice, first at the center, then at any point on the
radius.

The second set of icons should show two line styles, solid and dotted. The
third set of icons should show four line thicknesses, from 1 to 4 pixels. The fourth
set of icons should show a set of four colors (reader’s choice). Any primitive
drawn should use the selected line style, thickness, and color. All currently se-
lected icons should be highlighted, by drawing a red rectangle around it. Exactly
one choice per set of icons should be active at any time, including a default selec-
tion at startup.

14. Create a library. The library should contain two functions, Hello() and World().
Calling the Hello() function should print out the string “Hello”; calling the
World() function should print out the string “World.” The library should use a
flag (implemented using a static global variable) that keeps track of which string
was last printed. A call to the Hello() function should print out “Hello” only if
“World” was the last string printed, and vice versa. The flag should be updated
at the end of each function call. Each function should return 1 if the string was
printed, 0 otherwise. Write a simple program that uses the library and tests for
the correct working of the functions.

15. Describe two problems that can arise when libraries are overly relied upon or
used improperly.
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9
Scripting Languages

A scripting language is a very high-level programming language, usually
targeted toward a specific type of programming work. For example, the

shell scripting languages provide mechanisms that simplify operations on lists of
files. Consider a weekly task where a system administrator wants to search user
directories for large files, and then email each user with a personalized list of
their files as part of an announcement to reduce network storage. The system
administrator could use a shell scripting language to quickly write a program
to get that task done. It would take less time to write the program using a shell
scripting language, as compared to the C language, because of the mechanisms
that a shell scripting language provides to simplify coding for those sorts of tasks.
From this point of view, the main reason for using a scripting language to write a
program is to save coding time.

Scripting languages provide a higher level of abstraction than standard pro-
gramming languages. The biggest distinction is in data and type definitions. Most
scripting languages do not distinguish between integers, real values, strings, and
other data types. They rely upon context and built-in converters to implicitly
change the bit patterns used to store values and perform computations. This
makes it easier to write programs that deal with numbers and text, because the
programmer does not have to keep track of how the values are actually stored or
how computations on them are actually performed. However, it can also be dan-
gerous because without explicit declarations and type casting, unexpected results
can occur. What makes this work is that most script programs are small and tend
to have a small number of variables of homogeneous type. Thus, a programmer
can save coding time by being less strict with variables.
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Script languages tend to be good for automating the execution of other pro-
grams, for example, running daily backups or creating log files. They can be
useful for rapid prototype programming, where the goal is to see how a particular
program might look or operate. Script languages are also good for writing a pro-
gram that is going to be used once and then discarded. These sorts of programs do
not need to be rigorously defined or maintained. Good code organization tech-
niques should still be followed, but for a program that is going to be written, used
once, and then deleted, all within the span of an hour, commenting and many
other organization practices can be skipped. Similarly, the program is likely to be
short, so that functions and other organization techniques are not needed. Some
script programs end up being useful for a longer time, in which case more sound
code organization principles should be followed. However, the majority of script
programs are “quick and dirty,” where the main goal is to get the program written
quickly.

Most scripting languages use C-like syntax and are therefore somewhat read-
able to experienced C programmers. However, they also use a lot of shortcuts,
such as using on-the-fly variable declaration. They tend to use short sequences of
text or symbols to implement common operations, such as reading data from a
file or testing variables for various types of equality. Thus, they can be difficult to
follow in detail. Even experts can have a hard time, because most scripting lan-
guages provide many ways to accomplish the same thing, depending on which
shortcuts are used.

Scripting languages use interpretation to run programs. There is no compile
step and no executable file separate from the source code file. Some quasi-compile
the source code file as it is loaded into the interpreter, so that those parts of
the program accessed more than once (e.g., loops) will execute more quickly.
However, in general, script programs run more slowly than those written in the C
programming language. Execution speed is not the primary concern, because it is
expected that the program will be run only once or that the job will be relatively
quick. Instead, program writing time is the primary concern.

There are a number of different scripting languages, including shell scripting
(which itself has many varieties), Perl, Python, Tcl, PhP, Ruby, JavaScript, and
VBScript. Most scripting languages were developed for a specific type of work. A
particular language may include additional abstraction features, such as hashes
or graphical user interface widgets, that facilitate a certain type of programming
work. This chapter looks at three scripting languages in some detail. Shell script-
ing is most commonly used for system administration tasks. Perl is most com-
monly used to “glue” together other programs, especially for web server/client
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and database interactions. MATLAB1 is most commonly used for batch process-
ing of tabular data and for generating large numbers of plots. The goal is not to
make the reader an expert with these three languages. The goal is to make the
reader familiar with the sorts of tasks for which scripting languages are a useful
tool. Scripting languages are so diversified and varied, with new ones appearing
every few years, that it is virtually impossible to become fluent in all of them.
But they share many common design goals and features. By exploring these three
scripting languages, the reader will be prepared to become fluent in any scripting
language.

9.1 ● Using Scripting Languages
Scripting languages use interpreter programs to execute script code. For many
scripting languages, the interpreter program can be run interactively. For
example:

ahoover@video> python

Python 1.5.2 (#1, Jul 5 2001, 03:02:19)

>>> x=7

>>> print x

7

>>> print "Hello from python"

Hello from python

>>>

>>> [CTRL-D]

ahoover@video>

This example demonstrates the use of the Python scripting language. After the
python script interpreter is started, it displays >>> as its prompt. Python state-
ments can be entered at this prompt, and the results will be displayed interac-
tively. The key sequence CTRL-D exits the Python interpreter.

Shells work similarly; most of the examples throughout this book have al-
ready shown interactive usage of a shell. A shell can also be used to start another
shell. For example:

ahoover@video> sh

sh-2.05$ ls

hello.pl hello.py hello.sh

1. GNU Octave, a free open source program similar to MATLAB and capable of running the same

examples in this chapter, is available at www.octave.org.

www.octave.org
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sh-2.05$ mkdir temp

sh-2.05$ ls

hello.pl hello.py hello.sh temp

sh-2.05$ exit

exit

ahoover@video>

In this example, the prompt ahoover@video> is used by the tcsh shell interpreter.
Running the program sh starts the Bourne shell, which displays sh-2.05$ as its
prompt. Standard shell statements can then be entered with the results displayed
interactively. The exit command quits the Bourne shell interpreter, which in the
above example returns to the tcsh shell interpreter.

Although scripting languages can be used interactively, they can also be used
as programming languages. In this case, a script of statements is written and saved
in a file. For example:

@filenames=<*>;

$count=@filenames;

if ($count > 5) {

print "large directory\n";

}

else {

print "small directory\n";

}

This is a Perl script that finds the number of files in the current directory; if the
number of files is greater than five, then it reports “large directory”; otherwise,
it reports “small directory.” If the above statements are stored in a file named
dirsize.pl, then they can be executed as follows:

ahoover@video> ls

dirsize.pl hello.pl hello.py hello.sh

ahoover@video> perl < dirsize.pl

Small directory

ahoover@video>

Running the script in this manner pipes the statements from the script file into
the interpreter. The script can also be executed like this:

ahoover@video> perl dirsize.pl

Small directory

ahoover@video>
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Running the script in this manner provides the script filename as a command
line argument to the interpreter. Although script files can be run in these ways,
the most common way of running a script file is to start it with a line identifying
the interpreter. For example:2

#!/usr/local/bin/perl

print "Hello from perl\n";

The first line of a script file has a unique syntax. The #! sequence tells the system
that the remainder of the line is the name of the program that should be used to
execute the rest of the statements in the file. If these statements are stored in a file
named hello.pl, then they can be executed as follows:

ahoover@video> hello.pl

Hello from perl

ahoover@video>

In this case, the system finds the script interpreter from the first statement in the
script file.

The last examples showed three different ways to run a script file. The para-
digm of having multiple ways to get something done is found throughout script
programming. Also in these examples, the number of keystrokes necessary to
execute the script was reduced from the first to the last example. This is an-
other paradigm found throughout scripting languages, where the goal is to save
programming time by reducing the amount of code or keystrokes necessary to
accomplish a task.

In order for the last example to work correctly, the script file must have
executable permission. This can be checked and changed as follows:

ahoover@video> ls -l hello.pl

-rw-r--r-- ahoover fusion 49 Sep 4 15:18 hello.pl

ahoover@video> chmod 755 hello.pl

ahoover@video> ls -l hello.pl

-rwxr-xr-x ahoover fusion 49 Sep 4 15:18 hello.pl

Text editors typically save new files with read/write permissions only, so that
chmod must be used to add executable permission. At this point, programmers
typically stop thinking of script files as lists of statements and start thinking
of them as programs. The dividing line is tenuous, and the distinctions can be

2. The exact path may differ from system to system. The which command (e.g., which perl) can be

used to find the exact path for a script interpreter on a system.
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murky. The most common distinction involves interpretation versus compila-
tion. Many scripting languages are purely interpretive, meaning that they analyze
statements one at a time as they are reached in the script file. If the statement is
valid for the language, then it is executed, and interpretation proceeds to the next
line. However, some scripting languages perform a type of compilation, convert-
ing the entire script file to an intermediate form before beginning execution. Perl
works in this way. If any statement in a Perl script is invalid, then the Perl inter-
preter will report the error before beginning execution. Both of these forms of
execution can be contrasted with C program compilation, where the source code
is compiled to machine code and saved in a separate file for execution. An ad-
vantage with scripting languages is that the compilation step is skipped, making
the distribution and use of a script program simpler. A disadvantage is that script
programs run more slowly than machine code because of the interpretation. In
any case, the rest of this chapter will refer to scripts as programs, and all example
script files will be assumed to have executable permission.

A common error encountered by novice script writers and users involves the
correct path and spelling of the script interpreter on the first line. For example,
consider the following code:

#!/urs/local/bin/perl

print "Hello from perl\n";

If this code is stored in a file named hello2.pl, then executing produces the
following output:

ahoover@video> hello2.pl

hello2.pl: Command not found.

ahoover@video>

The error message is unfortunate, implying that the file hello2.pl could not be
found. This is not the case. Instead, the problem is that the interpreter given on
the first line in the script file could not be found. Usually this is because it was
spelled incorrectly (as in this case), or the path is incorrect. The result is that the
system does not know how to execute the script because it cannot find the script
interpreter.

A large number of scripting languages have been developed that overlap in
the ways they can be used. For example, consider the following python script:

#!/usr/bin/env python

print "Hello from python"

If this code is stored in a file named hello.py, then it can be executed as follows:
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ahoover@video> hello.py

Hello from python

ahoover@video>

The following Bourne shell script does the same thing:

#!/bin/sh

echo "Hello from sh"

If this code is stored in a file named hello.sh, then it can be executed as follows:

ahoover@video> hello.sh

Hello from sh

ahoover@video>

A Perl script for accomplishing the same thing was shown in a previous example.
The point is that there are many scripting languages and it is unlikely that a
programmer will become proficient in all of them. This chapter is not intended
to make the reader an expert with any individual scripting language. Instead, this
chapter explores three examples in order to demonstrate how scripting languages
can be used to save time for some programming tasks.

9.2 ● Shell Scripting
While shells are most commonly used interactively, they can also be used as pro-
gramming environments. Shell scripting refers to the running of a script, as a
program, on a shell. Certain aspects of system administration can often be ac-
complished more quickly using shell scripts. For example, account management,
such as the making and deletion of accounts as well as the monitoring of ac-
count usage, can be simplified. Other popular uses for shell scripts include the
configuration of applications during installation, and operations involving the
management of large numbers of files.

There are many different shells, and each has its own scripting language.
The three most popular shells are sh, csh, and ksh. In chronological order of
development, sh is the oldest, and historically it was the default shell for the root
user. The second oldest is csh, the syntax of which most closely resembles that
of the C programming language. The ksh shell is the newest of the three and
the most rich in terms of the number of programming features it supports. In
addition to these three, there are other derivative shells that have achieved notable
popularity, such as tcsh (a derivative of csh) and bash (a derivative of sh). At
the time of this writing, the default shell on most Unix systems is bash, with sh
commonly linked to bash.
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Different shell scripting languages can be thought of as different dialects of
a human language. There are differences between all the dialects, but there is a
great deal of commonality in the core syntax of all shell scripting languages. If
a programmer is fluent with that core, then most shell scripts can be read and
understood with at least some modicum of familiarity.

This section will focus on the Bourne shell (sh) scripting language. The
Bourne-again shell (bash) scripting language is a superset of the sh scripting
language, so the syntax discussed here is applicable to both. In order to explain
how it is used, the primary features of the language will be discussed. Examples
will highlight how it can be used to save time and effort to accomplish certain
programming tasks.

9.2.1 Input/Output
The basic I/O statements for the Bourne shell are echo for displaying text and read
for reading input from the keyboard. For example, consider the following code:

#!/bin/sh

echo Name a fruit?

read FRUIT

echo Vegetable?

read VEGGIE

echo $FRUIT and $VEGGIE are healthy foods

If this code is stored in a file named foods.sh, then it can be executed3 as follows:

ahoover@video> foods.sh

Name a fruit?

apple

Vegetable?

potato

apple and potato are healthy foods

ahoover@video>

The read statement takes all characters typed until the [ENTER] key is pressed
and stores them into the given variable. For example:

ahoover@video> foods.sh

Name a fruit?

apple pie

Vegetable?

