-

# -
-
oo -

| RICHARD STONES NEIL MATTHEW
e | y

R T——

BEGINNING

Linux

Programming
2nd Edition

& Foreword by Alan Cox

[ ot



Table of Contents

Beginning Linux Programming, SECONAEITION. ..........coiiiiiiiiiiiiiiiee e e e 1
0TV o] o PSSP PP TP PPPPPPPPPPPY
a1 fe]o (8 ox 1 o] o H PP P PP PPPPPPR
L= (o0 4T SO PPPPPPPPPPRPPPPPN
WHO'STNIS BOOK FOI 2.ttt e e e e e e et e e e e e e e e e e e e e e e e e nnnees 6
What'SCOVErediN tNEBOOK .........eeiiiiiiiiieee it e e e e e e e e e s eeaeas 6
WhatYou Needto USEThISBOOK...........uuiiiiiiiiiiiiiiie et e e e e e 8
Y0101 o= Oo o [ PP P PP P PP |
(O0] 01771 01 110] 0 1 PP P PP P PPPTPPPI |
Tell USWRAEYOU THINK. ...ttt e e e e e e e e e e e e e e nnn e e e eeeeas 10
Why Shouldl Returnthe Reply Card?............oeeiiiiiiiiie e 10
Chapter 1: GetliNg STAME........coiiiiiiiiii et e e e e e e e e e e e e e e e e e e s s s b e e e e e e e e e s aannnnrrreeeeas 11
(@Y V1 Y PO P OO RPP PP PPPPPPPPPPPP 1
WNATIS UNDX . ettt ettt oo e 4o et e e e e e e e s bt e e e e e e e e e e st e e e e e e e e e e e e nnnnneeeeeas 1
WWNATIS LINMUX 2. ..ottt ettt e ettt e e e e e e s et e e et e e e e e e e e et e e e e e s ann b nnn e e e e e e e sannn 1
DISTIIDULIONS. ...ttt e e et e e e e e e e e e e e e e e e et e e e e e e r e e e ae s 1
The GNU Projectandthe FreeSoftwareFOUNTatioN.............ceeiiiiiiiiiiiiiiie e 12
PrOGIAMIMINGEINUX ...ttt e e e e e e e e e e e e s e e e e e e e e e e st b e e e e e e e e e nnnn s e e e e e e e e e e annnnes 13
L0 DG oo =T o TR 1
THEC COMPIIET. ...t e e e e e e e e e s s e e e e e e e e e e e e e e e s annnees 14
Try It Out— OUr FIrStUNIX C PrOQIaML....ccccciiiiiiiiiiiiee et e e e e 14
HOW T WOTKS. ...ttt ettt e e e e ekttt e e e e s e e e e e e e e e s snnn e e e e aeeeas 1t
(1oL oo =] | o TP PP PPRPPR PRI 1
Try It Out— ManualPageSaNdintQ..........ccuuiiiiiiee e 16
DevelopmenByStEMROAAMAB.. .. ...coiiurtiiiie e ee et e e e e e e e e e e e e e e s s r e e e e e e s e asnnneeeeeas 17
[ (00 | =11 01 SR 1
HEAUEIFIIES. ...ttt e e e e e et e e e e e e bbb e et e e e e e s e s rn e e e e e e e e aaan 1¢
LIBIAIY FIIES...cc ettt et e e e e e e e e e e e e e e e e e e e 1¢
STALICLIDIAIIES. ...t e e e e e e e e s e e e e e 1€
Try [t OUL— STALICLIDIANES.....ceiiieei e e e e e e e s 20
S T g=T0 M o] = L[S P PP P PP PPPPPP 22
UNIX PRIIOSOPNY. ..ttt ettt e e e e e e e et e e e e e e s e e e e e e e e e nnnnrees 23
1 0 1] o1 o1 TP PP PP P PP 2.
0T PP 2
REUSADIECOMPONENTS ...ttt e e e e e e e e e e e e e e e e e e e e e e nnnrneees 23
11 ] £SO TP PP PPPPPPPPRPPPN 2
OPENFIIE FOIMMALS. ...ttt e e e e e e e e e e e e e e et e e e e e e e e s nnnnnneeeeas 23
[ L2 1111 P TS PPPPPPPRPTPN 2.
ESTE ] 0] 0= S 2
Chapter 2: SHell ProgrammMiNg.........o.eieieeeeeeeei e e e e e s s e e e e e e e s s b e e e e e e e e e e annnrnnees 25
(@Y V1 Y TP EPP PP PPPPPPPPPPPP 2
WRNALIS @ SNEIIZ....cceeeeee et e e e e e e e e e e e e e r e e e e e e e n e e e e e e e aaan 2¢
PIPESANUREUINECTION......eeeieiie ettt e e e e e e e et e e e e e e e et e e e e e e s s nr e e e e e e e e aannns 27
REAINECHNGOULPUL .....eeeeeee ettt e e e e e e et e e e e e s e e e e e e e e e e aanbrnreeeeeeeaaann 27
[RY=To 1 g=Tot 1[0 e [ o] 01U | SO PP PP P PTPPPPRRPPRN 28
] 01T PP P PP 2



Table of Contents
Chapter 2: Shell Programming

TheShellasaProgramming_@nQUAGE. .........coouiurirrirreeeeiiaiieere e e e e s s e e e e e s s s e e e e e e s s aannnreeeeeeas 29
INEEIACTIVEPTOGIAIMIS ...t eeeieeiiii ettt e e e e et e e e e e s s e e e e e e e e e s b e et e e e e e s e nnnnnneeeeeeens 29
(1T 1] aTe = BTl ] o APPSO PP P PP 30
Making & SCHPLEXECULADIE. ........oooiiiii e 31

S L= [R5} 01 = O PP PPPRPPR PP 3
VANIADIES. ...ttt e e e e e e e e e e e e e e e s 3
(0] 0 [0 1 110] o NPT PP PP P POPPPPPPPPPPPN 3¢
(00 ] 01170 53 1 (U ox (1] {1 TSP PP PPPUPPPRRPPPN 38
[T Tot 1[0 o L= SO PP PP T PP 4

Try [t Out— A SIMPIEFUNCHONL. ....coiiiiii e e e e e e 50
HOW T WWOTKS. ...ttt ettt e e e e e ekt e e e e e e e e e r et e e e e e e s e e e e aeeeas 5(
Try It Out— RetUrNINGAVAIUE. ......ooeiiiiieee e e e e 51
HOW T WWOTKS. ...ttt ettt e e e e e ekttt e e e e s e e e et e e e e e e s e e e e aeeeas 52
(00] 0 11110 =T oL - TP PP PP POPPPPPPRPPPPN 5:
COMMANTEXECULION . ...ttt et ettt e e e e e s et e e e e s e e e e e e e e e e e b b e e e e e e e e e e e nnnnneeeeeas 62
HEIE D OCUMIBINES. ...ttt n e e s e e e e s e e e en e e e e e e e 66
Try It Out— USINGHEIEDOCUMENTS.......uiiiiiiiiiiiiiiie it e e e e 66
Try It Out— AnotherUsefor aHEreDOCUMENL...........ocuuiiiiiiiie e 67
HOW T WWOTKS. ...ttt ettt e e e e e ekt e e e e e e s e e e e e e e e e e e s br e e e e aeeeas 67
(D=1 o]0 Lo [ [ pTe ST ol 1] o] &= PP PP PPP P PPPPPPPPRPPPN 67

PULEINGIT All TOGEINEE ...t e e e e e e e e e e e e e e e e e e e e e e eeas 68
REGUITEIMIEINES. ...ttt ettt e e e e e et et e e e e e e e e et e e e e e e nn e e e e e e e e e e e nnnnnnnee s 6&
(D=1 o[ o F PP PP PPPPPPPPPPPPRN 6

Try [t OUL— A CD APPICALION. ...ttt e e e e e e e s e e e e e e e aaans 70
N0 (= TR 7
oYU 0] 0= S 7
Chapter 3: WOrking WIth FIlES ...t e e e e e e e e 78

(@Y V1 Y OO PP EEPPP P PPPPPPPPPPPP 7

UNIX FIlE STTUCTUIE. ...ttt e e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e e annnnnes 78
(D1 =101 (o] (=T TP PP PP OPPPPRRPTPRPN 7
FIlESANADEVICES. ......eeeeiiee ettt e e e e e et e e e e e s e r e e e e e e e s anbbnnneeeeeeeaanes 79

SyStemMCallSANADEVICEDIIVEIS ......ceiiiieiiiiee ettt e e e e e e e s r e e e e e e s anne 81

(o =1 VA U Tod 1 0] o PP P PP PPPPPPPRPPPPN: 82

LOWIEVEIFIIE ACCESS......cco ittt ettt e e e e e e e e e e e e e e e e e e e e e e e e e e e e s 82

L= PP PP PP PPPR PRI 8
L= 10 PP PP PP PTPPPRR 8
1001 o PP TITPPRPON 8
INITAI POIMISSIONS ...ttt e e e e e e e e e e e e e e e e e e e e e e e e nnn e e e aeeeas 85
UIMIBISK. ¢ttt ettt ettt e oottt e oo o4ttt e e e 4o R e et e e e e oo e e et et e e e e e e e e e et e e e e e e e e e eeas 8
(0] [0 1S = PP PP E PP PPTPPPRRP 8
[0 To! 1 PP P TP 8
Try It Out— A File COPYPIOGIaM.......uiiiiiiiieiiee e e e 87
OtherSystemCallSfor ManagingFilES. ........coi i 89
THEe StANAAIT/O LIDIANY. ...ccci it e e e e e s r e e e e e e e r e e e e e e e nnnnees 91
L(6] 61=] o PP PPT PP PPPPPPPPRPPPN 9
1L 16 PP T PP PP PPP PRI 0
L LT PP PPPPPPPRRPPR 9
L0301 R PP OPPPPPPRPPPR 9



Table of Contents
Chapter 3: Working with Files

LLLLU ] OO PP PPTPP S PPPPPPPPRPTPN 9
LT PP PO PRPPPP PRI 0
FOEIC, GBIC,JEICIAN. ... e e e e e e e e e 94
FPULC, PULC, PULCNAL. ..ot e e e e e e e e e e e e s e e e e e e e e e nnneees 94
L0 =T S0 = PP EPPPPPPPPPPPPPPPPTN 9.
FormattedNPUEANAOULPUL ........oiiiiiiiiiit et e e e e e e e e e e e e e e s annnnees 95
Other SIrEAMFUNCEIONS. ....eie ettt ettt e e e e e st e e e e e e e e e e e e e e annbnn e e e e e eeeaaan 98
Try It Out— AnotherFile COPYPIrOgIam..........uuiiiiiiiiiiiitie et e e 99
S (ST =l 0] £ PP 9¢
StreamMSANAFIIE DESCIIPIOLS.....ciiiiiiiiie ittt e e e e e e e s r e e e e e e nnnees 100
File andDireCtory MaiNTEN@NCE. ..ottt e e e et e e e e e s r e e e e e e e e nnnneees 101
(0] 010 00T PP PTP PP PPPPP 10
(0] 0011 o TP PTP P PPPPPP 10
UNINK, TINK, SYMIINK. ..o 101
L]0 [T 1 T L T 10z
o o 1T 00 =3 (oo PR 102
STor= gl o] ale BT =T ox (o] 4= PP PPPPPPPRPPPRN 103
(0] 01T oo |1 OO P PP PPPPPPPPPPP 10
[£=T=To [ | PP RPPP T PPPPPPPPRPPN 10
1C=1 [ 1| ST PP PP OPPPPRPRPPTPN 10
1= o || PP P P PPPPPPPPPPPP 10
(0] [0 1S =T || GO OO PPPPPPPPRPPPN 10
Try It Out— A Directory SCaNNINGPTOGIAIM.........iuurriieieeeeeaeeiitee e e e e e e s r e e e e e s s anrnnreeeeeeeaane 105
HOW T WOTKS. ...ttt ettt e e e e e et e e e e e e e n e e e e e e e e e reeeens 10¢
4 o £ 1C
F e 1V = L g (o1 =Te | o] (o1 TP TP PPPPPPP PPN 107
L0 ] PSP 10
L0100 = PP PPTTTR 10
TrY 1t OUE— USING MM ceeiiieeiiiiiiie ettt e e e e e e s e e e e e e e e e e e e e e e e e e e e annnrneees 110
YU 0] 0= TR 11
Chapter 4: The UNIX ENVIFONMENT.........uiiiiiiieii et e e e r e e e e e e s s e e e e e e e e aannes 112
(@] V1 PSP P PPPPPPPRTPR 11
(oo =10 T o 18 41T PP 112
Try It Out— ProgramAINGUIMENTS. ......coviiiiiiiiiiiiiiee ettt 113
HOW T WOTKS. ...ttt ettt e e e e e e e e e e e e e e e e e e e e e e e b e e e eeas 11/
(0= 1o o | PP PPPPPPRTIN 11
THY I OUL = GOIOP L. oo e 115
HOW T WOTKS. ...ttt ettt e e e e e e et e e e e e e e e e e e e e e e e b nn e e e eeas 11¢
ENVIrONMENIVANADIES........eiiieiiieeee et e e e e e e e e e e e e e as 116
Try It Out— getenvandpPULENVOL...........ouiiiiieiiiii e e e e e e e e e 117
Useof EnvironmentVariables ... 118
TheenVIroNVariable....... ... e 119
THY T8 OUL = ENVITON. ..ttt e e e e e e e e s e r e e e e e e e e bbb r e e e e e e e s e snbrnreeeeeeaann 119
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e et e e e e e e eeeeeas 11¢
TIME ANUDEALE .....eeee ettt e e e e et et e e e e e s e e e et e e e e e s e s n e e e e e e e e e e b e e e e e e e e nns 11
THY TE QUL = TIMIE .ottt e e e e e e et e e e e e s e e e e e e e e e b e et e e e e e e nnnnrnnees 120
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e et e e e e e e eeeeeas 121
THY T OUE = GIMTIMIE. .ttt e e e e e e e et e e e e e e e e e e e e e e s e ansnbn e e e e eeeeeannn 121



Table of Contents

Chapter 4: The UNIX Environment

HOW TEWOTKS. . 122
THY T OUE = ClIMIE ..ot e e e e e e e e e e e e e bbb e e e e e e e e s e nbbnr e e e e e e e e aanns 123
HOW TEWOTKS. .. nnnees 12:
Try It Out— StrtiMEaNdStIPIME. ... e 125
HOW TEWOTKS. e nnnees 12¢
TEMPOTANYFIIES. ...ttt e e e e e et e e e e e s e et e e e e e e a b e e e e e e e e e anne 12¢
Try It Out— tmpPNamandtmMpPIlE.... ..o 127
HOW TEWOTKS. .. e 127
USEIINFOMMALION......cciiiiiiieeeeee e 12¢
Try It OUE— USErINTOMMALIONL. ...coiiiiiiiiiiei et e e e e e e e e e e e 129
HOW TEWOTKS. . 13(
OtherUserInformatioNFUNCHONS ........ooiiiiiiii e e e e 130
HOSEINFOIMALION. ..o 13!
Try It OUt— HOSEINTOIMALIONL. ....oeiiiiiiiiii e e e e 131
HOW IEWOTKS. . nnnaes 132
[ Tol=T ] o o PP PO PPPTTP S TPPPI 13:
[ o o [ 0o TE OO PP PP PRSPPI 13
THEY T OUL = SYSIOQ. ettt et e e e e e e e e e e e e e e a b e e e e e e e e aann 134
HOW IEWOTKS. e ennnes 13¢
(070] 11101 ] g o] o Te TP P PP PPPPPPPRPPPP 134
TrY 1T OUE = IOGMESK ...t e e e e e e e e e e r e e e e e e e aanes 135
HOW TEWOTKS. .. 13¢
RESOUICEBINALIMITS ...ttt e e e e e r e e e e e e e e b e e e e e e e e e e nbrnreeeeeeeaans 136
Try 1t OUE— RESOUICEALIMITS.....ceiiiiiiiiittii et e e e e r e e e e e e r e e e e e e nnnnees 138
HOW TEWOTKS. . ennaes 14(
YU 0] 0= TR 14
(O 0 T= T (=T T =T 11 111 0T 1P PP PPPPPPPPPPPP 14
L@ YT = 14
Readingfrom andWriting to the Terminal..............uvviiiiiiiiie e 141
Try It Out— MENUROULINESIN C....oiieee ettt e e e e e eaaeeas 141
HOW TEWOTKS. . ennnes 142
Why 1t DOESN'TQUITEWOIK. ...ttt e e e e e e e e e e e e e e e e 143
HandliNGREAINECIEADULPUL........eeieeiiiiiie et e e e e e e r e e e e e e e aannes 144
Try It Out— Checkingfor OUtPUIREMITECTION. .........coiiiiiiiiiiie e 144
HOW TEWOTKS. . ennnes 14¢
TalKiNgtO theTEIMINAL......eeiiiiiei e e e e e e 145
Try [t OUE = USING/AEV/TLY.....ccoiiiiieeeeeee ettt e e e eaeeeas 146
TheTerminalDriver andthe GeneralTerminallNterface...........ccooooiiiiiiiie i 147
L@ YT = 14
[ F= U0 Y= T 1/ o T [ PP 148
THETEIMIOSSITUCTUIE. ....ceei ettt e e e e e e e e e e e e e e e et e e e e e e e e e e e e e e e annnnnes 149
INPUEIMIOOES ...ttt e ettt e e e e e e bbb e et e e e e e e e b b e et e e e e e e s nnbbn e e e e e e e e aannns 15(
OULPULMOAES. ...ttt ettt e e e e e ettt e e e e e e et e e e e e e e e e e e e e e e e e annnrree s 151
@0} 01110 1Yo To [T 152
[0 Tor= 1Y/ o T = SRR 15¢
SPECIAICONTIOICNAIACTELS. .. .eeiiie ittt e e s r e e e e e e e s e e e e e e e e e nnrees 153
TeIMINAISPEEM. ... et e e e e e e e e et e e e e e as 15€
AAItIONAT FUNCHIONS. ..ottt e e e et e e e e e e e e e e e e e e e anbrn e e e e e e e e e aannes 156



Table of Contents

Chapter 5: Terminals

Try It Out— A PasswordProgramWwith tIMIOS. ........coiiiurriiiiieee e 157
HOW T WOTKS. ...ttt ettt e e e e e et e e e e e e s et e e e e e e e e e nnnn e e e eens 15¢
Try It Out— ReadingEAaCNCRNAraCter..........coiiiiiieie e 158
HOW T WWOTKS. ...ttt ettt e e e e e et e e e e e e e e e e e e e e e e e nnn e e e eeas 15¢
TEIMINAIOULPUL ... ettt e e e et e e e e s e e e e e e e e e s s e e e e e e e e e e nnbnrneeeeeesaannn 15¢
LIS 00T E= Ul Y 1= OO PRPPP T PPPPI 15¢€
[dentify YOUr TerMUNaAI TYPE.....eiiiiiieeeee ittt e e e e s r e e e e e e aan 160
UsingterminfoCapabilities............uuiiiiiiii e 162
Dt INGKEYSITOKES. ...ttt ettt e et e e e e e e e e et e e e e e e e bbb e e e e e e e s e nnnbrnreeeeeeeaans 167
Try It Out—Your Very OWNKDNIT........ooooiii e 167
HOW T WWOTKS. ...ttt e e e e e e e e e e e e e e n e e e e e e e e e nnnneeeeeens 16¢
PSEUAOTEIMINGAIS ....eeie et e e e et e e e e e s r e e e e e e e e annnnees 169
YU 0] 0= TR 16
(O 0F= T (=T g O I OB | £=T =T SO T PP EP PP PPPPPPPPPPPRN 17
(@Y V1 TP PP PP PPPPPPRRTPR 17
COMPIINGWITN CUISES ...ttt e e e e e e e e e e e e ann e e e e e e e e aanes 170
L0 o T01=T o 1 < F TR 17
Try It Out— A SIMPIECUISEIPTOGIAIML. ...ciiiiiiiiiiiiei ittt e e e e e e e e anneees 172
Initialization aNATEIMINATION. ... e e e e e e s e r e e e e e s e annnnnneeeeeeas 173
OULPULLO TNE SCIEEIN.......eeeeeeee et e e e et e e e e e e e e e e e e e e e s b nn e e e e e e e aaae 173
ReadiNGITOM tNESCIEEIL ...t e e e e e e e e e 174
CleariNgENE SCIEEIN. ... et e e e e e e e e e e e e s e e aeas 17¢E
MOVING TNE CUISOL.....ceeee ettt e e et e e e e e e e e et e e e e e e e e e e e e e e e e e e nnnrneees 17¢
CharaCteIAIIIDULES. ... ..ttt e e e r e e e e e e s e e e e e e e e e snb b n e e e e e e e aaae 175
Try It Out— Moving, INSertingandAIDULES...........ooiiiiiiiiiie e 176
TREKEYDOAIT. ...ttt e e e e e e e e e e e e e e e e e e e e e s e aae s 17
KEYDOAITAMOUES. ...ttt e e e e e e e e e e e e e e e e nneeeeeeean 177
KEYDOAITINPUL ...ttt e ettt e e e e e e e et e e e e e s e e e e e e e e e e annnnees 17¢€
Try It Out—KeyboardModeSandINDUL............ueiiiiiiiiiie e 178
HOW T WOTKS. ...ttt ettt e e e e e e e e e e e e e e e e e e e e e e e nn e e e eeas 17¢
WVINAOWS. ..ttt oo e ettt e oo o4 e ettt e e e e e e s bbb e e et e e e e e e e n e e e e e e e e e e nnnnree e 18
THEWINDOW SHUCHUIE. ...ttt ettt e e et e et e e e e s r e e e e e e e s b rnreeeeeeeaanns 180
GENEIAlIZEAFUNCLIONS. ...ttt e e e e e e e e e e e e e e e e e e e e e s annnnees 180
Moving andUpdatinga WINOOW. ..........eeiiiiiiiiiiiiei e e e e e e e 181
Try It Out— MUIIPIE WINUOWS......coiiiiiiiiiiiee ettt e e e e e e e e e e e 182
OPtiMIZING SCrEEMRETTESNES ...t e e e e 184
SUBWINAOWS. ...t e et e e e e e e e e et e e e e e e s b r e e e e e e e e e nnnnees 18!
TrY [t OUE = SUBWINGOWS. ...ttt e e r e e e e e e s e e e e e e e e aanns 185
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e e e e e e e e reeeeeas 187
TREIKEYPAM . ...ttt e e oo e e e e e e et e e e e e e et e e e e e e e aeeeas 18
Try 1t Out— USINGNEKEYPAA. ......eeiiiieiiiiiieie e e e 188
(©70] 0] F R P T PPPPPPPPPPR P 1¢
LI A LR O 10 | O 0] (o] = PSSP PR PPTP PP 190
(Y=To (=] o] 0o (@ o] (o] £ TP PPPRPPP PP 191
10 L TP TP PPPPPPPRI 1¢
Try [t OUE = USING@APAG..........ceiieiiiie et e e e e s e e e e e e 192
The CD ColleCtioNAPPICALION. .......uiiiiiieee it e e e e e e e e e e s e e e e e e e e e 193
Try It Out— A New CD ColleCtionAPPIICALION. ........coiiiiiiiiiiieee e 194

\Y



Table of Contents

Chapter 6: Curses

Try It OUt— LOOKING AEIMAIN. ......uiiiiiiieiiiiiii e e e e e e e e s e e e e e e e ans 196
TrY 1T OUE = TREIMENU. ..ttt e e e e e e e e e e e e e r e e e e e e e aaaas 196
Try It Out— Databasé-ile ManipuUlation..............cocooiiiiiiiiiiiee e 198
Try It Out— QUEeryingthe CD Dat@bDaSE........ccceeiiiiiiiiiiiiee et 202
SUMIMBIY oo e a e a e nn e 20
Chapter 7: Data Man@QQEIMENL..........coiiiiiiiiie et e e e e e e e e e e s e et e e e e e e s s e e e e e e e e e s s annbnnreeeeeeaaans 207
(@] V1 TSP PT TSP PPPPPPRRTPR 20
Y ETaE=To 1 e AV =T 0 T ] oY AP P TP P PP PPPPP 207
SIMPIEMEMOIY AIOCALION. ..ottt e e e e e e eee s 207
Try It Out— SiImplIeMemMOry AlIOCALION..........cooiiiiiiiiie e 208
HOW T WOTKS. ...ttt et e e e e et e e e e e e e n e e e e e e e e e nn e e e eeas 20¢
AllOCALING LOIS OF IMEIMOTY......ciiiiiiieee ittt e e e e e e e e e e s enb e e e e e e e e aae 208
Try It Out— Askingfor all PhySIiCAIMEMOIY..........cooiiiiiiiiieece e 209
HOW T WOTKS. ...ttt ettt e e e e e e e e e e e e e e e e e e e e e e e nnnn e e e eees 20¢
Try It Out— AVAIIADIE IMEIMOIY. ....ciiiiiiiiii ettt e e e e e e e e e e 210
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e e e e e e e e e e eeas 21(
ADUSINGMEIMOIY....ee et eeei ettt e e e e e et e e e e e e s e b e e e e e e e e s b e e e e e e e e e e annnnees 211
Try [t OUL— ADUSEY OUI IMBIMOIY ...ttt e e e e e e e e e e e e 211
HOW T WOTKS. ...ttt ettt e e e e e e et e e e e e e e e e e e e e e e e reeeeeas 212
TRENUIN POINEL. ...ttt e e e e e e et e e e e e e e e e e e e e s annnree s 212
Try It Out— AcCESSINGRNUII POINTEL......ouiiiiiiiiiiie e 212
HOW T WOTKS. ...ttt e e e e e et e e e e e e e e e e e e e e e e b e e e eens 21:
HOW T WOTKS. ...ttt et e e e e e et e e e e e e e e e e e e e s e e n e e e eeas 21:
FrEINGIMIEIMOIY. ...ttt e e e e e et e e e e e e e e s b e e e e e e e e e e nneeeeeeas 213
Try [t OUL— Fre@INGIMEIMOIY.....ciiiiiiiiiiiiee ittt ettt e e e et e e e e e e r e e e e e e e annneees 214
HOW T WOTKS. ...ttt et e e e e e e e e e e e e e e s et e e e e e e e e e nn e e e eeas 21/
OtherMemory AlloCatioN FUNCHIONS ........uuiiiiiieiiiiiiie e e e e 214
L1 (=3 o Yo 4] o PP P PP POPPPP 21
CreatiNGLOCK FIlES.... e ettt e e e e r e e e e e e e r e e e e e e e ans 215
Try It Out— CreatiNnga LOCK File.......cooi e e e 216
HOW T WOTKS. ...ttt e e e e e e st e e e e e e e e e e e e e e e e b n e e e e e s 21¢
Try 1t Out— CoOpPEeratiVELOCK FlES.........coiiiiiiiiiee e 217
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e e e e e e e e e e nnnn e e e eeas 21¢
LOCKING REGIONS. ...ttt e e e et e e e e e e s e e e e e e e e n e e e eeeas 218
Useof readandwrite With LOCKING . .......cooiiiiiiiiiiiee e 221
Try It Out— LockingaFile With fCNtl............ooemiieee e 221
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e e e e e e e e e e nnnn e e e eeas 222
Try It Out— TestingLOCKSONAFIIE.........ueiiiiiiei e 223
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e e e e e e e e n e e e eens 22¢
(00] 0] ¢1=11] 0 o oo 1C TP PP PP PPPRPPPRPRPP 226
Try 1t Out— COMPELINGLOCKS. .....eeeiiiiieiiiiiee e e e e e a e e s 226
HOW T WWOTKS. ...ttt e e e e e e e et e e e e e e e e e e e e e e e n e e e e eeas 22¢
OtherLOCK COMIMANDS. ......coiiiiiiiiii ettt e e e e e e r e e e e e e e e e e aeeeas 228
DRATIOCKS. ...ttt ettt et e e e e e e e e e e e e e e e e e e e e a e e e e e e e 22
DALADASES. ..o e e e et r e e e e e as 22
ThedbDMDAADASE.........co it ea e 229
THEADMROULINES ....ceeiieeee et e e e e e s r e e e e e e e e n e e e e e e e aanes 230
ADM ACCESTFUNCHIONS. ...ttt e e e e e e et e e e e e et e e e e e e annnnees 232



Table of Contents

Chapter 7: Data Management

AddItioNal ADMFUNCHIONS.....ceiiiii e e e e e e 235
THE CD APPIICALION. ...ttt e e e e e e e e e e e e e e e e e e e e e e e e e e e e e annnr e eeeeeas 237
The CD ApplicationUsINGaDML..........oiiiiii e 238
Try [t OUE— CO_AATBNL. ..o e e 238
R0 A LSO U1 R T o) o LT Y o PP T PP PPPPPPPRPPPPN 239
TIY 1T OUE— CO_BCCESS.Ceeiiiiitiie e e e ettt e e e e ettt e e e e e et e e e e e e e e e e e e e e s annbrnreeeeeeeaas 247
YU 0] 0= TR 25
Chapter 8: DeVelOPMENTTOOIS . ... e e e e e e r e e e e e e s nnreees 254
(@] V1 PP PP PP PPPPPPPRTPP 25
Problemsof MUItIPIE SOUICEFIIES........ccoiiiie e e e 254
ThemakeCommanNAMAEKETIIES. .........oooiiiiie e 255
The Syntaxof MaKETIES. .........uiiiiie e e e e 255
OptionsandParameterfd MAKE............oiuiiiiiiie e e e e e e s e e e e e anes 255
CommeENtSN aMAKETIE........ e 258
MaACTOSIN @MAKETIIE. ......eeiiiieii e e e e e e e e e 258
Try It Out— A Makefile With MACIOS............ciiiiiieee e 259
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e e e e e e e e e nnnnn e e e e eeas 25¢
MUIEIPIE TaIGETS ..ottt e e e e et e e e e e e e e e e e e e e e e nneeaeeeas 260
Try It OUL— MUIIPIE TAIGELS. ...ttt e e e e e s e e e e e 260
HOW T WWOTKS. ...ttt e e e e e e e et e e e e e e e e e e e s e e nn e e e eeas 262
BUIITTIN RUIES. ... e e e e e e e e e e e eeeaeeeas 262
SUFTIX RUIBS ...t e et e e e e e e et e e e e e e e e e e e e e e e nnbreees 26
Try It OUL— SUTIX RUIES.......eeeeee e e e e e 263
HOW T WOTKS. ...ttt ettt e e e e e e e et e e e e e et e e e e e e e e e e e e eeas 26/
ManagingLibrarieSWith MaKE...........c.uiii e 264
Try It Out— Managinga Library............ooo e 264
HOW T WOTKS. ...ttt e e e e e e e et e e e e e e e e e e e e e e e n e e e eeas 26¢
AdvancedTopic: MakefilesandSubdireCtories...........c..uvveivieiiiiii e 266
GINU MBKEANAGCC. ... eeeeeeeeeiiiite ettt e e e et e e e e e e e e e e e e e e e e s r e e e e e e e e aannbnnneeeeeeaaans 266
TrY I8 OUE = GCC—MM ... nnree 267
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e e e e e e e e nnnn e e e eeas 267
o]0l o7 o e [=10{o] 111 (o] PP PPPPPPPRPPPRN 267
L O TP PP PTPPPPPRPPRPN 26
] O O PP PPP P TPPPPP 27
LAY PP PP P PTPPPPPRPPPPN 27
WItING @MANUAIPAGE ......ceeieeeeeiee ettt e e e e e e e e e e e e e e e e s e s s e e e e e e e e e aannes 278
DIStHDULING SOTWAI. ... e e e e e s e e e e e e e e nreeeeeeeans 281
THEPAICNPIOGIAML. ...t e e e e e e e e e e e e e e e e e e e nnnneees 281
OtherDIStrDULIONULITITIES .......eeiiii i e s e e e e 283
YU 0] 0= TR 28
(O 0T To (=T o T BI=T o 0T [ 1| To H PP PP PPPPPPPPPPPP 28!
LY LTI I = o ST PPRTPP T PPPPPPRPRPPPN 28
SPECITICALIONEITOIS. ... eeeeeee ettt e e e e et e e e e e s et e e e e e e s b e e e e e e e e e e e nnnnbnneeeeeeeaaans 286
(DTS T[] =t o] £ PP PPPRTPTPPPIN 28¢
(000 1 aTo | = g £0] £ TP PR PP PPPPP P PPPPIN 28¢
GeneraDebUggINGTECNNIGUES . .....oi ittt e e e e e e e e e e r e e e e e e e ennnneees 287
A Programithl BUGS.........eueiiiiieiiiiie ettt e et e e e e e e e e e e e e e s e 287



Table of Contents
Chapter 9: Debugging

(000 (=11 1Y oT=Tot 1[0 o TP PP PPPPRPPPP PP 2869
INSEIUMENTATIAN. ... eeee e et e e e e e et e e e e e e st e e et e e e e e e b b n e e e e e e e e e annnnees 29C
Try It Out— DebugiNfOrMEatIONL.......ccoiiiiiiii e e e e e 291
HOW T WWOTKS. ...ttt ettt e e e e e et e e e e e e e e e e e e e e e e e nnn e e e eeas 291
CONIOIEAEXECULION. ......eeeiiiie ettt e e e et e e e e s e e e e e e e e e e e eeeeeeas 292
DebUGGINGWITN GOD.......eieeeiie e e e e e e e e e e e e e e e aan 293
SEArtINGGUD. ... e e 29:
RUNNINGAPTOGIAML ...ttt e e e e e e e e e e e e e e e s b e e e e e e e s s aannbnn e e e e e e e e aannes 294
=101 g I = Vol PO PP P PP PPPPPPPPRPPPR 29¢
EXaMININGVAriabIES ......cooiiiiii e e e e e e e 295
LiStING tNEPTOGIAM. ... e e e e e e et e e e e e e e e e e e e e e e annnnnes 296
SettiNGBIrEAKPOINTS. ....ceiieee i e e e e e e e e e e e e e 296
Patchingwith thEDEDUGQEL........oovi e 299
Learningmoreaboutgdi......... ... 300
MOre DeDUGGINGTOOIS. ... ..t e e e e e e e e e e e s r e e e e e e e s neeeaeeeas 300
Lint: Removingthe FIuff from YOour Programs.............ccooiiiiiiiiieeiiiee e 301
FUNCHONCAI TOOIS. ...ttt e e e e et e e e e e e e e e e e e e e annnenes 302
EXECULIONPTORIING. ...ttt e e e e s e e e e e s e s e e e e e e e e annes 304
F ST =T 410 L PP P PSP PPEPPP R PPPPPPPPPPRP 30
ProbIEMSNVITN @SSEIL.... .t e e e e s e e e e e e as 305
TEY JE QUL = BISSEIL. ..ttt 305
HOW T WWOTKS. ...ttt ettt e e e e e e et e e e e e e e e e e e e e e e e nnnneeeeeeas 30¢
[T o g o1 VA BI=T o 18T o |1 To TR PP P PRSP PPPPPPRRRPPR 306
S =Tot o] o =T o[l PRSP PPRRTPTTPPIN 307
Try [t OUE— EIECHICFENCE. ...ttt e e e e aaeeeas 307
HOW T WOTKS. ...ttt e e e e e e et e e e e e e e e e e e e e e s e e n e e e eens 30¢
(O 01T o (=T TP P PP TP PPPPP 30
THY 1T OUE = CRECKEE ...ttt e e e e e e e e e e e e e e e s e b b n e e e e e e e e e aann 308
HOW T WOTKS. ...ttt ettt e e e e e e e e e e e e e s e e e et e e e e e e eeeeens 30¢
LY ST oW of 1 SRR 31
YU 0] 0= TR 31
Chapter 10: ProCeSSeSING SIGNAIS.........uuuiiiiiiiiiiiiii it e e a e e e e e e s s r e e e e e e e s annnees 311
(@] V1 PSP P PPPPPPPRTPR 31
WWNATIS @ PTOCESS? ...ttt ettt e e e ettt e e e e e e e e et e e e e e e e b e e e et e e e e e e e rreeeeeeas 311
PrOCESSSITUCIUIE. ... s 311
THEPTOCEST ADIE.....cceiiieeee ettt e e e e e e e e e e e e e e 313
VIBWING PIOCESSES .....eiiiiiiiiiiititee ettt e e e e oottt e e e e s et e e e e e e s e bbb r e e e e e e e s annbnneeeeeeeeaannes 313
YT =T 0 oIt =T PP O PP P PP P PPPPPPPPPPPP 314
ProCeSSSCNEAUIING......eeiiieeii e e e e e s e e e e s s s e e e e e e e e annes 315
STANINGNEW PrOCESSES ... ...t e e e e e e s e e e e e e e e e e e e e e e e annnneees 316
TEY T8 OUE = SYSTBIML. ..o nnne 316
HOW T WOTKS. ...ttt ettt e e e e e e et e e e e e e e e e e e e e e e e b nn e e e eeas 317
REPIaCINGA PIOCESIMAGE......ciii i ittt e e e e e e e 317
LI A LR O 10 | = (=T ol | o PP PRPPTP PP 318
HOW T WOTKS. ...ttt e e e e e e e e e e e e e s e e e e e e e s e e nn e e e eeas 31¢
DUPIICAtING A PIOCESIMATE.....ceiie ettt ettt e e e e e e e e e e e e e e e e e s 319
LIS A LR O 10 el (o] PP PP PPRPPP PP 320
HOW T WOTKS. ...ttt e e e e e e e e e e e e e s e e e e e e e s e e nn e e e eeas 32]



Table of Contents

Chapter 10: Processesind Signals

WaAILING TOI @PTOCESS. ... ettt e e e e e e e e e e e e e e s e annrr e 321
THY TE QUL = WAL ...ttt e e e e s r et e e e e e e e e e e e e e e s annbrneneeeeeeeanns 322
HOW T WOTKS. ...ttt e et e e e e e e et e e e e e e e e e e e e e e e e eeeeeas 32z

ZOMDIEPTOCESSES. ...ttt ettt e e e e et e e e e e et e e e e e e e r e e e e e e 323
TrY [t QUL = ZOMDIES.......eieeeee e e e e e e e e e e e e e 324
HOW T WOTKS. ...ttt ettt e e e e e e et e e e e e e e e e e e e e e e e e b nn e e e e eeas 324

INPUtANAOUIPULREAINECTION. ......eeiiiieiiiie et e e e e e e s e e e e e e aaan 325

TrY 1t OUE— REAINECTION. ....cci ittt e e e e e r e e e e s e s e e e e e e e 325
HOW T WWOTKS. ...ttt e e e e e e e et e e e e e s e e e e e e e e e e nnnreeeeeens 32¢

L1221 £ T PP TP PPPPPPPPRPPPR 32

S (o] £ F= L PP PP PTPPPPPR 32

Try 1t Out— SIgNAHANAING. ....ccoiiiiiiii e e e 328
HOW T WOTKS. ...ttt ettt e e e e e e e e e e e e e e e e e e e e e e e nnnn e e e eeas 32¢

1= g0 [T gTe S0 | 0 F= 1 TP PP PP PRPPPP PP 330
Try It OUt— AN AL ClOCK. ...t e e e e 330

HOW T WWOTKS. ...ttt ettt e e e e e et e e e e e e e e e e e e e e e e e nnnn e e e eeas 331
SHONAIS LS ..t e e e et r e e e e e a e e e e e e e 33¢
YU 0] 0= TR 33
Chapter 11: POSIX TRIEAUS. ... eeeeieeiiiiitte ettt e e e e e e et e e e e e e r et e e e e e s e b r e e e e e e e e e e annnnees 338
WNALIS @ TNIEAAZ. ..ottt e e e e e e e e e e e e e e s e e e e e e e e e e e e eeeaeeas 33¢€

AdvantagesindDrawbacksof TRIrEadS. ..........ouviiiiiiiiiiiiee e 338

Checkingfor TRrEAASUPOIL. .........uiiiiiiieee ittt e e e e e s e e e e e s s annb e e e e e e e e aaans 339
Try it OUt— POSIXCOMPIANCEESL.......cooiiiieeieeee e e e 339
HOW IE WOTKS. ..ot e e e e ettt e e e e s e e e e e e e e e e e e e e e e e e e annnnnes 34(
A FIrSETRIEAASPTOGIAIML .......tieeeieee e ettt e e e e et e e e e e e s e e e e e e e s e nnn b e e e e e e e e e e nnnnrreeeeeas 340
Try it out— asSimplethreademrOgram...........uueiiiiie e 342
HOW IE WOTKS. ...ttt e e e e e e et e e e e e e e e n e e e e e e e e e b nn e e e eeas 34:
SIMUIBNEOUEEXECULION. .....eeeeeeiiiit ettt e e e e e r e e e e e e e r e e e e e e e e annbnnneeeeeeeann 344
Try it out— simultaneougxecutionof two threads..............ooooiiiiiiiiiii e 344
HOW IE WOTKS. ...ttt e et e e e e e e e e e e e e e e e n e e e e e e e e e b n e e e eeas 34¢
Vo3 01 00] 01 2= 11 (o) o PO PPUPPPPPRPPPRN 34!

Synchronizatiowith SEMAaPNOTES...........c..eiiii s 345
Try it out— athreadsemapPnOre. ... ... ..o 347
HOW IE WOTKS. ...ttt e e e e e e e et e e e e e e e e e e e e e e e nnnnnreeeeeas 34¢

SyNChronNizatioMVItN IMULEXES........coiiiiiiii e e e e e a e 350
Try it OUL— @TNIEATMULEX.........eiiiiiiee et e e e e e e e e e e e e e e aans 350
HOW IE WOTKS. ...ttt ettt e e e e e e e e e e e e e e e e e e e e e e e e e nnnnreeeeeas 352

TRIEATAIIIDULES. ...t e et e e e e e e e r e e e e e e e e e e e e e e e e e nn i reeeaeas 35¢
(0[] r= (ol 1T K] = =TT EPPP PP PPPPPPPPRPPPN 35¢
o1 a1=To ] oo | [0n Y PP RP P POPPPPRPRPTP 35¢
o a[=T0 ] o T=T = 0 4 IO PP P POPPPPRPRPTP 35!

QLT 1 STo] pT=T o B PP PPPPPT PP 35¢
010 PP 35
SEACKSIZ ..ottt e oo e o ettt e e e e e e et e e e e e e e e e e e e e n i nne s 35
Try it out— settingthe detachedtateattribute...............oooiiiiiiiii e 355
HOW IE WOTKS. ...ttt e e e e e e e e e e e e e e e e n e e e e e e e e s nn e e e eens 35¢
ThreadAttributes— SCNEAUIING .......cooi i 357
TrY IS OUL— SCREAUIING. ...cee e it e e e e e e e e e e e e e e e e aaaas 357



Table of Contents
Chapter 11: POSIX Threads

HOW IE WOTKS. ..ttt e e e e e et e e e e s e e e e e e e e e e n e e e e e e e e e annnnnes 357
(0= T (o110 = B I g (=T (o H TP T PP PPTRPP 357
Try it out— CANCEINGATNIEAM.........eeiiieeeii e e e 358
HOW IE WOTKS. ..ottt e e e ettt e e e e s e e e e e e e e e e n e e e e e e e e e annnnnes 36(
THreadsn ADUNGENCE. .......coii e e e e e e e e e e e e e b e e e e e e e aanes 360
Try it OUL— MANYINIEAUS. .......eeiieiiiie e e e e e e e 360
HOW IE WOTKS. ...ttt ettt e e e e e e e e e e e e e e e e e e e e e s e e nn e e e eeas 362
SUMIMBIY e e e nnrnnne 36
Chapter 12: Inter—process CommUNICAION: PIPES........ciiiiiiiiiiiiieeee it e e 364
OV BIVIBW ...ttt ettt oo e oottt e o444 4Rk b ettt e o444 e s R e ettt e e e e e e s R b e e et e e e e e e a s bnrnr e e e e e e e annn 36
WWNALIS @ PP, .ttt oottt e et e e e e et e e et e e e et e e e e e e e e e e e e e e aaan 36¢
P IO CE SR IPES. ..ttt e e e et e e e e e e et e e e e e e e r e e e e e e a e 36!
10T 7] o TP PPPTPT 36
[S1 [0 ] =TSP PPRPPPP PP 36
Try It Out— ReadingOutputFroman EXternalProgram..............cevveeiiiiiiiiiieeee e 365
HOW T WOTKS. ...ttt e e e e e e e e e e e e s e e e e e e e e e e nnnnrreeeeas 36¢
SeNAINQOULPULIO POPEIN.....uueieiieeeiiiiiieee et e e et e e e e e e e e e e e e s s e e et e e e e e e n e e e e e e e e e s annnnnees 366
Try It Out— SendingOutputto an EXtErNalProgram..........coouiiiiiiiiieeeiiiiieie e 366
HOW T WOTKS. ...ttt ettt e e e e e e et e e e e e e e e e e e e e e e nnnneeeeeeas 367
TREPIPECAIL.....ceeeeeeeeee ettt e e e e e e e e e e e e e aae s 36!
Try It Out— ThePIPEFUNCLION.......eiiiiiieiie it ee e 370
HOW T WWOTKS. ...ttt e e e e et e e e e e e s e e e e e e e e e e nn e e e eeas 371
Try 1t OUt— PIPESACIOSSATOIK. ...t 371
HOW T WOTKS. ...ttt e e e e e e e e e e e e s e e e e e e e e e e eeeeeas 372
ParenBndCRIld PrOCESSES. ........oeiiiiiiiiiiee ittt e e e e e e e e e e e e e 372
Try [t OUL— PIPESANUEXEC . ... eeieeiiieeeiiiit ettt e e e e e e e s r e e e e e e s e b e reeeeeeaaans 372
HOW T WOTKS. ...ttt e e e e e e e et e e e e e e e e e e e e e e e n e e e eeas 37z
REAINGCIOSEAPIPES. ... ettt e et e e e e e e e e e e e e e e s e n e e e e e e e aanne 374
PipesUsedasStandardnput aNAOULPUL.............uveiiriieiiiiiiiee e 374
NAMEAPIPESIFIFOS.....ceeeeeeee et e e e e e e e e e e e e et e e e e e e bbb e e et e e e e e e annnrnnees 377
Try It Out— Creatinga NamMEUPIPE. .......uuiiiiieee et e e 378
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e e e e e e e b nneeeeeeas 37¢
ACCESSINGRFIFQL. ... e e e e e e e e e e e e e e e e e e aeas 378
Try 1t Out— ACCESSINGRFIFO FIIE.... .. e 379
HOW T WWOTKS. ...ttt e e e e e e e e e e e e e s e e et e e e e e e b n e e e eens 37¢
AdvancedTopic: Client/ServemlSINgFIFOS .........oo e 385
Try It Out— An ExampleClient/ServerAppliCatioN.............oooiiiiiiiieeeiiieeece e 385
HOW T WOTKS. ...ttt ettt e e e e e e et e e e e e e e e e e e e e e e n e e e eeas 38¢
THE CD APPIICALION. .....ceiiie ettt e e et e e e e e e e e e e e e e e r e e e e e e e e e annnn e eeaaeas 388
Y110 PP E TP PPPPRRIN 38
IMIPIEMENTATION. ... eeeeee ettt e e e e e e e e e e e e s bbb e e e e e e e e e nn e e e e e e e e e annnnees 39C
Try It Out—TheHeaderFile, ClISErV.i.........ooo s 392
Client INterfaCEFUNCLIONS ... e e e s e e e e e e e annes 393
Try It OUt— The ClIeNt' SINEIPIEIEL. ... ..uiiiiii et e e e 393
THE SEIVEIMNTEITACE .....ci et e e e e e e e e e e e e anes 399
LIV LSO 10 1T =T V=T o OO PP PP PP P PP PP PP PPPPPPPPPP 399
LILALSE o oL PP PP P P PP PPPPPP 40:
Try It Out— PipesimplementatiomHEaUE..............uviiiiiei e 402

X



Table of Contents

Chapter 12: Inter—processCommunication: Pipes

APPIICALION SUMMIBIEY. ...ttt e e e e e e e e s e e et e e e e e e e e e e e e e e e e annnrreees 407
YU 0] 0= TR 40
Chapter 13: SemaphoresMessageQueuesand SharedMemMOIY..........cocuuriiiiieeeiniiiiee e 409
1= ppET o] (0] £ =T PP PR PP PPPPPPPPRPPPN 40
SeMAPNOIEETINITION. .....eiiiiiiiiie e e e e e e e e e e e e s e rreeeeeeas 410
A TheoretiCAEXAMIPIE. ..ot e e e e e s r e e e e e e e e 410
UNIX SeMaPNOIEaClItIES. ......eeiiiiiiiiiiiiie et e e e e e e e e e anne 411
USING SEMABPNOTES........uiieiiiieeie ittt e e e e e e e e e e e e e s e st e e e e e e e e aannnnnreeeeens 413
Try [t OUL— SEMEPNOTES......ciiiiieiiiee et e e e e e e e e e s e reeeeeaans 414
HOW T WOTKS. ...ttt ettt e e e e e e e e e e e e e e e e e e e e e e e e nnnn e e e eeas 41¢
SEMAPNOTE UIMIMIANY. ...t eeeie ettt e e e e et e e e e e e s e e e e e e e e e bbb e e e et e e e e e s annnnnreeeeeeeas 417
S T g=T0 (Y [T 4 [o] Y PTPPP PR PPPPPPPPPPPP 41
OVBIVIBW. ..ottt ettt ettt e oo oottt e e e oo e R b b ettt e e e a4 ek e ettt e e e e e e b e e e e e e e e e e nnnnrne e s 41
SNareaMEMOIY FUNCHIONS .....eeiiiiiiiiii et e s e e e e e e e e e e e e e e e nnneees 418
SNArEOMEMOIY SUMMIBLY. ......ceieeiieee ettt e e e e e et e e e e e s s r e e e e e e s aannbnnneeeeeeeaanne 423
Y TS T Lo [ 8 LU [T U L= PP 42:
OVBIVIBW. ..ottt ettt oo oo e e et e e oo oo e R e ettt e e e a4 ek e e e et e e e e e e b e e e e e e e e e e nnnnrne e s 42.
MESSAGEIUEUEFUNCLIONS. ......eeeeiieeeiiiiiit ettt e e et e e e e e e e e e e e e e e e e e e e s sbbnen e e e e e e e e anne 424
MESSAGEIUEUESUIMIMABIY.....ciiiiiiiiiiieiiiee i et e et e e et e e e e e e e e e e e e e e e e e e e e s e e e e s e e e s s e a s a e aa e e 429
TR APPICALION ...ttt e e e e e e e et e e e e e e e e e e e e e e e e e e e e e e aane 42
Try It Out— Revisingthe ServerFUNCHIONS...........ouiiiiii e 429
Try It Out— Revisingthe ClIieNt FUNCHONS...........cuiiiiiiii e 431
[PC STAtUSCOMIMANGS........eiitieieeeeee ettt e e e e e e e e e e s s e e e e e e e e e n e e e e e e e e e nnnnnrneeeeeas 433
1= 0 g Tt o] g (0] 1= T PP PRRPPPPPPP 43:
S T g=T0 (Y [T 0 To] YA EPOP R P PP PPPPPP PP 433
Y ST STz Lo [ 8 LU [T L= PP 433
YU 0] 0= TR 43
(04 0 F= 0] (=T g B T o o] (= = SO P PP PPP P PPPPPPPPRPPR 43!
(@] V1 TSP TP U PPPPPPPRTPP 43
WRNALIS @ SOCKEL?. ...ttt e e e e e et e e e e e s s e et e e e e e e n e e e e e e e e e nnreees 435
S ToT0] (<] 1000 g1 g T=Tox (0] o R J TR T PP PPTRPP 435
Try It Out— A SIMPIELOCAI CHENT.....cciiiieee e 436
Try 1t Out— A SIMPIELOCAI SEIVEL........eeiiiiiiiiii e 437
SOCKETATIIIDULES. ...ttt e e e e s et e e e e e e r e e e e e e s e nnbrn e e e e eeeeaans 439
CrEALINGA SOCKEL. ...ttt ettt ettt e e e e e e et e e e e e e e bbb e e e e e e e e e annbrnneeeeeeeans 441
SOCKETAGUIESSES. ...ttt e ettt ettt e e e e ettt e e e e e e e e e e e e e e e bbb e e e e e e e e s e nnbrnneeeeeeeans 442
NBMINGA SOCKEL ...ttt e e e e e et e e e e e s r e e e e e e e s e nnbr e eeeeeeeans 442
Creatinga SOCKEIQUEBUE.........ciii ittt et e e e e st e e e e s s e e et e e e e e e e e e e e e e e e annnnees 443
ACCEPLINGCONNECTIONS. ...ttt e ettt e e e et e e e s s et e e e e e e s b e e e e e e e e e e aannbrnneeeeeeeaanns 443
REQUESTINECONNECTIONS. ...t e ettt e et e e e e e e e e e e e e e e e e e e e e e e e e annnnees 444
ClOSINGA SOCKEL. .....cceeiii ettt e e e e e e e e e e e e e e r e e e e e e e a s ne s 445
SOCKEtCOMMUNICATIONS. ...ttt ettt e e e e e e e e e e e e e e s e e e e e e e e s annbnnneeeeeeeans 445
Try It OUL— NEWOIK CHENL.....ceiiiiiiiieee et e e e e e e e e 446
HOW T WWOTKS. ...ttt ettt e e e e e e et e e e e e e e e e e e e e e e e n e e e eeas 44¢
Try 1t OUE— NEIWOIKSEIVEL ... e e e e e e e e e 446
HOW T WWOTKS. ...ttt ettt e e e e e e et e e e e e e e e e e e e e e e e n e e e eeas 447
HOStandNetworkByte OFUEIING. ... ..uuueiiiieiiiiiiiiiii et e e e e 447



Table of Contents
Chapter 14: Sockets

NEtWOTKINTOIMALION. ...t e e e e e e e e e e e r e e e e e e e e b reeeeeeeaans 449
Try 1t Out— NetworkINfOrMatION. ........ocoiiiiiiiii e 450
HOW T WWOTKS. ...ttt ettt e e e e et et e e e s e e e e e e e e e e n e e e eens 45]
Try It Out— Connectingo a StandardSeIVICE...........uviii i e 452
HOW T WWOTKS. ...ttt ettt e e e e e et e e e e e e e e e e e e e e e e e nnn e e e eeas 45
THEINTEINEIDAGIMON. ... .. ettt e e e e e e et e e e e e e r e e e e e e e e nnnrneees 453
S T0T0d (] 10 o] 110] o PP PP PPPTPPPPPPPPPPRP 454

MUIEIPIE ClIBNTS. ...ttt e e e e e et e e e e e e e e et e e e e e e e b n e e e e e e e e e e nnnnnee s 45¢
Try It Out— A Serverfor MURIPIE CHENES.........ooiiiiieeiec e 455
HOW T WWOTKS. ...ttt e e e e e e et e e e e e s e e e e e e e e e e nnnneeeeeeas 457

S]] [T o PO PP PPPP P PPPPPPPPPPPP 4°
THY T OUE = SEIBCL ...ttt e e e e e e e e e e e e s ann e e e e e e e aaans 458
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e e e e e e e e nn e e e eens 46(
MUIEIPIE ClIBNTS ... eeeeee ettt e e e e e e e e s e et e e e e s e r e e e e e e e e annnnenes 46C
Try It Out— An ImprovedMultiple CHENt/SEIVEN ... 460

YU 0] 0= TR 46

Chapter 15: Tcl: Tool CoOmMMAaNd LANGUAGE...........c.urieeiiieeeeieiiiiti et e s e e e e s s e e e e e e s s rneeeeeeaanes 464

(@] V1 PSP P PPPPPPRRTPR 46

A Tl OVEBIVIBW. ...ttt e ettt e e o4 e ettt e e e e e e e a bbb e et e e e e e e e b b e e e e e e e e e e s annnnneees 46¢
OUI FIrSETCI PrOQIamML. ...ttt e e e e et e e e e e e e e e e e e annneees 464
TCI COMMANGS. ...ttt e et e e e e e e e et e e e e e e e e e e e e e e s e annnnneeeeeas 465
VariableSANUVEAIUES.........ooieeeeeee e e e e e e e e e e e e e e e e e anes 466
QUOLINGANASUDSHEULION. .....ceiiiieeie et e e e e e e e nnneees 467
(02 1[o{0| =11 (o] o R OO PP PPP P PPPPPPPPRRPP 47(
(00] 01100 1S3 18 ox (1] {1 TP PP PP PPPPPPRPRTP 471
EFTOrHANAING ...t e e e e e e e e e e e e e e as 473
11 g1aTo L) o 1=] =1 1 0] o K- PP PTPP R PPTPPPRPRRP 474
Y £ 12N TR 47
] PP PP PTPPPPRRPPRRN 48
L o ToT=To [F = ST TP PP PPP P PPTPPPPPRPPP 48
TrY 1T OUE— PrOCEUUIES......ciiiiiiiiiitte ettt e e e e et e e e e s e e e e e e e e e annnrnees 486
HOW T WOTKS. ...ttt ettt e e e e e e et e e e e e e e e e e e e e e e e b nn e e e eeas 487
INPUEANAOULPUL . ...ttt ettt e e e e e e et e e e e e e e b e e e e e e e e s s anbbnneeeeeeeaaannes 487

F N o1l (0T [ =1 PO TP P PP PPRPPP R PPPPPPRPRPPP 49
Try It Out— A CONCOrdANCETOGIAIM. ......iieiiieeeiee e e e ittt e e e e e e e e e s s e e e e e e s e eeeeaeens 491
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e e e e e e e eeeeeas 49z
N0 4 QST U] o] ¢ Lo o AP PPP P PPPPPPPPRRPPP 493
THY 1T OUE— SOCKEL ...t e e e e e e e e e e e et e e e e e e nnneeees 494
HOW T WOTKS. ...ttt e e e e e e et e e e e e e e e e e e e e e s e e n e e e eens 497

CreatiNQAINEW TCL...oeiiie et e e e e e e e e s e e e e e e e e nnneeaeas 494

IO I = (=T ][] L ST PP TP PPRTPP T PPPPTPRPRPPP 49
(01T o2 PP PPPPPPRTIN 49
L] I | PP PP PRRPPP PP 49!
LI D PP T PP PSPPI 49
(T2 T o] o ox TP PP PPPP TP PPPPPPP 49!

YU 0] 0= TR 49

Xii



Table of Contents

Chapter 16: Programming fOF Xo......oeieeieeieeeiiei ettt e e e s s s e e e e e e e e e e e e e e e e annnnees 496
(@Y V1 TSP P PPPPPPRRPPR 49
LT E= L 30 PO PP PPPPPPPPRPPR 49

DGR ST =T PP 49
Da S = (0] (0ol o | PO RPP P PPPPPPPRPPPPRN 49
D PP TR PP PPPOPPPPPPPPR 49
D O 1= o £ PSP PP P PPPPPP 49
X T OOIKITS. ..ttt e e oo e e e et e e e e e s e e e e e e e e e e e e e e e e e e e e e nnnees 49
X WWINAOW IMBINAGET. ...ttt et e e e e s e et e e e e e e bbb e et e e e e e e e b e e e e e e e e e e annnnnnneeaeeas 49¢
The X ProgrammingVIOTEL............oui ittt e e e e e s e e e e e e e e annes 499
SEAITUP. . 49
Y E= UL I o Lo PP PPPPPPTPPPPPRPPP 50(
(O[T 010 o J PP PP PPPPPPPPPPPP 50
FastTrack X ProgramIMing ..........ocecoooiiiiiie et e e e e e e e r e e e e e e s e e e e e e e e e annnnnees 501
TRETK TOOIKIL.....eeee ettt e oo e et e e e e e e s e e e e e e e e e s r e e e e e e e e e e annneees 50!
WINAOWSPIOGIAMIMING ......eeiieiiieiiiit ettt e e e e e e e e e e e e e s b e e e e e e e e annnenees 502
Try It OUL = SQYINGHEIO. ... e e 503
HOW T WWOTKS. ...ttt ettt e e e e e e e e e e e e e e s e e e e e e e e e e n e e e e eens 50z
CONFIGQUIALIONFIIES. ... e e et e e e e s st e e e e s e e e e eeens 504
[0 (=X 0] 141 4 F= 1 0 K PP PPPP T PPTPPPPPRTPN 504
LIS AT Lo =] PP PPP P PPPPPPPRRPPR 50¢
Try [t OUL— LEAIMINGIMOIE......eiiiieiiiiiieee ettt e e e e s e e e e e e e e e e e e e e e e annnreees 505
HOW T WWOTKS. ...ttt ettt e e e e e e e e e e e e e e e e e e e e e e e e nn e e e eens 50¢
TK'SBUII=IN DIBIOGS. ... tteeeeee ettt e e e e s e e e e e e e e e eeeaeeeas 529
(O70] 0] gl @4 g T To 11 = AH PO PPPPPPPPRPPP 52¢
GELOPEN/SAVEEIIES. ...ttt e e e et e e e e e e r e e e e e e e n e e e e e e e e 530
(00] (0] ST ol gT=T 1 4TS PP RP PP PPPPPPRPP 531
FONES e 53
=] T[] o TP E TP PPPPPPPPRPPPN 53
=] Lol = o =P PPPTTP S TPPPI 53
(CT=Tol 0 g (=1 Y EoT g E=To <] o LT o PP 535
FOCUSANANAVIGATIONL. .....ciiiiieeeiiee ettt e e e e r e e e e e e e e e e e e e e s s b neeeeeeeeaannnns 537
OPONDATADASE ......ce ittt e e e et e e e e e e e e e e e 538
Inter—applicationCOMMUNICATION. ...t e e e e e e e e e e e e e aans 539
1= =01 1o o PP PP PPPPPPPPPPPP 53
(O[] oo = o T OO PP PPPEPPP PP 54
WINAOW IMBINAGEL. ...ttt e e e e e et e e e e e e e et e e e e e s e b be e e e e e e e e e e e nnnnnneeeeees 541
DyNamiC/STatiAoOaAING ... .ueeeeeeeeeeiiiitee et e e e e e e e e e e e e e e e e e e e e e e e e e nnnees 542
S T= V(= I PP PPPRP P PPPPP 54
LN [=To T= Cd T Lo [ T OO RT PP PPPPPPPRPPT 54/
Packagarile GENEIALIAN..........uuiiiiieiiiie ittt e e e e e e e e e e e s r e e e e e e e annes 553
An ApplicationUsingthe TreeMega—WIdQeL...........couiiiiiiiiiiiieee e 554
TK PrOCESEOQ VIEBWET ...ttt ettt ettt e e e e e e et e e e e e e e e e e e e e e e annbre e e e e e e e e aannns 556
INEEIrNAIONAIIZALIAN . ......ci it e e e e e r e e e e e s e e b e e e e e e e e e e annes 566
WWNEIEINOW?. ...ttt e ettt e e oo e et e et e e e e e e e e e e e e e e e e r e e e e e e e e e e nnnnees 567
1 OO E PP PP PPPPPPR 56
o] S I PP P PP PPPPPPRPN 56
=] PP RRP PP PPPPPPPPRTPP 56
YU 0] 0= TR 56

Xiii



Table of Contents

Chapter 17: Programming GNOME USING GTKH.......uiiiiiiiiiiiiiiiieee et e e e e 569
(@Y V1 TSP P PPPPPPRRPPR 56
AN INtroductioNnto GNOME ..o e e e e e e e e e e nnnees 569

THE GNOME AICIITECIUI ... .ttt e e e e e e e e e e e s e e e e e e e e e aaans 570
THE GNOME DESKIOP. ...ttt ettt ettt e ettt e e e s s e e e e e e e s e e e e e e e e e e s annbrnnreeeeeeaaans 571
Programmingn GNOME USINGGTKH....cciiiiiiiiiiiiiee et 572
AN ApPlcatioNin GNOME .........ooiiii et e e e e e e e s 586
YU 0] 0= TR 59

Chapter 18: The Perl Programming LANQUAGE. ........cooiiuriiiiiieeeee it e e 595

(@] V1 PP PP PP PPPPPPPRTPP 59
AN INFOAUCTIONTO PEIL..... e e e e e e e e e e e e e 595
A FUIL EXAMPIE. .ttt e e e et e e e e e s e e et e e e e e e e e s 612
Perlonthe ComMMEaNOLINE. .......coi it e e e e e e e eeeees 617
Y[ o [F] [ TP PP TP PPPPPPPRRPPPN 61
The CD Databas@REVISITEA............uuiiiiiieeii e e e eeeeas 621

YU 0] 0= TR 62

Chapter 19: Programming for the Internet: HTML .........ooviiiiiee e 626
(@Y V1 TSP PT TP P PPPPPPPRTPR 62
Whatis theWOrld WIAE WED ...ttt e e e ees 626
LIS 00110 [oTe Y PR PPPPPPPRPPPN 62

TheHyperTextTransferProtOCOI(HTTP)......coii e 627
MultimedialnternetMail EXtENSIONEMIME).........cooiiiiiiiiiiiieiiee e 627
StandardseneralizedMarkup LanguUaggSGML)........cccciiiiiiiiiiiiiiieeeiieie e 627
DocumentTypeDefinition (DTD).....ccoiiuiiieiiieee ettt e e e e re e e e e e 627
HyperTextMarkupLangUagEHTML)........coiiiiiiiiiiieee e 627
ExtensibleMarkup LangUagEXML)........ccouiiiiiiiiiie e e e 628
CascadingStyle SNEEILCSS) ... ..uuiiiiiiee et e e e e e 628
ExtensibleHypertextMarkup Languag&XHTML).......ccccoiiiiiiiiiiiieeeeiiie e 628
Uniform ReSOUIrCAOCAIONURL)......coiiiiiiiiiiiee ettt e e e e e e e e 628
Uniform Resourcaddentifier (URI)..........ooii et 628
WWIEING HT ML ettt e ettt e e e ookt e e e e e e e s e s e et e e e e e s s nnrnnneeeeeeeaann 62
Try It Out— A SIMPIEHTML DOCUMENT......ceiiiiiiiiiiiiiiiiee et 629
HOW T WOTKS. ...ttt ettt e e e e e e et e e e e e e e e e e e e e e n e e e eeas 62¢
A More FOrmalLoOoK atHTML ...t e e e e e e e eeas 630
L I I T L TP PP PP PPPPPRP 63!
T g2 Vo [T T 63
Try 1t Out— AddINGANTMAGE. ... e s e e e e e 638
HOW T WOTKS. ...ttt ettt e e e e e et e e e e e e e e e e e e e e e e b nn e e e e eeas 63¢
LI 10 PP PP PP PPPPPR 63
Try It OUE— A TaDIE.... e e e 640
HOW T WOTKS. ...ttt e e e et e e e e e e e e e e e e e e e e reeeeas 64(
Try [t OUL— ANONEITADIE. ... e e e e e e 641
HOW T WWOTKS. ...ttt e e e e e e e e e e e e e e e e et e e e e e e nn e e e eeas 642
ANCNOISON HYPEITINKS. ...ttt e e e e e s e e e e e e e e anes 642
THY 1T OUE= ANCRIOIS ..ot e e e e e et e e e e e s r e e e e e e e e nnrr e 643
HOW T WOTKS. ...ttt ettt e e e e e et et e e e s e e e e e e e e e e nneeeeeeas 644
CombiNiNGANCNOISANAIMAGES. .....coi ittt e e e e e e e s s r e e e e e e aanes 644
Try 1t OUt— IMAGESASANCIOIS. ...t e e e e e e e e e e 644



Table of Contents

Chapter 19: Programming for the Internet: HTML

HOW T WWOTKS. ...ttt e e e e e st e e e e e e e e e e e e e e e e n e e e eeas 648
NONTHTIML URLS....c ettt e e e e e e e e e e e e e r e e e e e e e e s e e e e e e e e aannes 645
ANCNOISIO OTNEISITES. ....ccii e e e e e e e e e e r e e e e e e e anes 646
Try 1t Out— LINKS t0 OtNEISILES. ..ottt e e e e 646
HOW T WOTKS. ...ttt ettt e e e e e e e e e e e s e e e e e e e e e e e nnn e e e eeas 647
AUTNOTINGHTIML et e e e e e e e e e e e e e s e bbb e et e e e e e e e e e e e e e e e e nnnnrnees 647
SEIVINGHTIML PAUES. ... . ettt et e e e s e et e e e e e e s bbb r e e e e e e e aansbr e e eeeeesaann 648
NEtWOIKEAHTIML OVEIVIEW. .......iiiieiiieee ettt e e e e e e e e e s e s e et e e e e e e neeeeees 648
SEUINQUD @ SEIVEN. ...ttt ettt e e e e e e e e e e et e e e e e e e e e e e e e e e e e s neeeaeeeas 649
ClICKABIEMEPS. ...ttt ettt e e e e st e e e e e s e e e e e e e e e e nn i rrr e e e e e e ann 65(
SEIVEI=SIUBVIAPS. ... ettt ee ettt ettt e e e e e et e e e e e s bt e e et e e e e e e b e e e e e e e e e e a b e e e e e e e e 650
(O[T Gt [ [ 1Y FoT o PP PPPP R PPTPPPRPRRP 651
SEIVEI=SIABNCIUARS ...ttt e e e e e e et e e e e s s e e e e e e e e e e s br e e eeeeeeaaanae 651
Try It Out— Client—-sideMapsandServer—sid@nCludes...............ueeeeeviiiiiieiiieiieeiieeiieeieeee e 652
HOW T WOTKS. ...ttt e e e e e e e e e e e e e e e e e e e e e e e nn e e e eens 654
TipSTOr SEttiNQUP WWW PAgES.........uiiiiiiiieiiiiiiiii ettt e e e e e r e e e e e s eeeas 654
YU 0] 0= TR 65
Chapter 20: Internet Programming 2: CGl.......uuii oot e e e e ees 656
(@] V1 PSP P PPPPPPRRTPR 65
FORM EIBMENTS ...ttt ettt e e e et e e e e e e e et e e e e e e e e s s b e e e et e e e e e e s nnnn e e e eeas 65¢
THEFORM TAG. .ttt ettt e e et e e e e e e e e e e e e e e s sn e e et e e e e e s e sbbnneeeeeeesann 657
LILALST A O B 1= T T PO PP PP PPPPPPPPPPPR 657
THE SELECT TAG: ... tttteetteeee ettt e e e e ettt e e e e e e ettt e e e e e e e e e e e e e e bbb e e e e e e e e e s e snbnnnneeeeeeaann 659
TRHETEXTAREA TAG ... ttiieiiiiiiiei ettt ettt e e e e e e e e e e e e e e e e e e e e e e e s s annbrn e e e e eeeeeanns 660
A SAMPIEPAGE. ... ettt e e e et e e e e et e e e e e e n e e e e e e e aaan 66!
Try It Out— A SIMPIEQUETYFOIML.....ciiiiiiiiiii e 660
HOW T WOTKS. ...ttt e e e e e e et e e e e e e e e e e e e e e s e e n e e e eens 662
SendingINformationto tNEWWW SEIVET..........eeiiiiiiiiiiiiiee et e e e 663
INFOrMAatiONENCOAING........eeiiiiiiie e e e e e 663
Y=t V=Tt (o]0 | =1 TP 663
Writing @ Server—SideCGI PrOgraIM.........cuui ittt e e e e e e 664
CGI ProgramaUsing EXIENAEAURLS........ceiiiiiiiiiiiiiiie et e e e 669
Try 1t OUE— A QUETYSIIING. .. ettt e e e e e e s e e e e e e s s e e e e e e e e e reeeeeeas 669
DecOodiNGtNEFOIMIDALA. .......cceiiiiiiiie e e e e e e e e e as 670
Try It Out— A CGI DecodeProgramin C..........oeiiioiiiiiiiieiee e e e eeae s 671
HOW T WOTKS. ...ttt ettt e e e e et e e e e e e e e e e e e e e e e nnnn e e e eens 678
ReturniNGHTML tO tNE CHENL.......eeiiiie e e e e e e e 676
Try It Out— ReturningHTML tO the CENL........ooiiiiiiiie e 677
TIPS ANATIICKS .. s e e s s e e e s e e e s s ina e e e 67¢
Making Sureyour CGl ProgramEXItS...........ueeiieeiiiiiiriiiieeeeasaiiieeeee e e e s s eee e e s s snnnneeeeeeeeans 679
RedireCtNGINE CHENL......coi e e e e e e e e e e r e e e e e s aannes 679
DYNAMICGIAPNICS. ...ttt e e e e et e e e e e e e e e e e e e e e e e reeeee s 680
HidiNg ConteXtINfOIMETION. ........eiiiiiiiiiie e e e e e r e e e e e e anne 680
F N gl o] o] Tor= 1 1o o NPT PTPP PP PPPPPPRPRPP 68!
Try It Out— An HTML Databas@nterface.............ccoviviiiiiiiiiiiiiec e 680
HOW T WOTKS. ...ttt e e e e e et e e e e e e e e e e e e e e e e nn e e e eeas 682
T o PP P PP PPPPPPRI 6¢
Try It Out A MOd_PEeriMOUIE.............ooeeiiieei e 689



Table of Contents

Chapter 20: Internet Programming 2: CGI

HOW IE WOTKS. ..ttt e e e e e et e e e e s e e e e e e e e e e n e e e e e e e e e annnnnes 69(
SUMIMBIY .o e e nnne 69
CAPLET 21 DEVICEDIIVEIS ... ettt e e e e e e et e e e e e e s b e e e e e e e e e e s n e e e e e e e e e nnnnnreeaeeeas 692
OV BIVIBW ...ttt ettt ettt e o4 4ottt e e o444k b ettt e o444 ek R R e e et e a2 e e e e R bR e e et e e e e e e e s R nnnr e e e e e e aannn 69
DIBVICES. ..ttt ettt e e et e e e e oo et e e e e e e e e e et e e e e e e e n e e e e e e e e aanne 69
DEVICECIASSES. ...ttt ettt ettt e et et e e e e et e e e e e e e e e e e e e e e e s 69¢
USErandKEIMEISPACE. .....ciiiiii ittt e e e e e e e e r e e e e e e e eeeaee s 694
(O g T= 1 E=T01 (=] o =Y o] PP PP PPPPPPPI 69¢
FlE OPEBIALIONS. ...ttt e e e e e et e e e e s e e e e e e e e e e e e e e e e e e annnnees 70C
F NS T= a ] 011 B V=T GRS T o = T USSR 702
TREMSG MACTO. ...ttt ettt e oo e et e e e e s et e et e e e e e e e s e e e e e e e e e e aannbbnnneeeeeeaanns 702
REQISIENNGNEDEVICE. ...t e e e e e s e e e e e e e e e e e eees 703
MOAUIE USBGECOUNL......ceeeeieeeiiiiitt ettt ettt e e e e e e e e e e e e e s e e e e e e e e e e e e e e e e s aannnrnneeeeens 704
OPENANAREIEASE. ...ttt e e e et e e e e e e r e e e e e e s e b e rreeeeeean 704
REAINGINEDEVICE. ...ttt e e e e e e et e e e e e e e s e e e e e e e s aannes 705
THE CUITENETASK ...t e e e e e e e e e e e e e e s b r e e e e e e e e e 706
R AT T LT TP 707
WIHEING TO tNEDEVICE. ...ttt e e e e e e e e e n e e e e e e e aannes 708
NON=DBIOCKINGREAUS. ......ceeeiieeiiii et e e e e e e e e e e s e e e e eee s 709
S T=T=] (] o T PO P PP PPPPPPPRPPPN 70
[0 To! | KT PP RRPPP RS PPPPI 71
CheCKINQUSEIRIGNTS .......eiiiiiieie e e e e e s r e e e e e s eeeaeens 712
91 ]| PP PP PPPEPPRTPPP 71
Try it out readingandWriting t0 SCNAL............uuiiiiie e 713
LIS 72280101 o To! PO PP T TP PPPPPPPPPPPP 714
MOAUIE PAIAMETELS. ... ettt e ettt e e e e e et e e e e e e e b e e e e e e e s e b nn e e e e e e e e aannes 715
L5720 101 44T o 10 {o TP PP PP PPPPPPPRPPP 716
ProcCfile SYStEMINTEITACE. . .......coi it ae s 716
Y1 | PP PP P PP POPPPPPPPPPRPN 71
WWIEBDIE ENTIES ...ttt e e e e e et e e e e e e e e e e e e e e nnnnrreeeeas 717
HOW SCRAIBENAVES ... .. e e e e e e e e e e ennne e 718
REVIBWL. ..ttt e e oot e e e oo e oo et e e e e e e et e e e e e e e e e e e e e e 71
TIME ANAJITIES. ...ttt e et e e e e e e e e e e e e e e e e b e e e et e e e e e e neeeeaeens 71¢
SMAIIDEIAYS.....ceeeeeieee et e e e e e e e e e s e e e e e e e e e e e 72(
LI LLLLS] £ TP OO P PP PPPPPR 72
Try it out Thetimerimplementationn SCNAL.............ccciiiiiiii e 722
GIVING UP tNEPIOCESSON. ...ttt ettt e e e e e e e e e e e e e e e e e e 723
TASKQUEBUERS. ... ——- 724
The PredefinedlraskQUEUEBS ..........uuiiiieiiieeeeeeeeee ettt ettt ettt et et et et e et e e e e e e e e e e e e e e e aaaaeaaaaaaaaaaeens 725
REVIBWIL. ..ttt ettt e e oottt e e e e oo ettt e e e e e e et e e e e e e r e e e e e e e e 72
MEMONY MaN@GEIMIEIIL. ...ttt e e s e s e s e e s e e e e nn e e e e e e ee e 726
VITTUBI MEMIOTY ATEES.....ceeeieeeii ettt ettt e e e e e et e e e e e e e et e e e e e e neeeeeas 727
F e [0 (TS o 1= [ = PP PPPPPPPPRPPPN 727
TYPESOT MEMOIY LOCALIONS.......eeiiiiiieeiiiitie ettt e et e e e e e e e e e e s e a b neeeeeeeans 728
GettingMemOryin DEVICEDIIVEIS..........uuiiiiiieeii ittt e e e e e e e e a e 728
TransferringDataBetweenUserandKernelSPace............occvvvivvieiiiiiiiiiiiiecc e 730
SIMPIEMEMOTY MBPPING. ettt e e e e e e e e e e e e e s r e e e e e e s s asnbnnnreeeeeeaanne 732
FL@ RV =T 04T Y TP PPPPPPPPRPPPPN 73¢