3. It is assumed that file permissions have been set correctly, as explained in Section 9.1.
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ice cream cake

apple pie and ice cream cake are healthy foods

ahoover@video>

The echo statement will print multiple arguments as demonstrated above. By
default, echo eliminates redundant whitespace (spaces and tabs) and leaves a
single space between arguments. For example:

ahoover@video> foods.sh

Name a fruit?

apple pie

Vegetable?

ice cream cake

apple pie and ice cream cake are healthy foods

ahoover@video>

This is one of the shortcuts that shell programming provides. It is assumed that
a programmer is most likely displaying text and would benefit from a default
behavior where spacing was singularized. This behavior can be suppressed in the
echo statement by enclosing the desired output within double quotes. The string
of multiple words is then treated as a single argument. For example, the last line
of the above program can be changed as follows:

echo "$FRUIT and $VEGGIE are healthy foods"

Running this new program produces the following output:

ahoover@video> foods2.sh

Name a fruit?

apple pie

Vegetable?

ice cream cake

apple pie and ice cream cake are healthy foods

ahoover@video>

Note that the extra spaces have been preserved.

There are a handful of symbols that affect how output is displayed. As just
mentioned, double quotes group multiple words into a single argument, prevent-
ing the collapsing of whitespace. The following code demonstrates some other
special symbols:

#!/bin/sh

# This is a comment

# Special symbols include # $ \ ’ {}

HI=Hello
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echo HI # displays HI

echo $HI # displays Hello

echo \$HI # displays $HI

echo ’$HI’ # displays $HI

echo "$HIJ" # displays nothing?

echo "${HI}J" # displays HelloJ

The # symbol starts a comment, where everything after it is considered part of
the comment. The $ symbol indicates that the rest of the string is the name of a
variable. The \ symbol is an escape sequence and indicates that the next character
should be displayed literally; this allows for the display of the reserved symbols in
output. The use of single quotes (’) indicates that everything inside them should
be displayed literally including any special symbols. The braces ({}) can be used
to enclose the name of a variable when it is to be displayed adjacent to other text;
in this manner, the shell knows the extent of the variable name. In the second to
last line in the example above, the shell tries to display the value of the variable
HIJ, which is undefined and hence displayed as empty.

9.2.2 Variables
Variables do not need to be explicitly declared before being used. The first time
a new variable name is seen, the shell programming environment allocates space
for it automatically. For example:

#!/bin/sh

ROCKS=4

echo Price?

read PRICE

echo $ROCKS rocks for sale, $PRICE each

If this code is stored in a file named rocks.sh, then it can be executed as follows:

ahoover@video> rocks.sh

Price?

$1.25

4 rocks for sale, $1.25 each

ahoover@video>

This can seem quite strange to someone familiar with C programming or other
high-level languages. It is one of the shortcuts provided by shell programming.
The idea is to save the programmer the time required to write explicit variable
declarations, allowing variables to be declared on-the-fly.
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The type of data held by the variable is also unimportant. In a shell program,
there is only one type of variable, and no distinction is made between text and
numeric data, or between different types of numeric data. All variables are stored
as strings. Numeric operations can be performed upon variables, but the vari-
ables are passed to the appropriate operator as strings and then converted before
the numeric operation is performed. If a numeric result is stored in a variable, it
is automatically converted back to a string before storage. This is another short-
cut provided by shell programming. The idea is to relieve any burden upon the
programmer with regards to explicit data typing.

By convention, variables are often named using all uppercase letters. This al-
lows them to be seen more easily and differentiated from other code. If a variable
is named using two or more words, then by convention the underscore character
is often used to separate the words. For example:

#!/bin/sh

AUTHOR_NAME="Douglas Adams"

Some variables are declared automatically. For example:

#!/bin/sh

echo Run with $# arguments

echo First three command line arguments:

echo $0

echo $1

echo $2

echo PID is $$

If this code is stored in a file named vars.sh, then executing it produces output
like the following:

ahoover@video> vars.sh turtle frog tree

Run with 3 arguments

First three command line arguments:

vars.sh

turtle

frog

PID is 23061

ahoover@video>

The command line arguments are stored similarly to how they are stored for a C
program. The process ID can be useful if multiple copies of the script are executed
concurrently. Each process can use its PID to uniquely name temporary storage
files or other constructs that would otherwise collide.
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Most scripts do not use a large number of variables. The idea behind all these
shortcuts and conventions in shell programming is to save time while writing a
program. Most scripting languages remove or limit the need for variable declara-
tion, type casting, and data conversion. Some scripting languages go so far as to
eliminate the need for naming variables at all. This will be seen in some examples
for the Perl scripting language.

9.2.3 Loops
There are two simple loops in Bourne shell programming: for and while. The for
statement iterates a variable through a list of values, executing one iteration per
value. For example:

#!/bin/sh

for i in 1 2 5 tree frog

do

echo "file${i}.txt"

done

If this code is stored in a file named loop1.sh, then executing it produces the
following output:

ahoover@video> loop1.sh

file1.txt

file2.txt

file5.txt

filetree.txt

filefrog.txt

ahoover@video>

The for statement provides a convenient shortcut method for creating a list of
strings that differ only in part, as shown in this example. This is often useful for
creating, moving, or renaming a large number of files.

The while statement executes a loop until a test condition has been satisfied.
For example:

#!/bin/sh

NAME=Unknown

while [ $NAME != "Fred" ]

do

echo Who are you?

read NAME
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echo Let me see ...

done

echo Found you!

If this code is stored in a file named loop2.sh, then executing it produces output
like the following:

ahoover@video> loop2.sh

Who are you?

Joe

Let me see ...

Who are you?

Fred

Let me see ...

Found you!

ahoover@video>

The while statement is used in shell scripting as it is used in many languages,
namely, for the processing of data of unknown length.

9.2.4 Conditionals
The if statement is the primary method of program flow control in shell script-
ing. For example:

#!/bin/sh

NAME="Fred"

if [ $NAME = "Fred" ]; then

echo Matches

fi

If this code is stored in a file named if1.sh, then executing it produces the
following output:

ahoover@video> if1.sh

Matches

ahoover@video>

The if statement tests a condition; if the condition is true, then the code inside
the delimiters then and fi is executed.

The if statement can contain else clauses, similar to most programming lan-
guages. For example:
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#!/bin/sh

NAME="Joe"

if [ $NAME = "Fred" ]; then

echo Matches

else

echo No match

fi

If this code is stored in a file named if2.sh, then executing it produces the
following output:

ahoover@video> if2.sh

No match

ahoover@video>

Multiple if statements can be chained using the elif statement, similar to other
programming languages.

The if statement, and the while statement from the previous section, most
commonly use the test program to evaluate a condition. The test program can
be called by its full name, “test,” or by a convenient shorthand alias using square
brackets. For example:

#!/bin/sh

NAME="Joe"

if test $NAME = "Fred" ; then # one test syntax

echo Hello Fred

fi

if [ $NAME = "Joe" ]; then # another test syntax

echo Hello Joe

fi

If this code is stored in a file named if3.sh, then executing it produces the
following output:

ahoover@video> if3.sh

Hello Joe

ahoover@video>

Each of the two syntaxes is equivalent,4 but the square brackets syntax is usually
preferred because it is shorter and somewhat easier to read. Note that when the
square bracket syntax is used, all arguments within the square brackets must have

4. The interested reader is encouraged to type which [ at the shell prompt to see the relation between

the two syntaxes.
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preceding and succeeding spaces. These spaces can look redundant when com-
pared to other programming languages, but in shell scripting they are necessary
in order to separate all the arguments correctly.

The test program provides a shorthand method for evaluating simple string
equivalencies, as shown in the previous examples. Strings can also be tested for
nonequality and other conditions. For example:

#!/bin/sh

NAME="Fred"

GHOST=""

if [ "$NAME" != "Joe" ]; then

echo Where\’s Joe?

fi

if [ -z "$GHOST" ]; then

echo Boo!

fi

if [ -n "$GHOST" ]; then

echo I’m not a ghost.

fi

If this code is stored in a file named if4.sh, then executing it produces the
following output:

ahoover@video> if4.sh

Where’s Joe?

Boo!

ahoover@video>

The -z option tests if a string is empty, while the -n string tests if a string is not
empty. Note that in this example all the variables are placed within double quotes.
This is a good practice, because if a variable is an empty string, then it will not
appear as an argument to the test program and the result will likely differ from
what was expected.

Numeric comparisons can be performed with the test program. For example:

#!/bin/sh

i=7

j=9

if [ "$i" -lt "$j" ]; then

echo Lesser

fi

if [ "$i" -gt "$j" ]; then

echo Greater

fi
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If this code is stored in a file named if5.sh, then executing it produces the
following output:

ahoover@video> if5.sh

Lesser

ahoover@video>

The flag -lt tests if the first argument is less than the second; the flag -gt tests if
the first argument is greater than the second. The flags -le and -ge also test for
equality but include the case where the arguments are equal in the evaluation.

File properties can be evaluated using the test program. For example:

#!/bin/sh

FILE=if6.sh

if [ -f "$FILE" ]; then

echo FILE exists

fi

if [ -x "$FILE" ]; then

echo FILE is executable

fi

If this code is stored in a file named if6.sh, then executing it produces the
following output:

ahoover@video> if6.sh

FILE exists

FILE is executable

ahoover@video>

The flag -f tests whether or not a file with the given name exists. The flags -r, -w,
and -x test whether or not the read, write, and execute permissions for the file are
set. The flag -d tests if the given filename is a directory. Other flags test additional
properties of files.

Together, the if statement and test program give a convenient shorthand
method for control flow. For example, these methods would be suitable to write
a program that searches a set of text files in some nontrivial manner. Compared
to writing the same program in C, using these methods in a shell script would
likely save programming time.

9.2.5 Shell External Programs
The Bourne shell interpreter has only a few built-in commands and language
constructs. In order to write shell scripts, a programmer typically takes advantage
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of a number of other programs external to the shell. A shell script calls external
programs by invoking them as commands. This is done by enclosing the name
of the program to be run, along with any arguments, using back quotes (‘). The
entire back quote–enclosed string is replaced with the output that results from
running that command. For example:

#!/bin/sh

FILES=‘ls‘

echo $FILES

If this code is stored in a file named backquotes.sh, then executing it produces
the following output:

ahoover@video> ls

backquotes.sh

ahoover@video> backquotes.sh

backquotes.sh

ahoover@video>

This mechanism is commonly used in shell script programming. It lets a script
use other programs to do some work, placing the result into a variable in the
script or using the result to control program flow.

The test program introduced in the last section is an example of an exter-
nal program. However, the test program does not produce any output. It only
evaluates true/false expressions, and uses its exit (return) code to report the eval-
uation. Therefore, programming using the test program does not require the back
quotes mechanism. A more complex expression evaluation program is expr. For
example:

#!/bin/sh

i=3

j=7

a=‘expr $i + $j‘

b=‘expr $j / $i‘

echo "$a $b"

If this program is stored in a file named expr1.sh, then executing it produces the
following output:

ahoover@video> expr1.sh

10 2

ahoover@video>

The expr program can perform the evaluation of a variety of numeric and string
expressions. Since the result of the evaluation is output to stdout, back quotes
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are placed around the command in order to assign the result to a variable. The
following is another example:

#!/bin/sh

files=‘ls‘

i=1

for name in $files

do

echo "File $i is $name"

i=‘expr $i + 1‘

done

If this code is stored in a file named expr2.sh, then executing it produces the
following output:

ahoover@video> ls

backquotes.sh expr1.sh expr2.sh

ahoover@video> expr2.sh

File 1 is backquotes.sh

File 2 is expr1.sh

File 3 is expr2.sh

ahoover@video>

The expr program is the main tool used in shell script programming for arith-
metic operations.

There are a handful of programs that are commonly used for string process-
ing. For example, the tr program can be used to perform character substitutions.
The following data will be used to demonstrate:

The cat went up the tree

If this data is stored in a file named data1.txt, then the following command
performs a simple substitution:

ahoover@video> tr e o < data1.txt

Tho cat wont up tho troo

ahoover@video>

The tr program replaces all occurrences of the first command line argument with
the second command line argument. It operates on data received on the stdin
stream and places output on the stdout stream. The following demonstrates using
tr in a shell script:

#!/bin/sh

files=‘ls‘
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for name in $files

do

newname=‘echo $name | tr "[:lower:]" "[:upper:]" ‘

if [ "$newname" != "$name" ]; then

mv "$name" "$newname"

fi

done

This program looks at all the filenames in the current directory and renames
them to use all uppercase letters. The tr program is used to perform the character
substitution from any lowercase letter to its equivalent uppercase letter. If this
code is stored in a file named upper.sh, then executing it produces the following
output:

ahoover@video> ls

upper.sh This_Is_A_Test.txt

ahoover@video> upper.sh

ahoover@video> ls

UPPER.SH THIS_IS_A_TEST.TXT

ahoover@video>

This type of program provides a convenient shortcut for renaming a large num-
ber of files according to a desired convention. It also provides a convenient short-
cut for minor alterations of the contents of a large number of files, for example,
removing extra newline or carriage return characters.