XVi



Table of Contents

Chapter 21: DeviceDrivers

ASSIGNMENDT DEVICESIN TOMABP. ...eeiiiieiiiiiiitie et e e s e e e e e e e aeeeas 735
FL@ R\ =T 0 g Te] oY1 011 1T o H PP PP PPPPPPRTRRR 735
Try it out thelomMapPMOAUIE...........oiiiiiiee e e e e e e 736
T I o T4 £ OO TP PP PPPPPPPRPPPRN 73
POFTADIITY. ...t e e e e e e e e e e e e e e e e e e e e e 73
INEEITUPTHANAIING. ... e e e e e e e e e e e e e e n e e e e e e e e ann 739
JLIL LSO 2 =T | =T SRR 741
BOMOMHAIVES ...t e e e e e e e e r e e e e e e e nr e e e eeeeas T4:C
YT 0112 (03 74!
DisabliNgSINGIEINTEITUPES. ....cce ittt e e e e e e ees 744
L (o]0 1[N P PPPPPPPP P PP PPPPPPRP 74!
ProtectingCritiCal SECHONS..........uiiiiiiiee e e e e eeas 745
BIOCK DBVICES ... ettt ettt ettt e e e a4ttt e e e e e e bt e e et e e e e e s e r e e et e e e e e e e eas 74
Radimo A SIMPIERAM DiSK MOGUIE.........oiiiiiiiiiieeie e 747
[ [=To [ YO g = gL T ST P PP PPPPPPRRI 74C¢
[OCH fOr BIOCK DBVICES......coiiiiitieeeie ettt e e e e e e e e e e e e e e e e e ane 750
THEREQUESTEUNCHION . ....ceiiiiieiiiiite ittt e e e e e e e s e e e e e e e e e s e e e e eeeeas 750
TREBUEI CACNE ...t e e e e e e e e e e e b e e e e e e e aanns 752
TEY I OUL RBOIMO. ...ttt e e e st e e e e e e e e e e e e e e s annbrnneeeeeeeaaan 753
GOINGFUINET. ... e e e e et e e e e e e e e e e e e e e e annnrnee s 754
(DT o 0T [T AP P PP TP PPPPPPPI 75
(@ T0] o 1] I =Tl o o I TP TP P PPPRPPPRPPPP 754
DebUGGINGVOTUIES.........oeeiiiieeii ettt e e e e s e e e e e e e e eeeeeas 756
TREMAGIC KBY ...ttt et e e e e e e e e e e e e e e r et e e e e e e e e as 756
KernelDeDUQGQEIKDB.........cc ittt e e e e e e e e e e e e e s a b e e e e e e e e aanne 757
REMOLEDEDUGGING. ...t eeeieeeeiiee et e e e e e e e e e e e s s r e e e e e e e anne 757
GeneralNOtESON DEDUGGING .....cciiiiiiiiiiie ettt e e e e e e 758
POTADIITY. ...t e e e e e e e e e e e e e e e e e s 75
(D= 1= W Y/ 01 R 75¢
ENQIANESS. ... e e e e e e e e e e e 75t
ALIGNIMIEINL. ...ttt e e et e e e e e e e e e e et e e e e e e e r e et e e e e e e e e e e e e e e e nnnnes 75!
COoNINUINGINE QUESL ...ttt e e e e e e e e e e e e e e e s s st n e e e e e e e e e e annnnnreeeeas 759
ANAtOMYOf tNEKEIMEISOUICE........coi i e eas 760
APPENAIX AL POMBDIIILY ....eeeeeeeeeei ettt e e e e e e e e et e e e e e s e b e e e e e e e e s s nnnnnneeeaeas 761
(@] V1 PSP PP PPPPPPPPRRTPR 76
LanNQUAGEPOITADIIITY. .....eeeeeiiieee et e e e e e e e e e e e e e e e e e e e e 761
PreproCeSSUBYIMDOIS.........uueiiiiiiiii e e e e e e e e e e 761
RESEIVEANAIMIES. ...t e e e e e et e e e e e s e bbb e e e e e e e e e nnrr e e e eeeas 762
[T 301 SO PP PRPPPP P PPPPPPPPRPPPN 76
HArAWAIrEPOITADIIITY. ......eee et e e e e e e e e e e e r e e e e e e e e e nees 763
TP PP PP P PPPPPRPRPPPP 76
BYLE OFUEN. ...ttt et oo e et e e e e e e et e et e e e e e e e e e e e e e a e e e e e e e aaan 76!
(0] 0 =T PP PP PP PPPRPP 76
UNION PACKING ...ttt e e e e e e e e e e e e s b e et e e e e e e s nnnnnreeeeeeeas 76E
SHUCTUNEATIGNMIENT. ...t e e e e e e e e e e e e e e e n e e e e e e e e e e annnreees 766
P OINEEISIZES ...ttt e oottt e et e e e et e e e e e et e e e e e n e e e e e e e 76¢
FunctionParameteEValUALION.............ooiiiiiiiiiiiiie e 767
LoV T I (o O PP T PO PPPPPPRRPP 76°



Table of Contents
Appendix A: Portability

USEINE COMIPIIEE. ...t e et e e e e e e r e e e e e e s s e b rrr e e e e e e s aann 767
ProgramsareReaddy PEOPIE. ... i 768
Appendix B: FSFaNd the GNU PIOJECT........cuiiiiiiiiiiiiiie ettt e e e e e e e e e e e e eaan 769
(@] V1 PSP TP PPPPPPPRRPPR 76
TREGINU PIOJECL. ...ttt e e e e et e e e e e s e e e e e e e e s st e e e e e e e e e e e s rrneeeeeas 76¢
THEGNU PUBIICLICENSE. ...ttt e e e e e e e e s e e e e e e e aanne 769
APPENIX C: INTEIMET RESOUITES....coiiiiiiiit it e ettt e e et e e e e s et e e e e s s s b b e e e e e e e s aanrrrrreeeeeenaan 776
WVWVWVWV LOCALIONS. ...ttt ettt e e+ e et e e e 44 e ettt et e o2 a4 ettt e e e e e e b r e e e e e e e e e e nnnrnees 77¢
LINUX SPECITIC. . e ettt ettt ettt e e e e e e et e e e e e e s e et e e e e e e e r e e e e e e s 776
Unix andGeneraPrOgramIMiNg .........couiuurereeeeeeniiiiieeeee e e s e s e e e e e e s s s srrnr e e e e e s s ssnrnrreeeeeeaaanns 778
HTML & HTTP INTOMMALION. ...ttt e e e e s 779
LT [ 1U] LT 78
GENETAIINIX GIOUPS. ...ttt e e e ettt e e e et e e e e e e e et e et e e e s e e e e e e e e e e e e nnn b e e e e e e e e e e nnnnnees 781
FTP AICNIVE SITES. ...ttt e e e e e et e e e e e e e et e e e e e e n e e e e e e e e e annnnnne s 782
URLsfor theToolsMentionedin Chapter............coooiiiiiiiiie e 782
APPENdiX D: BiDOGIaPNY ...t e e e e e e e 783
T =10 [0 £ 1 (0 - F PSP PT TSP PPPPPPRRPPP 78
OtherDoCUMENtatiOMBNURESOUITES. ... .ciiieiiiiiiiiii it e e e e e e e e e e e e s r e e e e e s s aannnn e eeeeeeas 783
BOOKSWOITN @ LOOK. ....ciiieiii ettt e e e e e e e e e e e e e e nnr e 783
And Finally, ThreeBooksto Readawayfrom the COMPULEL...........cooiriiiiiiiiiiiieiiieee e 784

Xviii



Beginning Linux Programming, Second Edition

Neil Matthew
and
Richard Stones

Wrox Press Ltd. ®
© 1996 & 1999 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in an
form or by any means, without the prior written permission of the publisher, except in the case of brief
guotations embodied in critical articles or reviews.

The authors and publisher have made every effort in the preparation of this book to ensure the accuracy of 1
information. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, Wrox Press nor its dealers or distributors will be held liable for any damages
caused or alleged to be caused either directly or indirectly by this book.

Printing History

First Published, September 1999

Second Reprint, July 2000

Latest Reprint, July 2001

Published by Wrox Press Ltd

Arden House, 1102 Warwick Road, Acock's Green, Birmingham B27 6BH, UK

Printed in United States

ISBN 1-861002-97-1

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products mentioned in

this book by the appropriate use of capitals. However, Wrox cannot guarantee the accuracy of this
information.

Credits

Authors Technical Reviewers

Neil Matthew Steve Caron

Richard Stones Stefaan Eeckels
Donal Fellows

Contributing Authors Chris Harshman

Jens Axboe David Hudson

Simon Cozens Jonathan Kelly

Andrew Froggatt Giles Lean

Krishna Vedati Marty Leisner




Beginning Linux Programming, Second Edition

Ron McCarty

Editors Bill Moss
Martin Brooks Gavin Smyth
Louay Fatoohi Chris Ullman

James Hart Bruce Varney

lan Maddison James Youngman
Editors (First Edition) Index

Tim Briggs Robin Smith

Jon Hill

Julian Dobson

Design / Layout

Tom Bartlett

Managing Editor

David Boyce

Paul Cooper Mark Burdett
William Fallon

Development Jonathan Jones

John Franklin John McNulty

Richard Collins

Cover Design
Chris Morris
Thanks to Larry Ewing (lewing@isc.tamu.edu) and the GIMP for the chapter divider.

"Some people have told me they don't think a fat penguin really embodies the grace of Linux, which just tell
me they have never seen an angry penguin charging at them in excess of 100mph. They'd be a lot more cal
about what they say if they had." Linus Torvalds announcing Linux 2.0

Code License

In recognition of the considerable value of software available for free under the GNU copyright restriction,
including the Linux kernel and many of the other programs that are needed to make a usable Linux system,
the authors have agreed with Wrox Press that all the example code in this book, although copyright is retain
by Wrox Press, may be reused under the terms of the GNU Public License, version 2 or later. Thus for all th
code printed in this book, the following license restriction applies:

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

(at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

A copy of the GNU General Public License may be found in Appendix B.



Beginning Linux Programming, Second Edition

About the Authors
Neil Matthew

Neil Matthew has been interested in and has programmed computers since 1974. A mathematics graduate
from the University of Nottingham, Neil is just plain keen on programming languages and likes to explore
new ways of solving computing problems. He's written systems to program in BCPL, FP (Function
Programming), Lisp, Prolog and a structured BASIC. He even wrote a 6502 microprocessor emulator to run
BBC microcomputer programs on UNIX systems.

In terms of UNIX experience, Neil has used almost every flavor since Version 6, including Xenix, SCO

flavors, Ultrix, BSD 4.2, Microport, System V, SunOS 4, Solaris and, of course, Linux. He's been a UNIX
system administrator on—and—-off since 1983. Neil is familiar with the internals of UNIX-like systems and
was involved in the design and implementation of a intelligent communications controller for DEC Ultrix.

He can claim to have been using Linux since August 1993, when he acquired a floppy disk distribution of Sc
Landing (SLS) from Canada, with kernel version 0.99.11. He's used Linux—based computers for hacking C,
C++, Icon, Prolog and Tcl, at home and at work. He also uses and recommends Linux for Internet
connections, usually as a proxy caching server for Windows LANs and also as a file server to Windows
3.11/95 using SAMBA. He's sold a humber of Internet firewall systems to UK companies (including Wrox!).

Most of Neil's 'home' projects were originally implemented in SCO UNIX, but they've been ported to Linux
with little or no trouble. He says Linux is much easier because it supports quite a lot of features from other
systems, so that both BSD and System V targeted programs will generally compile with little or no change.

As the head of software and principal engineer at Camtec Electronics in the Eighties, Neil programmed in C
and C++ for real-time embedded systems environments. Since then, he's worked on software development
technigues and quality assurance both as a consultant in communications software development with
Scientific Generics and as a software QA specialist for GEHE UK.

Neil is married to Christine and has two children, Alexandra and Adrian. He lives in a converted barn in
Northamptonshire. His interests include computers, music, science fiction, chess, squash, cars and not doin
yourself.

Richard Stones

Rick started programming at school, more years ago than he cares to remember, on a BBC micro, which wi
the help a few spare parts continued functioning for the next 15 years. He graduated from the University of
Nottingham with an Electronic Engineering degree, by which time he had decided that software was more fi
than hardware.

Over the years he has worked for a variety of companies, from the very small with just a few dozen
employees, to multinationals, including the IT services giant EDS. Along the way he has worked on a wide
range of different projects, from embedded real-time communications systems, through accounting systems
to large help desk systems with multi—gigabyte databases. Many of these projects have either been hosted
UNIX, or UNIX was the development environment. On one project the entire embedded software was
developed and tested on Linux, and only ported to the target hardware and minimal real-time executive in tl
final stages. He is currently employed by the IT department of a pan—-European wholesale and distribution
company as a systems architect.



Beginning Linux Programming, Second Edition

Ricks first experience of a UNIX style operating system was on a PDP 11/23+, after which BSD4.2 on a VA
came as a pleasant improvement. After spells using UNIX System V.2, Xenix, SCO UNIX, AIX and a few
others, he first met Linux back in the kernel .99 days, and has been a fan ever since.

A bit of a programming linguist, he has programmed systems in SL-1, a couple of assemblers, Fortran,
Pascal, C, C++, Java, SQL and Perl. Under pressure he has also been known to admit to some familiarity w
Visual Basic, but tries not to advertise this aberration.

Rick lives in a Leicestershire village, with his wife Ann, two children, Jennifer and Andrew, and a pair of cats
Outside work his passion is for classical music, especially early church music, and he does his best to find
time for some piano practice between lessons. He occasionally does the odd job for Wrox press.

Finally, both authors were co—authors of Instant UNIX (Wrox Press)
Authors Acknowledgements
The authors would like to thank the many people who helped make this book possible.

Neil's wife, Christine, for her understanding of the reasons why we had to write another book, and his childre
Alexandra and Adrian for not being sad at losing their Dad for too many weekends.

Rick's wife, Ann, and children, Jennifer and Andrew, for their very considerable patience during the evening
and weekends while this book was being written.

Heartfelt thanks are also due to Richard Neill, for his considerable assistance in reviewing early drafts of the
first edition, on which he made numerous helpful comments and suggestions. We would also like to pay
tribute to his wife, Angie, and son, Gavin, for putting up with us monopolizing his precious time.

As for the publishing team, we wish to thank the folk at Wrox Press, especially Julian, Tim and Jon for their
work on getting the first edition to fly, and Paul, Richard, James, Louay, and Martin for their enthusiasm and
editing work on the second edition.

We would also like to thank the people who have contributed additional material to the second edition -
Andrew, Jens, Krishna and Simon - and all the people who did excellent work reviewing the second edition.
Its certainly a better book than it would otherwise have been. Thanks guys!

We would also like to thank our one—time employers, Scientific Generics and Mobicom, for their support
during the creation of the first edition.

Neil and Rick would also like to pay homage to two important motivators who have helped make this book
possible. Firstly, Richard Stallman, for the excellent GNU tools and the idea of a free software environment.
Secondly, Linus Torvalds, for starting, and continuing to inspire the cooperative development that gives us t
ever—improving Linux Kernel.



Foreword

by Alan Cox

Every computer programmer has their own pile of notes and scribbles. They have their code examples save
from the past heroic dive into the manuals or from Usenet — where sometimes even fools fear to follow (The
other body of opinion is that fools all get free Usenet access and use it non stop.) It is strange perhaps
therefore that so few books follow such a style. In the online world there are a lot of short, to the point,
documents about specific areas of programming and administration. The Linux documentation project
released a whole pile of three to ten page documents covering everything from installing Linux and NT on th
same machine to wiring your coffee machine to Linux. Seriously. Take a look in the mini-how-to index on
http://sunsite.unc.edu/LDP.

The book world, on the other hand, mostly seems to consist of either learned tomes - detailed and very
complete works that you don't have time to read, and dummies—style books — which you buy for friends as ¢
joke. There are very few books that try to cover the basics of a lot of useful areas. This book is one of them,
compendium of those programmers notes and scribbles, deciphered (try reading programmer handwriting),
edited and brought together coherently as a book.

This updated second edition of the book has expanded, as Linux has expanded, and now covers writing
threaded programs (otherwise known as "how to shoot yourself in both feet at once") and the GTK toolkit
which is the basis of the GNOME GUI and probably the easiest way to write X windows applications in C.

Perl has crept into the book too. There are people who think Perl's time has come. There are those of us wr
think Perl's time should have come and gone again a long time back. Regardless of my views, Perl has
become one of the most powerful (and at times arcane) scripting languages. All Linux programmers,
particularly anyone programming cgi scripts for the web, will meet Perl sooner or later so what better than a
Perl survival kit.

The final chapter is your chance to join the world of kernel programmers. As you will discover it isn't actually
that different to writing modules for large application programs. Put on your pointy hat, grow a beard, drink
Jolt Cola and come join in the fun.

Alan



Introduction

Welcome

Welcome to Beginning Linux Programming, an easy—to—-use guide to developing programs for the Linux anc
other UNIX-style operating systems.

In this book, we aim to give you an introduction to a wide variety of topics important to you as a developer
using UNIX. The word Beginning in the title refers more to the content than to your skill level. We've
structured the book to help you learn more about what UNIX has to offer, however much experience you ha
already. UNIX programming is a large field and we aim to cover enough about a wide range of topics to give
you a good 'beginning' in each subject.

Who's this Book For?

If you're a programmer who wishes to get up to speed with the facilities that UNIX (and Linux) offers
software developers, to maximize your programming time and your application's use of the UNIX system,
you've picked up the right book. Clear explanations and a tried and tested step—by-step approach will help
you progress rapidly and pick up all the key techniques.

We assume that you know the basics of getting around in UNIX and, ideally, you'll already have some C or
C++ programming experience in a non—UNIX environment, perhaps MS-DOS or Microsoft Windows.
Where direct comparisons exist, these are indicated in the text.

Important Watch out if you're new to UNIX. This isn't a book on installing or configuring Linux. If you
want to learn more about administering a UNIX system, UNIX concepts and UNIX commands in
general, you may want to take a look at Instant UNIX, by the same authors and Andrew Evans,
also published by Wrox Press (ISBN 1-874416-65-6).
As it aims to be both a tutorial guide to the various tools and sets of functions/libraries available to you on
most UNIX systems and also a handy reference to return to, this book is unique in its straightforward
approach, comprehensive coverage and extensive examples.

What's Covered in the Book

The book has a number of aims:

* To teach the use of the standard UNIX C libraries and other facilities as specified by the UNIX98
standard created from the earlier IEEE POSIX and X/Open (SPEC 1170) specifications.

» To show how to make the most of advanced development tools.

 To give concise introductions to popular rapid development languages like the shell, Tcl and Perl.

» To show how to build graphical user interfaces for the X Window System. We will use both Tk on
vanilla X and GTK+ for GNOME.

« Having given you firm grounding, to progress to topics of real-world applications which you want to
program.

As we cover these topics, we aim to introduce the theory and then illustrate it with an appropriate example &
a clear explanation. You can learn quickly on a first read, and look back over things to brush up on all the
essential elements again if you need to.



Introduction

While the small examples are designed mainly to illustrate a set of functions, or some new theory in action,
behind the book lies a larger sample project: a simple database application for recording audio CD details. £
your knowledge expands, you can develop, re-implement and extend the project to your heart's content.
Having said that, it doesn't dominate any chapter, so you can skip it if you want to, but we feel that it provide
useful additional examples of the techniques that we'll discuss. It certainly provides an ideal way to illustrate
each of the steadily more advanced topics as they are introduced.

Our first meeting with the application occurs at the end of the shell programming chapter and shows how a
fairly large shell script is organized, how the shell deals with user input and how it can construct menus and
store and search data.

After recapping the basic concepts of compiling programs, linking to libraries and accessing the online
manuals, we take a soujourn in shells. We then get stuck into C programming, covering working with files,
getting information from the UNIX environment, dealing with terminal input and output, and the curses
library (which makes interactive input and output more tractable). We're then ready to tackle re—implementir
the CD application in C. The application design remains the same, but the code uses the curses library for a
screen—based user interface.

From there, we cover data management. Meeting the dbm database library is sufficient cause for us to
re—implement the application again, but this time with a design that will last the rest of the book. The
application's user interface is held in one file, while the CD database is a separate program. The database
information is now relational.

The size of these recent applications means that next, we need to deal with nuts—and-bolts issues like
debugging, source code control, software distribution and makefiles.

Chapter 10 marks a watershed in the book. By this point we will have learned a lot about how running
programs behave and can be made to do our bidding. Processes can divide and metamorphose, and they b
to send signals to one another. We also cover POSIX threads, and see how we can create several threads
execution inside a single process.

Having multiple processes opens up the prospect of having a client and a server side to the CD application,
with some reliable means of communicating between the two. The client/server application is implemented
twice, keeping the database and Ul the same, but adding intermediate communication layers using two
methods: pipes and the System V IPC. To round this section off, we examine sockets, using a TCP/IP netw
to enable inter—process communication.

There follows Tcl/Tk's finest hour, as we introduce the Tcl shell and build various X user interfaces with Tk.
After this we give an introduction to developing applications for GNOME with the GIMP toolkit (GTK+),
using the development of a desktop clock as an example.

Next, we look at the Internet, first at HTML and then at the Common Gateway Interface, which allows us to
visit the application one last time. This time, we make the application's user interface available on a remote
Web browser accessing web pages generated by CGI programs executing behind the Apache web server.

As the book's finishing flourish, we give an introduction to writing device drivers an important step along the
path to understanding the Linux kernel itself.

As you'd expect, there's a fair bit more in between, but we hope that this gives you a good idea of the mater
we'll be discussing.



What You Need to Use this Book

What You Need to Use this Book

In this book, we'll give you a taste of programming for UNIX. To help you get the most from the chapters, we
would really like you to try out the examples as you read. These also provide a good base for experimentati
and will hopefully inspire you to create programs of your own.

An ideal way to get to grips with the UNIX environment in general is with a distribution of Linux, which
brings with it a complete development environment including the GNU C/C++ compiler, associated tools anc
other useful bits and pieces. It's freely available, POSIX-based, robust, continuously developing and very
powerful.

Linux is available for many different systems. Its adaptability is such that enterprising souls have persuaded
to run in one form or another on just about anything with a processor in it! Examples include systems based
on the Alpha, SPARC, ARM, PowerPC and 68000 CPUs as well as the Intel x86/PentiumX chips (and
compatibles) found in today's PCs.

To develop this book we used Intel-based systems, but very little of what we cover is Intel-specific.
Although it is possible to run Linux on a 386 with 2Mb RAM and no hard disk (truly!), to run Linux
successfully and follow the examples in this book, we would recommend a specification of at least:

* Pentium processor

* 32Mb RAM

» 600Mb free hard disk space, preferably in its own partition
 For the X Window System, a supported video card

Information on supported video cards can be found at http://www.xfree86.org/.

The hardware requirements of the book's code for most of the chapters is fairly minimal. Only the chapters
which need the X Window System will require more computing power (or more patience!)

We wrote this book and developed the examples on two Linux systems with different specifications, so we'r
confident that if you can run Linux, you can make good use of this book. Furthermore, we tested the code ol
other versions of Linux during the book's technical review.

As for software requirements, you should be aware that a few of the programs need modern versions of the
Linux kernel: 2.2 or greater. The Java Development Kit requires up—-to—date versions of the GCC and C
libraries (glibc 2 or later). When it comes to other tools, always try to get hold of the newest versions you cal
For instance, the Tcl and Tk sections require at least versions, 7.5 and 8.0 respectively. The minimum
requirements are stated where necessary and if you have problems with code, using newer tools may help.
Fortunately, you can easily download all these tools and, in Appendix C, we provide an Internet resource
guide to help you find them. If you are using a recent Linux distribution, you should have no problems.

Because Linux and the GNU toolset and others are released under the GPL they have certain properties, or
of which is freedom. They will always have the source code available, and no—one can take that freedom
away. They are, therefore, examples of Open Source software a weaker term for other software that may a
have the source code available subject to certain conditions. With GNU/Linux, you will always have the
option of support either do-it-yourself with the source code, or hire someone else. There are now a growin
number of companies offering commercial support for Linux and associated tools.



Source Code
Source Code

We have tried to provide example programs and code snippets that best illustrate the concepts being discus
in the text. Please note that, in order to make the new functionality being introduced as clear as possible, we
have taken one or two liberties with coding style.

In particular we do not always check that the return results from every function we call are what we expect. |
production code for real applications we would certainly do this, and you too should adopt a rigorous
approach towards error handling. We discuss some of the ways that errors can be caught and handled in
Chapter 3.

The complete source code from the book is available for download from:
http://www.wrox.com

It's available under the terms of the GNU Public License. We suggest you get hold of a copy to save yourse
a lot of typing, although all the code you need is listed in the book.

If you don't have Internet access, you can send away for a disk of the source code. All the details are in the
back of the book.

Conventions

To help you get the most from the text and keep track of what's happening, we've used a number of
conventions throughout the book.

Important These boxes hold important, not—-to—be forgotten, Mission Impossible information
which is directly relevant to the surrounding text.
When we introduce them, we highlight important words. We show keyboard strokes like this: Ctrl-A.

We present code in three different ways:

$ grep "command line" introduction
When the command line is shown, it's in the above style, whereas output is in this style.

Prototypes of UNIX-defined functions and structures are shown in the following style:

#include <stdio.h>

int printf (const char *format, ...);

Lastly in our code examples, the code foreground style shows new, important,
pertinent code;

while code background shows code that's less important in the present context,
or has been seen before.

We'll presage example code with a Try It Out, which aims to split the code up where that's helpful, to
highlight the component parts and to show the progression of the application. When it's important, we also
follow the code with a "How It Works" to explain any salient points of the code in relation to previous theory.
We find these two conventions help break up the more formidable code listings into more palatable morsels



Tell Us What You Think

Tell Us What You Think

We've worked hard to make this book as useful to you as possible, so we'd like to get a feel for what it is yol
want and need to know, and what you think about how we've presented things to you.

We appreciate feedback on our efforts and take both criticism and praise on board in our future editorial
efforts. If you've anything to say, let us know on:

Feedback@wrox.com
or
http://lwww.wrox.com

Bookmark the site now!

Why Should | Return the Reply Card?

Why not? If you return the reply card in the back of the book, you'll register this copy of Beginning Linux
Programming with Wrox Press, which effectively means that you'll receive free information about updates as
soon as they happen. You'll also receive errata sheets when they become available or are updated. (They v
be updated on the Web page, too.)

As well as having the satisfaction of having contributed to the future line of Wrox books via your much
valued comments and suggestions, you will, as a reward, be given a free subscription to the hugely popular
Developer's Journal. This bi-monthly magazine, read by all the software development industry, is invaluable
to every programmer who wants to keep up with the cutting edge techniques used by the best developers.

10



Chapter 1. Getting Started

Overview

In this first chapter, we'll discover what Linux is and how it relates to its inspiration, UNIX. We'll take a
guided tour of the facilities provided by a UNIX development system and we shall write and run our first
program. Along the way, we'll be looking at:

* UNIX, Linux and GNU

* Programs and programming languages for UNIX
* Locating development resources

« Static and shared libraries

» The UNIX Philosophy

What is UNIX?

The UNIX operating system was originally developed at Bell Laboratories, once part of the
telecommunications giant AT&T. Designed in the 1970s for Digital Equipment PDP computers, it has
become a very popular multiuser, multitasking operating system for a wide variety of different hardware
platforms, from PC workstations right up to multiprocessor servers and supercomputers.

Strictly, UNIX is a trademark administered by X/Open and refers to a computer operating system that
conforms to the X/Open specification XPG4.2. This specification, also known as SPEC1170, defines the
names of, interfaces to and behaviors of all UNIX operating system functions. The X/Open specification is
largely a superset of an earlier series of specifications, the P1003, or POSIX specifications, actively being
developed by the IEEE (Institute of Electrical and Electronic Engineers).

Many UNIX-like systems are available, either commercially, such as Sun's Solaris for SPARC and Intel
processors, or for free, such as FreeBSD and Linux. Only a few systems currently conform to the X/Open
specification, which allows them to be branded UNIX98. In the past, compatibility between different UNIX
systems has been a problem, although POSIX was a great help in this respect. With the publication of the
X/Open specification, there's hope that UNIX and the many other UNIX-like systems will converge.

What is Linux?

As you may already know, Linux is a freely distributed implementation of a UNIX-like kernel, the low level
core of an operating system. Because Linux takes the UNIX system as its inspiration, Linux and UNIX
programs are very similar. In fact, almost all programs written for UNIX can be compiled and run under
Linux. Also, many commercial applications sold for commercial versions of UNIX can run unchanged in
binary form on Linux systems. Linux was developed by Linus Torvalds at the University of Helsinki, with the
help of UNIX programmers from across the Internet. It began as a hobby inspired by Andy Tanenbaum's
Minix, a small UNIX system, but has grown to become a complete UNIX system in its own right. The Linux
kernel doesn't use code from AT&T or any other proprietary source.

Distributions

As we have already mentioned, Linux is actually just a kernel. You can obtain the sources for the kernel to
compile and install them and then obtain and install many other freely distributed software programs to mak

11



The GNU Project and the Free Software Foundation

a complete UNIX-like system. These installations are usually referred to as Linux systems, although they
consist of much more than just the kernel. Most of the utilities come from the GNU project of the Free
Software Foundation.

As you can probably appreciate, creating a Linux system from just source code is a major undertaking.
Fortunately, many people have put together 'distributions', usually on CD—-ROM, that not only contain the
kernel, but also many other programming tools and utilities. These often include an implementation of the X
Window system, a graphical environment common on many UNIX systems. The distributions usually come
with a setup program and additional documentation (normally all on the CD) to help you install your own
Linux system. Some well known distributions are Slackware, SUSE, Debian, Red Hat and Turbo Linux, but
there are many others.

The GNU Project and the Free Software Foundation

Linux owes its existence to the cooperative efforts of a large number of people. The operating system kerne
itself forms only a small part of a usable development system. Commercial UNIX systems traditionally come
bundled with applications programs which provide system services and tools. For Linux systems, these
additional programs have been written by many different programmers and have been freely contributed.

The Linux community (together with others) supports the concept of free software, i.e. software that is free
from restrictions, subject to the GNU General Public License. Although there may be a cost involved in
obtaining the software, it can thereafter be used in any way desired, and is usually distributed in source forn

The Free Software Foundation was set up by Richard Stallman, the author of GNU Emacs, one of the best
known editors for UNIX and other systems. Stallman is a pioneer of the free software concept and started th
GNU project, an attempt to create an operating system and development environment that will be compatibl
with UNIX. It may turn out to be very different from UNIX at the lowest level, but will support UNIX
applications. The name GNU stands for GNU's Not Unix.

The GNU Project has already provided the software community with many applications that closely mimic
those found on UNIX systems. All these programs, so called GNU software, are distributed under the terms
the GNU Public License (GPL), a copy of which may be found in Appendix B. This license embodies the
concept of 'copyleft' (a pun on 'copyright’). Copyleft is intended to prevent others from placing restrictions on
the use of free software.

Software from the GNU Project distributed under the GPL includes:

GCC A C compiler

G++ A C++ compiler

GDB A source code level debugger

GNU make A version of UNIX make

Bison A parser generator compatible with UNIX yacc
Bash A command shell

GNU Emacs A text editor and environment

Many other packages have been developed and released using free software principles and the GNU Publi
License. These include graphical image manipulation tools, spreadsheets, source code control tools, compil
and interpreters, internet tools and a complete object-based environment: GNOME. We will meet GNOME
again in a later chapter.

12



Programming Linux

You can find out more about the free software concept at http://www.gnu.org.

Programming Linux

Many people think that programming UNIX means using C. It's true that UNIX was originally written in C
and that the majority of UNIX applications are written in C, but C is not the only option available to UNIX
programmers. In the course of the book, we'll introduce you to some of the alternatives which can sometime
provide a neater solution to programming problems.

Important In fact, the very first version of UNIX was written in PDP 7 assembler language in 1969. C was
conceived by Dennis Ritchie around that time and in 1973 he and Ken Thompson rewrote
essentially the entire UNIX kernel in C, quite a feat in the days when system software was
written in assembly language.

A vast range of programming languages are available for UNIX systems, and many of them are free and

available on CD-Rom collections or from FTP archive sites on the Internet. Appendix C contains a list of

useful resources. Here's a patrtial list of programming languages available to the UNIX programmer:

Ada C C++

Eiffel Forth Fortran

Icon Java JavaScript

Lisp Modula 2 Modula 3

Oberon Objective C Pascal

Perl PostScript Prolog

Python Scheme Smalltalk

SQL Tcl/Tk UNIX Bourne Shell (sh)

In this book, we'll concentrate on just a few of these. We'll see how we can use the UNIX shell (sh) to
develop small to medium-sized applications in the next chapter. We'll direct our attention mostly at explorin
the UNIX programming interfaces from the perspective of the C programmer. In later chapters, we'll take a
look at some alternatives to low—level C programming, especially in the context of programming for the
Internet (HTML, Perl, Java) and under the X Window system (Tcl/Tk, GNOME).

UNIX Programs

Applications under UNIX are represented by two special types of file: executables and scripts. Executable
files are programs that can be run directly by the computer and correspond to DOS .exe files. Scripts are
collections of instructions for another program, an interpreter, to follow. These correspond to DOS .bat files,
or interpreted BASIC programs.

UNIX doesn't require that executables or scripts have a specific file name nor any particular extension. File
system attributes, which we'll meet in Chapter 2, are used to indicate that a file is a program that may be rur
In UNIX, we can replace scripts with compiled programs (and vice versa) without affecting other programs o
the people who call them. In fact, at the user level, there is essentially no difference between the two.

When you log in to a UNIX system, you interact with a shell program (often sh) that undertakes to run
programs for you, in the same way DOS uses COMMAND.COM. It finds the programs you ask for by name
by searching for a file with the same name in a given set of directories. The directories to search are stored
a shell variable, PATH, in much the same way as under DOS. The search path (to which you can add) is

13



The C Compiler

configured by your system administrator and will usually contain some standard places where system
programs are stored. These include:

/bin Binaries, programs used in booting the
system.

/usr/bin User binaries, standard programs
available to users.

/usr/local/bin Local binaries, programs specific to an
installation.

An administrator's login, such as root, may use a PATH variable that includes directories where system
administration programs are kept, such as /shin and /usr/sbin.

Optional operating system components and third—party applications may be installed in subdirectories of /of
and installation programs might add to your PATH variable by way of user install scripts.

It is probably a good idea not to delete directories from PATH unless you are sure that you understand what
will result if you do.

Note that UNIX uses the : character to separate entries in the PATH variable, rather than the MS-DOS ;.
(UNIX chose : first, so ask why MS—-DOS was different, not why UNIX is different!). Here's an example
PATH variable:

/usr/local/bin:/bin:/usr/bin:.:/home/neil/bin:/usr/X11R6/bin

Here the PATH variable contains entries for the standard program locations, the current directory (.), a user’
home directory and the X Window System.

The C Compiler

Let's start developing for UNIX using C by writing, compiling and running our first UNIX program. It might
as well be that most famous of all, Hello World.

Try It Out — Our First UNIX C Program

1. Here's the source code for the file hello.c:

#include <stdio.h>
int main()

printf("Hello World\n");
exit(0);
}
2.To enter this program, you'll need to use an editor. There are many to choose from on a typical Linu;
system. Popular with many users is the vi editor. Both the authors like emacs and so we suggest yot
take the time to learn some of the features of this powerful editor. To learn emacs, after starting it
press Ctrl-H, followed by t for the tutorial. emacs has its entire manual available on-line. Try
Ctrl-H and then i for information. Some versions of Emacs may have menus that you can use to
access the manual and tutorial.
3. 0n POSIX-compliant systems, the C compiler is called c89. Historically, the C compiler was simply
called cc. Over the years, different vendors have sold UNIX-like systems with C compilers with

14



How It Works

different facilities and options, but often still called cc.

When the POSIX standard was prepared, it was impossible to define a standard cc command with
which all these vendors would be compatible. Instead, the committee decided to create a new stand:
command for the C compiler, ¢89. When this command is present, it will always take the same
options, independent of the machine.

On Linux systems, you might find that any or all of the commands ¢89, cc and gcc refer to the syster
C compiler, usually the GNU C compiler. On UNIX systems, the C compiler is almost always called
cc.

In this book, we'll be using GNU C, because it's provided with Linux distributions and because it
supports the ANSI standard syntax for C. If you're using a UNIX system without GNU C, we
recommend that you obtain and install it. You can find it starting at http://www.gnu.org. Wherever we
use cc in the book, simply substitute the relevant command on your system.

4. Let's compile, link and run our program.

$ cc -o hello hello.c
$ ./hello

Hello World

$

How It Works

We invoked the system C compiler which translated our C source code into an executable file called hello.
We ran the program and it printed a greeting. This is just about the simplest example there is, but if you can
get this far with your system, you should be able to compile and run the remainder of the examples in the
book. If this did not work for you, make sure that the C compiler is installed on your system. Red Hat Linux
has an install option called C Development that you should select.

Since this is the first program we've run, it's a good time to point something out. The hello program will
probably be in your home directory. If PATH doesn't include a reference to your home directory, the shell
won't be able to find hello. Furthermore, if one of the directories in PATH contains another program called
hello, that program will be executed instead. This would also happen if such a directory is mentioned in
PATH before your home directory

To get around this potential problem, you can prefix program names with ./ (e.g. ./hello). This specifically
instructs the shell to execute the program in the current directory with the given name.

If you forget the —o0 name option which tells the compiler where to place the executable, the compiler will
place the program in a file called a.out (meaning assembler output). Just remember to look for an a.out if yo
think you've compiled a program and you can't find it! In the early days of UNIX, people wanting to play
games on the system often ran them as a.out to avoid being caught by system administrators and many larg
UNIX installations routinely delete all files called a.out every evening.

Getting Help

All UNIX systems are reasonably well-documented with respect to the system programming interfaces and
standard utilities. This is because, since the earliest UNIX systems, programmers have been encouraged to
supply a manual page with their programs. These manual pages, which are sometimes provided in a printec
form, are invariably available online.

15



Try It Out — Manual Pages and info

The man command provides access to the online manual pages. The pages vary considerably in quality anc
detail. Some may simply refer the reader to other, more thorough documentation, while others give a compls
list of all options and commands that a utility supports. In either case, the manual page is a good place to st

The GNU software suite and some other free software uses an online documentation system called info. Yo
can browse full documentation online using a special program, info, or via the info command of the emacs
editor. The benefit of the info system is that you can navigate the documentation using links and
cross—references to jump directly to relevant sections. For the documentation author, the info system has th
benefit that its files can be automatically generated from the same source as the printed, typeset
documentation.

Try It Out — Manual Pages and info

1. Let's look for documentation of the GNU C compiler. First, the manual page.

$ man gcc
GCC(1) GNU Tools GCC(1)

NAME
gcc, g++ — GNU project C and C++ Compiler (egcs-1.1.2)

SYNOPSIS
gcc [ option | filename ...
g++ [ option | filename ]...

WARNING
The information in this man page is an extract from the
full documentation of the GNU C compiler, and is limited
to the meaning of the options.

This man page is not kept up to date except when volun—
teers want to maintain it. If you find a discrepancy
between the man page and the software, please check the
Info file, which is the authoritative documentation.

If we find that the things in this man page that are out

of date cause significant confusion or complaints, we will
stop distributing the man page. The alternative, updating
the man page when we update the Info file, is impossible
because the rest of the work of maintaining GNU CC leaves
us no time for that. The GNU project regards man pages as
obsolete and should not let them take time away from other
things.

For complete and current documentation, refer to the Info
file 'gcc’ or the manual Using and Porting GNU CC (for
version 2.0). Both are made from the Texinfo source file
gcc.texinfo.

If we wish, we can read about the options that the compiler supports for each of the target processor
that can be used. The manual page in this case is quite long, but forms only a small part of the total
documentation for GNU C (and C++).

When reading manual pages you can use the spacebar to read the next page, Return to read the ne

16



Development System Roadmap

line and g to quit altogether.
. To get more information on GNU C, we can try info.

$ info gcc
File: gcc.info, Node: Top, Next: Copying, Up: (DIR)

Introduction

kkkkkkkkkkkk

This manual documents how to run, install and port the GNU compiler,
as well as its new features and incompatibilities, and how to report
bugs. It corresponds to EGCS version 1.1.2.

* Menu:

* G++ and GCC::  You can compile C or C++ programs.

* Invoking GCC:: Command options supported by 'gcc'.

* Installation::  How to configure, compile and install GNU CC.
* C Extensions:: GNU extensions to the C language family.

* C++ Extensions:: GNU extensions to the C++ language.

* Trouble:: If you have trouble installing GNU CC.

* Bugs:: How, why and where to report bugs.

* Service:: How to find suppliers of support for GNU CC.

*VMS:: Using GNU CC on VMS.

* Portability::  Goals of GNU CC's portability features.

* Interface:: Function—call interface of GNU CC output.

* Passes:: Order of passes, what they do, and what each file is for.

* RTL: The intermediate representation that most passes work on.

* Machine Desc:: How to write machine description instruction patterns.
* Target Macros:: How to write the machine description C macros.
* Config:: Writing the 'xm—-MACHINE.h' file.

-zz-Info: (gcc.info.gz)Top, 36 lines —Top- Subfile: gcc.info-1.gz—————————-

Welcome to Info version 3.12f. Type "C-h" for help, "m" for menu item.

We're presented with a long menu of options that we can select to move around a complete text
version of the documentation. Menu items and a hierarchy of pages allow us to navigate a very large
document. On paper, the GNU C documentation runs to many hundreds of pages.

The info system also contains its own help page in info form pages, of course. If you type Ctrl-H,
you'll be presented with some help which includes a tutorial on using info. The info program is
available with many Linux distributions and can be installed on other UNIX systems.

Development System Roadmap

For a UNIX developer, it can be important to know a little about where tools and development resources are
located. Let's take a brief look at some important directories and files. We'll concentrate on Linux here, but

similar principles apply equally to other UNIX-like systems.

Programs

Programs are usually kept in directories reserved for the purpose. Programs supplied by the system for
general use, including program development, are found in /usr/bin. Programs added by system administrato

for a specific host computer or local network are found in /usr/local/bin.

17



Header Files

Administrators favor /usr/local, as it keeps vendor supplied files and later additions separate from the
programs supplied by the system. Keeping /usr organized in this way may help when the time comes to
upgrade the operating system, since only /usr/local need be preserved. We recommend that you compile yo
programs to run and access required files from the /usr/local hierarchy.

Additional features and programming systems may have their own directory structures and program
directories. Chief among these is the X Window system, which is commonly installed in a directory called
/usr/X11. Alternative locations include /usr/X11R6 for Revision 6, also used by the XFree86 variant for Intel
processors distributed by the XFree consortium and used by many Linux distributions and /usr/openwin for
the Sun Open Windows system provided with Solaris.

The GNU compiler system's driver program, gcc (which we used in our programming example earlier on), is
typically located in /usr/bin or /usr/local/bin, but it will run various compiler support programs from another
location. This location is specified when you compile the compiler itself and varies with the host computer
type. For Linux systems, this location might be a version specific subdirectory of /usr/lib/gcc-lib/. The
separate passes of the GNU C/C++ compiler, and GNU specific header files, are stored here.

Header Files

For programming in C and other languages, we need header files to provide definitions of constants and
declarations for system and library function calls. For C, these are almost always located in /usr/include and
subdirectories thereof. You can normally find header files that depend on the particular form of UNIX or
Linux that you are running in /usr/include/sys and /usr/include/linux.

Other programming systems will also have include files that are stored in directories which get searched
automatically by the appropriate compiler. Examples include /usr/include/X11 for the X Window system and
lusrfinclude/g++-2 for GNU C++.

You can use include files in subdirectories or non—standard places by specifying the —I flag to the C
compiler. For example,

$ gcc -l/usr/openwin/include fred.c

will direct the compiler to look in the directory /usr/openwin/include, as well as the standard places, for
header files included in the fred.c program. Refer to the manual page for your C compiler for more details.

It's often convenient to use the grep command to search header files for particular definitions and function
prototypes. Suppose you need to know the name of the defines that are used for returning the exit status frc
a program. Simply change to the /usr/include directory and grep for a probable part of the name. Like this:

$ grep EXIT_*.h

stdlib.h:#define EXIT_FAILURE 1 /* Failing exit status. */
stdlib.h:#define EXIT_SUCCESS 0 [* Successful exit status. */

Here grep searches all the files in the directory with a name ending in .h for the string EXIT_. In this exampl
it has found (among others) the definition we need in the file stdlib.h.

18



Library Files

Library Files

Libraries are collections of precompiled functions that have been written to be reusable. Typically, they
consist of sets of related functions to perform a common task. Examples include libraries of screen handling
functions (the curses library) and database access routines (the dbm library). We'll meet these libraries in la
chapters.

Standard system libraries are usually stored in /lib and /usr/lib. The C compiler (or more exactly, the linker)
needs to be told which libraries to search, as by default, it searches only the standard C library. This is a
remnant of the days when computers were slow and CPU cycles expensive. It's not enough to put a library i
the standard directory and hope that the compiler will find it; libraries need to follow a very specific naming
convention and need to be mentioned on the command line.

A library name always starts with lib. Then follows the part indicating what library this is (like ¢ for the C
library, or m for the mathematical library). The last part of the name starts with a dot ., and specifies the type
of the library:

« .a for traditional, static libraries
« .s0 and .sa for shared libraries (See below.)

Usually, the libraries exist in both static and shared formats, as a quick Is /ust/lib will show. You can instruct
the compiler to search a library either by giving it the full path name or by using the -I flag. For example,

$ cc —o fred fred.c /usr/lib/libm.a

tells the compiler to compile file fred.c, call the resulting program file fred and search the mathematical
library in addition to the standard C library to resolve references to functions. A similar result is achieved
through:

$ cc —o fred fred.c -Im

The -Im (no space between the | and the m) is shorthand (Shorthand is much valued in UNIX circles.) for th
library called libm.a in one of the standard library directories (in this case /ust/lib). An additional advantage ¢
the —Im notation is that the compiler will automatically choose the shared library when it exists.

Although libraries usually are found in standard places in the same way as header files, we can add to the
search directories by using the —L (uppercase letter) flag to the compiler. For example,

$ cc —o x11fred —L/usr/openwin/lib x11fred.c —IX11

will compile and link a program called x11fred using the version of the library libX11 found in the directory
l/usr/openwin/lib.

Static Libraries

The simplest form of library is just a collection of object files kept together in a ready—to—use form. When a

program needs to use a function stored in the library, it includes a header file that declares the function. The
compiler and linker take care of combining the program code and the library into a single executable progral
You must use the —I option to indicate which libraries, other than the standard C runtime library, are requirec

19



Try It Out — Static Libraries

Static libraries, also known as archives, conventionally have names that end with .a. Examples are
usr/lib/libc.a and /usr/X11/lib/libX11.a for the standard C library and the X11 library.

We can create and maintain our own static libraries very easily by using the ar (for archive) program and
compiling functions separately with cc —c. You should try to keep functions in separate source files as much
as possible. If functions need access to common data, you can place them in the same source file and use
'static' variables declared in that file.

Try It Out — Static Libraries

1. Let's create our own, small library containing two functions and then use one of them in an example
program. The functions are called fred and bill and just print greetings. We'll create separate source
files (called imaginatively fred.c and bill.c) for each of them.

#include <stdio.h>
void fred(int arg)

printf("fred: you passed %d\n", arg);
}

#include <stdio.h>

void bill(char *arg)
{

}

printf("bill: you passed %s\n", arg);

We can compile these functions individually to produce object files ready for inclusion into a library.
We do this by invoking the C compiler with the —c option that prevents the compiler from trying to
create a complete program. This would fail because we haven't defined a function called main.

$ cc —c bill.c fred.c
$lIs*.0
bill.o fred.o

2. Now let's write a program that calls the function bill. First, it's a good idea to create a header file for
our library. This will declare the functions in our library and should be included by all programs that
wish to use our library.

/*
This is lib.h. It declares the functions fred and bill for users
*/

void bill(char *);
void fred(int);

In fact it's a good idea to include the header file in the files fred.c and bill.c too. This will help the
compiler pick up any errors.

3. The calling program (program.c) can be very simple. It includes the library header file and calls one
of the functions from the library.

#include "lib.h"
int main()

bill("Hello World");

20



Try It Out — Static Libraries

exit(0);
}
4. We can now compile the program and test it. For now, we'll specify the object files explicitly to the
compiler, asking it to compile our file and link it with the previously compiled object module bill.o.

$ cc —c program.c
$ cc —o program program.o bill.o
$ ./program
bill: you passed Hello World
$

5. Now let's create and use a library. We use the ar program to create the archive and add our object fi
to it. The program is called ar because it creates archives or collections of individual files placed
together in one large file. Note that we can also use ar to create archives of files of any type. (Like
many UNIX utilities, it is a very generic tool.)

$ ar crv libfoo.a bill.o fred.o
a - hill.o
a - fred.o

The library is created and the two object files added. To use the library successfully, some systems,
notably those derived from Berkeley UNIX, require that a table of contents be created for the library.
We do this with the ranlib command. This step isn't necessary (but harmless) when, as in Linux, we'r
using the GNU software development tools.

$ ranlib libfoo.a

Our library is now ready to use. We can add to the list of files to be used by the compiler to create oL
program like this:

$ cc —o program program.o libfoo.a
$ ./program

bill: you passed Hello World

$

We can also use the —| option to access our library, but as it is not in any of the standard places, we
have to tell the compiler where to find it by using the —L option like this:

$ cc —o program program.o —L. —lfoo

The -L. option tells the compiler to look in the current directory for libraries. The —Ifoo option tells
the compiler to use a library called libfoo.a (or a shared library, libfoo.so if one is present).

To see which functions are included in an object file, library or executable program, we can use the
nm command. If we take a look at program and lib.a, we see that the library contains both fred and
bill, but that program contains only bill. When the program is created, it only includes functions from
the library that it actually needs. Including the header file, which contains declarations for all of the
functions in the library, doesn't cause all of the library to be included in the final program.

If you're familiar with MS—-DOS or Microsoft Windows software development, there are a number of
direct analogies here.

Item UNIX DOS
object module func.o FUNC.OBJ

21



Shared Libraries

static library lib.a LIB.LIB
program program PROGRAM.EXE

Shared Libraries

One disadvantage of static libraries is that when we run many programs at the same time and they all use
functions from the same library, we may end up with many copies of the same functions in memory and
indeed many copies in the program files themselves. This can consume a large amount of valuable memory
and disk space.

Many UNIX systems support shared libraries that can overcome both of these disadvantages. A complete
discussion of shared libraries and their implementation on different systems is beyond the scope of this bool
so we'll restrict ourselves to the visible implementation under Linux.

Shared libraries are stored in the same places as static libraries, but have a different extension. On a typical
Linux system, the shared version of the standard C library is /lib/libc.s0.N, where N represents a major
version number, currently 6.

At the time of writing many Linux distributions were going through a process of updating the versions of bott
the C/C++ compiler used and the C library. The example outputs shown below are taken from a Redhat 6.0
distribution using GNU libc 2.1. Your output may differ slightly if you are not using this distribution.

When a program uses a shared library, it is linked in such a way that it doesn't contain function code itself, k
references to shared code that will be made available at run time. When the resulting program is loaded intc
memory to be executed, the function references are resolved and calls are made to the shared library, whicl
will be loaded into memory if needed.

In this way, the system can arrange for a single copy of a shared library to be used by many applications at
once and stored just once on the disk. An additional benefit is that the shared library can be updated
independently of the programs that rely on it. Symbolic links from the file /lib/libc.s0.6 to the actual library
revision (/lib/libc-2.1.1.so at the time of writing) are used.

For Linux systems, the program (the dynamic loader) that takes care of loading shared libraries and resolvir
client program function references is Id.so or Id-linux.so0.2. The additional locations searched for shared
libraries are configured in the file /etc/ld.so.conf, which needs to be processed by Idconfig if changed, for
example when X11 shared libraries are added.

You can see which shared libraries are required by a program by running the utility Idd:

$ Idd program
libc.s0.6 => /lib/libc.s0.6 (0x4001a000)
Nlib/ld-linux.s0.2 => /lib/ld-linux.so.2 (0x40000000)

In this case, we see that the standard C library (libc) is shared (.s0). Our program requires major Version 6,
which is provided in this case by GNU libc version 2.1.1. Other UNIX systems will make similar
arrangements for access to shared libraries. Refer to your system documentation for details.

In many ways, shared libraries are similar to dynamic-link libraries used under Microsoft Windows. The .so

libraries correspond to .DLL files and are required at run time, while the .sa libraries are similar to .LIB files
that get included in the program executable.

22



UNIX Philosophy

UNIX Philosophy

We hope to convey a flavor of UNIX programming in the following chapters. Although programming in C is
in many ways the same whatever the platform, it's true to say that UNIX developers have a special view of
program and system development.

The UNIX operating system encourages a certain programming style. Here are a few characteristics shared
typical UNIX programs and systems.

Simplicity

Many of the most useful UNIX utilities are very simple and, as a result, small and easy to understand. KISS
(Keep It Small and Simple) is a good technique to learn. Larger, more complex systems are guaranteed to
contain larger, more complex bugs and debugging is a chore that we'd all like to avoid!

Focus

It's often better to make a program perform one task well. A program with 'feature bloat' can be difficult to
use and difficult to maintain. Programs with a single purpose are easier to improve as better algorithms or
interfaces are developed. In UNIX, small utilities are often combined to perform more demanding tasks as a
when the need arises, rather than trying to anticipate a user's needs in one large program.

Reusable Components

Make the core of your application available as a library. Well-documented libraries with simple but flexible
programming interfaces can help others to develop variations or apply the techniques to new application are
Examples include the dbm database library, a suite of reusable functions rather than a single database
management program.

Filters

Very many UNIX applications can be used as filters. That is, they transform their input and produce an
output. As we'll see, UNIX provides facilities that allow quite complex applications to be developed from
other UNIX programs by combining them in new and novel ways. Of course, this kind of re—use is enabled k
the development methods that we've just mentioned.

Open File Formats

The more successful and popular UNIX programs use configuration files and data files that are plain ASCII
text. If this is an option for your program development, it's a good choice. It enables users to use standard
tools to change and search for configuration items and to develop new tools for performing new functions or
the data files. A good example of this is the ctags source code cross-reference system, which records symt
location information as regular expressions suitable for use by searching programs.

Flexibility

You can't anticipate exactly how ingeniously users will use your program. Try to be as flexible as possible in
your programming. Try to avoid arbitrary limits on field sizes or number of records. If you can, write the
program so that it's network—aware and able to run across a network as well as on a local machine. Never

23



Summary

assume that you know everything that the user might want to do.

Summary

In this introductory chapter, we've taken note of the things in common between Linux and proprietary UNIX
systems and the wide variety of programming systems available to us as UNIX developers.

We've written a simple program and library to demonstrate the basic C tools, comparing them with their
MS-DOS equivalents. Finally, we've looked at UNIX programming.

24



Chapter 2: Shell Programming

Overview

Having just started this book on programming UNIX in C, we almost immediately take a detour into shell
programming. Why?

Well, the shell leads a double life. While it has similarities to the DOS command processor Command.com,
it's actually much more powerful, really a programming language in its own right. Not only can you execute
commands and call UNIX utilities, you can also write them. It's an interpreted language, which generally
makes debugging easier, because you can execute single lines, plus there's no recompile time. However, tt
can make the shell unsuitable for time—critical or processor—intensive tasks.

Why use it to program? Well, you can program the shell quickly and simply, and a shell is always available
even on the most basic UNIX installation. So, for simple prototyping, you can find out if your idea works. It's
also ideal for any small utilities that perform some relatively simple task, where efficiency is less important
than easy configuration, maintenance and portability. You can use the shell to organize process control, so
commands run in a predetermined sequence dependent on the successful completion of each stage.

Note There are probably loads of examples on your UNIX account already, like package installers, autoconf
from the Free Software Foundation (FSF), .xinitrc and startx and the scripts in /etc/rc.d to configure the
system on boot-up.

Here we come to a bit of UNIX philosophy. UNIX is built on and depends upon a high level of code reuse.
You build a small and simple utility, and people use it as one link in a string of others to form a command. A
simple example is:

$Is —al | more

This uses the Is and more utilities and pipes the output of the file listing to a screen—at—-a-time display. Eact
utility is one more building block. You can often use many small scripts together to create large and comple»
suites of programs.

For example, if you want to print a reference copy of the bash man pages, use: man bash | col —b | Ipr.

Furthermore, because of UNIX's file handling, the users of these utilities usually don't need to know what
language the utilities are written in. If the utility needs to run faster, it's quite usual to prototype UNIX utilities
in the shell and re-implement them later in C or C++ when they have proven their worth. Conversely, if they
work well enough, leave well alone!

Other interpreted languages that people like to use as an alternative to C or C++ include Perl, Tcl/Tk and
Python.

Whether you ever re-implement the script depends on whether it needs optimizing, whether it needs to be
portable, whether it should be easy to change and whether (as usually happens) it outgrows its original
purpose.

So, whether you're faced with a nightmare of a shell script in your system administration, whether you want
prototype your latest big (but beautifully simple) idea or just want to speed up some repetitive task, this
chapter is for you.

25



What is a Shell?

Throughout the chapter, we'll be learning the syntax, structures and commands available to you when you're
programming the shell, usually making use of interactive (screen—-based) examples. These should serve as
useful synopsis of most of the shell's features and their effect. At the end of the chapter, we program a
real-life script which is reprogrammed and extended in C throughout the book.

In this chapter, we'll cover:

* What a shell is.
» Basic considerations.

» The subtleties of syntax: variables, conditions and program control.
e Lists.

 Functions.

« Commands and command execution.

» Here documents.

» Debugging.

What is a Shell?

Let's review the shell's function and the different shells available for UNIX.

A shell is a program that acts as the interface between you and the UNIX system, allowing you to enter
commands for the operating system to execute. In that respect, it resembles DOS, but it hides the details of
kernel's operation from the user. So, file redirection just uses < and >, a pipe is represented by |, output fron

subprocess by $(...), and the implementation details are handled for you. In that respect, it's a high—level
programming language for UNIX itself.

Other \

csh programs \
1
!
|
|
i
The /"
X Window
bash System {

Because UNIX is so modular, you can slot in one of the many different shells in use. Most of them are derivi
from the original Bourne shell.

Shell Name A Bit of History

sh (Bourne) The original shell.

csh, tcsh and zsh The C shell, created by Bill Joy of Berkeley UNIX fame. Probably the
second most popular shell after bash.

ksh, pdksh The Korn shell and its public domain cousin. Written by David Korn.

bash The Linux staple, from the GNU project. bash, or Bourne Again Shell, has

26



Pipes and Redirection

the advantage that the source code is freely available and even if it's not
currently running on your UNIX system, it has probably been ported tq it.
rc More C than csh. Also from the GNU project.
Except for the C shell and a small number of derivatives, all of these are very similar and are closely alignec
with the shell specified in the X/Open 4.2 and POSIX 1003.2 specifications. POSIX 1003.2 lays down the
minimum specification for a shell, but the extended specification in X/Open provides a more friendly and
powerful shell. X/Open is usually the more demanding specification, but also yields a friendlier system. We
have only listed here some of the better known shell variants, there are many others.

In this chapter, we'll mostly use those features common to POSIX-compatible shells and we'll assume that 1
shell has been installed as /bin/sh as the default.

Important In many Linux systems the command /bin/sh is often no more than a link to the actual shell in
use. On many Linux systems it is a link to /bin/bash, the bash shell. Check your system with the
command Is —I /bin/sh. If you ever need to know which version of bash you are running, just
invoke /bin/bash -version, or echo $BASH_VERSION if you are at a bash command prompt,
and it will tell you.

We'll meet the tclsh and wish shells used by Tcl and Tk respectively later in the book (Chapters 14 and 15).

The GNU project has also put a set of basic shell utilities, Shellutils, which may offer better performance tha

system—provided alternatives on some installations. If you want to archive text files using only shell scripts,
check out the shar package.

Pipes and Redirection

Before we get down to the details of shell programs, we need to say a little about how inputs and outputs of
UNIX programs (not just shell programs) can be redirected.

Redirecting Output

You may already be familiar with some redirection, such as,
$ Is —I > Isoutput.txt
which saves the output of the Is command into a file called Isoutput.txt.

However, there is much more to redirection than this simple example. We'll learn more about the standard fi
descriptors in a Chapter 3, but for now all we need to know is that file descriptor O is the standard input to a
program, file descriptor 1 is the standard output and file descriptor 2 is the standard error output. You can
redirect each of these independently. In fact, you can also redirect other file descriptors, but it's unusual to
want to redirect any other than the standard ones, 0, 1 and 2.

In the above example we redirect the standard output, using the > operator, into a file. By default, if the file
already exists, it will be overwritten. If you want to change the default behavior, you can use the command s
—C, which sets the noclobber option to prevent a file being overwritten using redirection. We'll see more
options to the set command later in the chapter.

To append to the file, we would use the >> operator.

27



Redirecting Input
$ ps >> Isoutput.txt
will append the output of the ps command to the file.
To redirect the standard error output, we preface the > operator with the number of the file descriptor we wis
to redirect. Since the standard error is on file descriptor 2, we use the 2> operator. This is often useful to
discard error information, to prevent it appearing on the screen.
Suppose we want to use the kill command to kill a process from a script. There is always a slight risk that th
process will die before the kill command is executed. If this happens, kill will write an error message to the
standard error output, which, by default, will appear on the screen. By redirecting both the standard output a
error, we can prevent the kill command writing any text to the screen.
The command,
$ kill =-HUP 1234 > killout.txt 2>killerr.txt

will put the output and error information into separate files.

If we prefer to capture both sets of output into a single file, we use the >& operator to combine the two
outputs. So,

$ kill -1 1234 > killouterr.txt 2>&1

will put both the output and error outputs into the same file. Notice the order of the operators. This reads as
'redirect standard output to the file killouterr.txt, then direct standard error to the same place as the standard
output'. If you get the order wrong, the redirect won't work as you expect.

Since we can discover the result of the kill command using the return code (of which more later), we probab

don't want to save either standard output or standard error. We can use the UNIX universal 'bit bucket' of
/dev/null to efficiently discard the entire output, like this:

$ kill -1 1234 > /dev/null 2>&1
Redirecting Input

Rather like redirecting output, we can also redirect input. As a trivial example:

$ more < killout.txt

Obviously, this is a rather silly example under UNIX, since the UNIX more command is quite happy to accef
filenames as parameters, unlike the DOS equivalent.

Pipes

We can connect processes together using the pipe | operator. In UNIX, unlike DOS, processes connected b
pipes can run simultaneously and are automatically rescheduled as data flows between them.

As a simple example, we could use the sort command to sort the output from ps.

If we don't use pipes, we must use several steps, like this:

28



The Shell as a Programming Language

$ ps > psout.txt
$ sort psout.txt > pssort.out

Much more elegant is to connect the processes with a pipe, like this:
$ ps | sort > pssort.out

Since we probably want to see the output paginated on the screen, we could connect a third process, more,
on the same command line:

$ ps | sort | more

There's practically no limit to the number of connected processes. Suppose we want to see all the different
process names that are running, excluding shells. We could use:

$ ps —xo comm | sort | unig | grep —v sh | more

This takes the output of ps, sorts it into alphabetical order, extracts processes using unig, then uses grep -v
to remove the process named sh and finally displays it paginated on the screen.

Now that we've seen some basic shell operations, it's time to move on to scripts.

The Shell as a Programming Language

There are two ways of writing shell programs. You can type in a sequence of commands and allow the shell
execute them interactively, or you can store those commands in a file which you can then invoke as a
program.

Interactive Programs

Just typing in the shell script on the command line is a quick and easy way of trying out small code fragmen

Important To change to a different shell if bash isn't the default on your system, for example, just
type in the shell's name (e.g. /bin/bash) to run the new shell and change the command
prompt. If bash isn't installed on your system, you can download it for free from the GNU
web site at http://www.gnu.org. The sources are highly portable, and the chances are it
will compile on your UNIX straight 'out of the box'.

Suppose we have a large number of C files and we wish to compile only the files that contain the string
POSIX. Rather than search using the grep command for the string in the files, then compile the files
containing the string, we could perform the whole operation in an interactive script like this:

$ for file in *

> do

> if grep -1 POSIX $file

> then

> more $file

> fi

> done

posix

This is a file with POSIX in it — treat it well
$

29



Creating a Script

Note how the normal $ shell prompt changes to a > when you type in shell commands. You can type away,
the shell will decide when you're finished and the script will execute immediately.

In this example, the grep command prints out the files it finds containing POSIX and then more prints the
contents of the file to the screen. Finally, the shell prompt returns. Note also that we've called the shell
variable that deals with each of the files file to self-document the script.

The shell also performs wildcard expansion (also called globbing), though you knew that already, right? Wh:
you may not know is that you can request single character wildcards using ?, while [set] allows any of a
number of single characters to be checked. ["set] nhegates the set — anything but the set you've specified. Bl
expansion using {} (available on some shells, including bash) allows you to group arbitrary strings together i
a set which the shell will expand. For example,

$ Is my_{finger,toe}s

will list those two files which share some common identifier. We've used the shell to check every file in the
current directory.

Actually, experienced UNIX users would probably perform this simple operation in a much more efficient
way, perhaps with a command such as,

$ more “grep —-| POSIX **

or the synonymous construction:
$ more $(grep I POSIX *)

while

$ grep -1 POSIX * | more

will output the name of the file whose contents matched the pattern POSIX. In this script, we see the shell
making use of other commands, such as grep and more, to do the hard work. The shell is simply allowing u
to 'glue’ several existing commands together in new and powerful ways.

Going through this long rigmarole every time we want to execute a sequence of commands is a bore. We ne
to store the commands in a file, conventionally referred to as a shell script, so we can execute them wheney
we like.

Creating a Script

First, using any text editor, we must create a file containing the commands. Create a file called first.sh that
looks like this:

#!/bin/sh

# first.sh

# This file looks through all the files in the current

# directory for the string POSIX, and then displays those
# files to the standard output.

for file in *
do

30



Making a Script Executable

if grep —q POSIX $file
then
more $file
fi
done

exit0

Comments start with a # and continue to the end of a line. Conventionally, though, # is usually kept in the fir
column. Having made such a sweeping statement, we next note that the first line, #!/bin/sh, is a special form
of comment, the #! characters tell the system that the one argument that follows on the line is the program t
be used to execute this file. In this case /bin/sh is the default shell program.

Note the absolute path specified in the comment. Since some UNIX implementations have a limit of 32
characters on the interpreter path length, it's wise to keep at least a symbolic link to your favorite shell in /bir
If you try and invoke a command with a very long name or in a deeply nested directory, it may not function
correctly.

Because the script is essentially treated as standard input to the shell (something prepared earlier), it can
contain any UNIX commands referenced by your PATH environment variable.

The exit command ensures that the script returns a sensible exit code (more on this later in the chapter). Th
is rarely checked when programs are run interactively, but if you want to invoke this script from another scrif
and check whether it succeeded, returning an appropriate exit code is very important. Even if you never inte
to allow your script to be invoked from another, you should still exit with a reasonable code. Such an attitude
though, flies in the face of a very important part of the UNIX philosophy: reuse. Go on, have faith in the
usefulness of your script.

A zero denotes success in shell programming. Since the script as it stands can't detect any failures, we alwe
return success. We'll come back to the reasons for using a zero exit code for success later in the chapter, w
we look at the exit command in more detail.

Although we have used the extension '.sh' on this example, Linux, and UNIX in general rarely makes use of
the file name extension to determine the type of a file. We could have omitted the .sh, or added a different
extension if we wished, the shell doesn't care. Most pre—installed scripts will not have any filename extensio

and the best way to check if they are a script or not is to use the file command, i.e. file first.sh or file
/bin/bash.

Making a Script Executable

Now we have our script file, we can run it in two ways. The simpler way is to invoke the shell with the name
of the script file as a parameter, thus:

$ /bin/sh first.sh

This should work, but it would be much better if we could simply invoke the script by typing its name, giving
it the respectability of other UNIX commands.

We do this by changing the file mode to make the file executable for all users using the chmod command:

$ chmod +x first.sh

31



Shell Syntax

Important  Of course, this isn't the only way to use chmod to make a file executable. Use man
chmod to find out more about octal arguments and other options.
We can then execute it using the command:

$ first.sh

This may not work and you may get an error saying the command wasn't found. This is probably because tt
shell environment variable PATH isn't set to look in the current directory. To fix this, either type
PATH=3$PATH:. on the command line, or edit your .bash_profile file to add this command to the end of the
file, then log out and back in again Alternatively, type .f/first.sh in your scripts directory to give the shell the
relative path to the file.

Important You shouldn't change the PATH variable like this for the root user. It's a security loophole,
because the system administrator logged in as root can be tricked into invoking a fake version o
a standard command. One of the authors admits to doing this once, just to prove a point to the
system administrator about security of course! It's a slight risk on ordinary accounts to include
the current directory in the path, so if you are particularly concerned just get into the habit of
pre—pending ./ to all commands that are in the local directory.
Once we're confident that our script is executing properly, we can move it to a more appropriate location tha
the current directory. If the command is just for yourself, you could create a bin directory in your home
directory and add that to your path. If you want the script to be executable by others, you could use
/usr/local/bin or another system directory as a convenient location for adding new programs. If you don't hav
root permissions on your UNIX system, you could ask the system administrator to copy your file for you,
although you may have to convince them first. To prevent other users changing the script, perhaps
accidentally, you should remove write access from it. The sequence of commands for the administrator to s
ownership and permissions would be something like this:

# cp first.sh /usr/local/bin

# chown root /usr/local/bin/first.sh
# chgrp root /usr/local/bin/first.sh
# chmod 755 /usr/local/bin/first.sh

Notice that, rather than altering a specific part of the permission flags, we use the absolute form of the chmc
here, since we know exactly what permissions we require.

If you prefer, you can use the rather longer, but perhaps more obvious form of the chmod command, which
would be:

# chmod u=rwx,go=rx /usr/local/bin/first.sh
Check the manual entry for chmod for more details.
Important Remember that in UNIX you can delete a file if you have write permission on the directory that

contains it. To be safe you should ensure that only root can write to directories containing files
that you want to keep safe.

Shell Syntax

Having seen an example of a simple shell program, it's now time to look in more depth at the programming
power of the shell. The shell is quite an easy programming language to learn, not least because it's easy to

32



Variables

small program fragments interactively before combining them into bigger scripts. We can use the modern
UNIX shell to write quite large, structured programs.

In the next few sections, we'll cover:

« Variables: strings, humbers, environment and parameter.
 Conditions: shell Booleans.

» Program Control: if, elif, for, while, until, case.

* Lists.

* Functions.

» Commands built into the shell.

« Getting the result of a command.

» Here documents.

Variables

We don't usually declare variables in the shell before we use them. Instead, we create them when we first u
them, for example, when we assign an initial value to them. By default, all variables are considered and stor
as strings, even when they are assigned numeric values. The shell and some utilities will convert 'numeric'
strings to their values in order to operate on them as required. UNIX is a case—sensitive system and the she
considers the variable foo to be different from Foo, and both are different from FOO.

Within the shell, we can get at the contents of a variable by preceding its name with a $ character and
outputting its contents with the echo command. Whenever we use them, we need to give variables a preced
$, except when an assignment is being made to the variable. On the command line, we can set various valu
of the variable salutation:

$ salutation=Hello

$ echo $salutation
Hello

$ salutation="Yes Dear"
$ echo $salutation

Yes Dear

$ salutation=7+5

$ echo $salutation

7+5

Important Note how a string must be delimited by inverted commas if it contains spaces. Also note that
there must be no spaces on either side of the equals sign.

We can assign user input to a variable by using the read command. This takes one parameter, the name of

variable to be read into, then waits for the user to enter some text. The read normally continues when the us

presses the Return key.

Quoting
Before we move on, we need to be clear about one feature of the shell: the use of quotes.

Normally, parameters are separated by whitespace characters, i.e. a space, a tab, or a newline character. If
want a parameter to contain one or more whitespace characters, you must quote the parameter.

33



Variables

The behavior of variables such as $foo inside quotes depends on the type of quotes you use. If you enclose
variable expression in double quotes, it's replaced with its value when the line is executed. If you enclose it |
single quotes, no substitution takes place. You can also remove the special meaning of the $ symbol by
prefacing it with a \.

Normally, strings are enclosed in double quotes, which protects variables from being separated by whitespa
but allows $ expansion to take place.

Try It Out — Variables

Let's see the effect of quotes on the output of a variable:

#!/bin/sh
myvar="Hi there"

echo $myvar
echo "$myvar"
echo '$myvar'
echo \$myvar

echo Enter some text
read myvar

echo '$myvar' now equals $myvar
exit 0

This gives the output:

Hi there

Hi there

$myvar

$myvar

Enter some text

Hello World

$myvar now equals Hello World

How It Works

The variable myvar is created and assigned the string Hi there. The contents of the variable are displayed w
the echo command, showing how prefacing the variable with a $ character expands the contents of the
variable. We see how using double quotes doesn't affect the substitution of the variable, while single quotes
and the backslash do. We also use the read command to get a string from the user.

Environment Variables

When a shell script starts, some variables are initialized from values in the environment. These are normally
capitalized to distinguish them from user—defined (shell) variables in scripts, which are conventionally lower
case. The variables created will depend on your personal configuration. Many are listed in the manual page:
but the principal ones are:

Environment Variable Description
$HOME The home directory of the current user.
$PATH A colon—separated list of directories to search for commands.

34



Variables

$PS1 A command prompt, usually $.

$PS2 A secondary prompt, used when prompting for additional input, usually >.

$IFS An input field separator. A list of characters that are used to separate words
when the shell is reading input, usually space, tab and new line characters.

$0 The name of the shell script

$# The number of parameters passed.

$$ The process ID of the shell script, often used inside a script for generating
unique temporary filenames, for example /tmp/tmpfile_$$

Important If you want to check out how the program works in a different environment by running env
<command>, try looking at the env manual pages.

Also, we'll see later how to set environment variables in subshells using the export command.
Parameter Variables

If your script is invoked with parameters, some additional variables are created. Even if no parameters are
passed, the environment variable $# listed above does still exist, but has a value of 0.

The parameter variables are:

Parameter Variable Description

$1, $2, The parameters given to the script.

$* A list of all the parameters, in a single variable, separated by the first character
in the environment variable IFS.

$@ A subtle variation on $*, that doesn't use the IFS environment variable.

As for the difference between the $* and $@ parameters, here's an explanation culled from the X/Open
specification.

When the parameter expansion occurs within a double—quoted string, $* expands to a single field with the
value of each parameter separated by the first character of the IFS (internal field separator) variable, or by &
space character if IFS is unset. If IFS is set to a null string, which isn't equivalent to unsetting it, the paramet
values will be concatenated. For example:

$IFS="

$ set foo bar bam
$ echo "$@"

foo bar bam

$ echo "$*"
foobarbam

$ unset IFS

$ echo "$*"

foo bar bam

As you can see, within double quotes, $@ expands the positional parameters as separate fields, regardless
the IFS value. In general, if you want access to the parameters, $@ is the sensible choice.

As well as printing the contents of variables using the echo command, we can also read them in using the re
command.

35



Variables

Try It Out — Parameter and Environment Variables

The following script demonstrates some simple variable manipulation. Once you've typed in the script and
saved it as try_variables, don't forget to make it executable with chmod +x try_variables.