The cut program can be used to parse lines of text, reformatting it for a
desired style of output. The following data will be used to demonstrate:

The cat went up the tree

The dog chased the stick

The turtle took a nap

If this data is stored in a file named data2.txt, then it can be processed using the
cut program as follows:

ahoover@video> cut -d " " -f 2 data2.txt

cat

dog

turtle

ahoover@video>

The -d argument tells the cut program to use the following character (in this ex-
ample, the space character) as the delimiter between fields. The -f 2 argument pair
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tells the cut program to display the second field only. The following demonstrates
using the cut program in a shell script:

#!/bin/sh

# adds up the size of all files

sizes=‘ls -l | cut -b 29-38‘

total=0

for i in $sizes

do

total=‘expr "$total" + "$i"‘

echo $i

done

echo $total

If this code is stored in a file named sizes.sh, then executing it produces the
following output:

ahoover@video> ls -l

-rw-r--r-- ahoover fusion 72 Sep 2 18:05 data2.txt

-rwxr-xr-x ahoover fusion 176 Sep 3 15:57 sizes.sh

ahoover@video> sizes.sh

72

176

248

ahoover@video>

This example uses the cut program to parse the characters in positions 29–38 on
each line into the variable sizes. It then uses the expr program to total the sizes
and prints out the total.

Two more advanced string processing programs are sed and awk. They are
actually complex enough to be considered scripting languages by themselves. It
is possible to write script programs entirely in sed or awk. However, sed and awk
are more commonly used as shell external programs. The sed program is like
an advanced version of the tr program; it can be used to search for and replace
strings within the given input data, displaying the results. The following example
uses the file data2.txt from above:

ahoover@video> sed s/e/o/g < data2.txt

Tho cat wont up tho troo

Tho dog chasod tho stick

Tho turtlo took a nap

ahoover@video>
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The command line argument to sed in this example says to search for the string
“e” and replace it with the string “o,” globally across all occurrences. The sed
program can be used with similar commands to insert, append, and delete text;
however, the usage just shown is the most common. The awk program is like
an advanced version of the cut program; it can be used to parse lines of text,
displaying them in the desired format. For example:

ahoover@video> ls -l

-rw-r--r-- ahoover fusion 72 Sep 2 18:05 data2.txt

-rwxr-xr-x ahoover fusion 176 Sep 3 15:57 sizes.sh

ahoover@video> ls -l | awk ’{print $4;}’

72

176

ahoover@video>

The awk program provides more powerful formatting capabilities than the cut
program, similar to those provided by the printf() statement in the C program-
ming language.

From these few examples of shell external programs, it is easy to see the wealth
of options available to shell script programmers. A list of dozens of shell external
programs is provided in Appendix C. Many of them overlap in what they can
accomplish, but the common goal remains the same: save programming time.
Once a programmer becomes familiar with a handful of these programs and
methods, they can often be a useful tool for repetitive work.

9.2.6 Other Features
There are a number of features of Bourne shell programming that were not
covered in this section. Features not covered include exit codes, pattern matching
(wildcards), exporting variables to other scripts or shells, the case statement, and
functions. When combined with the large number of shell external programs
available, there are a lot of ways to get tasks accomplished. Collectively they can
be thought of as a large set of shortcuts. Individual programmers tend to become
familiar with a handful of the available shortcuts, and to use them whenever
opportunities arise. It is unlikely that even an advanced shell programmer would
ever use all these tools, or even become fluent with the complete syntax of some
of the more advanced (e.g., sed and awk). Each shell external program has a man
page that can be consulted to find the details of its syntax. The main goal for
a programmer is to understand how these programs interact with shell script
programming. If a programmer faces performing a repetitive task, it may be
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worth the time to find a way to accomplish the task using shell scripting. This
is most commonly how new tools and uses for shell scripting are learned.

9.3 ● Perl
Perl is a scripting language that is similar to shell scripting. However, it includes
many more built-in features than shell scripting. Some of these features are equiv-
alents of capabilities that shell scripting gets by calling external programs. For
example, Perl has a built-in tr command for transliterating characters that works
similarly to the system program tr. Another built-in command, substr, per-
forms operations similar to the system program cut. The capabilities to evaluate
true/false expressions and to check file properties, provided by the system pro-
gram test, are built in to Perl. Perl also includes some features that are not found
in shell scripting, such as hashes and references. In general, Perl is a more feature-
rich scripting language than the shell scripting languages.

The Perl interpreter program is not run interactively. When it is started, it
scans the entire Perl script and compiles it into an intermediate form called a
“syntax tree.” A syntax tree is not machine code, but it is quicker to interpret than
the original Perl code (some limited optimizations are also performed during the
compilation phase). Thus, a Perl program tends to run more quickly than an
equivalent shell script program, but still not as fast as an equivalent C program.

Perl gained in popularity with the proliferation of web servers and web-
related applications. It is often used to write programs that work in between
web servers, database programs, and clients. For example, consider a situation
where a client sends some form data to the server initiating a transaction. The
server wants to customize how the next web page looks based upon the form
data. A Perl program could work in the middle to perform the customization. As
another example, consider where a web server needs to access a database based
upon some received form data. Again, a Perl program could work in the middle
to perform the access. For these sorts of tasks, Perl is sometimes referred to as
the “glue language” of the Web because it is used to write smaller programs that
work in between the primary programs. It is important to note that these sorts of
programs could be written using shell scripting or other programming languages.
However, Perl provides a number of programming shortcuts and features that
make writing such programs quicker.

This section explains some of the basics of the Perl language and how it is used
for programming. The goal is to familiarize the reader with the concepts that save
programming time, not to serve as a reference. There are a number of books that
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teach Perl more fully or serve as a reference. The interested reader is referred to
Learning Perl, 5th ed., R. Schwartz, T. Phoenix, and b. foy, O’Reilly, 2008, ISBN
0596520107; or Beginning Perl, 2nd ed., J. Lee, Apress, 2004, ISBN 159059391X.

9.3.1 Input/Output
The basic I/O statements for the Perl language are print for displaying text and
<STDIN> for reading input from the keyboard. For example, consider the fol-
lowing code:

#!/usr/local/bin/perl

print "Name an animal: ";

$a1=<STDIN>;

print "Name another animal: ";

$a2=<STDIN>;

print "A $a1 and a $a2 go for a walk ...\n";

If this code is stored in a file named animals1.pl, then it can be executed as
follows:

ahoover@video> animals1.pl

Name an animal: turtle

Name another animal: frog

A turtle

and a frog

go for a walk ...

ahoover@video>

The <STDIN> statement reads all input from the stdin stream until the [ENTER]
key is pressed and stores it in the given variable. Unlike most other programming
languages, Perl includes the [ENTER] key (newline character) in the set of char-
acters stored in the variable. This can be convenient for line-based test processing,
where the newline character is treated like any other. The newline character can
be removed by the chomp operator. For example:

#!/usr/local/bin/perl

print "Name an animal: ";

chomp($a1=<STDIN>);

print "Name another animal: ";

chomp($a2=<STDIN>);

print "A $a1 and a $a2 go for a walk ...\n";

If this code is stored in a file named animals2.pl, then it can be executed as
follows:
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ahoover@video> animals2.pl

Name an animal: turtle

Name another animal: frog

A turtle and a frog go for a walk ...

ahoover@video>

The chomp operator can be used in a separate assignment statement, but it is
more often combined as written in the above example. The special symbols used
for formatting strings in shell scripting ( ’ $ \ {} ) are treated similarly in Perl. A
semicolon is used to separate lines of Perl code, and is generally placed at the end
of each line.

In order to provide more control over the formatting of output, Perl provides
the printf operator. It is modeled after the C function of the same name. For
example:

#!/usr/local/bin/perl

$t=4;

$s="turtles";

$f=1.3;

printf "The %d %s move at %f kph ...\n",$t,$s,$f;

If this code is stored in a file named animals3.pl, then it can be executed as
follows:

ahoover@video> animals3.pl

The 4 turtles move at 1.300000 kph ...

ahoover@video>

Most of the symbols available in C for formatting printf() statements are also
available in the Perl version of printf, and they follow the same conventions.

Perl provides the open and close statements for accessing files. For example:

#!/usr/local/bin/perl

$n=42;

open DATA, ">data1.txt";

print DATA "History of the world\n";

printf DATA "Answer: %d\n",$n;

close DATA;

Executing this program produces a file named data1.txt with the following
contents:

History of the world

Answer: 42
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The open and close statements work similarly to the C functions fopen() and
fclose(), but with a slightly different syntax. The type of I/O to be performed on
the file is indicated by pipelike symbols preceding the filename: < for read, > for
write, and >> for append. The analog to the C file pointer is called a filehandle
in Perl and can be used in print and printf statements to indicate the stream to
which bytes are to be written. Data can be read from a file using the diamond
operator (<>) surrounding the filehandle name. For example:

#!/usr/local/bin/perl

open WORLD, "<data1.txt";

$s=<WORLD>; #the diamond operator

print "(1) $s";

close WORLD;

If this program is stored in a file named readdata.pl, then executing it produces
the following output:

ahoover@video> readdata.pl

(1) History of the world

ahoover@video>

Each time the diamond operator is used to read a stream, an entire line of text is
read, including the newline character.

9.3.2 Variables
There are two main types of variables in Perl: scalars and arrays. A scalar variable
name is preceded by the dollar sign ($).5 The type of data stored in a variable is
unimportant. Internally, all data is stored as strings and all numeric expressions
are evaluated using double floating point precision, but most operators interpret
and typecast the data in variables automatically. For example:

#!/usr/local/bin/perl

# This is a comment

$x=3;

$y=7.2;

$z="14frog";

$a=$x+$y;

$b=$x+$z;

5. In shell script programming, the $ symbol is omitted when the variable is on the left-hand side of

an assignment but included when the variable is used in an expression or statement; in Perl script

programming, it is always used regardless of the context. This can be confusing when going back

and forth between scripting languages.
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$c=$y+$z;

print "$a $b $c\n";

If this code is stored in a file named vars1.pl, then executing it produces the
following output:

ahoover@video> vars1.pl

10.2 17 21.2

ahoover@video>

Any line or portion of a line beginning with the hash (#) is considered a com-
ment. When a variable holding string data is used in an arithmetic operation, the
operator tries to convert the data to a numeric value. In this example, the first two
characters were used to form the value 14 that was subsequently used in the oper-
ation. Other convenient shortcuts include the ability to replicate and concatenate
strings. For example:

#!/usr/local/bin/perl

$x="turtle";

$y="frog" x 3;

$z=$x . $y;

print "$y $z\n";

If this code is stored in a file named vars2.pl, then executing it produces the
following output:

ahoover@video> vars2.pl

frogfrogfrog turtlefrogfrogfrog

ahoover@video>

The cross (x) operator replicates the preceding text a given number of times. The
dot (.) operator concatenates strings.

An array variable name is preceded by the at sign (@). An array variable works
similarly to a C language array, holding a number of consecutive integer-indexed
values. For example:

#!/usr/local/bin/perl

@a=("green frog", "orange tiger", "turtle");

print "@a[0] @a[1] @a[2]\n";

$f=@a[2];

print "$f\n";

If this code is stored in a file named vars3.pl, then executing it produces the
following output:
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ahoover@video> vars3.pl

green frog orange tiger turtle

turtle

ahoover@video>

A scalar variable can take on the value of any single element within an array
variable. The qw operator provides a convenient shortcut for initializing an array
with a list of single words. For example:

#!/usr/local/bin/perl

@a=qw / frog tiger turtle /;

print "@a[0] @a[1] @a[2]\n";

print "@a\n";

If this code is stored in a file named vars4.pl, then executing it produces the
following output:

ahoover@video> vars4.pl

frog tiger turtle

frog tiger turtle

ahoover@video>

There are several syntaxes that accomplish the same thing, as shown in the two
print statements for this example. The paradigm is that a programmer should
use whatever syntax saves the most time while writing the code; for example, the
second syntax is preferable to the first in this example. However, there are a lot of
shortcuts in Perl. It is unlikely that a beginning Perl programmer will write the
shortest possible code; as more experience is gained, program size and writing
time generally decreases until a certain level of familiarity is reached.

As with most scripting languages, variables in Perl do not need to be declared
before being used. However, Perl does provide a way to enforce variable declara-
tion. For example:

#!/usr/local/bin/perl

use strict;

my $x;

$x=3;

$y=7;

The use strict statement tells Perl to require that every variable be declared before
it is used. A variable is declared by using the my statement. If this code is stored
in a file named vars5.pl, then executing it produces the following output:
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ahoover@video> vars5.pl

Global symbol "$y" requires explicit package name [...]

Execution of vars5.pl aborted due to compilation errors.

ahoover@video>

An error is given because the variable y was not explicitly declared. This is useful
for avoiding typos in variable names, among other things.

There are a few default variables. For example, the array variable @ARGV holds
the command line arguments given by the user when the program is executed. Of
particular interest is $_, the default variable name used when no variable name is
given. In some contexts, a programmer can skip using a variable name altogether,
and Perl will by default put the result of an operation in this variable. This will be
seen in the next section.

9.3.3 Loops and Conditionals
The Perl language has the familiar for and while loop programming statements.
For example:

#!/usr/local/bin/perl

for ($i=0; $i<5; $i++)

{

$t=$t+$i;

}

print "$t\n";

$j=0;

while ($j < 5)

{

$t=$t+$j;

$j++;

}

print "$t\n";

If this code is stored in a file named loops1.pl, then executing it produces the
following output:

ahoover@video> loops1.pl

10

20

ahoover@video>

The syntax for these loop statements is similar to the syntax for the C program-
ming statements with the same names. The only difference is that the braces ({})
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surrounding the code block for the loop are required, even if the block consists of
only one line of code. The next statement can be used to jump execution of a loop
to the next iteration, while the last statement can be used to exit the loop. These
are similar to how the continue and break statements work in C programming.

Note in the previous example that the value of $t was not defined prior to its
use for summation in the loop. This is a shortcut provided by Perl. If an undefined
variable is used in a numeric operation, then its value is assumed to be zero. If an
undefined variable is used in a string operation, then its value is assumed to be an
empty string. This shortcut allows a programmer to skip variable initialization in
addition to the variable declaration step already being skipped.

Sometimes in loop programming, a loop is needed to step through all the
values of a list. Perl provides the foreach statement to do this. For example:

#!/usr/local/bin/perl

foreach $i (1,2,3,4)

{

$t+=$i;

}

print "$t\n";

If this code is stored in a file named loops2.pl, then executing it produces the
following output:

ahoover@video> loops2.pl

10

ahoover@video>

The syntax of a foreach statement is to give the first argument (in this example,
$i) each of the values in the second argument (in this case, 1, then 2, then 3, then
4), iterating through the body of the loop each time. The second argument can
be formed in a number of ways. For example, if a range of values is desired, it is
usually shorter to type using the following syntax:

foreach $i (1..4)

This accomplishes the same thing as the previous example. The list does not need
to be consecutive values; in fact, it does not need to be numerical values at all. For
example:

#!/usr/local/bin/perl

foreach $i (1,2,"frog","turtle")

{

print "tiger\n";

}



328 Chapter 9 ● Scripting Languages

This code simply prints “tiger” four times. Finally, the first argument can be
omitted entirely, using the default variable name. For example:

#!/usr/local/bin/perl

foreach (1..4)

{

$t+=$_;

}

print "$t\n";

This code outputs “10,” the same as in the above examples. Instead of defining a
variable name to use to hold the list value in each iteration, it uses $_, the default
variable name. This shortcut is frequently used in Perl programming.

The $_ default variable can also be used in while loops that are reading data
from a stream. For example:

#!/usr/local/bin/perl

while (<STDIN>)

{

print "$_";

}

In order to demonstrate, this example makes use of the data file data1.txt cre-
ated previously. If this code is stored in a file named default1.pl, then executing
it produces the following output:

ahoover@video> default1.pl < data1.txt

History of the world

Answer: 42

ahoover@video>

Using this syntax, the while statement reads from the given stream (in this ex-
ample, STDIN) until no more data is available. The default variable $_ is given
the contents of the input line each iteration. This provides a compact syntax for
a task that is done frequently.

The Perl language has the familiar if conditional statement. For example:

#!/usr/local/bin/perl

foreach (1,2,"turtle","frog")

{

if ($_ >= 2)

{

print "number\n";

}
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if ($_ eq "frog")

{

print "animal\n";

}

}

If this code is stored in a file named if1.pl, then executing it produces the
following output:

ahoover@video> if1.pl

number

animal

ahoover@video>

The syntax of the if statement is similar to the C language if statement, except that
the braces surrounding the code block are required. If the condition to be tested is
numerical, then mathematical symbols (< <= == != > >=) are used for opera-
tors. If the condition to be tested is textual, then text strings (lt le eq ne gt ge)
are used for operators. The Perl language also has else and elsif statements that
can be used in conjunction with an if statement.

9.3.4 Pattern Substitution
One of the most popular features in the Perl language is pattern matching and
substitution. In its most basic form, this works like a search-and-replace function
in a word processing program. For example:

#!/usr/local/bin/perl

$a="Hello Mr. Frog, how are you?";

$a =~ s/Frog/Turtle/;

print "$a\n";

If this code is stored in a file named pattern1.pl, then executing it produces the
following output:

ahoover@video> pattern1.pl

Hello Mr. Turtle, how are you?

ahoover@video>

The operation s/Frog/Turtle/ searches for the string Fred and replaces it with
the string Turtle. The =~ symbol pair is called the binding operator, and it asks
Perl to work the operation on the right-hand side using the variable on the left-
side.
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The search-and-replace operation is often performed upon text received on
the STDIN stream. This allows a Perl programmer to use shortcuts involving the
default variable name. The following data will be used to demonstrate:

Hello Mr. Frog, how are you?

Fine! Thank you Mr. Frog.

How are you Mr. Turtle?

I’ve seen a lot of frogs today...

Is it a holifrog day?

Assume this data is stored in a file named data2.txt. The following code takes
input from the STDIN stream and does the same substitution as in the previous
example:

#!/usr/local/bin/perl

while (<STDIN>)

{

s/Frog/Turtle/;

print;

}

Neither the while statement, the search-and-replace statement, nor the print
statement indicate a variable name, so Perl performs all these operations using
the default variable name $_. This compact notation can seem confusing, but
one of the goals of Perl program writing is to shorten program code as much as
possible. If this code is stored in a file named pattern2.pl, then executing it on
the data2.txt file produces the following output:

ahoover@video> pattern2.pl < data2.txt

Hello Mr. Turtle, how are you?

Fine! Thank you Mr. Turtle.

How are you Mr. Turtle?

I’ve seen a lot of frogs today...

Is it a holifrog day?

ahoover@video>

Both occurrences of Frog were replaced by Turtle.

More powerful expressions can be written for both the search and replace
patterns. For example:

#!/usr/local/bin/perl

while (<STDIN>)

{

s/ (F|f)rog/ Turtle/;
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print;

}

If this code is stored in a file named pattern3.pl, then executing it on the
data2.txt file produces the following output:

ahoover@video> pattern3.pl < data2.txt

Hello Mr. Turtles, how are you?

Fine! Thank you Mr. Turtle.

How are you Mr. Turtle?

I’ve seen a lot of Turtles today...

Is it a holifrog day?

ahoover@video>

The | symbol indicates or and the () symbols indicate precedence, so that the
search pattern is a space followed by either F or f followed by rog. The space is
included to prevent substitution where Frog or frog appears midword, such as in
holifrog.

A large number of symbols and operators can be used to build complex
search-and-replace patterns. For example, assume the following variable has been
declared:

$a="Hello Mr. Frog, how are you?";

The following is a list of some symbols that provide shortcuts for patterns:

$a =~ s/r./oo/g; # Hello Moo Foog, how aoo you?

$a =~ s/r\./rs\./; # Hello Mrs. Frog, how are you?

$a =~ s/el*o/ezo/; # Hezo Mr. Frog, how are you?

$a =~ s/l+/z/; # Hezo Mr. Frog, how are you?

The . symbol matches any character except for a newline character. The g char-
acter at the end of the statement indicates that the search-and-replace should be
performed globally across all occurrences in the variable; otherwise, it is per-
formed only on the first occurrence. The \ symbol provides an escape mechanism
so that the next character is interpreted literally. The * symbol indicates that the
previous character should be matched zero or more times. The + symbol indi-
cates that the previous character should be matched one or more times. Other
shortcuts include \d for any digit character, \w for any word character, and \s for
any whitespace character. Patterns or portions of patterns can be negated by var-
ious mechanisms, meaning that the match is the opposite of what is described.
Patterns can be searched or replaced left-to-right, right-to-left, or with special
circumstances such as starting only from the beginning of a line.
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The full language of all these shortcuts is beyond the scope of this text. The
point is to understand the kinds of operations for which Perl provides good
programming shortcuts to accomplish. For example, suppose a task required
parsing an HTML6 file and removing all the markup tags. These tags consist of
text enclosed in <> symbol pairs. The following simple program accomplishes
this task:

#!/usr/local/bin/perl

while (<STDIN>)

{

s/<.*>//;

print;

}

This program takes only moments to write. Accomplishing the same task using
the C language would likely take many minutes, even for an experienced pro-
grammer.

9.3.5 Other Features
The Perl language includes features beyond those discussed here. Perl provides
hashes, which are like arrays but allow indices to take on arbitrary values as
opposed to integers. This tool is useful for creating lists of pairs of data, for
example, first and last name, IP address and DNS name, or city and state. Perl
provides a system function call that works similarly to the C function of the same
name, allowing other programs to be called. External programs can be run using
the back quotes mechanism similarly to how it is done in shell scripting. Perl
provides references, which are much like pointers in the C language. There are
also a large number of operators that were not discussed here, including pop,
push, reverse, and sort, and other shortcuts for working with list variables.

For advanced Perl programming, modules are an important tool. They act
much like libraries for C programming, providing additional sets of functions
for programmers. Two important examples are the Common Gateway Interface
(CGI) and Database Independent (DBI) modules. These modules make it easier
to write Perl programs that work with web servers and database programs by
providing standard function calls and interfaces.

6. HTML stands for HyperText Markup Language and is the base language in which web pages are

written.
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9.4 ● MATLAB
MATLAB is a software package designed for mathematical work, such as solving
geometry, trigonometry, linear algebra, and statistics problems. Like a shell, it can
be used interactively or as an interpreter to run script programs. It includes the
capabilities of plotting two-dimensional and three-dimensional functions and
data sets, making it useful for data analysis and visualization. MATLAB is a com-
mercial product;7 the free open source GNU Octave program behaves similarly
and can be used to execute all the examples in this section. A number of other
similar tools exist, such as Mathematica, LabVIEW, and Maple. The approach
taken by some of these tools varies; for example, Mathematica is designed with
a focus on symbolic mathematical operations, while MATLAB is focused on nu-
merical analysis. However, the capabilities of all these software packages overlap,
and the concepts discussed in this section are common to most mathematical
software packages.

Figure 9.1 shows the standard MATLAB interface displayed when the pro-
gram is started. It consists of three subwindows: a command window (right-side),
a file listing (top-left side), and a command history (bottom-left side). MATLAB
can also be started without a graphical interface as follows:

matlab -nodesktop -nojvm -nosplash

In this case, only the command window is shown. In either case, the command
window is the primary window in which MATLAB commands are entered.

MATLAB can be used interactively, much like a shell. For example:

>> format compact

>> x=7

x =

7

>> y=x*2

y =

14

>> disp ’Hello from MATLAB’

Hello from MATLAB

>>

The >> symbols are the MATLAB command window prompt. After a command
is typed at this prompt, the result is computed and displayed immediately. By
default, MATLAB displays empty lines surrounding most output. The command

7. See www.matlab.com.

www.matlab.com
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Figure 9.1 Standard MATLAB interface.

format compact suppresses the display of empty lines, allowing more text to
be seen without scrolling. The display of output can be suppressed entirely by
including a semicolon (;) at the end of a line. For example:

>> x=7;

>> y=-3;

>> z=x*y

z =

-21

>>

After the last line, the result is displayed because the command did not end in a
semicolon.

A MATLAB script is a list of MATLAB commands that is intended to be
executed like a program. It can be written using any text editor. The MATLAB
interface provides its own text editor that can be accessed from the main menu
as File->New->M-File. By convention, MATLAB scripts are stored using a .m
filename extension and are sometimes called M-files. The following code will be
used to demonstrate the execution of a MATLAB script:



9.4 ● MATLAB 335

x=41;

y=3.3;

z=x/y;

disp (z);

Assuming this code is stored in a file named intro1.m, then it can be executed as
follows:

>> run intro1

12.4242

>>

It can also be run simply by typing its filename:

>> intro1

12.4242

>>

Like a shell, MATLAB keeps track of its own current working directory. Standard
Unix commands can be used to both print the working directory and to change
it. For example:

>> cd /users/ahoover

>> pwd

ans =

/users/ahoover

>>

This section explains some of the basics of the MATLAB language and how it
is used for programming. The goal is to familiarize the reader with the concepts
that save programming time, and hence the type of work for which MATLAB
scripting is an appropriate tool. There are a number of books that teach MATLAB
more fully or serve as a reference. The interested reader is referred to MATLAB: An
Introduction with Applications, 3rd ed,, A. Gilat, Wiley, 2008, ISBN 0470108770;
or Mastering MATLAB 7 , D. Hanselman and B. Littlefield, Prentice Hall, 2004,
ISBN 0131430181.

9.4.1 Input/Output
The basic I/O functions for MATLAB are disp and input . For example:

% This is a comment

x=input(’Enter a number: ’);

y=input(’Second number: ’);
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z=x/y;

disp(’Their ratio is ’);

disp(z);

If this code is stored in a file named io1.m, then executing it produces the follow-
ing output:

>> io1

Enter a number: 7

Second number: 3

Their ratio is

2.3333

>>

The percent symbol (%) is used to denote a comment. A pair of single quotes (’)
is used to enclose strings for display in either function.

The input function displays the given text and accepts a numeric value as
input. If a nonnumeric value is given, then MATLAB tries to evaluate it as an
expression. An expression can contain any defined variables, operators, or func-
tions. For example:

>> io1

Enter a number: 3*2+1

Second number: z

Their ratio is

3

>>

The first expression is evaluated as 7 and stored in the variable x. The second
expression is evaluated as the value from the variable z, which was 2.3333 from
the first execution of the program, and is stored in the variable y. The default
behavior is to treat all data as mathematical expressions and evaluate them on-
the-fly. This shortcut is designed to facilitate mathematical work. This can be
contrasted with shell scripting, where the expected work is textual in nature and
so the default behavior is to treat all data as strings.