#1/bin/sh

salutation="Hello"

echo $salutation

echo "The program $0 is now running"

echo "The second parameter was $2"

echo "The first parameter was $1"

echo "The parameter list was $*"

echo "The user's home directory is SHOME"

echo "Please enter a new greeting"
read salutation

echo $salutation
echo "The script is now complete"
exit 0

If we run this script, we get the output:

$ ./try_variables foo bar baz

Hello

The program ./try_variables is now running
The second parameter was bar

The first parameter was foo

The parameter list was foo bar baz

The user's home directory is /Thome/rick
Please enter a new greeting

Sire

Sire

The script is now complete

$

How It Works

This script creates the variable salutation, displays its contents, then shows how various parameter variable
and the environment variable $SHOME already exist and have appropriate values.

We'll return to parameter substitution in more detail later.

Conditions

Fundamental to all programming languages is the ability to test conditions and perform different actions bas
on those decisions. Before we talk about that, though, we'll look at the conditional constructs that we can us
in shell scripts and then look at the control structures that use them.

A shell script can test the exit code of any command that can be invoked from the command line, including

those scripts that you have written yourself. That's why it's important to always include an exit command at
the end of any scripts that you write.

36



Conditions

The test, or [ ] Command

In practice, most scripts make extensive use of the [] or test command, the shell's Boolean check. On most
systems, these commands are synonymous. Having a command [] might seem a little odd, but actually, witt
the code it does make the syntax of commands look simple, very neat and more like other programming
languages.

Important These commands call an external program in some UNIX shells, but they tend to be built in to
more modern ones. We'll come back to this when we look at commands in a later section.

Since the test command is infrequently used outside shell scripts, many UNIX users who have
never written shell scripts try to write simple programs and call them test. If such a program
doesn't work, it's probably conflicting with the shell's test command. To find out whether your
system has an external command of a given name, try something like which test, which will
usually yield /bin/test or /usr/bin/test.
We'll introduce the test command using one of the simplest conditions: checking to see if a file exists. The
command for this is test —f <filename>, so, within a script, we can write:

if test —f fred.c
then

fi
We can also write it like this:

if [ —ffred.c]
then

fi

The test command's exit code (whether the condition is satisfied) determines whether the conditional code i
run.

Important Note that you must put spaces between the [] braces and the condition being checked.
You can remember this by remembering that [ is just the same as writing test, and
would always leave a space after the test word.
If you prefer putting then on the same line as the if, you must add a semicolon to separate the test from the
then:

if [ —f fred.c ]; then
fi
The condition types that you can use with the test command fall into three types.

String Comparison

String Comparison Result
stringl = string2 True if the strings are equal.
stringl != string2 True if the strings are not equal.

37



Conditions

—n string

True if the string is not null.

—Z string

True if the string is null (an empty string).

Arithmetic Comparison

Arithmetic Comparison

Result

expressionl —eq expression?2

True if the expressions are equal.

expressionl —ne expression?2

True if the expressions are not equal

expressionl —gt expression2

True if expressionl is greater than expression?2.

expressionl —ge expression2

p

True if expressionl is greater than or equal to expression2.

expressionl —It expression2

True if expressionl is less than expression2.

expressionl —le expression2

True if expressionl is less than or equal to expression2.

I expression

True if the expression is false, and vice versa.

File Conditionals

File Conditional

Result

—d file True if the file is a directory.

—e file True if the file exists.

—f file True if the file is a regular file.

—g file True if set—group—id is set on file.
—r file True if the file is readable.

—s file True if the file has non-zero size.
-u file True if set—user—id is set on file.
-w file True if the file is writeable.

—x file True if the file is executable.

Important Note that, historically, the —e option has not been portable, so —f is more usually used

You may be wondering what the set—group—id and set-user-id (also known as set-gid
and set-uid) bits are. The set-uid bit gives a program the permissions of its owner,

rather than its user, while the set—gid bit gives a program the permissions of its group.

The bits are set with chmod, using the s and g options.

Remember set—gid and set-uid flags have no effect when set on shell scripts.

Before the test can be true, all the file conditional tests require that the file also exists. This list is just the
commonly used options to the test command, so for a complete list refer to the manual entry. If you're using
bash, where test is built in, type help test to get more details. We'll use some of these options later in the

chapter.

Now we know about conditions, we can look at the control structures that use them.

Control Structures

The shell has a set of control structures, and, once again, they're very similar to other programming languag
For some structures (like the case statement), the shell offers more power. Others are just subtle syntax

changes.

38



Control Structures

Important In the following sections, the statements are the series of commands to perform when/while/unti
the condition is fulfilled.
if

The if statement is very simple. It tests the result of a command and then conditionally executes a group of
statements:

if condition
then
statements
else
statements
fi

Try It Out — Using the if Command
A common use is to ask a question, then make a decision based on the answer:

#1/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

if [ $timeofday = "yes" ]; then
echo "Good morning"

else
echo "Good afternoon”

fi

exit0

This would give the following output:

Is it morning? Please answer yes or no
yes

Good morning

$

This script uses the [] command to test the contents of the variable timeofday. The result of this is evaluated
by the if command, which then allows different lines of code to be executed.

Important Notice that we use extra whitespace to indent the statements inside the if. This is just a
convenience for the human reader, the shell ignores the additional whitespace.

elif

Unfortunately, there are several problems with this very simple script. It will take any answer except yes as

meaning no. We can prevent this using the elif construct, which allows us to add a second condition to be

checked when the else portion of the if is executed.

Try It Out — Doing Further Checks with an elif

We can modify our previous script so that we report an error message if the user types in anything other tha
yes or no. We do this by replacing the else with elif, and adding another condition.

39



Control Structures

#1/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

if [ $timeofday = "yes" ]
then
echo "Good morning"
elif [ $timeofday = "no" ]; then
echo "Good afternoon”
else
echo "Sorry, $timeofday not recognized. Enter yes or no"
exit 1
fi
exit 0

How It Works

This is quite similar to the last example, but now uses the elif command, which tests the variable again if the
first if condition was not true. If neither of the tests are successful, an error message is printed and the scrip
exits with the value 1, which the caller can use in a calling program to check if the script was successful.

A Problem with Variables

This fixes the most obvious defect, but a more subtle problem is lurking. Let's try this new script, but just
press Return rather than answering the question. We get the error message:

[: =: unary operator expected

What went wrong? The problem is in the first if clause. When the variable timeofday was tested, it consisted
of a blank string, so the if clause looks like,

if [ ="yes"]

which isn't a valid condition. To avoid this, we must use quotes around the variable,
if [ "$timeofday” = "yes" ]

so an empty variable gives us the valid test:

if [ ="yes"]

Our new script is now,

#1/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

if [ "$timeofday" = "yes" |

then
echo "Good morning"

elif [ "$timeofday" = "no" ]; then
echo "Good afternoon”

else

40



Control Structures

echo "Sorry, $timeofday not recognized. Enter yes or no"
exit 1
fi

exit 0

which is safe against just pressing Return in answer to the question.

Important If you want the echo command to delete the trailing newline the best choice is to use the
printf command (see later) rather than the echo command. Some shells allow echo -e, but
that's not supported on all systems..

for

We use the for construct for looping through a range of values, which can be any set of strings. They could |
simply listed in the program or, more commonly, the result of a shell expansion of filenames.

The syntax is simply:

for variable in values
do

statements
done

Try It Out - for Loop with Fixed Strings

The values are normally strings, so we can write:

#!/bin/sh

for foo in bar fud 43
do
echo $foo
done
exit 0

We get the output:

bar
fud
43

Important What would happen if you changed the first line from for foo in bar fud 43 to for foo in "bar fud
43"? Remember that adding the quotes tells the shell to consider everything between them as a

single string. This is one way of getting spaces to be stored in a variable .
How It Works

This example creates the variable foo and assigns it a different value each time around the for loop. Since tt
shell considers all variables to contain strings by default, it's just as valid to use the string 43 as the string fu

41



Control Structures

Try It Out — for Loop with Wildcard Expansion

As we said earlier, it's more common to use the for loop with a shell expansion for filenames. By this, we
mean using a wildcard for the string value and letting the shell fill out all the values at run time.

We've already seen this in our original example, first.sh. The script used shell expansion, the * expanding to
the names of all the files in the current directory. Each of these in turn is then used as the variable $i inside
for loop. Let's quickly look at another wildcard expansion:

Imagine you want to print all the scripts files starting with 'f' in the current directory, and you know that all
your scripts end in .sh. You could do it like this:

#1/bin/sh

for file in $(Is f*.sh); do
Ipr $file

done

exit 0

How It Works

This illustrates the use of the $(command) syntax, which we'll review in more detail later (in the section on
command execution). Basically, the parameter list for the for command is provided by the output of the
command enclosed in the $() sequence.

The shell expands f*.sh to give the names of all the files matching this pattern.

Important Remember that all expansion of variables in shell scripts is done when the script is
executed, never when it's written. So, syntax errors in variable declarations are only
found at execution time, as we saw earlier when we were quoting 'empty' variables.

while

Since all shell values are considered as strings by default, the for loop is good for looping through a series ©
strings, but a little awkward to use for executing commands a fixed number of times.

Look how tedious a script becomes if we want to loop through twenty values using a for loop:

#1/bin/sh

forfooin1234567891011121314151617 1819 20
do
echo "here we go again”
done
exit 0

Even with wildcard expansion, you might be in the situation where you just don't know how many times
you'll need to loop. In that case, we can use a while loop, which has the syntax:

while condition do
statements
done

For example, the ubiquitous password program:

42



Control Structures

#1/bin/sh

echo "Enter password"
read trythis

while [ "$trythis" != "secret" |; do
echo "Sorry, try again”
read trythis

done

exit 0

An example of the output from this script is:

Enter password
password
Sorry, try again
secret

$

Clearly this isn't a very secure way of asking for a password, but it does serve to illustrate the while stateme
The statements between do and done will be continuously executed until the condition is no longer true. In
this case, we're checking that the value of trythis isn't equal to secret. The loop will continue until $trythis
equals secret. We then continue executing the script at the statement immediately following the done.

Try It Out — Here We Go Again, Again

By combining the while construct with arithmetic substitution, we can execute a command a fixed number of
times. This is less cumbersome than the for loop we saw earlier.

#!/bin/sh
foo=1

while [ "$foo" —le 20 ]

do
echo "Here we go again”
foo=%(($foo+1))

done

exit0

Important Note that the $(()) construct was a ksh invention, since included in the X/Open specification.
Older shells will use expr instead, which we'll come across later. However, this is slower and

more resource-intensive, where available you should use the $(( )) form of the command.
How It Works

This script uses the [] command to test the value of foo against the value 20 and executes the loop body if it
smaller or equal. Inside the while loop the syntax (($foo+1)) is used to perform arithmetic evaluation of the
expression inside the braces, so foo is incremented each time around the loop.

Since foo can never be the empty string, we don't need to protect it with double quotes when testing its valu
We only do this because it's a good habit to get into.

43



Control Structures

until

The until statement has the syntax:

until condition
do

statements
done

This is very similar to the while loop, but with the condition test reversed. In other words, the loop continues
until the condition becomes true, not while the condition is true.

The until statement fits naturally when we want to loop forever until something happens. As an example, we
can set up an alarm which works when another user, whose login name we pass on the command line, logs

#!/bin/sh
until who | grep "$1" > /dev/null
do
sleep 60
done
# now ring the bell and announce the expected user.

echo —e \\a
echo "*** $1 has just logged in ****"

exit 0
case

The case construct is a little more complex than those we have encountered so far. Its syntax is:

case variable in
pattern [ | pattern] ...) statements;;
pattern [ | pattern] ...) statements;;

esac

While this may look a little intimidating, the case construct allows us to match the contents of a variable
against patterns in quite a sophisticated way and then allows execution of different statements depending ol
which pattern was matched. Notice that each pattern line is terminated with double semicolons (;;). You can

put multiple statements between each pattern and the next, so a double semicolon is needed to mark where
one statement ends and the next pattern begins.

The ability to match multiple patterns and execute multiple statements makes the case construct a good wa
dealing with user input. The best way to see how case works is with an example. We'll develop it over three
Try It Out examples, improving the pattern matching each time.

Try It Out — case I: User Input

We can write a new version of our input testing script and, using the case construct, make it a little more
selective and forgiving of unexpected input.

#1/bin/sh

44



Control Structures

echo "Is it morning? Please answer yes or no"
read timeofday

case "$timeofday" in

yes) echo "Good Morning";;

no ) echo "Good Afternoon";;

y ) echo "Good Morning";;

n ) echo "Good Afternoon";;

* ) echo "Sorry, answer not recognized";;
esac

exit0

How It Works

When the case statement is executing, it takes the contents of timeofday and compares it to each string in t
As soon as a string matches the input, the case command executes the code following the ) and finishes.

The case command performs normal expansion on the strings that it's using for comparison. You can,
therefore, specify part of a string followed by the wildcard, *. Using a single * will match all possible strings.
So, we always put one after the other matching strings to make sure the case statement ends with some de
action if no other strings are matched. This is possible because the case statement compares against each
string in turn. It doesn't look for a 'best' match, just the first match. The default condition often turns out to be
the 'impossible’ condition, so using * can help in debugging scripts.

Try It Out — case II: Putting Patterns Together

The case construct above is clearly more elegant than the multiple if statement version, but by putting the
patterns together, we can make a much cleaner version:

#1/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

case "$timeofday" in
yes|y|Yes|YES) echo "Good Morning";;

n* | N*) echo "Good Afternoon";;

*) echo "Sorry, answer not recognized"”;;
esac
exit 0
How It Works

In this script, we have used multiple strings in each entry of the case so case tests several different strings f
each possible statement. This makes the script both shorter and, with practice, easier to read. We also shov
how *s can be used, although this may match unintended patterns. For example, if the user enters never, th
will be matched by n* and Good Afternoon printed, which isn't the intended behavior. Note also that *
wildcard expression doesn't work within quotes.

45



Control Structures

Try It Out — case lll: Executing Multiple Statements

Finally to make the script reusable, we need to have a different exit value when the default pattern is used. \
also add a set construct to show this in action:

#1/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

case "$timeofday"” in
yes|y|Yes|YES)
echo "Good Morning"
echo "Up bright and early this morning”

[NNT¥)
echo "Good Afternoon"
" ,,
echo "Sorry, answer not recognized"
echo "Please answer yes or no"
exit 1

esac
exit0

How It Works

To show a different way of pattern matching, we change the way in which the 'no' case is matched. We also
show how multiple statements can be executed for each pattern in the case statement. Notice that we're cat
to put the most explicit matches first and the most general match last. This is important because the case w
execute the first match it finds, not the best match. If we put the *) first, it would always be matched,
regardless of what was input.

Important Note that the ;; before esac is optional. Unlike C programming, where leaving out a break is poo
programming practice, leaving out the final ;; is no problem if the last case is the default, since
no other cases will be considered.

To make the case matching more powerful, we could use something like this:

[yY] | [Yyl[Ee][Ss])

This restricts the permitted letters, while allowing a variety of answers and gives more control than the *
wildcard.

Lists

Sometimes, we want to connect commands together in a series. For instance, we may want several differen
conditions to be met before we execute a statement like:

if [ —f this_file ]; then
if [ -f that_file ]; then
if [ -f the_other_file ]; then
echo "All files present, and correct”
fi

46



Control Structures

fi
fi

or you might want at least one of a series of conditions to be true:

if [ —f this_file ]; then
foo="True"

elif [ —f that_file ]; then
foo="True"

elif [ —f the_other_file ]; then
foo="True"

else
foo="False"

fi

if [ "$foo" = "True" ]; then
echo "One of the files exists"

fi

Although these can be implemented using multiple if statements, as you can see, the results are awkward.
shell has a special pair of constructs for dealing with lists of commands: the AND list and the OR list. These
are often used together, but we'll review their syntax separately.

The AND List

The AND list construct allows us to execute a series of commands, executing the next command only if all ti
previous commands have succeeded. The syntax is:

statementl && statement2 && statement3 && ...

Starting at the left, each statement is executed and, if it returns true, the next statement to the right is execu
This continues until a statement returns false, when no more statements in the list are executed. The && tes
the condition of the preceding command.

Each statement is executed independently, allowing us to mix many different commands in a single list, as t
script below shows. The AND list as a whole succeeds if all commands are executed successfully, and it fai
otherwise.

Try It Out — AND Lists

In the following script, we touch file_one (to check whether it exists and create it if it doesn't) and then
remove file_two. Then, the AND list tests for the existence of each of the files and echoes some text in
between.

#1/bin/sh

touch file_one
rm —f file_two

if [ —f file_one ] && echo "hello" && [ —f file_two ] && echo " there"
then
echo "in if"
else
echo "in else"
fi

exit 0

47



Control Structures

Try the script and you'll get the following result:

hello
in else

How It Works

The touch and rm commands ensure that the files in the current directory are in a known state. The && list
then executes the [ —f file_one ] statement, which succeeds because we just made sure that the file existed.
Since the previous statement succeeded, the echo command is executed. This also succeeds (echo always
returns true). The third test, [ —f file_two ] is executed. This fails because the file doesn't exist. Since the last
command failed, the final echo statement isn't executed. The result of the && list is false, since one of the
commands in the list failed, so the if statement executes its else condition.

The OR List

The OR list construct allows us to execute a series of commands until one succeeds, then not execute any
more. The syntax is:

statementl || statement?2 || statement3 || ...

Starting at the left, each statement is executed. If it returns false, the next statement to the right is executed.
This continues until a statement returns true, when no more statements are executed.

The || list is very similar to the && list, except that the rules for executing the next statement are now that the
previous statement must fail.

Try It Out — OR Lists

Copy the previous example and change the shaded lines in the following listing:

#!/bin/sh
rm —f file_one
if [ —f file_one ] || echo "hello" || echo " there"
then
echo "in if"
else
echo "in else"
fi
exit 0

This will give you the output:

hello
in if

How It Works

The first two lines simply set up the files for the rest of the script. The first command, [ —f file_one ] fails,
since the file doesn't exist. The echo statement is then executed. Surprise, surprise, this returns true and no
more commands in the || list are executed. The if succeeds, because one of the commands in the || list (the

48



Control Structures

echo) was true.
The result of both of these constructs is the result of the last statement to be executed.

These list type constructs execute in a similar way to those in C when multiple conditions are being tested.
Only the minimum number of statements are executed to determine the result. Statements that can't affect t
result are not executed. This is commonly referred to as short circuit evaluation.

Combining these two constructs is a logician's heaven. Try out:

[ -f file_one ] && command for true || command for false

This will execute the first command if the test succeeds and the second otherwise. It's always best to
experiment with these more unusual lists.

Statement Blocks

If you want to use multiple statements in a place where only one is allowed, such as in an AND or OR list,
you can do so by enclosing them in braces {} to make a statement block. For example, in the application
presented later in this chapter, you'll see the following code:

get_confirm && {
grep —v "$cdcatnum" $tracks_file > $temp_file
cat $temp_file > $tracks_file
echo
add_record_tracks

}
Functions

You can define functions in the shell and, if you write shell scripts of any size, you'll want to use them to
structure your code.

Important As an alternative, you could break a large script into lots of smaller scripts, each of which
performs a small task. This has several drawbacks: executing a second script from within a scrig
is much slower than executing a function. It's more difficult to pass back results and there can b
a very large number of small scripts. You should consider the smallest part of your script that
sensibly stands alone and use that as your measure of when to break a large script into a
collection of smaller ones..

If you're appalled at the idea of using the shell for large programs, remember that the FSF
autoconf program and several UNIX package installation programs are shell scripts. You can
always guarantee that a basic shell will be on a UNIX system. In fact, most UNIX systems can't
even boot without /bin/sh, never mind allowing users to log in, so you can be certain that your
script will have a shell available to interpret it on a huge range of UNIX and Linux systems.
To define a shell function, we simply write its name, followed by empty () parentheses and enclose the
statements in {} braces:

function_name () {
statements

}

49



Try It Out — A Simple Function
Try It Out — A Simple Function

Let's start with a really simple function:
#!/bin/sh

foo() {

echo "Function foo is executing"

}

echo "script starting"
foo
echo "script ended"

exit 0

Running the script will show:

script starting
Function foo is executing
script ending

How It Works

This script starts executing at the top, so nothing different there. But when it finds the foo() { construct, it
knows that a function called foo is being defined. It stores the fact that foo refers to a function and continues
executing after the matching }. When the single line foo is executed, the shell now knows to execute the
previously defined function. When this function completes, execution resumes at the line after the call to foo

You must always define a function before you can invoke it, a little like the Pascal style of function definition
before invocation, except there are no forward declarations in the shell. This isn't a problem, since all scripts
start executing at the top, so simply putting all the functions before the first call of any function will always
cause all functions to be defined before they can be invoked.

When a function is invoked, the positional parameters to the script, $*, $@, $#, $1, $2 and so on are replace
by the parameters to the function. That's how you read the parameters passed to the function. When the
function finishes, they are restored to their previous values.

Important Some older shells may not restore the value of positional parameters after functions
execute. It's wise not to rely on this behavior if you want your scripts to be portable.
We can make functions return numeric values using the return command. The usual way to make functions
return strings is for the function to store the string in a variable, which can then be used after the function
finishes. Alternatively you can echo a string and catch the result, like this.

foo () { echo JAY;}

result="$(foo)"

Note that you can declare local variables within shell functions by using the local keyword. The variable is
then only in scope within the function. Otherwise, the function can access the other shell variables which are

50



Try It Out — Returning a Value

essentially global in scope. If a local variable has the same name as a global variable, it overlays that variab
but only within the function. For example, we can make the following changes to the above script to see this
in action:

#!/bin/sh
sample_text="global variable"

foo() {

local sample_text="local variable"

echo "Function foo is executing"
echo $sample_text

}

echo "script starting"
echo $sample_text

foo

echo "script ended"
echo $sample_text

exit0

In the absence of a return command specifying a return value, a function returns the exit status of the last
command executed.

In the next script, my_name, we show how parameters to a function are passed and how functions can retul
true or false result.

Try It Out — Returning a Value

1. After the shell header, we define the function yes_or_no:

#1/bin/sh

yes_or_no() {
echo "Is your name $* ?"
while true
do
echo —n "Enter yes or no: "
read x
case "$x" in
y | yes ) return 0;;
n|no) returnl;;
*) echo "Answer yes or no"
esac
done
}
2. Then, the main part of the program begins:

echo "Original parameters are $*"
if yes_or_no "$1"

then
echo "Hi $1, nice name"

51



How It Works

else

echo "Never mind"
fi
exit 0

Typical output from this script might be:

$ ./my_name.sh Rick Neil
Original parameters are Rick Neil
Is your name Rick ?

Enter yes or no: yes

Hi Rick, nice name

$

How It Works

As the script executes, the function yes_or_no is defined, but not yet executed. In the if statement, the script
executes the function yes_or_no, passing the rest of the line as parameters to the function, after substituting
the $1 with the first parameter to the original script, Rick. The function uses these parameters, which are no
stored in the positional parameters $1, $2 and so on, and returns a value to the caller. Depending on the ret
value, the if construct executes the appropriate statement.

As we've seen, the shell has a rich set of control structures and conditional statements. We now need to lea
some of the commands that are built into the shell and then we'll be ready to tackle a real programming
problem with no compiler in sight!

Commands

You can execute two types of command from inside a shell script. There are the 'normal' commands that yo
could also execute from the command prompt and there are the 'built-in' commands that we mentioned
earlier. These 'built=in' commands are implemented internally to the shell and can't be invoked as external
programs. Most internal commands are, however, also provided as stand—-alone programs - it's part of the
POSIX specification. It generally doesn't matter if the command is internal or external, except that internal
commands execute more efficiently.

Important While we're talking about re-implementing commands, it may interest you to see how UNIX can
use just a single program for several commands or different files. Look at the mv, cp, and In
commands, with Is —=I. On many systems, these are actually a single file, having multiple names
created using the In (link) command. When the command is invoked, it looks at its first
argument, which under UNIX is the name of the command, to discover what action it should
perform.

Here we'll cover only the main commands, both internal and external, that we use when we're programming

scripts. As a UNIX user, you probably know many other commands that are valid at the command prompt.

Always remember that you can use any of these in a script, in addition to the built—=in commands we present

here.

break
We use this for escaping from an enclosing for, while or until loop before the controlling condition has been

met. You can give break and additional numeric parameter, which is the number of loops to break out of. Th
can make scripts very hard to read and we don't suggest you use it. By default break escapes a single level

52



Commands

#1/bin/sh

rm —rf fred*
echo > fredl
echo > fred2
mkdir fred3
echo > fred4

for file in fred*
do
if [ —d "$file" ]; then
break;
fi
done
echo first directory starting fred was $file

rm —rf fred*
exit0

The : Command

The colon command is a null command. It's occasionally useful to simplify the logic of conditions, being an
alias for true. Since it's built-in it runs faster than true, though it's also much less readable.

You may see it used as a condition for while loops; while : implements an infinite loop, in place of the more
common while true.

The : construct is also useful in the conditional setting of variables. For example:
: ${var:=value}

Without the :, the shell would try to evaluate $var as a command.

Important In some, mostly older shell scripts, you may see the colon used at the start of a line to introduce
comment, but modern scripts should always use # to start a comment line, since this executes
more efficiently.

#!/bin/sh

rm —f fred
if [ -f fred ]; then

else
echo file fred did not exist
fi

exit 0
continue

Rather like the C statement of the same name, this command makes the enclosing for, while or until loop
continue at the next iteration, with the loop variable taking the next value in the list.

#1/bin/sh

53



Commands

rm —rf fred*
echo > fredl
echo > fred2
mkdir fred3
echo > fred4

for file in fred*
do

if [ —d "$file" ]; then

echo "skipping directory $file"
continue

fi

echo file is $file
done

rm —rf fred*
exit 0

continue can take an optional parameter, the enclosing loop humber at which to resume, so you can partiall
jump out of nested loops. This parameter is rarely used as it often makes scripts much harder to understanc
For example:

forxinl123

do
echo before $x
continue 1
echo after $x

done

The output will be:

before 1
before 2
before 3

The . Command

The dot command executes the command in the current shell:
. ./shell_script

Normally, when a script executes an external command or script, a new environment (a subshell) is created
the command is executed in the new environment and the environment is then discarded, apart from the exi
code which is returned to the parent shell. But the external source and the dot command (two more synonyr
run the commands listed in a script in the same shell that called the script.

This means that normally, any changes to environment variables that the command makes are lost. The dot
command, on the other hand, allows the executed command to change the current environment. This is ofte
useful when you use a script as a ‘wrapper' to set up your environment for the later execution of some other
command. For example, if you're working on several different projects at the same time, you may find you
need to invoke commands with different parameters, perhaps to invoke an older version of the compiler for
maintaining an old program.

In shell scripts, the dot command works like the #include directive in C or C++. Though it doesn't literally
include the script, it does execute the command in the current context, so you can use it to incorporate varia

54



Commands

and function definitions into a script.

In the following example, we use the dot command on the command line, but we can just as well use it withi
a script.

Try It Out — The . Command

echo

1. Suppose we have two files containing the environment settings for two different development

environments. To set the environment for the old, classic commands, classic_set, we could use:

#1/bin/sh

version=classic
PATH=/usr/local/old_bin:/usr/bin:/bin:.
PS1="classic>"

.while for the new commands we use latest_set:

#1/bin/sh

version=latest
PATH=/usr/local/new_bin:/usr/bin:/bin:.
PS1=" latest version> "

We can set the environment by using these scripts in conjunction with the dot command, as in the
sample session below:

$ . /classic_set

classic> echo $version
classic

classic> . latest_set

latest version> echo $version
latest

latest version>

Despite the X/Open exhortation to use the printf command in modern shells, we've been following ‘common
practice' by using the echo command to output a string followed by a newline character.

A common problem is how to suppress the newline character. Unfortunately, different versions of UNIX havi
implemented different solutions. The normal method is to use,

echo —n "string to output"

but you'll often come across:

echo —e "string to output\c"

Important The second option, echo —e, makes sure that the interpretation of backslash escaped

characters, such as \t for tab and \n for carriage returns, is enabled. It's usually set by
default. See the man pages for details. If you need a portable way to remove the trailing
newline, you can use the external tr command to get rid of it, but it will execute rather
more slowly. In general it's better to stick to printf if you need to loose the newline and

55



Commands

printf is available on your system.
eval

The eval command allows you to evaluate arguments. It's built into the shell and doesn't normally exist as a
separate command. It's probably best demonstrated with a short example borrowed from the X/Open
specification itself:

foo=10

x=foo

y="$'$x

echo $y

This gives the output $foo. However,
foo=10

x=foo

eval y="$'$x
echo $y

gives the output 10. Thus, eval is a bit like an extra $: it gives you the value of the value of a variable.

The eval command is very useful, allowing code to be generated and run on the fly. It does complicate scrip
debugging, but can let you do things that are otherwise difficult—-to—impossible.

exec

The exec command has two different uses. It's normally used for replacing the current shell with a different
program.

For example,
exec wall "Thanks for all the fish"

in a script will replace the current shell with the wall command. No lines in the script after the exec will be
processed, because the shell that was executing the script no longer exists.

The second use of exec is to modify the current file descriptors.

exec 3< afile

This causes file descriptor three to be opened for reading from file afile. It's rarely used.

exitn

The exit command causes the script to exit with exit code n. If you use it at the command prompt of any
interactive shell, it will log you out. If you allow your script to exit without specifying an exit status, the status
of the last command executed in the script will be used as the return value. It's always good practice to supy

an exit code.

In shell script programming, exit code 0 is success, codes 1 through 125 inclusive are error codes that can t
used by scripts. The remaining values have reserved meanings:

56



Commands

Exit Code Description

126 The file was not executable
127 A command was not found.
128 and above A signal occurred.

Using zero as success may seem a little unusual to many C or C++ programmers. The big advantage in scr
is that it allows us to use 125 user—defined error codes, without the need for a global error code variable.

Here's a simple example that returns success if a file called .profile exists in the current directory:

#!/bin/sh

if [ —f .profile ]; then
exit 0

fi

exit1

If you're a glutton for punishment, or at least for terse scripts, you can rewrite this using the combined AND
and OR list we saw earlier:

[ -f .profile ] && exit O || exit 1
export

The export command makes the variable named as its parameter available in subshells. By default, variable
created in a shell are not available in further (sub)shells invoked from that shell. The export command create
an environment variable from its parameter which can be seen by other scripts and programs invoked from
current program. More technically, the exported variables form the environment variables in any child

processes derived from the shell. This is best illustrated with an example of two scripts, exportl and export2

Try It Out — Exporting Variables
1. We list export2 first:

#!/bin/sh
echo "$foo"

echo "$bar"
2. Now for exportl. At the end of this script, we invoke export2:

#!/bin/sh

foo="The first meta—syntactic variable"
export bar="The second meta—syntactic variable"

export2
If we run these, we get:

$ exportl

The second meta—syntactic variable
$

57



Commands

The first blank line occurs because the variable foo was not available in export2, so $foo evaluated ti
nothing. echoing a null variable gives a newline.

Once a variable has been exported from a shell, it's exported to any scripts invoked from that shell and also
any shell they invoke in turn and so on. If the script export2 called another script, it would also have the valu
of bar available to it.

Important The commands set —a or set —allexport will export all variables thereafter.
expr

The expr command evaluates its arguments as an expression. It's most commonly used for simple arithmeti
in the form:

x="expr $x + 1°
Important The " characters make x take the result of executing the command expr $x + 1. We'll mention

more about command substitution later in the chapter.
In fact, expr is a powerful command that can perform many expression evaluations. The principal ones are:

Expression Evaluation Description

exprl | expr2 exprl if exprl is non-zero, otherwise expr2.
exprl & expr2 Zero if either expression is zero, otherwise exprl.
exprl = expr2 Equal.

exprl > expr2 Greater than.

exprl >= expr2 Greater than or equal to.

exprl < expr2 Less than.

exprl <= expr2 Less than or equal to.

exprl != expr2 Not equal.

exprl + expr2 Addition.

exprl — expr2 Subtraction.

exprl * expr2 Multiplication.

exprl / expr2 Integer division.

exprl % expr2 Integer modulo.

In newer scripts, expr is normally replaced with the more efficient $(()) syntax, which we'll meet later.
printf

The printf command is only available in more recent shells. X/Open suggests that we should use it in
preference to echo for generating formatted output.

The syntax is:

printf "format string" parameterl parameter2

The format string is very similar to that used in C or C++, with some restrictions. Principally, floating point
isn't supported, because all arithmetic in the shell is performed as integers. The format string consists of any

58



Commands

combination of literal characters, escape sequences and conversion specifiers. All characters in the format
string other than % and \ appear literally in the output.

The following escape sequences are supported:

Escape Sequence Description

\\ Backslash character.

\a Alert (ring the bell or beep).

\b Backspace character.

\f Form feed character.

\n Newline character.

\r Carriage return.

\t Tab character.

\v Vertical tab character.

\000 The single character with octal value o0oo0.

The conversion specifier is quite complex, so we'll list only the common usage here. More details can be
found in the manual. The conversion specifier consists of a % character, followed by a conversion character
The principal conversions are:

Conversion Specifier Description

d Output a decimal number.
c Output a character.

S Output a string.

% Output the % character.

The format string is then used to interpret the remaining parameters and output the result. For example:

$ printf "%s\n" hello

hello

$ printf "%s %d\t%s" "Hi There" 15 people
Hi There 15 people

nn

Notice how we must use " " to protect the Hi There string and make it a single parameter.

return

The return command causes functions to return. We mentioned this when we looked at functions earlier.
return takes a single numeric parameter which is available to the script calling the function. If no parameter |
specified, return defaults to the exit code of the last command.

set

The set command sets the parameter variables for the shell. It can be a useful way of using fields in
commands that output space—separated values.

Suppose we want to use the name of the current month in a shell script. The system provides a date comm:
which contains the month as a string, but we need to separate it from the other fields. We can do this using

59



Commands

combination of the $() construct to execute the date command and return the result (which we'll look at in
more detail very soon) and the set command. The date command output has the month string as its second
parameter:

#1/bin/sh

echo the date is $(date)
set $(date)
echo The month is $2

exit0

This program sets the parameter list to the date command's output and then uses the positional parameter ¢
get at the month.

Notice that we used date command as a simple example to show how to extract positional parameters. Sinc
the date command is sensitive to the language local, in reality we would have extracted the name of the mol
using date +%B. The date command has many other formatting options, see the manual page for more dete

We can also use the set command to control the way the shell executes, by passing it parameters. The mos
commonly used is set —x which makes a script display a trace of its currently executing command.

Important We'll meet set and some more of its options when we look at debugging later on in the
chapter.
shift

The shift command moves all the parameter variables down by one, so $2 becomes $1, $3 becomes $2, an
on. The previous value of $1 is discarded, while $0 remains unchanged. If a numerical parameter is specifie
in the call to shift, the parameters will move that many spaces. The other variables $*, $@ and $# are also
modified in line with the new arrangement of parameter variables.

shift is often useful for scanning through parameters, and if your script requires ten or more parameters, you
need shift to access the tenth and beyond.

Just as an example, we can scan through all the positional parameters like this:

#1/bin/sh

while ["$1" 1=""]; do
echo "$1"
shift

done

exit 0
trap
The trap command is used for specifying the actions to take on receipt of signals, which we'll meet in more
detail later in the book. A common use is to tidy up a script when it is interrupted. Historically, shells always

used numbers for the signals, but new scripts should use names taken from the #include file signal.h, with tt
SIG prefix omitted. To see the signals, you can use type trap —I.

60



Commands

Important For those not familiar with signals, they are events sent asynchronously to a program.
By default, they normally cause the program to terminate.
The trap command is passed the action to take, followed by the signal nhame (or names) to trap on.

trap command signal

Remember that the scripts are normally interpreted from 'top' to 'bottom' so you must specify the trap
command before the part of the script you wish to protect.

To reset a trap condition to the default, simply specify the command as —. To ignore a signal, set the comme
to the empty string ". A trap command with no parameters prints out the current list of traps and actions.

These are the more important signals covered by the X/Open standard that can be caught (with the
conventional signal number in brackets):

Signal Description

HUP (1) Hang up; usually sent when a terminal goes off line, or a user logs out.
INT (2) Interrupt; usually sent by pressing Ctrl-C.

QUIT (3) Quit; usually sent by pressing Ctrl-\.

ABRT (6) Abort; usually sent on some serious execution error.

ALRM (14) Alarm; usually used for handling time—outs.

TERM (15) Terminate; usually sent by the system when it's shutting down.

Try It Out — Trapping Signals
The following script demonstrates some simple signal handling:

#!/bin/sh

trap 'rm —f tmp/my_tmp_file_$$' INT
echo creating file /tmp/my_tmp_file_$$
date > /tmp/my_tmp_file_$$

echo "press interrupt (CTRL-C) to interrupt ...."
while [ -f tmp/my_tmp_file_$$ ]; do
echo File exists
sleep 1
done
echo The file no longer exists

trap — INT
echo creating file /tmp/my_tmp_file_$$
date > /tmp/my_tmp_file_$$

echo "press interrupt (control-C) to interrupt ...."
while [ -f tmp/my_tmp_file_$$ ]; do

echo File exists

sleep 1
done

echo we never get here
exit 0

If we run this script, pressing Ctrl-C (or whatever your interrupt keys are) in each of the loops, we get the
output:

61



Commands

creating file /tmp/my_tmp_file_141
press interrupt (CTRL-C) to interrupt ....
File exists

File exists

File exists

File exists

The file no longer exists

creating file /tmp/my_tmp_file_141
press interrupt (CTRL-C) to interrupt ....
File exists

File exists

File exists

File exists

How It Works

This script uses the trap command to arrange for the command rm —f /tmp/my_tmp_file_$$ to be executed
when an INT (interrupt) signal occurs. The script then enters a while loop which continues while the file
exists. When the user presses Ctrl-C, the statement rm —f /tmp/my_tmp_file_$$ is executed, then the while
loop resumes. Since the file has now been deleted, the first while loop terminates normally.

The script then uses the trap command again, this time to specify that no command be executed when an Il
signal occurs. It then recreates the file and loops inside the second while statement. When the user presses
Ctrl-C this time, there is no statement configured to execute, so the default behavior occurs, which is to
immediately terminate the script. Since the script terminates immediately, the final echo and exit statements
are never executed.

unset

The unset command removes variables or functions from the environment. It can't do this to read—only
variables defined by the shell itself, such as IFS. It's not often used.

The script,

#1/bin/sh

foo="Hello World"
echo $foo

unset foo
echo $foo

writes Hello World once and a newline the second time.

Important Writing foo= has a similar effect in the above program to unset, but setting foo to null isn't the
same as removing foo from the environment.

Command Execution

When we're writing scripts, we often need to capture the result of a command's execution for use in the shel
script, i.e. we want to execute a command and put the output of the command in a variable. We do this usin
the $(command) syntax, which we met in the earlier set command example. There is also an older form,
‘command’, which is still in common usage.