The disp function can display only a single text or variable argument. A more
complex output function is fprintf , which is modeled after the C programming
function of the same name. For example:

>> fprintf(’The ratio of %f to %f is %.4f\n’,x,y,z);

The ratio of 7.000000 to 2.333300 is 3.0000

>>
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Most of the symbols available for formatting fprintf() statements in the C pro-
gramming language are available in the fprintf statement for the MATLAB lan-
guage, and they follow the same conventions.

Notice that the precision displayed in the previous example was six digits for
the first two variables and four digits for the last variable. The exact number
of digits displayed can be set precisely using fprintf formatting conventions, as
shown. The default precision for the disp function can also be changed, using the
format statement. For example:

>> format long

>> disp(y)

2.333300000000000

>> format short

>> disp(y)

2.3333

>>

Other options for the format statement include scientific notation and adding or
omitting extra empty lines between output.

Files can be accessed using a family of functions including fopen, fclose, fread,
fwrite, fseek, fprintf , and fscanf . These functions have similar syntax and behave
similarly to the functions with the same names in the C programming language.
For example:

>> fid1=fopen(’data1.txt’,’w’);

>> fprintf(fid1,’14\n11\n8\n5\n’);

>> fclose(fid1);

>>

This creates a file data1.txt with contents as follows:

14

11

8

5

The fread and fwrite functions work at a byte level instead of processing all data
as text.

There are a number of functions designed to simplify the reading of data files.
For example:
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>> a=importdata(’data1.txt’)

a =

14

11

8

5

>>

The importdata function is most commonly used to read data from a text file
(although it can also read other types of files) into an array. Whitespace characters
(space, tab, newline) are assumed to be delimiters. The function automatically
determines the dimensions and extents of the array based upon the file contents.
The textscan function works similarly but provides more control over how the
data is to be interpreted. For example:

>> fid1=fopen(’data1.txt’,’r’);

>> b=textscan(fid1,’%1d’);

>> b{:}

ans =

1

4

1

1

8

5

>> fclose(fid1);

>>

Using the textscan function, each line of the data file can be parsed using the
formatting notation for the fprintf function. In this example, a series of one
character integers were read, leading to a 6 × 1 cell array of data. The xlsread
and xlswrite functions provide for the reading and writing of data to and from
Microsoft Excel files. Their syntax can specify a specific worksheet within a file
as well as the range of data on a worksheet. All of these file reading and writing
functions provide convenient shortcuts for working with data files and support
the nature of the work expected to be done with MATLAB.

9.4.2 Variables
All variables in MATLAB are arrays. The number of dimensions in the array, and
the number of elements (size) of each dimension, are defined by the context of
the operation creating the variable. For example:



9.4 ● MATLAB 339

>> a=2

a =

2

>> b=[3 1 5]

b =

3 1 5

>> c=[6 2; 8 3; 14 42]

c =

6 2

8 3

14 42

>>

The variable a is a single value, but MATLAB stores it as a one-element array.
The variable b was declared as a one-dimensional array holding three values. The
variable c was declared as a two-dimensional array holding six values, organized
into three rows by two columns. The semicolon (;) is used to separate rows of
values during direct variable initialization.

The indices for arrays are labeled according to the conventions for matrix
notation. For example:

>> b(3)=-2

b =

3 1 -2

>> c(3,1)=b(3)+2.4

c =

6.0000 2.0000

8.0000 3.0000

0.4000 42.0000

>>

Values for indexing start at one,8 and dimensions are indexed in row, column
order from the top-left.

There are several shorthand mechanisms for populating arrays with ranges of
values. For example:

>> d=[0:0.2:1]

d =

0 0.2000 0.4000 0.6000 0.8000 1.0000

8. This can cause problems when converting between C code, which indexes from zero, and MATLAB

code, which indexes from one.
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>> e=linspace(0,1,4)

e =

0 0.3333 0.6667 1.0000

>>

The variable d was declared using a starting value (0), an ending value (1), and a
delta (0.2) between consecutive values in the array. This results in a six-element
one-dimensional array. The variable e was declared with the linspace function
using a starting value (0), an ending value (1), and the number of elements (4)
whose values are evenly distributed between the end points. This results in a four-
element one-dimensional array. Other shortcuts for initializing an array include
diag , eye, ones, rand, and zeros, all of which provide mechanisms for populating
an array with values.

As with other scripting languages, variables in MATLAB do not need to be
explicitly declared before being used. The MATLAB environment allocates space
for a variable when it first sees its name, and manages the space required to store
the variable throughout its usage in a program. The size of a variable can be
adjusted in a number of ways. For example:

>> b

b =

3 1 -2

>> b(6)=-12

b =

3 1 -2 0 0 -12

>> b(2)=[]

b =

3 -2 0 0 -12

>> b(2,1)=21

b =

3 -2 0 0 -12

21 0 0 0 0

>>

Typing a variable name reports its current value(s). Assigning a value to an index
outside the current dimensions or bounds of the variable causes it to automat-
ically expand to a rectilinear size capable of holding the new value. Assigning a
value of [] (empty square brackets) to an index causes its deletion, with the other
values collapsing to fill the void. There are several other mechanisms that can be
used to adjust a range of values, to move a range of values, or to transpose ar-
ray dimensions. All of these mechanisms provide shortcuts for dynamic memory
management. In particular, they simplify the handling of tabular data.
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9.4.3 Loops and Conditionals
The MATLAB language has the familiar for and while loop programming state-
ments. For example:

for i=1:3,

disp(’Hello’);

end

i=0;

while i<3,

disp(’Goodbye’);

i=i+1;

end

If this code is stored in a file named loops1.m, then executing it produces the
following output:

>> loops1

Hello

Hello

Hello

Goodbye

Goodbye

Goodbye

>>

The for statement iterates a counter variable from a beginning value to an ending
value by an optional delta amount (the default delta is 1). The while statement
iterates as long as a condition is true. For both types of loop, all statements
between the comma following the loop definition and the end statement are
executed each iteration. The MATLAB language also contains break and continue
statements that operate similarly to their C language counterparts.

When processing tabular data, a common loop operation is to perform the
same operation on every element in a table. This is facilitated in MATLAB by
matrix operations. For example:

>> a=[3 1 6]

a =

3 1 6

>> b=[4 5 2]

b =

4 5 2

>> c=a-b
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c =

-1 -4 4

>>

The last statement c=a-b is essentially a loop statement. It performs the subtrac-
tion on each paired element of a and b to create the c variable. Similar statements
can be performed for matrix addition and multiplication. Other mechanisms
provide for copying ranges of one matrix to another. Thus, matrix operations
provide a convenient shorthand notation for processing tabular data.

The MATLAB language also has the familiar if conditional statement. For
example:

for i=1:3,

if i >= 2,

disp(’Hello’);

end

end

i=0;

while i<3,

if i >= 2,

disp(’Goodbye’);

else

disp(’Oops - forgot something’);

end

i=i+1;

end

If this code is stored in a file named if1.m, then executing it produces the follow-
ing output:

>> if1

Hello

Hello

Oops - forgot something

Oops - forgot something

Goodbye

>>

The if statement tests a condition; if the condition is true, then the statements
between the comma following the condition and the end statement are executed.
The if statement can be paired with else and elseif clauses. MATLAB also has a
version of the case statement that is similar to the C programming case statement.

When working with tabular data, conditional tests are often performed on an
entire array. For example, given a sample of test grades, a programmer may want
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to find out how many are within certain grade ranges. In MATLAB, this sort of
work is again facilitated by matrix operations. For example:

>> grades=[85 92 75 73 88 97 65 75]

grades =

85 92 75 73 88 97 65 75

>> A=grades>=90

A =

0 1 0 0 0 1 0 0

>> B=grades>=80 & grades<90

B =

1 0 0 0 1 0 0 0

>>

When a variable is assigned to another variable using a conditional, the result
variable contains a 1 at all indices where the condition was true, and a 0 at all
indices where the condition was false. This is a shorthand notation for looping
through all elements of the array and testing each one against the conditional.
The find function performs a similar operation:

>> find(grades>=90)

ans =

2 6

>>

The find function returns the indices of the values in the array for which the
condition tested is true. Instead of having to write loop, test, and assignment code
for every element in an array, the same set of operations can be accomplished by
a single matrix operation.

9.4.4 Built-in Mathematical Functions
MATLAB provides a large number of built-in functions for performing various
types of mathematical operations. For example:

>> a=[7 1 5 7];

>> sqrt(a)

ans =

2.6458 1.0000 2.2361 2.6458

>> cos(a)

ans =

0.7539 0.5403 0.2837 0.7539

>>
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These functions perform the operation on every element in the array variable.
Other functions return a single value for the array. For example:

>> sum(a)

ans =

20

>> mean(a)

ans =

5

>> std(a)

ans =

2.8284

>>

Table 9.1 presents a list of some of the more commonly used functions. These
functions all simplify coding for mathematical work.

Table 9.1 Some of the mathematical functions built into MATLAB.

Function Description Function Description

Basic functions Basic functions

sqrt square root log natural logarithm

exp exponential abs absolute value

min minimum value max maximum value

sum sum of values length length of array

Trigonometric functions Statistics functions

cos cosine mean mean of values

sin sine median median of values

tan tangent var variance of values

acos inverse cosine std standard deviation

atan inverse tangent cov covariance matrix

Rounding functions Order functions

ceil round values up sort sort values

floor round values down issorted test for sortedness

round round to nearest integer unique eliminate copies
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9.4.5 Plotting
MATLAB provides several functions for plotting data. The simplest is the plot
function. For example:

x=0:0.01:1;

s=sin(x);

c=cos(x);

plot(s,c);

Executing this code produces the plot shown in Figure 9.2. This code computes
a range of values from 0 to 1 in 0.01 increments, and then computes the sine
and cosine of those values. The plot function creates a two-dimensional plot of
the given data, using the values in the first array for the horizontal axis and the
values in the second array for the vertical axis.

MATLAB opens a figure window to display the plot. The figure window has a
menu that includes options to save the plot in various formats, zoom the view
of the plot, and change various attributes of the plot, such as its legend. The
plot function itself can also be given optional arguments to change how the plot
appears. For example:

plot(s,c,’--k’,’LineWidth’,4);

The ’--’ argument indicates the data should be connected with a dotted line. The
’k’ argument indicates the line should be black. The ’LineWidth’,4 arguments
indicate that the line should be 4 points wide. Figure 9.3 shows the plot that
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Figure 9.2 A plot of some two-dimensional data.
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Figure 9.3 A plot with some custom characteristics.

results from this command. Other options include which symbol to use to mark
a data point, and which colors to use for symbols and lines.

The format of a plot, such as the title, legend, and axis labels, can be changed
manually through the menu interface of the plot window. However, they can also
be changed using script statements. For example:

xlabel(’sin(x)’);

ylabel(’cos(x)’);

legend(’turtle’);

Adding these lines to the previous example produces the plot shown in Figure 9.4.
The xlabel and ylabel statements provide text labels for the x- and y-axes. The leg-
end statement provides a text label for each line of plotted data. Other statements
can provide a title, change the extent of the axes, turn a grid on or off, and draw
arbitrary text at a specific location in the plot. These statements provide a conve-
nient mechanism for writing programs that generate lots of plots. Using variables
and loops, custom formatting can be applied to each plot. Doing the same work
manually, for example, in a spreadsheet program, takes much longer when gen-
erating a large number of plots. MATLAB also provides a set of functions for
plotting 3D data, including the plot3, mesh, meshgrid, and surf functions.

9.4.6 Other Features
MATLAB provides many additional features not discussed here. For example,
MATLAB can be used to solve systems of linear equations. MATLAB provides op-
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Figure 9.4 A plot with some custom formatting.

erations to fit functions to data sets, and to interpolate values in various manners.
Symbolic expressions can be evaluated, for example, working analytically (as op-
posed to numerically) with mathematical functions. There are also a number of
packages that can be added to basic MATLAB, providing additional functions
and features. One of the more popular packages provides mechanisms for image
processing. All of these features simplify working with mathematical or tabular
data. If a task involves writing programs for this kind of work, writing MATLAB
scripts generally takes much less time than writing the same programs using the
C language.

9.5 ● Discussion
Computing professionals are known for developing strong opinions on prefer-
ences for tools of the trade, such as operating systems, text editors, and code
development environments. Scripting languages are no different. To some pro-
grammers, a particular scripting language is good for all programming work.
This is of course a fallacy. This can be explained partly by the amount of ex-
perience a particular person may have with a specific language. As more and
more shortcuts are learned within a scripting language, a programmer gains pro-
ficiency and realizes increased time savings. In reality though, overuse of a partic-
ular programming language usually comes from the opposite: inexperience with
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other languages. This leads to a lack of understanding how scripting languages fit
into the big picture of computing.

Scripting languages are only one of many tools available for programming
work. When used efficiently, they can save programming time. However, a pro-
grammer should use a scripting language only if it has features that specifically
support the type of work for which the programmer is tasked. Forcing a scripting
language upon a problem can not only result in longer programming time, but
it can also yield inefficient code that runs more slowly than necessary, and code
that is difficult to administrate because of the lack of formal methods in most
scripting languages. For example, it would not be prudent to write a codec (data
compressor and decompressor) using a scripting language.

New scripting languages are invented periodically. They typically arise as a
group of programmers find themselves doing a specific type of repetitive work.
Seeking time savings, the group develops a scripting language to simplify or
automate parts of the work. It is highly likely that a computing professional will
see several scripting languages throughout his or her career. Understanding their
design goals and limitations helps one make good decisions about how to use
scripting languages for programming work.

Questions and Exercises
1. What is the primary goal in using a scripting language for programming work?

2. What two things are commonly done to a script file in order to treat it as a
program?

3. What shortcuts do scripting languages provide with respect to variables?

4. Write a shell program that renames all files in the current directory. It should re-
move all vowels from the filenames. For example, apple.txt should be renamed
ppl.txt. If the resulting filename is an empty string, then the file should not be
renamed.

5. Write a shell program that counts the number of files in a given directory. The
directory should be specified as a command line argument. The program does
not need to count files recursively in subdirectories; instead, it should not count
subdirectories at all.

6. Write a shell program that parses a given file and counts all occurrences of words
that contain one or more “e” letters. For example, the count of words containing
one or more e’s in this sentence is 6. Write the same program using the C lan-
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guage. Compare how long it takes to write each program, and the length of the
program code.

7. Write a Perl program that parses the source for a web page and outputs a list
of any email addresses contained in the source. The program should use pat-
tern matching to determine what is an email address, according to the form
name@place.place, where place must be an alphanumeric string. For testing,
most web browsers have an option to view and save the source of a web page.

8. Write a Perl program that backs up a directory of files. It should perform the
backup by copying each file from the given directory to a backup directory. The
program should take two command line arguments, one being the path of the
directory to copy, the second being the name of the path in which to place the
backup. If the backup is performed repeatedly, the program should recopy only
those files that have been modified since the last time they were backed up. The
program should ignore subdirectories; it needs to backup files only within the
given directory.

9. Write a Perl program that automates the creation of a personal web page. The
program should take as a command line argument the name of a file containing
the following data in text format:

name

address

email

biographical sketch

web link #1

web link #2
.
.
.

The program should create a web page file according to the following format:

<TITLE>name’s Web Page</TITLE>

name<P>

address<P>

email<P>

<HR>

<H2>Biography</H2>

biographical sketch<P>

<HR>

<H2>Favorite web links</H2>
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<UL>

<LI> <A HREF="http://...web link #1...">

name of link #1</A><P>

<LI> <A HREF="http://...web link #1...">

name of link #2</A><P>
.
.
.

repeat for all web links

</UL>

The web page should be tested using any web brower to display it.

10. Write a Perl program that parses a text file and removes all occurrences of the fol-
lowing eight punctuation marks: ’ " : ; , . ! ?. Write the same program using
the C language. Compare how long it takes to write each program, and the length
of the program code.

11. How do shell scripting and MATLAB differ in how data is stored and treated?

12. Write a MATLAB program that determines if one circle is entirely inside a second
circle. The program should prompt the user for the center point and radius of two
circles, and then perform the computation. The program should print out a text
message declaring the answer, and plot the two circles for display.

13. Write a MATLAB program that reads a text file and displays a histogram of the
occurrences of the 26 letters of the English alphabet. For example, the count of
a’s in this sentence is 2. That count should be computed for every letter. Counts
should be case insensitive, and all other characters should be ignored. The counts
should be displayed as a plot, with appropriately labeled axes and a title.

14. Write a MATLAB program to solve triangles. Follow the instructions in Exercise 7
in Chapter 8. After solving for a triangle, the program should display the triangle
in a plot.



A APPENDIX

ASCII Table

T he following tables provide the binary, decimal, and symbol codes or glyphs
for the American Standard Code for Information Interchange (ASCII) bit

model. The decimal values 0–31 and 127 are control characters and do not have
visual glyphs; the others represent printable characters. For the nonprintable
characters, a description is provided as well as a character escape code (not all
nonprintable characters have escape codes) that can be used in C programming
and other related languages such as Perl.
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Control characters

Decimal Symbol Binary Escape code Description

0 NUL 00000000 \0 null character

1 SOH 00000001 start of header

2 STX 00000010 start of text

3 ETX 00000011 end of text

4 EOT 00000100 end of transmission

5 ENQ 00000101 enquiry

6 ACK 00000110 acknowledgment

7 BEL 00000111 \a bell

8 BS 00001000 \b backspace

9 HT 00001001 \t horizontal tab

10 LF 00001010 \n line feed

11 VT 00001011 \v vertical tab

12 FF 00001100 \f form feed

13 CR 00001101 \r carriage return

14 SO 00001110 shift out

15 SI 00001111 shift in

16 DLE 00010000 data link escape

17 DC1 00010001 device control 1

18 DC2 00010010 device control 2

19 DC3 00010011 device control 3

20 DC4 00010100 device control 4

21 NAK 00010101 negative acknowledge

22 SYN 00010110 synchronous idle

23 ETB 00010111 end of transmission

24 CAN 00011000 cancel

25 EM 00011001 end of medium

26 SUB 00011010 substitute

27 ESC 00011011 escape

28 FS 00011100 file separator

29 GS 00011101 group separator

30 RS 00011110 record separator

31 US 00011111 unit separator

127 DEL 01111111 delete
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Printable characters

Dec. Symbol Binary Dec. Symbol Binary Dec. Symbol Binary

32 [space] 00100000 64 @ 01000000 96 ‘ 01100000

33 ! 00100001 65 A 01000001 97 a 01100001

34 " 00100010 66 B 01000010 98 b 01100010

35 # 00100011 67 C 01000011 99 c 01100011

36 $ 00100100 68 D 01000100 100 d 01100100

37 % 00100101 69 E 01000101 101 e 01100101

38 & 00100110 70 F 01000110 102 f 01100110

39 ’ 00100111 71 G 01000111 103 g 01100111

40 ( 00101000 72 H 01001000 104 h 01101000

41 ) 00101001 73 I 01001001 105 i 01101001

42 * 00101010 74 J 01001010 106 j 01101010

43 + 00101011 75 K 01001011 107 k 01101011

44 , 00101100 76 L 01001100 108 l 01101100

45 - 00101101 77 M 01001101 109 m 01101101

46 . 00101110 78 N 01001110 110 n 01101110

47 / 00101111 79 O 01001111 111 o 01101111

48 0 00110000 80 P 01010000 112 p 01110000

49 1 00110001 81 Q 01010001 113 q 01110001

50 2 00110010 82 R 01010010 114 r 01110010

51 3 00110011 83 S 01010011 115 s 01110011

52 4 00110100 84 T 01010100 116 t 01110100

53 5 00110101 85 U 01010101 117 u 01110101

54 6 00110110 86 V 01010110 118 v 01110110

55 7 00110111 87 W 01010111 119 w 01110111

56 8 00111000 88 X 01011000 120 x 01111000

57 9 00111001 89 Y 01011001 121 y 01111001

58 : 00111010 90 Z 01011010 122 z 01111010

59 ; 00111011 91 [ 01011011 123 { 01111011

60 < 00111100 92 \ 01011100 124 | 01111100

61 = 00111101 93 ] 01011101 125 } 01111101

62 > 00111110 94 ^ 01011110 126 ~ 01111110

63 ? 00111111 95 _ 01011111
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B APPENDIX

Common Shell
Commands

T he following table provides a list of commands commonly used in a shell.
Many are built-in commands available on most shells, but some are actually

system programs depending on the particular shell. A brief description or use for
each command is provided. More information can be found in the man page for
a specific shell, such as sh, bash, ksh, or tcsh.

Command Description

ls file listing

cd change directory

pwd print working directory

mkdir make a new directory

rmdir remove a directory

rm remove a file

mv rename a file to a new name

alias create an alias for a command

unalias delete an existing alias

fg run a process in the foreground

bg run a process in the background

kill send a signal to a process (usually to terminate)

nice run a process at the given priority

renice change the priority of a process

time display how long a command takes to execute
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chgrp change the group for a file

chmod change the permission bits of a file

chown change the owner of a file

umask set the default permissions for a created file

echo print the given message

set display or give a value to a shell variable

unset delete an existing shell variable
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System Programs

T he following table provides a list of system programs available on most Unix
systems. A brief description of each command is provided. More informa-

tion can be found in the man page for each program.

Program Description

ar create or extract files from an archive file

at run command at a specified time

awk text processing (pattern matching and substitution)

basename display filename portion of a full pathname

bc text-based calculator

cal text-based calendar

cat concatenate files and display to standard output

compress compress a file

cp copy a file

crontab schedule periodic execution of commands

cut display selected fields of each line of text

date display the date and time

dd copy and convert a file (limited conversions)

df report the free disk space

diff compare two files

dirname display directory portion of a full pathname
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du display disk space usage

ed text editor

eval return the exit value of a command

exit exit the shell

expr evaluate simple expression, displaying the result

file determine the type of file

find find a file

grep search for a text pattern

head display the first part of a file

lex generate a lexical analyzer

ln link an existing file to a new filename

lp send a file to a printer

lprm remove a file from a printer’s queue

lpq print a list of files in a printer’s queue

mail text-based email program

make build a program according to a makefile

man display a manual page for a command or program

mkdir make a new directory

more display a file one screenfull at a time

patch apply given changes to text files

ps display a list of processes

rm remove a file

rmdir remove a directory

sed text processing (stream editor)

sleep pause for a specified amount of time

sort sort one or more text files

strings display text-portions of a binary file

strip remove inessential portions of an executable file

tail display the last part of a file

test test a simple expression, returning the result

touch update the access and modified times for a file

tr transliterate characters in a text file

tty display the terminal name

uname display the system name

uncompress uncompress a file
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uniq filter out repeated lines in a text file

wc display line, word, and byte count for a file

who display who is logged into the system

yacc generate a parser
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.a suffix, 260

Abstraction, 201

accept() function, 215, 242

Active windows, 278

Addition

binary, 47–48

C, 37

Addresses

displaying, 238

IP, 236–237

variables. See Pointers

addstr() function, 266–267

alarm() function, 214–215

alias command, 10

Aliases for data types, 199–201

all makefile macro, 184

American Standard Code for

Information Interchange (ASCII)

bit model

overview, 54–56

tables, 351–353

Ampersands (&)

background programs, 219

bitwise operations, 59

C, 39

pointers, 104

scanf(), 81

AND operator

binary logic operations, 58

bitwise operations, 59–60

C, 39

Angle brackets (< >) for filename

directives, 179

Annotations. See Comments

Appending strings, 87–88

Application programming interfaces

(APIs), 213

ar program, 202

Archive files, 202–203

argc variable, 93

Arguments

command line, 8–9, 92–94

external programs, 315

shell scripting, 309

argv variable, 93–94

Arithmetic operations

C, 37

pointers, 106–108
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Arithmetic overflow, 51

Array bounds, 75–76

Arrays, 73–74

crashes from, 23–24

files as, 153

MATLAB, 338

multidimensional, 77–79

overview, 74–77

Perl, 324

as pointers, 111–113

strings. See Strings

of structures, 121–122

ASCII (American Standard Code for

Information Interchange) bit

model

overview, 54–56

tables, 351–353

Assembling process, 181

Asterisks (*)

Perl pattern substitution, 331

pointers, 103–104, 106–107, 116

At signs (@) in Perl, 324

Attributes, file, 156–159

auto storage class, 191

Automake tool, 185

Automating execution, scripting

languages for, 300

awk program, 318–319

Back quotes (‘)

external programs, 315

Perl, 332

Background programs, 219–220

Backslash (\) in scripts, 308

Bad memory access, crashes from,

24

bash shell, 305–306

bg command, 219–220

Binary operations

addition, 47–48

logic, 58

bind() function, 215, 240–241

Bit models, 45–46

ASCII and Unicode, 54–56

floating point, 51–54

magnitude-only, 46–48

sign-magnitude, 48–49

summary, 56–57

two’s complement, 49–51

Bit operators, 59–63

Bitmask operations, 63–64

Bits, 46

Bitwise operations, 57–58

binary logic operations, 58

bit operators, 59–63

bitmask operations, 63–64

Block buffering, 143

Blocking by curses, 269–270

Blocks

C, 39–40

indenting, 197–198

Boot loaders, 265

Bounds, array, 75–76

Braces ({ })