62



Command Execution

Important Note that, with the older form of the command execution, the backquote " is used, not the single
guote' that we used in earlier shell quoting (to protect against variable expansion). Only use this
form for shell scripts that you need to be very portable.

All new scripts should use the $(...) form, which was introduced to avoid some rather complex rules covering

the use of the characters $, * and \ inside the back—quoted command. If a backquote is used within the "..."

construct, it must be escaped with a \ character. These catch programmers out and sometimes even
experienced shell programmers are forced to experiment to get the quoting correct in backquoted command

The result of the $(command) is simply the output from the command. Note that this isn't the return status o
the command, but the string output. For example:

#1/bin/sh

echo The current directory is $SPWD
echo The current users are $(who)

exit 0

Because the current directory is a shell environment variable, the first line doesn't need to use this comman
execution construct. The result of who, however, does need this construct if it is to be available to the script.

The concept of putting the result of a command into a script variable is very powerful, as it makes it easy to
use existing commands in scripts and capture their output. If you ever find yourself trying to convert a set of
parameters that are the output of a command on standard output, and capture them as arguments for a
program, you may well find the command xargs can do it for you. Look in the manual for further details.

A problem sometimes arises when the command we want to invoke outputs some whitespace before the te
we want, or more output than we actually require. In such a case, we can use the set command as we have
already shown.

Arithmetic Expansion

We've already used the expr command, which allows simple arithmetic commands to be processed, but this
guite slow to execute, since a new shell is invoked to process the expr command.

A newer and better alternative is $(()) expansion. By enclosing the expression we wish to evaluate in $(()), v
can perform simple arithmetic much more efficiently:

#!/bin/sh

x=0

while [ "$x" —ne 10 ]; do
echo $x
x=$(($x+1))

done

exit 0
Parameter Expansion

We've seen the simplest form of parameter assignment and expansion, where we write:

foo=fred
echo $foo

63



Command Execution

A problem occurs when we want to append extra characters to the end of a variable. Suppose we want to w
a short script to process files called 1_tmp and 2_tmp. We could try:

#1/bin/sh

foriinl2
do

my_secret_process $i_tmp
done

But on each loop, we'll get:

my_secret_process: too few arguments
What went wrong?

The problem is that the shell tried to substitute the value of the variable $i_tmp, which doesn't exist. The she
doesn't consider this an error, it just substitutes a blank, so no parameters at all were passed to
my_secret_process. To protect the expansion of the $i part of the variable, we need to enclose the i in {} like
this:

#1/bin/sh
foriinl2
do

my_secret_process ${i}_tmp
done

On each loop, the value of i is substituted for ${i}, to give the actual file names. We've substituted the value
of the parameter into a string.

We can perform many parameter substitutions in the shell. Often, these provide an elegant solution to many
parameter processing problems.

The common ones are:

Parameter Expansion Description

${param:—default} If param is null, set it to the value of default.

${#param} Gives the length of param.

${param%word} From the end, removes the smallest part of param that matches
word and returns the rest.

${param%%word} From the end, removes the longest part of param that matches
word and returns the rest.

${param#word} From the beginning, removes the smallest part of param that
matches word and returns the rest.

${param##word} From the beginning, removes the longest part of param that
matches word and returns the rest.

These substitutions are often useful when we're working with strings. The last four that remove parts of
strings are especially useful for processing filenames and paths, as the example below shows.

64



Command Execution

Try It Out — Parameter Processing
Each portion of the following script illustrates the parameter matching operators:

#1/bin/sh

unset foo
echo ${foo:-bar}

foo=fud
echo ${foo:-bar}

foo=/usr/bin/X11/startx
echo ${foo#*/}
echo ${foo##*/}

bar=/usr/local/etc/local/networks
echo ${bar%local*}
echo ${bar¥%%local*}

exit 0

This gives the output:

bar

fud
usr/bin/X11/startx
startx
usr/local/etc

fusr

How It Works

The first statement ${foo:-bar} gives the value bar, since foo had no value when the statement was execute
The variable foo is unchanged, as it remains unset.

Important ${foo:=bar}, however, would set the variable to $foo. This string operator checks that foo exists
and isn't null. If it is, it returns its value, but otherwise, it sets foo to bar and returns that instead.

${foo:?bar} will print foo: bar and abort the command if foo doesn't exist or is set to null.
Lastly, ${foo:+bar} returns bar if foo exists and isn't null. What a set of choices!
The {foo#*/} statement matches and removes only the left / (remember * matches zero or more characters).

The {foo##*/} matches and removes as much as possible, so removes the rightmost /, and all the characters
before it.

The {bar%local*} statement matches characters from the right, until the first occurrence of local (followed by
any number of characters) is matched, but the {bar%%local*} matches as many characters as possible from
the right, until it finds the leftmost local.

Since UNIX is based around filters, the result of one operation must often be redirected manually. Let's say
you want to convert a gif file into a jpeg file using the cjpeg program.

$ cjpeg image.gif > image.jpg

65



Here Documents

Sometimes, however, you want to perform this type of operation on a large number of files. How do you
automate the redirection? As easily as this:

#!/bin/sh
for image in *.gif
do
cjpeg $image > ${image%%gif}jpg
done

This script, giftojpeg, creates a jpeg file for each gif file in the current directory.
Here Documents

One special way of passing input to a command from a shell script is to use a here document. This allows a
command to execute as though it were reading from a file or the keyboard, whereas in fact it's getting input
from the script.

A here document starts with the leader <<, followed by a special sequence of characters that will be repeate
at the end of the document. << is the shell's label redirector, which, in this case, forces the command input t
be the here document. These act as a marker to tell the shell where the here document ends. The marker
characters must not appear in the lines to be passed to the command, so it's best to make them memorable
fairly unusual.

Try It Out — Using Here Documents

The simplest example is simply to feed input to the cat command:

#1/bin/sh

cat <<!FUNKY!
hello

this is a here
document
IFUNKY!

This gives the output:

hello
this is a here
document

Here documents might seem a rather curious feature, but they're actually very powerful because they allow
to invoke an interactive program like an editor and feed it some predefined input. However, they're more
commonly used for outputting large amounts of text from inside a script, as we saw above, and avoiding
having to use echo statements for each line. We've used ! marks on each side of the identifier to ensure tha
there's no confusion.

If we wish to process several lines in a file in a predetermined way, we could use the ed line editor and feed
commands from a here document in a shell script.

66



Try It Out — Another Use for a Here Document

Try It Out — Another Use for a Here Document

1. Let's start with a file, a_text_file, containing:

Thatis line 1
That is line 2
Thatis line 3
That is line 4

2. We can edit this file using a combination of a here document and the ed editor:

#!/bin/sh

ed a_text_file <<!FunkyStuff!
3

d

\$slis/was/

w

q
IFunkyStuff!

exit0

If we run this script, the file now contains:

That is line 1
That is line 2
That was line 4

How It Works

The shell script simply invokes the ed editor and passes to it the commands that it needs to move to the thir
line, delete the line and then replace is with was in the current line (since line three was deleted, the current
line is now what was the last line). These ed commands are taken from the lines in the script that form the
here document, i.e. the lines between the markers 'FunkyStuff!.

Important Notice the \ inside the here document to protect the $ from shell expansion. The \ escapes the $
so the shell knows not to try to expand $s/is/was/ to its value, which of course it doesn't have.
Instead, the shell passes the text \$ as $, which can then be interpreted by the ed editor.

Debugging Scripts

Debugging shell scripts is usually quite easy, but there are no specific tools to help. We'll quickly summarize
the common methods.

When an error occurs, the shell will normally print out the line number of the line containing the error. If the
error isn't immediately apparent, we can add some extra echo statements to display the contents of variable
and test code fragments by simply typing them into the shell interactively.

Since scripts are interpreted, there's no compilation overhead in modifying and retrying a script.

The main way to trace more complicated errors is to set various shell options. To do this, you can either use

command line options after invoking the shell, or you can use the set command. We summarize the options
the following table:

67



Putting it All Together

Command Line Option set Option Description

sh —n <script> set —0 noexec Checks for syntax errors only; doesn't execute
set —n commands.

sh —v <script> set —o verbose Echoes commands before running them.
set —-v

sh —x <script> set —o xtrace Echoes commands after processing on the
set —x command line.
set —0 nounset Gives an error message when an undefined
set —u variable is used.

You can set the set option flags on, using —o, and off, using +o, and likewise for the abbreviated versions.

You can achieve a simple execution trace by using the xtrace option. For an initial check, you can use the
command line option, but for finer debugging, you can put the xtrace flags (setting an execution trace on an
off) inside the script around the problem code. The execution trace causes the shell to print each line in the
script, with variables expanded, before executing the line. The level of expansion is denoted (by default) by
the number of + signs at the start of each line. You can change the + to something more meaningful by setti
the PS4 shell variable in your shell configuration file.

In the shell, you can also find out the program state wherever it exits by trapping the EXIT signal, with a line
something like this placed at the start of the script:

trap 'echo Exiting: critical variable = $critical_variable' EXIT

Putting it All Together

Now that we've seen the main features of the shell as a programming language, it's time to write an exampl
program to put some of what we have learned to use.

Throughout this book, we're going to be building a CD database application to show the techniques we've

been learning. We start with a shell script, but pretty soon we'll do it again in C, add a database, and so on.
let's start.

Requirements

We're going to design and implement a program for managing CDs. Suppose we have an extensive CD
collection. An electronic catalogue seems an ideal project to implement as we learn about programming
UNIX.

We want, at least initially, to store some basic information about each CD, such as the label, type of music &
artist or composer. We would also like to store some simple track information.

We want to be able to search on any of the 'per CD' items, but not on any of the track details.

To make the mini—application complete, we would also like to be able to enter, update and delete all the
information from within the application.

68



Design

Design

The three requirements—updating, searching and displaying the data—suggest that a simple menu will be
adequate. All the data we need to store is textual and, assuming our CD collection isn't too big, we have no
need for a complex database, so some simple text files will do. Storing information in text files will keep our
application simple and if our requirements change, it's almost always easier to manipulate a text file than an
other sort of file. As the last resort, we could even use an editor to manually enter and delete data, rather th:
write a program to do it.

We need to make an important design decision about our data storage: will a single file suffice and, if so, wt
format should it have? Most of the information we expect to store occurs only once per CD (we'll skip lightly
over the fact that some CDs contain the work of many composers or artists), except track information. Just
about all CDs have more than one track.

Should we fix a limit on the number of tracks we can store per CD? That seems rather an arbitrary and
unnecessary restriction, so let's reject that idea straight away!

If we allow a flexible number of tracks, we have three options:

« Use a single file, use one line for the 'title' type information and then 'n' lines for the track information
for that CD.

« Put all the information for each CD on a single line, allowing the line to continue until no more track
information needs to be stored.

» Separate the title information from the track information and use a different file for each.

Only the third option allows us to easily fix the format of the files, which we'll need to do if we ever wish to
convert our database into a relational form (more on this in Chapter 7), so that's the option we'll choose.

The next decision is what to put in the files.
Initially, for each CD title, we'll choose to store:
» The CD catalog number
* The title
» The type (classical, rock, pop, jazz, etc.)
» The composer or artist

For the tracks, simply:

* Track number
* Track name

In order to 'join' the two files, we must relate the track information to the rest of the CD information. To do
this, we'll use the CD catalog number. Since this is unique for each CD, it will appear only once in the titles
file and once per track in the tracks file.

Let's look at an example titles file:

Catalog Title Type Composer
CD123 Cool sax Jazz Bix

69



Try It Out — A CD Application

CD234 Classic violin Classical Bach
CD345 Hits99 Pop Various
And its corresponding tracks file:

Catalog Track No. Title

CD123 1 Some jazz

CD123 2 More jazz

CD345 1 Dizzy

CD234 1 Sonata in D minor

The two files ‘join’ using the Catalog field. Remember, there are normally multiple rows in the tracks file for
single entry in the titles file.

The last thing we need to decide is how to separate the entries. Fixed—width fields are normal in a relational
database, but are not always the most convenient. Another common method is a comma, which we'll use he
(i.e. a comma-separated variable, or CSV, file).

In the following Try It Out, just so you don't get totally lost, we'll be using the following functions:

get_return()
get_confirm()
set_menu_choice()
insert_title()
insert_track()
add_record_tracks()
add_records()
find_cd()
update_cd()
count_cds()
remove_records()
list_tracks()

Try It Out — A CD Application

1. First in our sample script is, as always, a line ensuring that it's executed as a shell script, followed by
some copyright information:

#!/bin/sh

# Very simple example shell script for managing a CD collection.
# Copyright (C) 1996-99 Wrox Press.

# This program is free software; you can redistribute it and/or modify it

# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2 of the License, or (at your

# option) any later version.

# This program is distributed in the hopes that it will be useful, but

# WITHOUT ANY WARRANTY:; without even the implied warranty of

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
# Public License for more details.

# You should have received a copy of the GNU General Public License along

# with this program; if not, write to the Free Software Foundation, Inc.
# 675 Mass Ave, Cambridge, MA 02139, USA.

70



Try It Out — A CD Application

2. The first thing to do is to ensure that some global variables that we'll be using throughout the script
are set up. We set the title and track files and a temporary file. We also trap CtrI-C, so our temporan
file is removed if the user interrupts the script.

menu_choice=
current_cd=""
title_file="title.cdb"
tracks_file="tracks.cdb"
temp_file=/tmp/cdb.$$
trap 'rm —f $temp_file' EXIT

3. Now we define our functions, so that the script, executing from the top line, can find all the function
definitions before we attempt to call any of them for the first time.

To avoid rewriting the same code in several places, the first two functions are simple utilities.

get_return() {
echo —e "Press return \c"
read X
return O

}

get_confirm() {
echo —e "Are you sure? \c"
while true
do
read x
case "$x"in
y|lyes|Y|Yes|YES)
return O;;
n|no |N|No |NO)
echo
echo "Cancelled"
return 1;;
*) echo "Please enter yes or no" ;;
esac
done
}
4. Here, we come to the main menu function, set_menu_choice. The contents of the menu vary

dynamically, with extra options being added if a CD entry has been selected.

Note that echo —e may not be portable to some shells.

set_menu_choice() {
clear
echo "Options :—"
echo
echo" a)Add new CD"
echo" f)Find CD"
echo" c¢) Count the CDs and tracks in the catalog"”
if [ "$cdcatnum” !=""1; then
echo" ) List tracks on $cdtitle”
echo" r) Remove $cdtitle”
echo" u) Update track information for $cdtitle”
fi
echo" @) Quit"
echo
echo —e "Please enter choice then press return \c"
read menu_choice

71



Try It Out — A CD Application

return

}
5. Two more very short functions, insert_title and insert_track, for adding to the database files. Though

some people hate one-liners like these, they help make other functions clearer.

They are followed by the larger add_record_track function that uses them. This function uses patterr
matching to ensure no commas are entered (since we're using commas as a field separator) and als
arithmetic operations to increment the current track number as tracks are entered.

insert_title() {
echo $* >> $title_file
return

}

insert_track() {
echo $* >> $tracks_file
return

}

add_record_tracks() {
echo "Enter track information for this CD"
echo "When no more tracks enter q"

cdtrack=1

cdttitle=""

while [ "$cdttitle" = "q" ]

do
echo —e "Track $cdtrack, track title? \c"
read tmp

cdttitle=${tmp%%,*}

if [ "$tmp" I= "$cdttitle" |; then
echo "Sorry, no commas allowed"
continue

fi

if [ —n "$cdttitle” ] ; then
if [ "$cdttitle” 1= "q" ]; then

insert_track $cdcatnum,$cdtrack,$cdttitle

fi

else
cdtrack=%((cdtrack-1))

fi

cdtrack=%$((cdtrack+1))
done
}
6. The add_records function allows entry of the main CD information for a new CD.

add_records() {
# Prompt for the initial information

echo —e "Enter catalog name \c"
read tmp
cdcatnum=${tmp%%,*}

echo —-e "Enter title \c"
read tmp
cdtitle=${tmp%%,*}

echo —e "Enter type \c"

read tmp
cdtype=${tmp%%,*}

72



Try It Out — A CD Application

echo —e "Enter artist/composer \c"
read tmp
cdac=${tmp%%,*}

# Check that they want to enter the information

echo About to add new entry
echo "$cdcatnum $cdtitle $cdtype $cdac”

# If confirmed then append it to the titles file

if get_confirm ; then
insert_title $cdcatnum,$cdtitle, $cdtype,$cdac
add_record_tracks

else
remove_records

fi

return
}

7. The find_cd function searches for the catalog name text in the CD title file, using the grep command.
We need to know how many times the string was found, but grep only returns a value telling us if it
matched zero times or many. To get around this, we store the output in a file, which will have one lin
per match, then count the lines in the file.

The word count command, wc, has whitespace in its output, separating the number of lines, words a
characters in the file. We use the $(wc —I $temp_file) notation to extract the first parameter from the
output to set the linesfound variable. If we wanted another, later parameter we would use the set
command to set the shell's parameter variables to the command output.

We change the IFS (Internal Field Separator) to a , (comma), so we can separate the
comma-—delimited fields. An alternative command is cut.

find_cd() {

if ["$1" ="n"]; then
asklist=n

else
asklist=y

fi

cdcathum=""

echo —e "Enter a string to search for in the CD titles \c"

read searchstr

if [ "$searchstr" =" ]; then
return O

fi

grep "$searchstr" $title_file > $temp_file

set $(wc - $temp_file)
linesfound=%$I

case "$linesfound"” in

0) echo "Sorry, nothing found"
get_return
return O

1)

2) echo "Sorry, not unique."

73



Try It Out — A CD Application

echo "Found the following"
cat $temp_file
get_return
return O
esac

IFS=""
read cdcatnum cdtitle cdtype cdac < $temp_file
IES=""

if [ -z "$cdcatnum” ]; then
echo "Sorry, could not extract catalog field from $temp_file"
get_return
return O

fi

echo

echo Catalog number: $cdcatnum
echo Title: $cdtitle

echo Type: $cdtype

echo Artist/Composer: $cdac
echo

get_return

if [ "$asklist" = "y" ]; then
echo —e "View tracks for this CD? \c"
read x
if [ "$x" = "y"]; then
echo
list_tracks
echo
fi
fi
return 1
}
8. update_cd allows us to re—enter information for a CD. Notice that we search (grep) for lines that star

(™) with the $cdcatnum followed by a ,, and that we need to wrap the expansion of $cdcatnum in {} s
we can search for a, with no whitespace between it and the catalogue number. This function also us
{} to enclose multiple statements to be executed if get_confirm returns true.

update_cd() {
if [ =z "$cdcatnum" ]; then
echo "You must select a CD first"
find_cd n
fi
if [ -n "$cdcatnum” ]; then
echo "Current tracks are :-"
list_tracks
echo
echo "This will re—enter the tracks for $cdtitle”
get_confirm && {
grep —v ""${cdcatnum},” $tracks_file > $temp_file
mv $temp_file $tracks_file
echo
add_record_tracks
}
fi
return
}
9. count_cds gives us a quick count of the contents of our database.

74



Try It Out — A CD Application

count_cds() {
set $(wc - $title_file)
num_titles=$I
set $(wc -I $tracks_file)
num_tracks=$I
echo found $num_titles CDs, with a total of $num_tracks tracks
get_return
return

}

10.remove_records strips entries from the database files, using grep —v to remove all matching strings.

Notice we must use a temporary file.

If we tried to do this,
grep -v ""$cdcatnum” > $title_file

the $title_file would be set to empty by the > output redirection before the grep had chance to execut
so grep would read from an empty file.

remove_records() {
if [ -z "$cdcatnum" ]; then
echo You must select a CD first
find_cd n
fi
if [ —n "$cdcatnum” ]; then
echo "You are about to delete $cdtitle”
get_confirm && {
grep —v ""${cdcatnum}," $title_file > $temp_file
mv $temp_file $title_file
grep —v ""${cdcatnum}," $tracks_file > $temp_file
mv $temp_file $tracks_file
cdcatnum=""
echo Entry removed
}
get_return
fi
return
}
11.List_tracks again uses grep to extract the lines we want, cut to access the fields we want and then

more to provide a paginated output. If you consider how many lines of C code it would take to
re—implement these 20—odd lines of code, you'll appreciate how powerful a tool the shell can be.

list_tracks() {

if [ "$cdcatnum" =""]; then
echo no CD selected yet
return

else

grep ""${cdcatnum},” $tracks_file > $temp_file
num_tracks=$(wc -1 $temp_file)
if [ "$num_tracks" = "0" ]; then
echo no tracks found for $cdtitle
else {

echo

echo "$cdtitle :-"

echo

cut -f 2- -d , $temp_file

echo
} | ${PAGER:-more}
fi

75



Notes

fi
get_return
return
}
12.Now all the functions have been defined, we can enter the main routine. The first few lines simply ge

the files into a known state, then we call the menu function, set_menu_choice, and act on the output

When quit is selected, we delete the temporary file, write a message and exit with a successful
completion condition.

rm —f $temp_file

if [ 1 —f $title_file ]; then
touch $title_file

fi

if [ —f $tracks_file ]; then
touch $tracks_file

fi

# Now the application proper

clear

echo

echo

echo "Mini CD manager"
sleep 1

quit=n
while [ "$quit" 1= "y" ];
do
set_menu_choice
case "$menu_choice" in
a) add_records;;
r) remove_records;;
f) find_cd y;;
u) update_cd;;
¢) count_cds;;
) list_tracks;;
b)
echo
more $title_file
echo
get_return;;
q| Q) quit=y;;
*) echo "Sorry, choice not recognized";;
esac
done

#Tidy up and leave
rm —f $temp_file

echo "Finished"
exit 0

Notes

The trap command at the start of the script is intended to trap the user pressing CtrI-C. This may be either t
EXIT or the INT signal, depending on the terminal setup.

76



Summary

There are other ways of implementing the menu selection, notably the select construct in bash and ksh (whi
however, isn't specified in X/Open) which is a dedicated menu choice selector. Check it out if your script car
afford to be slightly less portable. Multi-line information given to users could also make use of here
documents.

You might have noticed that there's no validation of the primary key when a new record is started; the new
code just ignores the subsequent titles with the same code, but incorporates their tracks into the first title's
listing:

1 First CD Track 1

2 First CD Track 2

1 Another CD

2 With the same CD key

We'll leave this and other improvements to your imagination and creativity, as you can modify the code unde
the terms of the GPL.

Summary

In this chapter, we've seen that the shell is a powerful programming language in its own right. Its ability to
call other programs easily and then process their output makes the shell an ideal tool for tasks involving the
processing of text and files.

Next time you need a small utility program, consider whether you can solve your problem by combining som
of the many UNIX commands with a shell script. You'll be surprised just how many utility programs you can
write without a compiler.

77



Chapter 3: Working with Files

Overview

In this chapter, we'll be looking at UNIX files and directories and how to manipulate them. We'll learn how to
create files, open them, read, write and close them. We'll also learn how programs can manipulate directorie
to create, scan and delete them, for example. After the last chapter's diversion into shells, we now start
programming in C.

Before proceeding to the way UNIX handles file 1/O, we'll review the concepts associated with files,
directories and devices. To manipulate files and directories, we need to make system calls (the UNIX paralle
of the Windows API), but there also exists a whole range of library functions, the standard 1/O library (stdio),
to make file handling more efficient.

We'll spend the majority of the chapter detailing the various calls to handle files and directories. So, this
chapter will cover:

* Files and devices

» System calls

* Library functions

» Low-level file access

» Managing files

» The standard I/O library

» Formatted input and output
« File and directory maintenance
» Scanning directories

* Errors

» Advanced topics

UNIX File Structure

"Why," you may be asking, "are we covering file structure? | know about that already." Well, files in the
UNIX environment are particularly important, as they provide a simple and consistent interface to the
operating system services and to devices. In UNIX, everything is a file. Well almost!

This means that, in general, programs can use disk files, serial ports, printers and other devices in exactly tt
same way as they would use a file. We'll cover some exceptions such as network connections later, but, in t
main, you only need to use five basic functions: open, close, read, write and ioctl.

Directories, too, are special sorts of files. In modern UNIX versions, even the superuser may not write to
them directly. All users ordinarily use the high level opendir/readdir interface to read directories without
needing to know the system specific details of directory implementation. We'll return to special directory
functions later in the chapter.

Really, almost everything is represented as a file under UNIX, or can be made available via special files. Ev

though there are, by necessity, subtle differences from the conventional files we know and love, the general
principle still holds. Let's look at the special cases we've mentioned so far.

78



Directories

Directories

As well as its contents, a file has a name and some properties or ‘administrative information’, i.e. the file's
creation/ modification date and its permissions. The properties are stored in the inode, which also contains t
length of the file and where on the disk it's stored. The system uses the number of the file's inode; the
directory structure just names the file for our benefit.

A directory is a file that holds the inode numbers and names of other files. Each directory entry is a link to a
file's inode; remove the filename and you remove the link. (You can see the inode number for a file by using
In —i.) Using the In command, you can make links to the same file in different directories. If the number of
links to a file (the number after the permissions in Is —I) reaches zero, the inode and the data it references ai
no longer in use and are marked as free.

Files are arranged in directories, which may also contain subdirectories. These form the familiar file system
hierarchy. A user, neil, usually has his files stored in a 'home' directory, perhaps /home/neil, with
subdirectories for electronic mail, business letters, utility programs, and so on. Note that many UNIX shells
have an excellent notation for getting straight to your home directory: the tilde ~. For another user, type ~ust
As you know, home directories for each user are usually subdirectories of a higher level directory created
specifically for this purpose, in this case /home. Note though that the standard library functions unfortunately
do not understand the tilde notation in file name parameters.

The /home directory is itself a subdirectory of the root directory, /, which sits at the top of the hierarchy and
contains all of the system's files in subdirectories. The root directory normally includes /bin for system
programs (‘binaries'), /etc for system configuration files and /lib for system libraries. Files that represent
physical devices and that provide the interface to those devices are conventionally found in a directory calle
/dev. More information on the Linux file system layout is available in the Linux File System Standard, or you
can check out man hier for a description of the directory hierarchy.

/
Lo\

/ \

neil rick

/1IN

mail letters programs

Files and Devices

Even hardware devices are very often represented (mapped) by files in UNIX. For example, as root, you
mount a CD-ROM drive as a file,

$ mount -t is09660 /dev/hdc /mnt/cd_rom
$ cd /mnt/cd_rom

79



Files and Devices

which takes the CD—ROM device (loaded as hdc during boot-up) and mounts its current contents as the file
structure beneath /mnt/cd_rom. You then move around within the CD—ROM's directories just as normal,
except, of course, that the contents are read-only.

Three important device files are /dev/console, /dev/tty and /dev/null.
/dev/console

This device represents the system console. Error messages and diagnostics are often sent to this device. E
UNIX system has a designated terminal or screen to receive console messages. At one time, it might have
been a dedicated printing terminal. On modern workstations, it's usually the 'active' virtual console, while
under X, it will be a special console window on the screen.

/devitty

The special file /devi/tty is an alias (logical device) for the controlling terminal (keyboard and screen, or
window) of a process, if it has one. For instance, processes running from cron won't have a controlling
terminal, so won't be able to open /devi/tty.

Where it can be used, /dev/tty allows a program to write directly to the user, without regard to which
pseudo-terminal or hardware terminal the user is using. It is useful when the standard output has been
redirected. One example of this is in the command Is —R | more where the program more has to prompt the
user for each new page of output. We'll see more of /dev/tty in Chapter 5.

Note that while there's only one /dev/console device, there are effectively many different physical devices
accessed through /devi/tty.

/dev/null

This is the null device. All output written to this device is discarded. An immediate end of file is returned
when the device is read, and it can be used as a source of empty files by using the cp command. Unwanted
output is often redirected to /dev/null.

Important Another way of creating empty files is to use the touch <filename> command, which changes
the modification time of a file, or creates a new file if none exists with the given nhame. It won't

empty it of its contents, though.
$ echo do not want to see this >/dev/null
$ cp /dev/null empty_file

Other devices found in /dev include hard and floppy disks, communications ports, tape drives, CD—ROMs,
sound cards and some devices representing the system's internal state. There's even a /dev/zero which act:
source of null bytes to create files of zeros. You need superuser permissions to access some of these devic
normal users can't write programs to directly access low-level devices like hard disks. The names of the
device files may vary from system to system. Solaris and Linux both have applications that run as superuse
manage the devices which would be otherwise inaccessible, for example, mount for user-mountable file
systems.

In this chapter we'll concentrate on disk files and directories. We'll cover another device, the user's terminal,
in Chapter 5.

80



System Calls and Device Drivers
System Calls and Device Drivers

We can access and control files and devices using a small number of functions. These functions, known as
system calls, are provided by UNIX (and Linux) directly and are the interface to the operating system itself.

At the heart of the operating system, the kernel, are a number of device drivers. These are a collection of
low-level interfaces for controlling system hardware, which we will cover in detail in chapter 21. For
example, there will be a device driver for a tape drive, which knows how to start the tape, wind it forwards
and backwards, read and write to it, and so on. It will also know that tapes have to be written to in blocks of
certain size. Because tapes are sequential in nature, the driver can't access tape blocks directly, but must w
the tape to the right place.

Similarly, a low-level hard disk device driver will only write whole numbers of disk sectors at a time, but
will be able to access any desired disk block directly, because the disk is a random access device.

To provide a similar interface, device drivers encapsulate all of the hardware—dependent features.
Idiosyncratic features of the hardware tend to be made available through ioctl.

Device files in /dev are all used in the same way; they can all be opened, read, written and closed. For
example, the same open call that is used to access a regular file is used to access a user terminal, a printer
tape drive.

The low-level functions used to access the device drivers, the system calls, include:

Open a file or device.
e open
Read from an open file or device.
* read
Write to a file or device.
e write
Close the file or device.
* close
Pass control information to a device driver.
* joctl

The ioctl system call is used to provide some necessary hardware-specific control (as opposed to regular
input and output), so its use varies from device to device. For example, a call to ioctl can be used to rewind
tape drive or to set the flow control characteristics of a serial port. For this reason, ioctl isn't necessarily
portable from machine to machine. In addition, each driver defines its own set of ioctl commands.

These and other system calls are usually documented in section 2 of the UNIX man pages. Prototypes
providing the parameter lists and function return types for system calls, and associated #defines of constant
are provided in include files. The particular ones required for each system call will be included with the
descriptions of individual calls.

81



Library Functions

Library Functions

The problem with using low-level system calls directly for input and output is that they can be very
inefficient. Why? Well:

» There's a performance penalty in making a system call. This is because UNIX has to switch from
running your program code to executing its own kernel code and back again and system calls are
therefore expensive compared to function calls.

» The hardware has limitations and this can impose restrictions on the size of data blocks that can be
read or written by the low-level system call at any one time. For example, tape drives often have a
minimum block size, say 10k, that they can write. So, if you attempt to write less than this, the drive
will still advance the tape by 10k, leaving gaps on the tape.

To provide a higher level interface to devices and disk files, UNIX provides a number of standard libraries.
These are collections of functions that you can include in your own programs to handle these problems. A
good example is the standard I/O library that provides buffered output. You can effectively write data blocks
of varying sizes and the library functions arrange for the low-level system calls to be provided with full
blocks as the data is made available. This dramatically reduces the system call overhead.

Library functions are usually documented in section 3 of the UNIX man pages and often have a standard
include file associated with them, such as stdio.h for the standard I/O library.

To summarize the discussion of the last few sections, here's a figure of the UNIX system showing where the
various file functions exist relative to the user, the device drivers, the kernel and the hardware:

Low-level File Access

Each running program, called a process, has associated with it a number of file descriptors. These are smal
integers that you can use to access open files or devices. How many of these are available will vary depend
on how the UNIX system has been configured. When a program starts, it usually has three of these descript
already opened. These are:

Standard input
*0

Standard output
o1

Standard error
° 2

82



write

You can associate other file descriptors with files and devices by using the open system call, which we'll be
meeting shortly. The file descriptors that are automatically opened, however, already allow us to create som
simple programs using write.

write

#include <unistd.h>

size_t write(int fildes, const void *buf, size_t nbytes);

The write system call arranges for the first nbytes bytes from buf to be written to the file associated with the
file descriptor fildes. It returns the number of bytes actually written. This may be less than nbytes if there ha:
been an error in the file descriptor, or if the underlying device driver is sensitive to block size. If the function
returns 0, it means no data was written, if =1, there has been an error in the write call and the error will be
specified in the errno global variable.

With this knowledge, let's write our first program, simple_write.c:

#include <unistd.h>
#include <stdlib.h>

int main()

{
if ((write(1, "Here is some data\n", 18)) != 18)

write(2, "A write error has occurred on file descriptor 1\n",46);

exit(0);
}

This program simply prints a message on the standard output. When a program exits, all open file descripto
are automatically closed, so we don't need to close them explicitly. This won't be the case, however, when
we're dealing with buffered output.

$ simple_write

Here is some data
$

A point worth noting again is that write might report that it wrote fewer bytes than you asked it to. This is not
necessarily an error. In your programs you will need to check errno to detect errors, and call write again to
write any remaining data.

All the examples in this chapter assume that you have the current directory in your PATH and that,
consequently, you're not running them while you're a superuser. If you do not have the current directory in
your PATH (an essential superuser precaution) you can run the program specifying the directory explicitly
like this:

$ ./simple_write

read

#include <unistd.h>

size_t read(int fildes, void *buf, size_t nbytes);

83



open

The read system call reads up to nbytes bytes of data from the file associated with the file descriptor fildes
and places them in the data area buf. It returns the number of data bytes actually read, which may be less tt
the number requested. If a read call returns 0, it had nothing to read; it reached the end of the file. Again, an
error on the call will cause it to return —-1.

This program, simple_read.c, copies the first 128 bytes of the standard input to the standard output. It copie
all of the input if there are less than 128 bytes.

#include <unistd.h>
#include <stdlib.h>

int main()

{
char buffer[128];

int nread;

nread = read(0, buffer, 128);
if (hread == -1)
write(2, "A read error has occurred\n”, 26);

if ((write(1,buffer,nread)) != nread)
write(2, "A write error has occurred\n",27);

exit(0);
}

If we run the program, we should see:

$ echo hello there | simple_read
hello there

$ simple_read < draftl.txt

Files

In this chapter we will be looking at files and directories and how to manipulate them. We will learn how to create files, 0$

Note how the next shell prompt appears at the end of the last line of output because, in this example, the 12
bytes don't form a whole number of lines.

open
To create a new file descriptor we need to use the open system call.

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

int open(const char *path, int oflags);
int open(const char *path, int oflags, mode_t mode);

Note Strictly speaking, we don't need to include sys/types.h and sys/stat.h to use open on POSIX systems, |
they may be necessary on some UNIX systems.

In simple terms, open establishes an access path to a file or device. If successful, it returns a file descriptor

that can be used in read, write and other system calls. The file descriptor is unique and isn't shared by any

other processes that may be running. If two programs have a file open at the same time, they maintain distir

file descriptors. If they both write to the file, they will continue to write where they left off. Their data isn't

84



Initial Permissions

interleaved, but one will overwrite the other. Each keeps its own idea of how far into the file (the offset) it ha
read or written. We can prevent unwanted clashes of this sort by using file locking, which we'll be looking at
in Chapter 7.

The name of the file or device to be opened is passed as a parameter, path, and the oflags parameter is use
specify actions to be taken on opening the file.

The oflags are specified as a bitwise OR of a mandatory file access mode and other optional modes. The of
call must specify one of the following file access modes:

Mode Description

O_RDONLY Open for read—only
O_WRONLY Open for write—only
O_RDWR Open for reading and writing

The call may also include a combination (bitwise OR) of the following optional modes in the oflags
parameter:

Place written data at the end of the file.
« O_APPEND

Set the length of the file to zero, discarding existing
« O TRUNC contents.

Creates the file, if necessary, with permissions giyen
« O _CREAT in mode.

Used with O_CREAT, ensures that the caller creates
* O_EXCL the file. The open is atomic, i.e. it's performed with
just one function call. This protects against two
programs creating the file at the same time. If the file
already exists, open will fail.
Other possible values for oflags are documented in the open manual page, found in section 2 of the manual
(use man 2 open).

open returns the new file descriptor (always a non—negative integer) if successful, or -1 if it fails, when oper
also sets the global variable errno to indicate the reason for the failure. We'll be looking at errno more closel
in a later section. The new file descriptor is always the lowest numbered unused descriptor, a feature that ce
be quite useful in some circumstances. For example, if a program closes its standard output and then calls
open again, the file descriptor 1 will be reused and the standard output will have been effectively redirected
a different file or device.

There is also a creat call standardized by POSIX, but is not often used. It doesn't only create the file, as one

might expect, but also opens it it's equivalent to calling open with oflags equal to
O_CREAT|O_WRONLY|O_TRUNC.

Initial Permissions

When we create a file using the O_CREAT flag with open, we must use the three parameter form. mode, th
third parameter, is made from a bitwise OR of the flags defined in the header file sys/stat.h. These are:

* S_IRUSR Read permission, owner.
* S_IWUSR Write permission, owner.

85



umask

* S_IXUSR Execute permission, owner.
* S _IRGRP Read permission, group.
* S_IWGRP Write permission, group.
* S_IXGRP Execute permission, group.
* S IROTH Read permission, others.
* S IWOTH Write permission, others.
* S_IXOTH Execute permission, others.

For example,
open (“myfile", O_CREAT, S_IRUSR|S_IXOTH);

has the effect of creating a file called myfile, with read permission for the owner and execute permission for
others, and only those permissions.

$ Is —Is myfile
0 -r—————- X 1neil software 0 Sep 22 08:11 myfile*

There are a couple of factors which may affect the file permissions. Firstly, the permissions specified are on
used if the file is being created. Secondly, the user mask (specified by the shell's umask command) affects t
created file's permissions. The mode value given in the open call is ANDed with the inverse of the user mas
value at run time. For example, if the user mask is set to 001 and the S_IXOTH mode flag is specified, the fi
won't be created with 'other' execute permission, because the user mask specifies that '‘other' execute
permission isn't to be provided. The flags in the open and creat calls are in fact requests to set permissions.
Whether or not the requested permissions are set depends on the run—time value of umask.

umask

The umask is a system variable that encodes a mask for file permissions to be used when a file is created.
You can change the variable by executing the umask command to supply a new value. The value is a
three—digit octal value. Each digit is the result of ANDing values from 1, 2 or 4. The separate digits refer to
‘'user’, 'group’ and 'other' permissions, respectively. Thus:

Digit Value Meaning

1 No user permissions are to be disallowed
User read permission is disallowed.

User write permission is disallowed

User execute permission is disallowed

No group permissions are to be disallowed
Group read permission is disallowed
Group write permission is disallowed
Group execute permission is disallowed
No other permissions are to be disallowed
Other read permission is disallowed
Other write permission is disallowed

Other execute permission is disallowed
For example, to block 'group’ write and execute, and 'other' write, the umask would be:

R IN|AO(RP N[O, |IN|IA|O

86



close

Digit Value
1 0
2 2
1
3 2

Values for each digit are ANDed together; so digit 2 will have 2 & 1, giving 3. The resulting umask is 032.