Perl, 326–327

scripts, 308

Brackets. See Angle brackets; Square

brackets

break statement

C, 40

MATLAB, 341

Breakpoints, 16–19

brk() function, 215

Buffers

curses library, 267–268

overview, 143–145
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Building programs, 172

compiling, 176–182

makefiles, 182–185

miscellaneous tools, 185

object code and linking, 172–176

Built-in MATLAB functions, 343–

344

Bus errors, 77

Bytes, 46

C language, 35

arithmetic operations, 37

benefits, 5

conditionals and blocks, 39–40

data types, 36–37

flow control, 40–41

loops, 37–38

standard library, 263–265

Call by reference parameters, 110

Call by value parameters, 110

calloc() function, 115–116

Carets (^) in bitwise operations, 59

case statement, 342

Catchpoints, 20

cbreak() function, 268

cd command, 10

Cells in arrays, 74

CGI (Common Gateway Interface)

module, 332

Chaining, pipeline, 149–150

char data type

bit model, 51, 54–55

bitwise operations, 59

C, 36

unsigned, 48

Characters

buffering, 267–268

substitutions, 316

chmod command

permissions, 157

for scripts, 303

chomp() operator, 321–322

cleanmacro, 184

clear() function, 19

Client-server model, 239

accept(), 242

bind(), 240–241

close(), 242–243

connect(), 241–242

listen(), 241

multiple simultaneous clients,

247–251

send() and recv(), 242–243

single server-client connections,

244–247

socket(), 239–240

Clobbering variables, 76

Cloning programs, 221–225

close() function, 214

device drivers, 163

library functions from, 215–216

sockets, 243

system I/O, 141

close statement in Perl, 322–323

closedir() function, 160–161

Closing sockets, 243

CMake tool, 185

Code organization, 185

comments, 196–197

functions, 185–190

indentation, 197–198

multiple files, 190

preprocessing, 198–199

summary, 201

typedefs, 199–201

variable names, 198
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Code organization (continued)

variable scope, 190–196

Command line arguments

benefits, 8–9

overview, 92–94

shell scripting, 309

Command prompt, 9

Commands

makefiles, 182–183

network, 236–238

shell, 355–356

Comments

benefits, 185

makefiles, 184

MATLAB, 336

overview, 196–197

Perl, 324

scripts, 308

Common Gateway Interface (CGI)

module, 332

Comparing strings, 84–86, 313

Compiling

for debugging, 15

vs. interpreting, 304

process, 176–182

Compression of archive files, 202

Concatenating strings, 87–88

Conditionals

C, 39–40

MATLAB, 342–343

Perl, 328–329

shell scripting, 311–314

connect() function, 215, 241–242

Connections

devices, 162–163

I/O, 136

server-client, 244–247

sockets, 241–242

Consoles, 6, 9

const qualifier, 191

Constants in libraries, 257–258

continue statement

C, 40

debugger, 18–19

MATLAB, 341

Control characters, 54

Control sequences, 79

Convenience, libraries for, 261

Copying

strings, 86–87

structures, 120

Core dump files, 22

cos() function, 261

Courier font, 286

Crashes, debugging, 21–24

creat() function, 214

csh shell, 305

ctime function, 296

CTRL-C

in debugger, 25

effect, 219–220

signals with, 232–233

CTRL-Z, 219

Curly braces ({ })

Perl, 326–327

scripts, 308

Current directory

in file listings, 160

MATLAB, 335

printing, 10

in prompt, 6

curses.h header file, 266

curses library, 265

dynamic graphics, 271–275

I/O control, 267–270

overview, 265–267
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cut program, 317–318

Data types

aliases, 199–201

arrays, 74

C, 36–37

scripting languages, 299

shell scripting, 309

variables, 190–191

Database Independent (DBI) module,

332

DCs (device contexts), 282

deb/dpkg package system, 204

Debuggers and debugging, 5

infinite loops, 24–26

loop logic, 29–31

overview, 13–21

partially working programs, 26–

29

program crashes, 21–24

Debugging code, 179

Declaring structures, 118

Declaring variables

MATLAB, 340

need for, 308

Perl, 325–326

pointer-type, 103, 106

scope in, 190–192

Decrement operation, 37

Default variable name in Perl, 326, 328,

330

#define directive, 177

Definitions for structures, 122–123

Dependencies

in makefiles, 182–183

in packages, 203–204

/dev directory, 163

Device contexts (DCs), 282

Devices

drivers, 163–164

I/O for, 161–163

diag function, 340

diff program, 150

Difficult code, libraries for, 261

Digits in Perl pattern substitution, 331

Directives, preprocessor, 177–179

Directories, 159–161

DirectX library, 277

disp() function, 335

display command, 18

Distribution methods, 201

archives, 202–203

packages, 203–204

Divide-and-conquer approach

example, 31–35

functions for, 186

Division

C, 37

by zero, 22–23

.dll suffix, 260

DNS (Domain Name System), 236–237

do-while loops, 38

Dollar signs ($)

macros, 184

Perl, 323, 326, 328, 330

shell scripting, 308

Domain Name System (DNS), 236–237

DOS console, 9

double data type

bit model, 45, 54

C, 36

Double pointers, 115–118

Double quotes (")

scripts, 307

strings, 313

Drawing lines, 285–286
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Drivers, device, 163–164

Dump files, 22

dup() function, 145

Dynamic graphics, 271–275

Dynamic memory allocation, 113–115

Dynamically linked libraries, 176

echo() function, 269

echo script statement, 306–307

Echoing keyboard input, 268–269,

306–307

Eclipse IDE, 20

Editors, text, 5, 11–13

elif statement, 312

#else directive, 179

else statement

MATLAB, 342

Perl, 329

shell scripting, 311

elseif statement, 342

elsif statement, 329

emacs text editor, 13

#endif directive, 179

endwin() function, 266

Equal signs (=) in C, 39

Equality tests in C, 39

Error checking in archive files, 202

Error stream, 142–143

Errors, debugging. See Debuggers and

debugging

Escape sequences, 79

Perl pattern substitution, 331

scripts, 308

/etc/services file, 237

Events, 283–286

Exclamation points (!)

bitwise operations, 59

scripts, 303

exec() function family, 225–226

execl() function, 215, 226

execle() function, 226

execlp() function, 226

Execute permission, 157

execv() function, 215, 226

execvp() function, 226

exit() function, 231

exit statement, 41

Exponents in floating point bit model,

52–53

expr program, 315–316

Expressions in MATLAB, 336

extern storage class, 191, 194–196

External programs

Perl, 332

shell scripting, 314–319

eye function, 340

fclose() function

MATLAB, 337

streams, 136

system calls for, 215–216

fflush() function, 144

fg command, 219–220

fgetc() function, 141

fi statement, 311

Fields in structures, 119

Figure windows in MATLAB, 345

File-based I/O, 161

FILE data type, 258–259

Filehandles in Perl, 323

File operations in Perl, 322–323

Files, 153

archive, 202–203

attributes, 156–159

directories, 159–161

file pointers, 153–156
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header, 256–259

libraries, 260–261

multiple, 190

system calls, 214–216

find function, 343

Firewalls, 238

Fixed fonts, 286

Fixed point bit model, 52

Flags, 84

float data type

bit model, 45, 54

C, 36

Floating point bit model, 51–54

Flow control, 40–41. See also

Conditionals; Loops

Flushing buffers, 143–144, 280

Fonts, 286–288

fopen() function

devices, 161–162

MATLAB, 337

streams, 136

system calls for, 215–216

for loops

C, 38

MATLAB, 341–342

Perl, 326

shell scripting, 310

foreach statement, 327

Foreign addresses, 238

fork() function, 215, 221–225

format command, 337

format compact command, 334

fprintf() function

MATLAB, 336–337

streams, 136–138, 140, 142

fputc() function, 141

Fractions in floating point bit model,

51–54

fread() function

MATLAB, 337

streams, 137–138, 140–141

system calls for, 215–216

free() function, 115

fscanf() function

MATLAB, 337

streams, 136–140, 142

fseek() function

file pointer setting, 155

MATLAB, 337

ftell() function, 155–156

Functions

comments for, 196–197

kernel. See System calls

in libraries, 257

MATLAB, 343–344

overview, 185–190

return values with pointers, 108–111

fwrite() function

MATLAB, 337

streams, 137–138, 140

system calls for, 215–216

GC (graphics context) variables, 280

gcc compiler

header file paths, 259

options, 181–182

GCs (graphics contexts), 282

gdb program, 14–15

getch() function, 267, 270

getpid() function, 225

gets() function, 141

gettimer() function, 214

Global variables, 194–195

GNAT Programming Studio, 20

gnome desktop, 278

GNU debugger, 14
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GNU Octave program, 333

goto statement, 41

Graphics

dynamic, 271–275

varying-rate, 273–275

Graphics contexts (GCs), 280, 282

Graphics libraries, 262

curses. See curses library

overview, 275–278

X. See X library

Greater-than symbol (>)

C, 39

MATLAB, 333

Perl, 323

pipes, 146

shift operations, 59, 61–62

grep program

description, 10

pipeline chaining, 149–150

GTK+ library, 276–277

gzip tool, 203

Hardware

independence, 261–262

separation from display, 277

Hash symbol (#)

makefiles, 184

Perl, 324

preprocessing directives, 179

scripts, 303, 308

Hashes in Perl, 332

Header files

C, 264

including, 256

overview, 257–259

Hierarchies in graphics libraries,

275–276

htonl() function, 241

htons function, 254

IDEs (Integrated Development

Environments), 20

#if directive, 179

if statement

C, 39

MATLAB, 342

Perl, 328–329

shell scripting, 311–314

ifconfig program, 237

#ifdef directive, 179

#ifndef directive, 179

imake tool, 185

importdata function, 338

#include directive, 179, 257

Increment operation, 37

Indentation, 197–198

Independence, libraries for, 261–262

Indices for array cells, 74

incrementing, 78

MATLAB, 339

Indirect access, 74

Infinite Loops, 24–26

initscr() function, 266

input() function, 335

Input/output, 135

buffers, 143–145

curses library, 267–270, 272–273

devices, 161–164

files. See Files

MATLAB, 335–338

Perl, 321–323

pipes, 145–153

shell scripting, 306–308

streams, 136–143
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system functions, 141

X library, 283–286

InstallShield package system, 204

int data type

bit model, 45, 48, 51

bitwise operations, 59

C, 36

as default return value, 265

Integrated Development Environments

(IDEs), 20

Interfaces

APIs, 213

graphics, 276–277

Internet Protocol (IP) address, 236–

237

Interpreters for scripting languages,

300–304

Interprocess communication (IPC)

network. See Sockets

signals, 215, 229

I/O. See Input/output

-Ipath command line argument, 259

iproute2 package, 238

iptables program, 238

IPv4 addressing, 236

IPv6 addressing, 236

Kernel functions. See System calls

Keyboard input

echoing, 268–269

Perl, 321

redirecting, 147

scripts, 306–307

standard stream, 142

kill command, 219–220, 234

kill() function, 215, 233–235

ksh shell, 305

LabVIEW tool, 333

Languages

C. See C language

scripting. See Scripting languages

last statement, 327

Law of Cosines, 293

Law of Sines, 293

Least significant bits, 47

Left-shift operations, 59, 61–62

Legends in MATLAB, 346

Length of strings, 83–84

Less-than symbol (<)

C, 39

Perl, 323

pipes, 146–147

shift operations, 59, 61

.lib suffix, 260

libc.a file, 175–176

libm.a file, 260

Libraries, 255–256

C, 263–265

code files, 260–261

curses. See curses library

header files, 256–259

linking, 175–176, 256–257

making, 288–291

pitfalls, 291

purpose, 261–263

string functions, 83

for system calls, 215–217

X. See X library

Line buffering

curses, 268

flushing, 143

Line numbers, 12

Lines, drawing, 285–286

link() function, 215



370 Index

Linking

libraries, 256–257

object code, 172–176

Linux operating system, 4

listen() function, 215, 241

Local addresses, 238

Logic errors vs. program errors, 21

Logic operations, 58

Logical operators, 39

Loops

C, 37–38

debugging, 29–31

infinite, 24–26

MATLAB, 341–342

Perl, 326–328

shell scripting, 310–311

Lossless compression, 202

ls program, 11

description, 10

output from, 6–7

pipeline chaining, 149

lseek() function, 215

M-files, 334

Macros

benefits, 199

makefiles, 184

Magnitude-only bit model, 46–48

main() function

in executables, 174

and libraries, 255

Major device numbers, 163–164

Makefiles, 182–185

malloc() function

dynamic memory allocation,

113–115

family, 215–216

for structures, 127

man program, 10, 216

Maple tool, 333

Maps, memory, 65–68

math.h library, 257, 264

Mathematica tool, 333

Mathematical functions in MATLAB,

343–344

MATLAB software package, 301

conditionals, 342–343

features, 346–347

input/output, 335–338

loops, 341–342

mathematical functions, 343–344

overview, 333–335

plotting, 345–346

variables, 338–340

Matrix operations, 343

mean function, 344

Memory

crashes related to, 24

dynamic allocation, 113–115

library management of, 215–216

releasing, 115

system calls, 214, 216

Memory bus, 47

Memory leaks, 115

Memory maps, 65–68

memset() function, 241

mesh function, 346

meshgrid function, 346

Metadata in archive files, 202–203

Minor device numbers, 164

Minus signs (-) for subtraction, 37

mlock() function, 214

mmap() function, 214–215

Modifiers for variables, 190–191
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Modular code, functions for, 185–190

Modules, Perl, 332

Modulus operation, 37

more program

description, 10

pipeline chaining, 150

Most significant bits, 47

Motif library, 276

Motion

dynamic graphics, 271–272

user input during, 272–273

Mouse connections, 162–163

move() function, 267

Moving graphics, 271–272

mprotect() function, 214

Multidimensional arrays, 77–79

Multidimensional strings, 82

Multiple files, 190

Multiple-line comments, 197

Multiple simultaneous clients, 247–251

Multiplication operation, 37

Names of variables, 198, 308

ncurses library, 265

Negative numbers

bit models, 48–51

floating point, 53

shift operations, 62

Nesting

structures, 124–125

variable scope, 191–192

NetBeans IDE, 20

netstat program, 238

Networks

concepts and system commands,

236–238

socket system calls. See Sockets

Newline characters in Perl, 321–322

next command

debugger, 17–18

Perl, 327

nocbreak() function, 268

noecho() function, 269, 273

Nonprintable characters, 79

NOT operator

binary logic operations, 58

bitwise operations, 59

nslookup program, 237

NULL value, 80

Numeric data in shell scripting

comparisons, 313

data types, 309

Object code, 172–176

ones function, 340

open() function, 214

device drivers, 163

libraries for, 261

library functions from, 215–216

Perl, 322–323

system I/O, 141

opendir() function, 160–161

OpenGL library, 277

Optimization with debuggers, 15

OR operator

binary logic operations, 58

bitwise operations, 59–61

C, 39

Order functions in MATLAB, 344

O/S independence, graphics libraries

for, 262

Out-of-bounds array errors, 77

Over-functionalized code, 189

Overflow, arithmetic, 51
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Overuse of functions, 189

Packages, 203–204

Parent directories, 160

Parent PIDs (PPIDs), 218

Parentheses [( )]

macros, 184

Perl pattern substitution, 331

pointer operations, 105

Parity checking, 202

Partially working programs,

debugging, 26–29

Passing

function values with pointers,

108–111

pointer variables to functions, 117

structures to functions, 120

Paths

header files, 259

scripts, 304

Pattern substitution in Perl, 329–332

pause() function, 215

Percent signs (%) in MATLAB, 336

Periods (.)