When we create a file via an open or creat call, the mode parameter is compared with the umask. Any bit
setting in the mode parameter which is also set in the umask is removed. The end result of this is that the uc
can set up their environment to say 'Don't create any files with (say) write permission for others, even if the
program creating the file requests that permission.' This doesn't prevent a program or user subsequently usi
the chmod command (or chmod system call in a program) to add other write permissions, but it does help
protect the user by saving them from having to check and set permissions on all new files.

close
#include <unistd.h>

int close(int fildes);

We use close to terminate the association between a file descriptor, fildes, and its file. The file descriptor
becomes available for reuse. It returns 0 if successful and -1 on error. Note that it can be important to checl
the return result from close. Some file systems, particularly networked ones, may not report an error writing
a file until the file is closed.

The number of files that any one running program may have open at once is limited. The limit, defined by th

constant OPEN_MAX in limits.h, will vary from system to system, but POSIX requires that it be at least 16.
This limit may itself be subject to local system-wide limits.

ioctl

#include <unistd.h>

int ioctl(int fildes, int cmd, ...);

ioctl is a bit of a rag—bag of things. It provides an interface for controlling the behavior of devices, their
descriptors and configuring underlying services. Terminals, file descriptors, sockets, even tape drives may
have ioctl calls defined for them and you need to refer to the specific device's man page for details. POSIX
only defines ioctl for streams, which are beyond the scope of this book.

ioctl performs the function indicated by cmd on the object referenced by the descriptor fildes. It may take an
optional third argument depending on the functions supported by a particular device.

Try It Out — A File Copy Program

We now know enough about the open, read and write system calls to write a low-level program,
copy_system.c, to copy one file to another, character by character.

Important

87



close

We'll do this in a number of ways during this chapter to compare the efficiency of each
method. For brevity, we'll assume that the input file exists and the output file does not
and that all reads and writes succeed. Of course, in real-life programs, we would check

that these assumptions are valid!
#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

int main()

{

char c;
intin, out;

in = open(“file.in", O_RDONLY);
out = open(“file.out”, O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);
while(read(in,&c,1) == 1)

write(out,&c,1);

exit(0);

Note that the #include <unistd.h> line must come first as it defines flags regarding POSIX compliance that
may affect other include files.

First of all you will need to make a test input file, say 1Mb in size and name it file.in.

Running the program will give something like the following:

$ time copy_system
4.67user 146.90system 2:32.57elapsed 99%CPU

$ Is —Is file.in file.out
1029 —-rw-r——-r— 1neil users 1048576 Sep 17 10:46 file.in
1029 —rw——---—-— 1neil users 1048576 Sep 17 10:51 file.out

Here we use the UNIX time facility to measure how long the program takes to run. We can see that the 1Mb
input file, file.in, was successfully copied to file.out which was created with read/write permissions for owner
only. However, the copy took two and a half minutes and consumed virtually all the CPU time. It was this
slow because it had to make over two million system calls.

We can improve matters by copying in larger blocks. Take a look at this modified program, copy_block.c,
which copies the files in 1k blocks, again using system calls:

#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

int main()

{
char block[1024];

int in, out;
int nread;
in = open(“file.in", O_RDONLY);

88



Other System Calls for Managing Files

out = open(“file.out", O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);
while((nread = read(in,block,sizeof(block))) > 0)
write(out,block,nread);

exit(0);
}

Now try the program, first removing the old output file:

$ rm file.out
$ time copy_block
0.01user 1.09system 0:01.90elapsed 57%CPU

$ Is —Is file.in file.out
1029 —rw-r——r—— 1 neil users 1048576 Sep 17 10:46 file.in
1029 -rw——————— 1neil users 1048576 Sep 17 10:57 file.out

Now the program takes a little under two seconds as it only requires around 2000 system calls. Of course,
these times are very system—-dependent, but they do show that system calls have a measurable overhead, ¢
worth optimizing their use.

Other System Calls for Managing Files

There are a number of other system calls that operate on these low-level file descriptors. These allow a
program to control how a file is used and to return status information. We reference them here, so you can
make use of them, but you may want to miss them out on a first reading.

Iseek

#include <unistd.h>
#include <sys/types.h>

off_t Iseek(int fildes, off_t offset, int whence);

The Iseek system call sets the read/write pointer of a file descriptor, fildes, i.e. you can use it to set where in
the file the next read or write will occur. You can set the pointer to an absolute location in the file or to a
position relative to the current position or the end of file. The offset parameter is used to specify the position
and the whence parameter specifies how the offset is used. whence can be one of the following:

« SEEK_SET offset is an absolute position
« SEEK_CUR offset is relative to the current position
« SEEK_END offset is relative to the end of the file

Iseek returns the offset measured in bytes from the beginning of the file that the file pointer is set to, or —1 ol
failure. The type off _t, used for the offset in seek operations, is an implementation—dependent type defined |
sys/types.h.

fstat, stat and Istat
#include <unistd.h>
#include <sys/stat.h>

#include <sys/types.h>

int fstat(int fildes, struct stat *buf);

89



Other System Calls for Managing Files

int stat(const char *path, struct stat *buf);
int Istat(const char *path, struct stat *buf);

Note Note that the inclusion of sys/types.h is deemed 'optional, but sensible'.
The fstat system call returns status information about the file associated with an open file descriptor. The
information is written to a structure, buf, the address of which is passed as a parameter.

The related functions stat and Istat return status information for a named file. They produce the same result:
except when the file is a symbolic link. Istat returns information about the link itself, while stat returns
information about the file that the link refers to.

The members of the structure, stat, may vary between UNIX systems, but will include:

stat Member Description

st_mode File permissions and file type information

st_ino The inode associated with the file

st_dev The device the file resides on

st_uid The user identity of the file owner

st _gid The group identity of the file owner

st_atime The time of last access

st_ctime The time of last change to permissions, owner, group or content
st_mtime The time of last modification to contents

st_nlink The number of hard links to the file

The st_mode flags returned in the stat structure also have a number of associated macros defined in the
header file sys/stat.h. These macros include names for permission and file type flags and some masks to he
with testing for specific types and permissions.

The permissions flags are the same as for the open system call above. File-type flags include:

* S IFBLK Entry is a block special device.

* S _IFDIR Entry is a directory.

S IFCHR Entry is a character special device.
* S _IFIFO Entry is a FIFO (nhamed pipe).

S IFREG Entry is a regular file.

* S_IFLNK Entry is a symbolic link.

Other mode flags include:

* S _ISUID Entry has setUID on execution.
* S _ISGID Entry has setGID on execution.

Masks to interpret the st mode flags include:
* S IFMT File type.
* S IRWXU User read/write/execute permissions.

S IRWXG Group read/write/execute permissions.
* S IRWXO Others read/write/execute permissions.

90



Other System Calls for Managing Files

There are some macros defined to help with determining file types. These just compare suitably masked mc
flags with a suitable device-type flag. These include:

* S _ISBLK Test for block special file.

* S ISCHR Test for character special file.
* S _ISDIR Test for directory.

* S _ISFIFO Test for FIFO.

S ISREG Test for regular file.

* S _ISLNK Test for symbolic link.

For example, to test that a file doesn't represent a directory and has execute permission set for the owner al
no other permissions, we can use the test:

struct stat statbuf;
mode_t modes;

stat("filename",&statbuf);
modes = statbuf.st_mode;

if('S_ISDIR(modes) && (modes & S_IRWXU) == S_IXUSR)

dup and dup2

#include <unistd.h>

int dup(int fildes);
int dup2(int fildes, int fildes2);

The dup system calls provide a way of duplicating a file descriptor, giving two or more different descriptors
that access the same file. These might be used for reading and writing to different locations in the file. The
dup system call duplicates a file descriptor, fildes, returning a new descriptor. The dup2 system call
effectively copies one file descriptor to another by specifying the descriptor to use for the copy.

These calls can also be useful when you're using multiple processes communicating via pipes. We'll meet tt
dup system call again in Chapter 11.

The Standard I/O Library

The standard /O library and its header file stdio.h, provide a versatile interface to low-level /O system calls
The library, now part of ANSI standard C whereas the system calls we met earlier are not, provides many
sophisticated functions for formatting output and scanning input. It also takes care of the buffering
requirements for devices.

In many ways, you use this library in the same way that you use low-level file descriptors. You need to opel
a file to establish an access path. This returns a value that is used as a parameter to other I/O library functic
The equivalent of the low-level file descriptor is called a stream and is implemented as a pointer to a
structure, a FILE *.

Note Don't confuse these file streams with either C++ iostreams or with the STREAMS paradigm

of inter—process communication introduced in AT&T UNIX System V Release 3, which is
beyond the scope of this book. For more information on STREAMS, check out the X/Open

91



fopen

spec and the AT&T STREAMS Programming Guide that accompanies System V.

Three file streams are automatically opened when a program is started. They are stdin, stdout and stderr.
These are declared in stdio.h and represent the standard input, output and error output, respectively, which
correspond to the low level file descriptors 0, 1 and 2.

In this next section, we'll look at:

« fopen, fclose

* fread, fwrite

* fflush

* fseek

« fgetc, getc, getchar

« fputc, putc, putchar

« fgets, gets

« printf, fprintf and sprintf
» scanf, fscanf and sscanf

fopen
#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

The fopen library function is the analog of the low level open system call. You use it mainly for files and
terminal input and output. Where you need explicit control over devices, you're better off with the low-level
system calls, as they eliminate potentially undesirable side effects from libraries, like input/output buffering.

fopen opens the file named by the filename parameter and associates a stream with it. The mode paramete
specifies how the file is to be opened. It's one of the following strings:

« "r" or"rb" Open for reading only

« "w" or "wb" Open for writing, truncate to zero length

« "a" or "ab" Open for writing, append to end of file

« "r+" or "rb+" or "r+b" Open for update (reading and writing)

* "w+" or "wb+" or "w+b" Open for update, truncate to zero length
* "at" or "ab+" or "atb" Open for update, append to end of file

The b indicates that the file is a binary file rather than a text file. Note that, unlike DOS, UNIX doesn't make
distinction between text and binary files. It treats all files exactly the same, effectively as binary files. It's alsc
important to note that the mode parameter must be a string, and not a character. Always use "r", and never
If successful, fopen returns a non—null FILE * pointer. If it fails, it returns the value NULL, defined in stdio.h.

fread

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);

The fread library function is used to read data from a file stream. Data is read into a data buffer given by ptr

92



fwrite

from the stream, stream. Both fread and fwrite deal with data records. These are specified by a record size,
size, and a count, nitems, of records to transfer. It returns the number of items (rather than the number of
bytes) successfully read into the data buffer. At the end of a file, fewer than nitems may be returned, includir
zero. As with all of the standard I/O functions that write to a buffer, it's the programmer's responsibility to
allocate the space for the data and check for errors. See ferror and feof later in this chapter.

fwrite

#include <stdio.h>

size_t fwrite (const void *ptr, size_t size, size_t nitems, FILE *stream);

The fwrite library call has a similar interface to fread. It takes data records from the specified data buffer and
writes them to the output stream. It returns the number of records successfully written.

Important Note that fread and fwrite are not recommended for use with structured data. Part of
the problem is that files written with fwrite are potentially non—portable between
different machines. We'll discuss further issues of portability in Appendix A.

fclose

#include <stdio.h>

int fclose(FILE *stream);

The fclose library function closes the specified stream, causing any unwritten data to be written. It's importat
to use fclose, because the stdio library will buffer data. If the program needs to be sure that data has been
completely written, it should call fclose. Note, however, that fclose is called automatically on all file streams
that are still open when a program ends normally, but then of course you do not get a chance to check for
errors reported by fclose. The number of available streams is limited, in the same way that file descriptors al
limited, with the actual limit, FOPEN_MAX, defined in stdio.h, set to at least eight.

fflush

#include <stdio.h>

int fllush(FILE *stream);

The fflush library function causes all outstanding data on a file stream to be written immediately. You can us
this to ensure that, for example, an interactive prompt has been sent to a terminal before any attempt to rea
response. It's also useful for ensuring that important data has been committed to disk before continuing. Yol
can sometimes use it when you're debugging a program to make sure that the program is writing data and r
hanging. Note that an implied flush operation is carried out when fclose is called, so you don't need to call
fflush before fclose.

fseek

#include <stdio.h>

int fseek(FILE *stream, long int offset, int whence);

93



fgetc, getc, getchar

The fseek function is the file stream equivalent of the Iseek system call. It sets the position in the stream for
the next read or write on that stream. The meaning and values of the offset and whence parameters are the
same as those we gave for Iseek above. However, where Iseek returns an off_t, fseek returns an integer: O |
succeeds, -1 if it fails, with errno set to indicate the error. So much for standardization!

fgetc, getc, getchar

#include <stdio.h>
int fgetc(FILE *stream);

int getc(FILE *stream);
int getchar();

The fgetc function returns the next byte, as a character, from a file stream. When it reaches the end of the fi
or there is an error, it returns EOF. You must use ferror or feof to distinguish the two cases.

The getc function is equivalent to fgetc, except that you can implement it as a macro, in which case the stre:
argument must not have side effects (i.e. it can't affect variables that are neither local nor passed to the
functions as parameters). Also, you can't then use the address of getc as a function pointer.

The getchar function is equivalent to getc(stdin) and reads the next character from the standard input.

fputc, putc, putchar

#include <stdio.h>

int fputc(int c, FILE *stream);
int putc(int ¢, FILE *stream);
int putchar(int c);

The fputc function writes a character to an output file stream. It returns the value it has written, or EOF on
failure.

As with fgetc/getc, the function putc is equivalent to fputc, but you may implement it as a macro.

The putchar function is equivalent to putc(c,stdout), writing a single character to the standard output. Note
that putchar takes and getchar returns characters as ints, not char. This allows the end of file (EOF) indicatc
to take the value -1, outside the range of character numbers codes.

fgets, gets

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);
char *gets(char *s);

The fgets function reads a string from an input file stream. It writes characters to the string pointed to by s
until a newline is encountered, n—1 characters have been transferred or the end of file is reached, whicheve
occurs first. Any newline encountered is transferred to the receiving string and a terminating null byte, \0, is
added. Only a maximum of n—1 characters are transferred in any one call, because the null byte must be ad
to finish the string, and make up the n bytes.

94



Formatted Input and Output

When it successfully completes, fgets returns a pointer to the string s. If the stream is at the end of a file, it
sets the EOF indicator for the stream and fgets returns a null pointer. If a read error occurs, fgets returns a r
pointer and sets errno to indicate the type of error.

The gets function is similar to fgets, except that it reads from the standard input and discards any newline
encountered. It adds a trailing null byte to the receiving string. Note that gets doesn't limit the number of
characters that can be transferred, so it could overrun its transfer buffer. Consequently, you should avoid us
it and use fgets instead. Many security issues on the Internet can be traced back to programs that are made
overflow a buffer of some sort or another. This is one such, so be careful!

Formatted Input and Output

There are a number of library functions for producing output in a controlled fashion that you may be familiar
with if you've programmed in C. These functions include printf and friends for printing values to a file stream
and scanf et al. for reading values from a file stream.

printf, fprintf and sprintf

#include <stdio.h>

int printf(const char *format, ...);
int sprintf(char *s, const char *format, ...);
int fprintf(FILE *stream, const char *format, ...);

The printf family of functions format and output a variable number of arguments of different types. The way
each is represented in the output stream is controlled by the format parameter, which is a string that contain
ordinary characters to be printed and codes, called conversion specifiers, that indicate how and where the
remaining arguments are to be printed.

The printf function produces its output on the standard output. The fprintf function produces its output on a
specified stream. The sprintf function writes its output and a terminating null character into the string s passe
as a parameter. This string must be large enough to contain all of the output. There are other members of tt
printf family that deal with their arguments in different ways. See the printf manual page for more details,

Ordinary characters are passed unchanged into the output. Conversion specifiers cause printf to fetch and
format additional arguments passed as parameters. They always start with a % character. Here's a simple
example,
printf("Some numbers: %d, %d, and %d\n", 1, 2, 3);
which produces, on the standard output:
Some numbers: 1, 2, and 3
To print a % character, we need to use %%, so that it doesn't get confused with a conversion specifier.
Here are some of the most commonly used conversion specifiers:

* %d, %i Print an integer in decimal.

* %0, %x Print an integer in octal, hexadecimal.

* %c Print a character.

95



Formatted Input and Output

%s Print a string.

%f Print a floating point (single precision) number.
%e Print a double precision number, in fixed format.
%g Print a double in a general format.

It's very important that the number and type of the arguments passed to printf match the conversion specifie
in the format string. An optional size specifier is used to indicate the type of integer arguments. This is eithel
h, for example %hd, to indicate a short int, or I, for example %ld, to indicate a long int. Some compilers can
check these printf statements, but they aren't infallible. If you are using the GNU compiler gcc Wformat does
this.

Here's another example:

char initial ='A'";
char *surname = "Matthew";
double age = 10.5;

printf("Hello Miss %c %s, aged %g\n", initial, surname, age);
This produces:

Hello Miss A Matthew, aged 10.5

You can gain greater control over the way items are printed by using field specifiers. These extend the
conversion specifiers to include control over the spacing of the output. A common use is to set the number ¢
decimal places for a floating point number, or to set the amount of space around a string.

Field specifiers are given as numbers immediately after the % character in a conversion specifier. Here are
some more examples of conversion specifiers and resulting output. To make things a little clearer, we'll use
vertical bars to show the limits of the output.

Format Argument | Output |
%10s "Hello" | Hello]
%-10s "Hello" [Hello |

%10d 1234 | 1234|
%-10d 1234 [1234 |
%010d 1234 0000001234 |
%10.4f 12.34 | 12.3400|
%*s 10,"Hello" | Hello]

All of these examples have been printed in a field width of ten characters. Note that a negative field width
means that the item is written left—justified within the field. A variable field width is indicated by using an
asterisk, *. In this case, the next argument is used for the width. A leading zero indicates the item is written
with leading zeros. According to the POSIX specification, printf doesn't truncate fields; rather it expands the
field to fit. So, for example if we try to print a string longer than the field, the field grows:

Format Argument | Output |
%10s "HelloTherePeeps" |[HelloTherePeeps|

The printf functions return an integer, the number of characters written. This doesn't include the terminating
null in the case of sprintf. On error, these functions return a negative value and set errno.

96



Formatted Input and Output

scanf, fscanf and sscanf

#include <stdio.h>

int scanf(const char *format, ...);
int fscanf(FILE *stream, const char *format, ...);
int sscanf(const char *s, const char *format, ...);

The scanf family of functions work in a similar way to the printf group, except that they read items from a
stream and place values into variables at the addresses they're passed as pointer parameters. They use a f
string to control the input conversion in the same way and many of the conversion specifiers are the same.

It's very important that the variables used to hold the values scanned in by the scanf functions are of the
correct type and that they match the format string precisely. If they don't, your memory could be corrupted
and your program could crash. There won't be any compiler errors, but if you're lucky, you might get a
warning!

The format string for scanf and friends contains both ordinary characters and conversion specifiers, as for
printf. However, the ordinary characters are used to specify characters that must be present in the input.

Here is a simple example:

int num;
scanf("Hello %d", &num);

This call to scanf will only succeed if the next five characters on the standard input match "Hello". Then, if
the next characters form a recognizable decimal number, the number will be read and the value assigned to
variable num. A space in the format string is used to ignore all whitespace (spaces, tabs, form feeds and
newlines) in the input between conversion specifiers. This means that the call to scanf will succeed and plac
1234 into the variable num given either of the following inputs.

Hello 1234
Hello1234

Whitespace is also usually ignored in the input when a conversion begins. This means that a format string o
%d will keep reading the input, skipping over spaces and newlines until a sequence of digits is found. If the
expected characters are not present, the conversion fails and scanf returns. This can lead to problems if yot
are not careful, an infinite loop can occur in your program if you leave a non—digit character in the input whil
scanning for integers.

Other conversion specifiers are:

* %d Scan a decimal integer.

* %0, %x Scan an octal, hexadecimal integer.

* %f, %e, %g Scan a floating point number.

* %cC Scan a character (whitespace not skipped).
* %s Scan a string.

* %[] Scan a set of characters (see below).

* %% Scan a % character.

Like printf, scanf conversion specifiers may also have a field width to limit the amount of input consumed. A
size specifier (either h for short or | for long) indicates whether the receiving argument is shorter or longer

97



Other Stream Functions

than the default. This means that %hd indicates a short int, %ld a long int, and %lg a double precision floatir
point number.

A specifier beginning * indicates that the item is to be ignored, that is not written into a receiving argument.
We use the %c specifier to read a single character in the input. This doesn't skip initial whitespace charactel

We use the %s specifier to scan strings, but we must take care. It will skip leading whitespace, but stops at:
first whitespace character in the string, so we're better using it for reading words, rather than general strings
Also, without a field—width specifier, there's no limit to the length of string it might read, so the receiving
string must be sufficient to hold the longest string in the input stream. It's better to use a field specifier, or to
use a combination of fgets and sscanf to read in a line of input and scan that.

We use the %] specifier to read a string composed of characters from a set. The format %[A-Z] will read a
string of capital letters. If the first character in the set is a caret, », the specifier reads a string that consists o
characters not in the set. So, to read a string with spaces in it, but stopping at the first comma, we can use
%[,

Given the input line,

Hello, 1234, 5.678, X, string to the end of the line
this call to scanf will correctly scan four items:

char s[256];
int n;

float f;

char c;

scanf("Hello,%d,%g, %c, %["\n]", &n,&f,&c,s);
The scanf functions return the number of items successfully read, which will be zero if the first item fails. If
the end of the input is reached before the first item is matched, EOF is returned. If a read error occurs on thi
file stream, the stream error flag will be set and the error variable, errno, will be set to indicate the type of
error. See the section on stream errors below for more details.
In general, scanf and friends are not highly regarded, for three reasons:

« Traditionally, the implementations have been buggy.

* They're inflexible to use.

» They lead to code where it's very difficult to work out what is being parsed.

Try to use other functions, like fread or fgets to read input lines and the string functions to break the input in
the items you need.

Other Stream Functions

There are a number of other stdio library functions that use either stream parameters or the standard strean
stdin, stdout, stderr:

* fgetpos Get the current position in a file stream.

98



Try It Out — Another File Copy Program

« fsetpos Set the current position in a file stream.

« ftell Return the current file offset in a stream.

» rewind Reset the file position in a stream.

- freopen Reuse a file stream.

« setvbuf Set the buffering scheme for a stream.

e remove Equivalent to unlink, unless the path parameter is a directory in which case it's equivalent tc
rmdir.

These are all library functions documented in section 3 of the UNIX man pages.

You can use the file stream functions to re—-implement the file copy program, but using library functions. Tak
a look at copy_stdio.c.

Try It Out — Another File Copy Program

The program is very similar to earlier versions, but the character—by-character copy is accomplished using
calls to the functions referenced in stdio.h:

#include <stdio.h>
#include <stdlib.h>

int main()

{
int c;
FILE *in, *out;

in = fopen(“file.in","r");
out = fopen(“file.out","w");

while((c = fgetc(in)) = EOF)
fputc(c,out);

exit(0);
}

Running this program as before, we get:

$ time copy_stdio
1.69user 0.78system 0:03.70elapsed 66%CPU

This time, the program runs in 3.7 seconds, not as fast as the low level block version, but a great deal bettel
than the other single character at a time version. This is because the stdio library maintains an internal buffe
within the FILE structure and the low level system calls are only made when the buffer fills. Feel free to
experiment yourself with testing line—by-line and block stdio copying code to see how they perform, relative
to the three examples we've tested here.

Stream Errors

To indicate an error, many of the stdio library functions return out of range values, such as null pointers or
the constant EOF. In these cases, the error is indicated in the external variable errno:

#include <errno.h>

extern int errno;

99



Streams and File Descriptors

Important Note that many functions may change the value of errno. Its value is only valid when a function
has failed. You should inspect it immediately after a function has indicated failure. You should
always copy it into another variable before using it, because printing functions, such as fprintf,
might alter errno themselves.

You can also interrogate the state of a file stream to determine whether an error has occurred, or the end of

has been reached.

#include <stdio.h>

int ferror(FILE *stream);
int feof(FILE *stream);
void clearerr(FILE *stream);

The ferror function tests the error indicator for a stream and returns non-zero if it's set, zero otherwise.

The feof function tests the end—of—file indicator within a stream and returns non-zero if it is set, zero
otherwise. You use it like this:

if(feof(some_stream))
[* We're at the end */

The clearerr function clears the end—of-file and error indicators for the stream to which stream points. It has
no return value and no errors are defined. You can use it to recover from error conditions on streams. One
example might be to resume writing to a stream after a disk full error has been resolved.

Streams and File Descriptors

Each file stream is associated with a low level file descriptor. You can mix low—level input and output
operations with higher level stream operations, but this is generally unwise, as the effects of buffering can b
difficult to predict.

#include <stdio.h>

int fileno(FILE *stream);
FILE *fdopen(int fildes, const char *mode);

We can determine which low-level file descriptor is being used for a file stream by calling the fileno
function. It returns the file descriptor for a given stream, or —1 on failure. This can be a useful function to use
if you need low—level access to an open stream, for example to call fstat on it.

We can create a new file stream based on an already opened file descriptor by calling the fdopen function.
Essentially, this function is providing stdio buffers around an already open file descriptor, which might be an
easier way to explain it.

The fdopen function operates in the same way as the fopen function, but, instead of a file name, it takes a Ic
level file descriptor. This can be useful if we have used open to create a file, perhaps to get fine control over
the permissions, but want to use a stream for writing to it. The mode parameter is the same as for the fopen
function and must be compatible with the file access modes established when the file was originally opened
fdopen returns the new file stream or NULL on failure.

100



File and Directory Maintenance
File and Directory Maintenance

The standard libraries and system calls provide complete control over the creation and maintenance of files
and directories.

chmod

You can change the permissions on a file or directory using the chmod system call. This forms the basis of
the chmod shell program.

#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

The file specified by path is changed to have the permissions given by mode. The modes are specified as ir
the open system call, a bitwise OR of required permissions. Unless the program has been given appropriate
privileges, only the owner of the file or a superuser can change its permissions.

chown

A superuser can change the owner of a file using the chown system call.

#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);

The call uses the numeric values of the user and group IDs (culled from getuid and getgid calls) and a const
which can restrict who can change file ownership. The owner and group of a file are changed if the
appropriate privileges are set.

Note POSIX actually allows systems where non-superusers can change file ownerships. All
'‘proper' POSIX systems won't allow this, but, strictly speaking, it's an extension (for FIPS
151-2). The kind of systems we'll be dealing with in this book are XSI (X/Open System
Interface) conformant and they do enforce ownership rules.

unlink, link, symlink

We can remove a file using unlink.

#include <unistd.h>

int unlink(const char *path);
int link(const char *pathl, const char *path2);
int symlink(const char *pathl, const char *path2);

The unlink system call removes the directory entry for a file decrements the link count for it. It returns 0 if the
unlinking was successful, —1 on an error. You must have write and execute permissions in the directory whe
the file has its directory entry for this call to function.

If the count reaches zero and no process has the file open, the file is deleted. In actual fact, the directory en
is always removed, but the file's space will not be recovered until the last process (if any) closes it. The rm
program uses this call. Additional links represent alternative names for a file, normally created by the In

101



mkdir, rmdir

program. We can create new links to a file programmatically by using the link system call.

Creating a file with open and then calling unlink on it is a trick some programmers use to create transient file
These files are available to the program only while they are open, they will effectively be automatically
deleted when the program exits and the file is closed.

The link system call creates a new link to an existing file, pathl. The new directory entry is specified by
path2. We can create symbolic links using the symlink system call in a similar fashion. Note that symbolic
links to a file do not prevent the file from being effectively deleted as normal (hard) links do.

mkdir, rmdir

We can create and remove directories using the mkdir and rmdir system calls.
#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

The mkdir system call is used for creating directories and is the equivalent of the mkdir program. mkdir
makes a new directory with path as its name. The directory permissions are passed in the parameter mode
are given as in the O_CREAT option of the open system call and, again, subject to umask.

#include <unistd.h>

int rmdir(const char *path);

The rmdir system call removes directories, but only if they are empty. The rmdir program uses this system ¢
to do its job.

chdir, getcwd

A program can navigate directories in much the same way as a user moves around the UNIX file system. A:
we use the cd command in the shell to change directory, so a program can use the chdir system call.

#include <unistd.h>

int chdir(const char *path);

A program can determine its current working directory by calling the getcwd function.
#include <unistd.h>

char *getcwd(char *buf, size_t size);

The getcwd function writes the name of the current directory into the given buffer, buf. It returns null if the
directory name would exceed the size of the buffer (an ERANGE error), given as the parameter size. It retur
buf on success.

Important getcwd may also return null if the directory is removed (EINVAL) or permissions changed
(EACCESS) while the program is running.

102



Scanning Directories
Scanning Directories

A common problem on UNIX systems is scanning directories, i.e. determining the files that reside in a
particular directory. In shell programs, it's easy just let the shell expand a wildcard expression. In the past,
different UNIX variants have allowed programmatic access to the low-level file system structure. We can,
still, open a directory as a regular file and directly read the directory entries, but different file system
structures and implementations have made this approach non—portable. A standard suite of library functions
has now been developed that make directory scanning much simpler.

The directory functions are declared in a header file, dirent.h. They use a structure, DIR, as a basis for
directory manipulation. A pointer to this structure, called a directory stream (a DIR *), acts in much the
same way as a file steam (FILE *) does for regular file manipulation. Directory entries themselves are
returned in dirent structures, also declared in dirent.h, as one should never alter the fields in the DIR structu
directly.

We'll review these functions:

« opendir, closedir
* readdir

« telldir

» seekdir

opendir

The opendir function opens a directory and establishes a directory stream. If successful, it returns a pointer
a DIR structure to be used for reading directory entries.

#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *name);

opendir returns a null pointer on failure. Note that a directory stream uses a low—level file descriptor to acce:
the directory itself, so opendir could fail with too many open files.

readdir

#include <sys/types.h>
#include <dirent.h>

struct dirent *readdir(DIR *dirp);

The readdir function returns a pointer to a structure detailing the next directory entry in the directory stream
dirp. Successive calls to readdir return further directory entries. On error, and at the end of the directory,
readdir returns NULL. POSIX compliant systems leave errno unchanged when returning NULL at end of
directory and set it when an error occurs.

Note that readdir scanning isn't guaranteed to list all the files (and subdirectories) in a directory if there are
other processes creating and deleting files in the directory at the same time.

103



telldir

The dirent structure containing directory entry details includes the following entries:

e ino_td_ino The inode of the file.
e char d_name[] The name of the file.

To determine further details of a file in a directory, we need a call to stat.

telldir

#include <sys/types.h>
#include <dirent.h>

long int telldir(DIR *dirp);

The telldir function returns a value that records the current position in a directory stream. You can use this ir
subsequent calls to seekdir to reset a directory scan to the current position.

seekdir

#include <sys/types.h>
#include <dirent.h>

void seekdir(DIR *dirp, long int loc);

The seekdir function sets the directory entry pointer in the directory stream given by dirp. The value of loc,
used to set the position, should have been obtained from a prior call to telldir.

closedir

#include <sys/types.h>
#include <dirent.h>

int closedir(DIR *dirp);

The closedir function closes a directory stream and frees up the resources associated with it. It returns 0 on
success and -1 if there is an error.

In the next program, printdir.c, we put together a lot of the file manipulation functions to create a simple
directory listing. Each file in a directory is listed on a line by itself. Each subdirectory has its name, followed
by a slash and the files in it are listed indented by four spaces.

The program changes directory into the subdirectories so that the files it finds have usable names, i.e. they
be passed directly to opendir. The program will fail on very deeply nested directory structures, because ther
a limit on the allowed number of open directory streams.

We could, of course, make it more general by taking a command line argument to specify the start point.
Check out the Linux source code of such utilities as Is and find for ideas on a more general implementation.

104



Try It Out — A Directory Scanning Program

Try It Out — A Directory Scanning Program

1. We start with the appropriate headers and then a function, printdir, which prints out the current
directory. It will recurse for subdirectories, using the depth parameter for indentation.

#include <unistd.h>
#include <stdio.h>
#include <dirent.h>
#include <string.h>
#include <sys/stat.h>
#include <stdlib.h>

void printdir(char *dir, int depth)
{

DIR *dp;

struct dirent *entry;

struct stat statbuf;

if((dp = opendir(dir)) == NULL) {
fprintf(stderr,"cannot open directory: %s\n", dir);
return;
}
chdir(dir);
while((entry = readdir(dp)) '= NULL) {
Istat(entry—>d_name,&statbuf);
if(S_ISDIR(statbuf.st_mode)) {
/* Found a directory, but ignore . and .. */
if(stremp(".",entry—>d_name) == 0 ||
strcmp("..",entry=>d_name) == 0)
continue;
printf("%*s%s/\n",depth," ,entry—>d_name);
/* Recurse at a new indent level */
printdir(entry—>d_name,depth+4);

else printf("%*s%s\n",depth,",entry—>d_name);

}
chdir("..");
closedir(dp);

2. Now we move onto the main function:

int main()

{
printf("Directory scan of /home/neil:\n");
printdir("/home/neil",0);
printf("done.\n");

exit(0);
}
3. The program produces output like this (edited for brevity):

$ printdir
Directory scan of /home/neil:
less
lessrc
.term/
termrc
.elm/
elmrc

105



How It Works

Mail/
received
mbox

.bash_history

fvwmrc

tin/
.mailidx/
.index/
563.1
563.2
posted
attributes
active
tinrc
done.

How It Works

Most of the action is within the printdir function, so that's where we'll look. After some initial error checking,
using opendir, to see that the directory exists, printdir makes a call to chdir to the directory specified. While
the entries returned by readdir aren't null, the program checks to see whether the entry is a directory. If it isr
it prints the file entry with indentation depth.

If the entry is a directory, we meet a little bit of recursion. After the . and .. entries (the current and parent
directories) have been ignored, the printdir function calls itself and goes through the same process again. H
does it get out of these loops? Once the while loop has finished, the call chdir("..") takes it back up the
directory tree and the previous listing can continue. Calling closedir(dp) makes sure that the number of oper
directory streams isn't higher than it needs to be.

As a taster for the discussion of the UNIX environment in Chapter 4, let's look at one way we can make the
program more general. The program is limited because it's specific to the directory /home/neil. With the
following changes to main, we could turn it into a more useful directory browser:

int main(int argc, char* argv[])
{
char *topdir =".";
if (argc >= 2)
topdir=argv[1];

printf("Directory scan of %s\n",topdir);
printdir(topdir,0);
printf("done.\n");

exit(0);
}

We've changed three lines and added five, but now it's a general—-purpose utility with an optional parameter
the directory name, which defaults to the current directory. You can run it using the command:

$ printdir /usr/local | more

The output will be paged so that the user can page back and forth through the output. Hence, the user has ¢
a convenient little general—purpose directory tree browser. With very little effort, you could add space usage
statistics, limit depth of display, and so on.

106



Errors
Errors

As we've seen, many of the system calls and functions described in this chapter can fail for a number of
reasons. When they do, they indicate the reason for their failure by setting the value of the external variable
errno. This variable is used by many different libraries as a standard way to report problems. It bears repeat
that the program must inspect the errno variable immediately after the function giving problems, since it may
be overwritten by the next function called, even if that function itself doesn't fail.

The values and meanings of the errors are listed in the header file errno.h. They include:

« EPERM Operation not permitted
« ENOENT No such file or directory
* EINTR Interrupted system call

* EIO 1/O Error

« EBUSY Device or resource busy
* EEXIST File exists

* EINVAL Invalid argument

« EMFILE Too many open files

*« ENODEV No such device

» EISDIR Is a directory

« ENOTDIR Isn't a directory

There are a couple of useful functions for reporting errors when they occur: strerror and perror.

#include <string.h>

char *strerror(int errnum);

The strerror function maps an error number into a string describing the type of error that has occurred. This
can be useful for logging error conditions.

#include <stdio.h>

void perror(const char *s);

The perror function also maps the current error, as reported in errno, into a string and prints it on the standa
error stream. It's preceded by the message given in the string s (if not null), followed by a colon and a space
For example,

perror("program");

might give the following on the standard error output:

program: Too many open files

Advanced Topics

Here, we'll cover a couple of topics that you might like to skip because they're seldom used. Having said tha
we've put them here for your reference because they can provide simple solutions to some tricky problems.

107



fentl

fentl

The fentl system call provides further ways to manipulate low level file descriptors.

#include <fcntl.h>

int fentl(int fildes, int cmd);
int fentl(int fildes, int cmd, long arg);

You can perform several miscellaneous operations on open file descriptors with the fcntl system call,
including duplicating them, getting and setting file descriptor flags, getting and setting file status flags and
managing advisory file locking.

The various operations are selected by different values of the command parameter, cmd as defined in fcntl.|
Depending on the command chosen, the system call will require a third parameter, arg.

The call,

fentl(fildes, F_DUPFD, newfd);

returns a new file descriptor with a numerical value equal to or greater than the integer newfd. The new
descriptor is a copy of the descriptor fildes. Depending on the number of open files and the value of newfd,
this can be effectively the same as dup(fildes).

The call,

fentl(fildes, F_GETFD)

returns the file descriptor flags as defined in fcntl.h. These include FD_CLOEXEC, which determines
whether or not the file descriptor is closed after a successful call to one of the exec family of system calls.

The call,

fentl(fildes, F_SETFD, flags)

is used to set the file descriptor flags, usually just FD_CLOEXEC.
The calls,

fentl(fildes, F_GETFL)
fentl(fildes, F_SETFL, flags)

respectively get and set the file status flags and access modes. You can extract the file access modes by us
the mask O_ACCMODE defined in fcntl.h. Other flags include those passed in a third argument to open whe
used with O_CREAT. Note that you can't set all flags. In particular, you can't set file permissions using fcntl.

You can also implement advisory file locking via fcntl. Refer to section 2 of the man pages for more
information, or wait for Chapter 7, where we'll be discussing file locking.

108



mmap

mmap

UNIX provides a useful facility that allows programs to share memory, and the good news is that it's been
included in version 2.0 of the Linux kernel. The mmap (for memory map) function sets up a segment of
memory that can be read or written by two or more programs. Changes made by one program are seen by t
others.