Perl pattern substitution, 331

structure fields, 119

Perl scripting language, 300–301

conditionals, 328–329

features, 332

input/output, 321–323

loops, 326–328

overview, 320–321

pattern substitution, 329–332

variables, 323–326

Permissions

file, 156–159

scripting languages, 303

perror() function, 217

Physical memory, library management

for, 215–216

PIDs (process identifiers)

with exec(), 225

with fork(), 222

listing, 217–218, 221

pipe() function, 145

Pipes

chaining, 149–150

overview, 145–149

program testing, 150–153

PKZIP tool, 203

plot function, 345

plot3 function, 346

Plotting in MATLAB, 345–346

Plus signs (+)

addition, 37

Perl pattern substitution, 331

Pointers, 73–74

arithmetic, 106–108

arrays as, 111–113

crashes from, 23

double, 115–118

dynamic memory allocation,

113–115

file, 153–156

overview, 103–106

passing function values with,

108–111

for structures, 125–127

Polling for user input, 272–273

Portability

library functions, 216

preprocessing for, 199

typedefs for, 200

portage/emerge package system, 204



Index 373

Ports, 237–238

POSIX standard, 213

Pound symbol (#)

makefiles, 184

Perl, 324

preprocessing directives, 179

scripts, 303, 308

pow function, 293

PPIDs (parent PIDs), 218

Precision

floating point bit model, 53

MATLAB, 337

Perl, 323

Preprocessing, 176–177

benefits, 198–199

directives, 177–179

print command

debugger, 18

Perl, 321

printf() function

addresses, 105–106

bit models with, 55

C, 36

Perl, 322

standard stream, 142

strings, 80–81

Printing strings, 80–81, 88–89

Process identifiers (PIDs)

with exec(), 225

with fork(), 222

listing, 217–218, 221

Process system calls, 215, 217

exec() family, 225–226

fork(), 221–225

processes, 217–221

wait(), 226–229

Processor-level instructions, 181

Program crashes, debugging, 21–

24

Program development, 2–4, 31–35

Program errors vs. logic errors, 21

Program management, 171

code organization. See Code

organization

compiling, 176–182

distribution methods, 201–204

makefiles, 182–185

object code and linking, 172–176

Program testing, pipes for, 150–153

Programs

background, 219–220

cloning, 221–225

external, 314–319, 332

Prompts

MATLAB, 333

shell, 6

Prototypes

in libraries, 257

rapid development, 299

ps program, 217–218

puts() function, 141

pwd command, 10

python script interpreter, 301

Python scripting language, 301,

304–305

Qt library, 276

Qualifiers for variables, 191

quit command, 15

qw operator, 325

r permissions, 157

rand function, 340

Rapid prototype development, 299
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read() function, 214

device drivers, 163

library functions from, 215–216

system I/O, 141

Read permission, 157

read statement in scripts, 306

Readability

preprocessing for, 198–199

typedefs for, 200

readdir() function, 160–161

recv() function, 215, 242–243

recvfrom() function, 248

Redirection with pipes, 145–149

References in Perl, 332

refresh() function, 267

Releasing memory, 115

Remainder operation, 37

Removing breakpoints, 19

Repetition, libraries for, 261

Restarting suspended processes,

219–220

Right-shift operations, 59, 61–63

Rounding functions, 344

rpm package system, 204

run command, 15

Scalability, preprocessing for, 199

Scalar variables in Perl, 323–326

scanf() function

blocking by, 269

C, 36

vs. getch, 267

standard stream, 142

for strings, 80–81

Scientific notation, 52

Scope

structures, 122–123

variables, 190–196

Screen, standard stream for, 142

Scripting languages

discussion, 347–348

MATLAB. See MATLAB software

package

overview, 299–301

Perl. See Perl scripting language

shell scripting. See Shell scripting

working with, 301–305

Search-and-replace function, 329–332

sed program, 318–319

seek() function, 163

Segmentation faults

array bounds, 77

crashes from, 24

select() function, 247–248

Semicolons (;)

MATLAB, 334, 339

Perl, 322

send() function, 215, 242–243

sendto() function, 251

Sentinels, 84

set command, 10

settimeofday() function, 214

settimer() function, 214

setvbuf() function, 145

sh shell, 305–306

Shell environment, 2

commands list, 355–356

overview, 6–11

Shell scripting, 305–306

conditionals, 311–314

external programs, 314–319

features, 319–320

input/output, 306–308

loops, 310–311
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variables, 308–310

Shift operations, 59, 61–63

shmctl() function, 214

shmget() function, 214

short data type, model, 45, 51, 56

sigaction() function, 215

SIGFPE signal, 230–231

SIGINT signal, 231

Sign bits, 48

Sign-magnitude bit model, 48–49

signal() function, 215, 229–233

Signal system calls, 215, 229

kill(), 233–235

signal(), 229–233

SIGQUIT signal, 232

SIGUSR1 signal, 234–235

SIGUSR2 signal, 235

Single quotes (’)

MATLAB, 336

scripts, 308

Single server-client connections,

244–247

sizeof() operator

and bit models, 57

data types, 115

for structures, 127

sleep() function, 215, 228

socket() function, 215, 239–240,

250

Sockets, 215

binding, 240–241

client-server model, 239–243

closing, 243

connections, 241–242

creating, 239–240

multiple simultaneous clients,

247–251

network concepts and system

commands, 236–238

sending and receiving data, 242–243

single server-client connections,

244–247

sort program, 10

sprintf() function, 88–89

sqrt() function, 261

Square brackets ([])

MATLAB, 340

shell scripting, 312–313

Standard streams

overview, 142–143

redirecting, 145–149

Standardized ports, 237

Standards, 2

Unix systems, 278

Windows interface, 277

stat() function, 157–158

static storage class, 191–193

Statistics functions in MATLAB, 344

std function, 344

stderr stream, 142

purpose, 143

redirecting, 148

STDIN statement in Perl, 321

stdin stream

functions for, 142

redirecting, 147–148

stdio.h header file

contents, 264

FILE data type, 258–259

standard stream definitions, 142

stdlib.h header file, 264

stdout stream

functions for, 142

redirecting, 147–148
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step command, 17–18

Stepping through programs, 17–18

Storage classes for variables, 191

strcat() function, 87–88

strcmp() function, 84–86

strcpy() function, 86–87

Streams

buffers, 143–145

overview, 136

redirecting, 147–148

standard, 142–143

transporting bytes on, 136–141

string.h header file, 264

Strings, 73–74

comparing, 84–86, 313

concatenating, 87–88

copying, 86–87

external programs for, 316–319

functions example, 89–90

length, 83–84

library functions, 83

MATLAB, 336

multidimensional, 82

nonlibrary problems, 91–92

overview, 79–82

Perl, 322

printing, 80–81, 88–89

shell scripting, 309

strlen() function, 83–84

strncat() function, 90

strncmp() function, 90

strncpy() function, 90

Structures, 73

arrays of, 121–122

definitions and scope, 122–123

nested, 124–125

overview, 118–121

pointers for, 125–127

Subnetworks, 236

Subproblems in divide-and-conquer

approach, 31–35

Substitutions

characters, 316

pattern, 329–332

substr command, 320

Subtraction, 37

sum function, 344

surf function, 346

Suspending processes, 219–220

Symbol tables, 14–15

Symbols in memory maps, 66

Synchronicity, 226

Syntax trees, 320

System calls, 213–214

families, 214–215

libraries for, 215–217

networks, 236–238

processes. See Process system calls

signal, 229–235

socket. See Sockets

System clock, 214

system() function, 228

System independence, libraries for,

261–262

System I/O functions, 141

System programming overview, 1–3

background requirements, 3

C for, 5

debugging. See Debuggers and

debugging

IDE, 20

program development, 31–35

shell, 6–11

text editors, 11–13
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Unix for, 3–4

System programs, list of, 357–359

System tools, 2

tar program, 202–203

tcsh shell, 305

Templates, structures as, 118–119

Terminals

graphics libraries. See curses library

shell execution on, 6–7

Terminating processes, 219–220

test program in Perl, 320

Testing, pipes for, 150–153

Text editors, 5, 11–13

textscan function, 338

3D graphics, 277

3D plots, 346

Tildes (~)

bitwise operations, 59

pattern substitution, 129

time() function, 214

time.h header file, 264

Time management system calls,

214

Time of running programs, 218

time program, 10

top program, 218

tr program, 316–317, 320

Transporting bytes on streams,

136–141

Trigonometric functions, 344

tty program, 162

2D graphics, 280–281

Two’s complement bit model, 49–51

Type casting computations, 57

typedef statement, 199–201

Types. See Data types

UIDs (user identifiers), 218

Unbuffered streams, 143

Underscore characters (_) in shell

scripting, 309

Unicode bit model, 56

Unix systems

vs. MS Windows system, 277

overview, 3–4

unsigned data types, 45, 48, 54–55

use strict statement, 325–326

User identifiers (UIDs), 218

User input

polling, 272–273

X library, 283–286

User interfaces, 276

usleep() function, 271–273

/usr/include directory, 259

/usr/lib directory, 260

/usr/X11R6 directory, 260

Values in memory maps, 66

Variables

addresses. See Pointers

command line arguments, 93–94

MATLAB, 338–340

memory maps, 65–68

monitoring, 20

names, 198, 308

Perl, 323–326

scope, 190–196

shell scripting, 308–310

structure, 123

in symbol tables, 15

Varying-rate graphics, 273–275

Vertical bar symbol (|)

bitwise operations, 59–60

C, 39
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Vertical bar symbol (|) (continued)

Perl pattern substitution, 331

pipes, 146

vi text editor, 11–13

Virtual memory, 216

Visual Studio IDE, 20

void pointers, 127

volatile qualifier, 191

w permissions, 157

wait() function, 215, 226–229

waitpid() function, 227–228

Warnings, compiler, 265

Watchpoints, 20

wc program, 150

Web programming. See Perl scripting

language

Weird number, 50

which command, 10

while loops

C, 38

MATLAB, 341–342

Perl, 326

shell scripting, 310–311

Whitespace characters

echo, 307

MATLAB, 338

Win32 library, 276–277

Window managers, 280

Windows in X library, 275, 278–280

Windows operating system, 4

WinRar tool, 203

WinZip tool, 203

WISE Installer package system, 204

Words in Perl pattern substitution, 331

write() function, 214

device drivers, 163

libraries for, 261–262

library functions from, 215–216

system I/O, 141

Write permission, 157

X.h header file, 258

X library

fonts, 286–288

graphics libraries overview, 275–278

graphics properties, 282–283

two-dimensional graphics, 280–281

user input, 283–286

windows, 278–280

x permissions, 157

XChangeGC() function, 283

xclock program, 6, 8–10

XCreateGC() function, 280

XCreateSimpleWindow() function,

280

XDrawArc() function, 281

XDrawLine() function, 281

XDrawPoint() function, 281

XDrawRectangle() function, 281

XDrawString() function, 287

XFlush() function, 280

XFreeFontNames() function, 288

xlabel statement, 346

XListFonts() function, 288

XLoadFont() function, 287

xlsread() function, 338

xlswrite() function, 338

XMapWindow() function, 280

XNextEvent() function, 284–285

XOpenDisplay() function, 279

XOR operator, 59

XPeekEvent() function, 285

XSelectInput() function, 284
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XSetWMHints() function, 280

ylabel statement, 346

Zeros

\0 string, 79–80

sign-magnitude bit model, 48

two’s complement bit model, 49–50

zeros function, 340

.zip file format, 203
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