You can use the same facility to manipulate files. You can make the entire contents of a disk file look as if it'
an array in memory. If the file consists of records that can be described by C structures, you can update the
file using structure array accesses.

This is made possible by the use of virtual memory segments that have special permissions set. Reading frc
and writing to the segment causes the operating system to read and write the appropriate part of the disk file

The mmap function creates a pointer to a region of memory associated with the contents of the file accesse
through an open file descriptor.

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flags, int fildes, off_t off);

You can alter the start of the file data that is accessed by the shared segment by passing the off parameter.
open file descriptor is passed as fildes. The amount of data that can be accessed (i.e. the length of the men
segment) is set via the len parameter.

You can use the addr parameter to request a particular memory address. If it's zero, the resulting pointer is
allocated automatically. This is the recommended usage as it is difficult to be portable otherwise, systems v:
as to the available address ranges.

The prot parameter is used to set access permissions for the memory segment. This is a bitwise OR of the
following constant values.

* PROT_READ The segment can be read.

* PROT_WRITE The segment can be written.

* PROT_EXEC The segment can be executed.

* PROT_NONE The segment can't be accessed.

The flags parameter controls how changes made to the segment by the program are reflected elsewhere.

MAP_PRIVATE The segment is private, changes are local.
MAP_SHARED The segment changes are made in the file.
MAP_FIXED The segment must be at the given address, addr.

The msync function causes the changes in part or all of the memory segment to be written back to (or read
from) the mapped file.

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

The part of the segment to be updated is given by the passed start address, addr, and length, len. The flags
parameter controls how the update should be performed.

109



Try It Out — Using mmap

MS_ASYNC Perform asynchronous writes.
MS_SYNC Perform synchronous writes.
MS_INVALIDATE Read data back in from the file.

The munmap function releases the memory segment.

#include <sys/mman.h>

int munmap(void *addr, size_t len);

The following program, mmap_eg.c, shows a file of structures being updated using mmap and array-style
accesses. Unfortunately, Linux kernels before 2.0 don't fully support this use of mmap. The program does
work correctly on Sun Solaris and other systems.

Try It Out — Using mmap

1. We start by defining a RECORD structure and then create NRECORDS versions each recording the
number. These are appended to the file records.dat.

#include <unistd.h>
#include <stdio.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <stdlib.h>

typedef struct {
int integer;
char string[24];
} RECORD;

#define NRECORDS (100)

int main()

{
RECORD record, *mapped,;
inti, f;
FILE *fp;

fp = fopen("records.dat","w+");

for(i=0; ikNRECORDS; i++) {
record.integer = i;
sprintf(record.string,"RECORD-%d",i);
fwrite(&record,sizeof(record),1,fp);

}
fclose(fp);
2.We now change the integer value of record 43 to 143, and write this to the 43rd record's string:

fp = fopen("records.dat","r+");
fseek(fp,43*sizeof(record),SEEK_SET);
fread(&record,sizeof(record),1,fp);

record.integer = 143;
sprintf(record.string,"RECORD-%d",record.integer);

fseek(fp,43*sizeof(record),SEEK_SET);

fwrite(&record,sizeof(record),1,fp);
fclose(fp);

110



Summary

3. We now map the records into memory and access the 43rd record in order to change the integer to
243 (and update the record string), again using memory mapping:

f = open("records.dat",0_RDWR);
mapped = (RECORD *)mmap(0, NRECORDS*sizeof(record),
PROT_READ|PROT_WRITE, MAP_SHARED, f, 0);

mapped[43].integer = 243;
sprintf(mapped[43].string,"RECORD-%d",mapped[43].integer);

msync((void *)mapped, NRECORDS*sizeof(record), MS_ASYNC);
munmap((void *)mapped, NRECORDS*sizeof(record));
close(f);

exit(0);
}

Later, we'll meet another shared memory facility: System V shared memory.

Summary

In this chapter, we've seen how UNIX provides direct access to files and devices. We've seen how library
functions build upon these low-level functions to provide flexible solutions to programming problems. In
consequence, we've been able to write a fairly powerful directory—scanning routine in just a few lines of cod

We've also learned enough about file and directory handling to convert the fledgling CD application that we
created at the end of Chapter 2 to a C program, using a more structured file—based solution. At this stage,
however, we could add no new functionality to the program, so we'll postpone our rewrite until we've learnec
how to handle the screen and keyboard, which is the subject of the next two chapters.

111



Chapter 4: The UNIX Environment

Overview

When we write a program for UNIX, we have to take into account that the program will run in a

multitasking environment. This means that there will be other programs running at the same time sharing
the machine resources such as memory, disk space and CPU time. There may even be several instances o
same program running at the same time. It's important that these programs don't interfere with one another,
aware of their surroundings and can act appropriately.

In this chapter, we will consider the environment that programs operate in, how they can use that environme
to gain information about operating conditions and how users of the programs can alter their behavior. In
particular, we'll be looking at:

 Passing arguments to programs

» Environment variables

 Finding out what the time is

e Temporary files

 Getting information about the user and the host computer
» Causing and configuring log messages

« Discovering the limits imposed by the system

Program Arguments

When a UNIX program written in C runs, it starts at the function main. For UNIX programs, main is declared
as,

int main(int argc, char *argv[])

where argc is a count of the program arguments and argv is an array of character strings representing the
arguments themselves.

You might also see UNIX programs declaring main as:
main()

This will still work, as the return type will default to int and formal parameters that are not used in a function
need not be declared. argc and argv are still there, but if you don't declare them, you can't use them.

Whenever the operating system starts a new program, the parameters argc and argv are set up and passec
main. These parameters are usually supplied by another program, very often the shell that has requested th
the operating system start the new program. The shell takes the command line that it's given, breaks it up in
individual words and uses these for the argv array. Remember that a UNIX shell performs wild card
expansion of file name arguments before argc and argv are set, whereas the DOS shell expects programs t
accept arguments with wild cards.

For example, if in the shell, we give the command,

$ myprog left right ‘and center'

112



Try It Out — Program Arguments

the program myprog will be started at main, with parameters:

argc: 4
argv: {"myprog", "left", "right", "and center"}

Note that the argument count includes the name of the program itself and the argv array contains the progre
name as its first element, argv[0]. Because we used quotes in the shell command, the fourth argument cons
of a string containing spaces.

You'll be familiar with all of this if you've programmed in ISO/ANSI C. The arguments to main correspond
to the positional parameters in shell scripts, $0, $1, and so on. While ISO/ANSI C states that main must retu
int, the X/Open specification contains the explicit declaration given above.

Command line arguments are useful for passing information to programs. We could use them in a database
application to pass the name of the database we wish to use. This would allow us to use the same program
more than one database. Many utility programs also use command line arguments to change their behavior
to set options. You would usually set these so—called flags or switches using command line arguments that
begin with a dash. For example, the sort program takes a —r switch to reverse the normal sort order:

$ sort —r file

Command line options are very common and using them consistently will be a real help to those who use yc
program. In the past, each utility program adopted its own approach to command line options, which led to
some confusion. For example, take a look at the way these commands take parameters:

$ tar cvfB /tmpl/file.tar 1024

$ dd if=/dev/fd0 of=/tmpffile.dd bs=18k
$ Is —Istr

$ls—l-s-t-r

Another little foible of some programs is to make the option +x (for example) perform the opposite function
to —x.

Remembering the order and meaning of all these program options is difficult enough without having to cope
with idiosyncratic formats. Often the only recourse is to a —h (help) option or a man page, if the programmer
has provided one. As we'll soon see, there's a neat solution to these problems, provided by getopt. For the
moment, though, let's just look at dealing with program arguments as they are passed.

Try It Out — Program Arguments

Here's a program, args.c, that examines its own arguments:

#include <stdio.h>
int main(int argc, char *argv[])
{

int arg;

for(arg = 0; arg < argc; arg++) {

if(argv[arg][0] == '-")
printf("option: %s\n", argv[arg]+1);
else

printf("argument %d: %s\n", arg, argv[arg]);

113



How It Works

exit(0);
}

When we run this program, it just prints out its arguments and detects options. The intention is that the
program takes a string argument and an optional file name argument introduced by a —f option. Other optior
might also be defined:

$ .Jargs —i —Ir 'hi there' —f fred.c
argument O: args

option: i

option: Ir

argument 3: hi there

option: f

argument 5: fred.c

How It Works

The program simply uses the argument count, argc, to set up a loop to examine all of the program argumen
It detects options by looking for an initial dash.

In this example, if we intended the options —I and —r to be available, we've missed the fact that the —Ir perha
ought to be treated the same as - -r.

The X/Open specification defines a standard usage for command line options (the Utility Syntax Guidelines)
and also provides a standard programming interface for providing command line switches in C programs: th
getopt function.

All command line switches should start with a dash and consist of a single letter or number. Options that tak
no further argument can be grouped together behind one dash. So, the two Is examples we met earlier do
follow the guidelines. Each option should be followed by any value it requires as a separate argument. The
example breaks this rule; the tar example separates options and their values completely!

getopt

To help us adhere to these guidelines, Linux gives us the getopt facility, which supports the use of options
with and without values and is simple to use.

#include <unistd.h>

int getopt(int argc, char *const argv[], const char *optstring);
extern char *optarg;
extern int optind, opterr, optopt;

The getopt function takes the argc and argv parameters as passed to the program's main function and an
options specifier string. This string tells getopt what options are defined for the program and whether or not
they have associated values. The optstring is simply a list of characters, each representing a single characte

option. If a character is followed by a colon, it indicates that the option has an associated value which will be
taken as the next argument. The getopts command in bash performs a very similar function.

The call,

getopt(argc, argv, "if:Ir");

114



Try It Out — getopt

would be used to handle our example above. It allows for simple options —i, —| , —-r and —f, followed by a
filename argument. Calling the command with the same parameters but in a different order will alter the
behavior. Try it out when we get to the sample code on the following page.

The return result for getopt is the next option character found in the argv array (if there is one). We call geto
repeatedly to get each option in turn. It has the following behavior:

If the option takes a value, that value is pointed to by the external variable optarg.

getopt returns —1 when there are no more options to process. A special argument, ——, will cause getopt to s
scanning for options.

It returns ? if there is an unrecognized option, which it stores in the external variable optopt.
If an option requires a value (such as —f in our example) and no value is given, getopt returns :.

The external variable, optind, is set to the index of the next argument to process. getopt uses it to remembel
how far it's got. Programs would rarely need to set this variable. When all the option arguments have been
processed, optind indicates where the remaining arguments can be found at the end of the argv array.

Some versions of getopt will stop at the first non—option argument, returning —1 and setting optind. Others,
such as that provided with Linux, can process options wherever they occur in the program arguments. Note
that, in this case, getopt effectively rewrites the argv array so that all of the non—option arguments are
presented together, starting at argv[optind]. For the GNU version of getopt this behavior is controlled by the
POSIXLY_CORRECT environment variable. If set, getopt will stop at the first non—option argument.
Additionally, some getopt implementations also print error messages for unknown options. Note that the
POSIX specification says that, if the opterr variable is non-zero, getopt will print an error message to stderr.
We'll see an example of both these behaviors in a little while.

Try It Out — getopt

Let's use getopt for our example and call the new program argopt.c:

#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[])

{ .
int opt;
while((opt = getopt(argc, argv, "if:Ir")) 1= -1) {
switch(opt) {
case 'i".
case 'I'"
case 'r'"
printf("option: %c\n", opt);
break;
case 'f"
printf("filename: %s\n", optarg);
break;
case "
printf("option needs a value\n");
break;
case '?"
printf("unknown option: %c\n", optopt);

115



How It Works

break;

}
}
for(; optind < argc; optind++)
printf("argument: %s\n", argv[optind]);
exit(0);
}

Now, when we run the program, we see that all the command line arguments are handled automatically:

$ .Jargopt —i —Ir 'hi there' —f fred.c —q
option: i

option: |

option: r

filename: fred.c

argopt: invalid option—q

unknown option: g

argument: hi there

How It Works

The program repeatedly calls getopt to process option arguments until none remain, when getopt returns -1
For each option, the appropriate action is taken, including dealing with unknown options and missing values
Depending on your version of getopt you might see slightly different output from that shown above,
especially error messages, but the meaning will be clear.

Once all options have been processed, the program simply prints out the remaining arguments as before, b
starting from optind.

Environment Variables

We met environment variables in Chapter 2. These are variables that can be used to control the behavior of
shell scripts and other programs. You can also use them to configure the user's environment. For example,

each user has an environment variable, HOME, that defines his home directory, the default starting place fo
his or her session. As we've seen, we can examine environment variables from the shell prompt:

$ echo $SHOME
/home/neil

You can also use the shell's set command to list all of the environment variables.

The UNIX specification defines many standard environment variables used for a variety of purposes,
including terminal type, default editors, time zones and so on. A C program may gain access to environmen
variables using the putenv and getenv functions.

#include <stdlib.h>

char *getenv(const char *name);
int putenv(const char *string);

The environment consists of strings of the form name=value. The getenv function searches the environmen
for a string with the given name and returns the value associated with that name. It will return null if the

requested variable doesn't exist. If the variable exists but has no value, getenv succeeds with a string, the fi
byte of which is null. The string returned by getenv, and held in static storage provided by getenv, mustn't be

116



Try It Out — getenv and putenvO

overwritten by the application, as it will by any subsequent calls to getenv.

The putenv function takes a string of the form name=value and adds it to the current environment. It will fail
and return -1 if it can't extend the environment due to lack of available memory. When this happens, the err
variable errno will be set to ENOMEM.

Let's write a program to print out the value of any environment variable we choose. We'll also arrange to set
the value if we give the program a second argument.

Try It Out — getenv and putenvO

1. The first few lines after the declaration of main ensure that the program, environ.c, has been called
correctly:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])

{

char *var, *value;

iflargc == 1 || argc > 3) {
fprintf(stderr,"usage: environ var [value]\n");
exit(1);
}
2. That done, we fetch the value of the variable from the environment, using getenv:

var = argv[1];
value = getenv(var);
if(value)
printf("Variable %s has value %s\n", var, value);
else
printf("Variable %s has no value\n", var);

3. Next, we check whether the program was called with a second argument. If it was, we set the variab
to the value of that argument by constructing a string of the form name=value and then calling puten:

if(argc == 3) {

char *string;

value = argv[2];

string = malloc(strlen(var)+strlen(value)+2);

if(!string) {
fprintf(stderr,"out of memory\n");
exit(1);

}

strepy(string,var);

strcat(string,"=");

strcat(string,value);

printf("Calling putenv with: %s\n",string);

if(putenv(string) !=0) {
fprintf(stderr,"putenv failed\n");
free(string);
exit(1);

}

4. Finally, we discover the new value of the variable by calling getenv once again:

value = getenv(var);

117



Use of Environment Variables

if(value)

printf("New value of %s is %s\n", var, value);
else

printf("New value of %s is null??\n", var);

}
exit(0);
}

When we run this program, we can see and set environment variables:

$ environ HOME

Variable HOME has value /home/neil
$ environ FRED

Variable FRED has no value

$ environ FRED hello

Variable FRED has no value

Calling putenv with: FRED=hello
New value of FRED is hello

$ environ FRED

Variable FRED has no value

Notice that the environment is only local to the program. Changes that we make within the program are not
reflected outside it because variable values are not propagated from the child process (our program) to the
parent (the shell).

Use of Environment Variables

Programs often use environment variables to alter the way they work. Users can set the values of these
environment variables either in their default environment, via a .profile file read by their login shell, a
shell-specific startup (rc) file or by specifying variables on the shell command line. For example:

$ ./environ FRED

Variable FRED has no value

$ FRED=hello environ FRED
Variable FRED has value hello

The shell takes initial variable assignments as temporary changes to environment variables. In the second
example above, the program environ runs in an environment where the variable FRED has a value.

For instance, in a future version of our CD database application, we could change an environment variable,
say CDDB, to indicate the database to use. Each user could then specify his or her own default, or use a sh
command to set it on a run—by-run basis:

$ CDDB=mycds; export CDDB
$ cdapp

or

$ CDDB=mycds cdapp

Important Environment variables are a mixed blessing and you should use them with care. They are more
'hidden' to the user than command line options and, as such, can make debugging harder. In a
sense, environment variables are like global variables in that they may alter the behavior of a
program, giving unexpected results.

118



The environ Variable

The environ Variable

As we've seen, the program environment is made up of strings of the form name=value. This array of string:
is made available to programs directly via the environ variable which is declared as:

#include <stdlib.h>

extern char **environ;
Try It Out — environ

Here's a program, showenv.c, that uses the environ variable to print out the environment variables:

#include <stdlib.h>
#include <stdio.h>

extern char **environ;

int main()

{

char **env = environ;

while(*env) {
printf("%s\n",*env);
env++;
}
exit(0);
}

When we run this program on a Linux system we get the following output, which has been abbreviated a littl

$ ./showenv
HOSTNAME-=tilde.provider.com
LOGNAME=neil
MAIL=/var/spool/mail/neil
TERM=console
HOSTTYPE=i386
PATH=/usr/local/bin:/bin:/usr/bin:
HOME=/usr/neil
LS_OPTIONS=8bitcolor=tty -F -T 0O
SHELL=/bin/bash

PS1=\h:\\wW\$

pPS2=>

OSTYPE=Linux

How It Works

This program iterates through the environ variable, a null-terminated array of strings, to print out the whole
environment.

Time and Date
Often it can be useful for a program to be able to determine the time and date. It may wish to log the time fo
which it's run, or it may need to change the way it behaves at certain times. For example, a game might refu

to run during working hours, or a backup program might want to wait until the early hours before starting an

119



Try It Out - time

automatic backup.

Note  UNIX systems all use the same starting point for times and dates: midnight GMT on the 1st
January 1970. This is the 'start of the epoch’. All times in a UNIX system are measured as
seconds since then. This is similar to the way MS—-DOS handles times, except that the MS-DOS
epoch started in 1980. Other systems use other epoch start times.

Times are handled using a defined type, a time_t. This is an integer type large enough to contain dates and
times in seconds. On Linux systems, it's a long and is defined, together with functions for manipulating time
values, in the header file time.h.

Important On UNIX and Linux systems using a 32-bit time_t type the time will rollover in the year 2038.
By that time we hope that systems have moved to using a time_t that is larger than 32-bits. Mot
information on this Y2K38 problem can be found at http://www.comlinks.com/mag/ddates.htm

#include <time.h>

time_t time(time_t *tloc);
You can find the low level time value by calling the time function, which returns the number of seconds since
the start of the epoch. It will also write the returned value to a location pointed to by tloc, if this isn't a null
pointer.

Try It Out — time

Here's a simple program, envtime.c to demonstrate the time function:

#include <time.h>
#include <stdio.h>
#include <unistd.h>
int main()
{ . .

inti;

time_t the_time;

for(i=1;i<=10; i++) {
the_time = time((time_t *)0);
printf("The time is %ld\n", the_time);
sleep(2);
}
exit(0);
}

When we run this program, it prints the low-level time value every two seconds for 20 seconds.

$ ./envtime

The time is 928663786
The time is 928663788
The time is 928663790
The time is 928663792
The time is 928663794
The time is 928663796
The time is 928663798
The time is 928663800
The time is 928663802

120



How It Works

The time is 928663804

How It Works

The program calls time with a null pointer argument, which returns the time and date as a number of seconc
The program sleeps for two seconds and repeats the call to time for a total of ten times.

Using the time and date as a number of seconds since the start of 1970 can be useful for measuring how ol
something takes to happen. We could consider simply subtracting the values we get from two calls to time.
However, in its deliberations the ISO/ANSI C standard committee didn't specify that the time_t type be used
to measure time in seconds, so they invented a function, difftime, that will calculate the difference in second
between two time_t values and return it as a double:

#include <time.h>

double difftime(time_t timel, time_t time2);

The difftime function calculates the difference between two time values and returns the value timel-time2 a
a floating point number. For UNIX, the return value from time is a number of seconds and can be
manipulated, but for the ultimate in portability you should use difftime.

To present the time and date in a more meaningful way (to humans) we need to convert the time value into
recognizable time and date. There are standard functions to help with this.

The function gmtime breaks down a low—-level time value into a structure containing more usual fields:

#include <time.h>

struct tm *gmtime(const time_t timeval);

The structure tm is defined to contain at least the following members:

tm MemberDescription

int tm_sec Seconds, 0-61.

int tm_min Minutes, 0-59.

int tm_hour Hours, 0-23.

int tm_mday Day in the month, 1-31.

int tm_mon Month in the year, 0-11. (January= 0)
inttm_year Years since 1900.

int tm_wday) Day in the week, 0-6. (Sunday = 0)
int tm_yday Day in the year, 0—365.

int tm_isdst Daylight savings in effect.

The range for tm_sec allows for the occasional leap second, or double leap second.

Try It Out — gmtime

Here's a program, gmtime.c, that prints out the current time and date using the tm structure and gmtime:

#include <time.h>
#include <stdio.h>

121



How It Works

int main()

{

struct tm *tm_ptr;
time_t the_time;

(void) time(&the_time);
tm_ptr = gmtime(&the_time);

printf("Raw time is %ld\n", the_time);
printf("gmtime gives:\n");
printf("date: %02d/%02d/%02d\n",
tm_ptr—>tm_year, tm_ptr—>tm_mon+1, tm_ptr—->tm_mday);
printf("time: %02d:%02d:%02d\n",
tm_ptr—>tm_hour, tm_ptr—>tm_min, tm_ptr—->tm_sec);
exit(0);
}

When we run this program, we get a good approximation of the time and date:

$ ./gmtime; date

Raw time is 928663946
gmtime gives:

date: 99/06/06

time: 10:12:26

Sun Jun 6 11:12:26 BST 1999

How It Works

The program calls time to get the low-level time value and then calls gmtime to convert this into a structure
with useful time and date values. It prints these out using printf. Strictly speaking, we shouldn't print the raw
time value in this way, because it isn't guaranteed to be a long on all systems. We ran the date command
immediately after gmtime to compare its output.

However, we have a little problem here. If you're running this program in a time zone other than Greenwich

Mean Time, or if your local daylight savings time is in effect, you'll notice that the time (and possibly date) is
incorrect. This is because gmtime returns the time as GMT (now known as UTCCoordinated Universal Time
UNIX does this so that all programs and systems across the world are synchronized. Files created at the sa
moment in different time zones will appear to have the same creation time. To see the local time, we need f«
use the function localtime instead.

#include <time.h>

struct tm *localtime(const time_t *timeval);

The localtime function is identical to gmtime, except that it returns a structure containing values adjusted for
local time zone and daylight savings. If you try the gmtime program again, but use localtime in place of
gmtime, you should see a correct time and date reported.

To convert a broken—down tm structure into a raw time_t value, we can use the function mktime:

#include <time.h>

time_t mktime(struct tm *timeptr);

122



Try It Out - ctime

mktime will return -1 if the structure can't be represented as a time_t value.

For 'friendly’, as opposed to machine, time and date output provided by the date program, we can use the
functions asctime and ctime:

#include <time.h>

char *asctime(const struct tm *timeptr);
char *ctime(const time_t *timeval);

The asctime function returns a string that represents the time and date given by the tm structure timeptr. Th
string returned has a format similar to:

Sun Jun 6 12:30:34 1999\n\0
It's always a fixed format, 26 characters long. The function ctime is equivalent to calling:
asctime(localtime(timeval))

It takes a raw time value and converts it to more readable local time.

Try It Out — ctime

Let's see ctime in action, using the following code:

#include <time.h>
#include <stdio.h>

int main()
{
time_t timeval,
(void)time(&timeval);
printf("The date is: %s", ctime(&timeval));
exit(0);
}

Compile and run the surprisingly named ctime.c and you should see:

$ ./ctime
The date is: Sun Jun 6 12:50:27 1999

How It Works

The ctime.c program calls time to get the low level time value and lets ctime do all the hard work converting
to a readable string, which it then prints.

To gain more control of the exact formatting of time and date strings, modern UNIX systems provide the
strftime function. This is rather like a sprintf for dates and times and works in a similar way:

#include <time.h>

size_t strftime(char *s, size_t maxsize, const char *format, struct tm *timeptr);

123



Try It Out - ctime

The strftime function formats the time and date represented by the tm structure pointed to by timeptr and
places the result in the string s. This string is specified as being (at least) maxsize characters long. The forn
string is used to control the characters written to the string. Like printf, it contains ordinary characters that wi
be transferred to the string and conversion specifiers for formatting time and date elements. The conversion
specifiers include:

Conversion Specifier Description

%a Abbreviated weekday name.

%A Full weekday name.

%Db Abbreviated month name.

%B Full month name.

%cC Date and time.

%d Day of the month, 01-31.

%H Hour, 00—-23.

%l Hour in 12 hour clock, 01-12.

%j Day of the year, 001-366.

%m Month of the year, 01-12.

%M Minutes, 00-59.

%p a.m. or p.m.

%S Seconds, 00-61.

%u Day in the week, 1-7. (1 = Monday)

%U Week in the year, 01-53. (Sunday is theFirst day of the week.)
%V Week in the year, 01-53. (Monday is the First day of the wegk.)
Y%w Day in the week, 0-6 (0 = Sunday).

%X Date in local format.

%X Time in local format.

%y Last two digits of the year number, 00-99.
%Y Year.

%Z Time zone name.

%% A % character.

So, the usual date as given by the date program corresponds to a strftime format string of:

"%a %b %d %H:%M:%S %Y"

To help with reading dates, we can use the strptime function, which takes a string representing a date and
time and creates a tm structure representing the same date and time:

#include <time.h>

char *strptime(const char *buf, const char *format, struct tm *timeptr);

The format string is constructed in exactly the same way as the format string for strftime. strptime acts in a
similar way to sscanf in that it scans a string, looking for identifiable fields and writes them into variables.
Here it's the members of a tm structure that are filled in according to the format string. However, the
conversion specifiers for strptime are a little more relaxed than those for strftime because strptime will allow
both abbreviated and full names for days and months. Either representation will match a %a specifier in

124



Try It Out - strftime and strptime

strptime. Also, where strftime always uses leading zeros on numbers less than ten, strptime regards them a
optional.

strptime returns a pointer to the character following the last one consumed in the conversion process. If it
encounters characters that can't be converted, the conversion simply stops at that point. The calling prograr
needs to check that enough of the passed string has been consumed to ensure that meaningful values are
written to the tm structure.

Try It Out — strftime and strptime

Have a look at the selection of conversion specifiers used in the following program:

#include <time.h>
#include <stdio.h>

int main()
{
struct tm *tm_ptr, timestruct;
time_t the_time;
char buf[256];
char *result;

(void) time(&the_time);
tm_ptr = localtime(&the_time);
strftime(buf, 256, "%A %d %B, %I1:%S %p", tm_ptr);

printf("strftime gives: %s\n", buf);
strepy(buf,"Mon 26 July 1999, 17:53 will do fine");

printf("calling strptime with: %s\n", buf);
tm_ptr = &timestruct;

result = strptime(buf,"%a %d %b %Y, %R", tm_ptr);
printf("strptime consumed up to: %s\n", result);

printf("strptime gives:\n");
printf("date: %02d/%02d/%02d\n",
tm_ptr—>tm_year, tm_ptr—>tm_mon+1, tm_ptr—->tm_mday);
printf("time: %02d:%02d\n",
tm_ptr—>tm_hour, tm_ptr—>tm_min);
exit(0);
}

When we compile and run this program, strftime.c, we get:

$ .stritime

strftime gives: Sunday 06 June, 11:55 AM

calling strptime with: Mon 26 July 1999, 17:53 will do fine
strptime consumed up to: will do fine

strptime gives:

date: 99/07/26

time: 17:53

125



How It Works

How It Works

The strftime program obtains the current local time by calling time and localtime. It then converts it to a
readable form by calling strftime with an appropriate formatting argument. To demonstrate the use of
strptime, the program sets up a string containing a date and time, then calls strptime to extract the raw time
and date values and prints them. The conversion specifier %R is a shortcut for %H:%M in strptime.

It's important to note that strptime needs an accurate format string to successfully scan a date. Typically, it
won't accurately scan dates read from users unless the format is very much restricted.

It is possible that you will find the compiler issuing a warning when you compile strftime.c. This is because
the GNU library does not by default declare strptime. You can work around this by explicitly requesting
X/Open standard features by adding the following line before including time.h.

#define_XOPEN_SOURCE

Temporary Files

Often, programs will need to make use of temporary storage in the form of files. These might hold
intermediate results of a computation, or might represent backup copies of files made before critical
operations. For example, a database application could use a temporary file when deleting records. The file
collects the database entries that need to be retained and then, at the end of the process, the temporary file
becomes the new database and the original is deleted.

This popular use of temporary files has a hidden disadvantage. You must take care to ensure that they choc
a unique file name to use for the temporary file. If this doesn't happen, because UNIX is a multitasking
system, another program could choose the same name and the two will interfere with each other.

A unique file name can be generated by the tmpnam function:

#include <stdio.h>

char *tmpnam(char *s);

The tmpnam function returns a valid file name that isn't the same as any existing file. If the string s isn't null,
the file name will also be written to it. Further calls to tmpnam will overwrite the static storage used for returr
values, so it's essential to use a string parameter if tmpnam is to be called many times. The string is assume
to be at least L_tmpnam characters long. tmpnam can be called up to TMP_MAX times in a single program
and it will generate a different file name each time.

If the temporary file is to be used immediately, you can name it and open it at the same time using the tmpfil
function. This is important, since another program could create a file with the same name as that returned b
tmpnam. The tmpfile function avoids this problem altogether:

#include <stdio.h>
FILE *tmpfile(void);
The tmpfile function returns a stream pointer that refers to a unique temporary file. The file is opened for

reading and writing (via fopen with w+) and it will be automatically deleted when all references to the file are
closed.

126



Try It Out — tmpnam and tmpfile

tmpfile returns a null pointer and sets errno on error.

Try It Out — tmpnam and tmpfile

Let's see these two functions in action:

#include <stdio.h>

int main()

{
char tmpname[L_tmpnam];
char *filename;
FILE *tmpfp;

filename = tmpnam(tmpname);

printf("Temporary file name is: %s\n", filename);
tmpfp = tmpfile();
if(tmpfp)
printf("Opened a temporary file OK\n");
else
perror("tmpfile™);
exit(0);
}

When we compile and run this program, tmpnam.c, we can see the unique file name generated by tmpnam:

$ ./tmpnam
Temporary file name is: /tmp/filedm9azK
Opened a temporary file OK

How It Works

The program calls tmpnam to generate a unique file name for a temporary file. If we wanted to use it, we
would have to open it quickly to minimize the risk that another program would open a file with the same
name. The tmpfile call creates and opens a temporary file at the same time, thus avoiding this risk.

Older versions of UNIX have another way to generate temporary file names using functions mktemp and
mkstemp. These are similar to tmpnam, except that you can specify a template for the temporary file name,
which gives you a little more control over their location and name:

#include <stdlib.h>

char *mktemp(char *template);
int mkstemp(char *template);

The mktemp function creates a unique file name from the given template. The template argument must be a
string with six trailing X characters. The mktemp function replaces these X characters with a unique
combination of valid file name characters. It returns a pointer to the generated string, or a null pointer if it
couldn't generate a unique name.

The mkstemp function is similar to tmpfile in that it creates and opens a temporary file. The file name is

generated in the same way as mktemp, but the returned result is an open, low-level, file descriptor. In gene
you should use tmpnam and tmpfile rather than mktemp and mkstemp.

127



User Information
User Information

All UNIX programs, with the notable exception of init, are started by other programs or by users. We'll learn
more about how running programs, or processes, interact in Chapter 10. Users most often start programs fri
a shell that responds to their commands. We've seen that a program can determine a great deal about its
environment by examining environment variables and reading the system clock. A program can also find ou
information about the person using it.

When a user logs into a UNIX system, he or she has a user name and password. Once this has been valida
the user is presented with a shell. Internally, the user also has a unique user identifier, known as a UID. Eac
program that UNIX runs is run on behalf of a user and has an associated UID.

You can set up programs to run as if a different user had started them. When a program has its set UID
permission set it will run as if started by the owner of the executable file. When the su command is executec
it runs as if it had been started by the root user. It then validates the user's access, changes the UID to that
the target account and executes that account's login shell. This also allows a program to be run as if a differ
user had started it and is often used by system administrators to perform maintenance tasks.

Since the UID is key to the user's identity, let's start with that.

The UID has its own type uid_t defined in sys/types.h. It's normally a small integer. Some are predefined b
the system, others are created by the system administrator when new users are made known to the system
Normally, users usually have UID values larger than 100.

#include <sys/types.h>
#include <unistd.h>

uid_t getuid(void);
char *getlogin(void);

The getuid function returns the UID with which the program is associated. This is usually the UID of the usel
who started the program.

The getlogin function returns the login name associated with the current user.

The system file, /etc/passwd, contains a database dealing with user accounts. It consists of lines, one per u:
that contain the user name, encrypted password, user identifier (UID), group identifier (GID), full name, hom
directory and default shell. Here's an example line:

neil:zBgxfgedfpk:500:4:Neil Matthew:/home/neil:/bin/bash

If we write a program that determines the UID of the user who started it, we could extend it to look in the
password file to find out the user's login name and full name. We don't recommend this because modern
UNIX systems are moving away from using simple password files, in order to improve system security. Man;
systems have the option to use 'shadow' password files that don't contain any encrypted password informati
at all (this is often held in /etc/shadow, a file that ordinary users cannot read). For this reason a number of
functions have been defined to provide a standard and effective programming interface to this user
information:

#include <sys/types.h>
#include <pwd.h>

128



Try It Out — User Information

struct passwd *getpwuid(uid_t uid);
struct passwd *getpwnam(const char *name);

The password database structure, passwd, defined in pwd.h includes the following members:

passwd Member Description

char *pw_name The user's login name.
uid_t pw_uid The UID number.

gid_t pw_gid The GID number.

char *pw_dir The user's home directory.
char *pw_shell The user's default shell.

Some UNIX systems may include a field for the user's full name, but this isn't standard: on some systems it"
pw_gecos and on others it's pw_comment. This means that we can't recommend its use.

The getpwuid and getpwnam functions both return a pointer to a passwd structure corresponding to a user.
The user is identified by UID for getpwuid and by login name for getpwnam. They both return a null pointer
and set errno on error.

Try It Out — User Information

Here's a program, user.c, that extracts some user information from the password database:

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <unistd.h>

int main()
{
uid_t uid;
gid_t gid;
struct passwd *pw;

uid = getuid();
gid = getgid();

printf("User is %s\n", getlogin());
printf("User IDs: uid=%d, gid=%d\n", uid, gid);

pw = getpwuid(uid);
printf("UID passwd entry:\n name=%s, uid=%d, gid=%d, home=%s, shell=%s\n",
pw->pw_name, pw->pw_uid, pw—>pw_gid, pw—>pw_dir, pw—>pw_shell);

pw = getpwnam("root");
printf("root passwd entry:\n");
printf("name=%s, uid=%d, gid=%d, home=%s, shell=%s\n",
pw->pw_name, pw->pw_uid, pw—->pw_gid, pw—->pw_dir, pw—>pw_shell);
exit(0);
}

It gives the following output, which may differ in minor respects between versions of UNIX:

$ .Juser
User is neil

129



How It Works

User IDs: uid=500, gid=500

UID passwd entry:

name=neil, uid=500, gid=500, home=/usr/neil, shell=/bin/bash
root passwd entry:

name=root, uid=0, gid=0, home=/root, shell=/bin/bash

How It Works

This program calls getuid to obtain the UID of the current user. This UID is used in getpwuid to obtain
detailed password file information. As an alternative, we show how the user name root can be given to
getpwnam to obtain user information.

Note If you have a copy of the Linux source code, you can see another example of using getuid in the id
command.

To scan all the password file information, we can use the getpwent function. This fetches successive file
entries:

#include <pwd.h>
#include <sys/types.h>

void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

The getpwent function returns each user information entry in turn. When none remain, it returns a null
pointer. We can use the endpwent function to terminate processing once sufficient entries have been scann
The setpwent function resets the position in the password file to the start so that a new scan can be started
with the next call to getpwent. These functions operate in a similar way to the directory scanning functions
opendir, readdir and closedir that we met in Chapter 3.

Other User Information Functions

User and group identifiers (effective and actual) can be obtained by other, less commonly used functions:

#include <sys/types.h>
#include <unistd.h>

uid_t geteuid(void);
gid_t getgid(void);

gid_t getegid(void);
int setuid(uid_t uid);
int setgid(gid_t gid);

You should refer to the UNIX system manual pages for details on group identifiers and effective user
identifiers, although you'll probably find that you won't need to manipulate these at all.

Important Only the superuser may call setuid and
setgid.

130



Host Information
Host Information

Just as it can determine information about the user, a program can also establish some details about the
computer on which it's running. The uname(1) command provides such information. uname(2) also exists as
system call to provide the same information within a C programcheck it out using man 2 uname.

Host information can be useful in a number of situations. We might wish to customize a program's behavior,
depending on the name of the machine it's running on in a network, say a student's machine or an
administrator's. For licensing purposes, we might wish to restrict a program to running on one machine only.
All this means that we need a way to establish which machine the program is running on.

If the UNIX system has the networking component installed, we can obtain its network name very easily wit
the gethostname function:

#include <unistd.h>

int gethostname(char *name, size_t namelen);

The gethostname function writes the machine's network name into the string name. This string is assumed t
be at least namelen characters long. gethostname returns 0 if successful, —1 otherwise.

You can obtain more detailed information about the host computer from the uname system call:
#include <sys/utsname.h>

int uname(struct utsname *name);

The uname function writes host information into the structure pointed to by the name parameter. The utsnar
structure, defined in sys/utsname.h, must contain at least these members:

utsname Member Description

char sysname] The operating system name.

char nodename]] The host name.

char release[] The release level of the system.
char version[] The version number of the system.
char machine(] The hardware type.

uname returns a non—negative integer on success, —1 otherwise, with errno set to indicate any error.

Try It Out — Host Information

Here's a program, hostget.c, that extracts some host computer information:

#include <sys/utsname.h>
#include <unistd.h>
#include <stdio.h>

int main()
{
char computer[256];
struct utsname uts;
if(gethostname(computer, 255) != 0 || uname(&uts) < 0) {

131



How It Works

fprintf(stderr, "Could not get host information\n");
exit(1);
}

printf("Computer host name is %s\n", computer);
printf("System is %s on %s hardware\n", uts.sysname, uts.machine);
printf("Nodename is %s\n", uts.nodename);
printf("Version is %s, %s\n", uts.release, uts.version);
exit(0);
}

It gives the following Linux—specific output. If your machine is networked you may see an extended host
name that includes the network:

$ ./hostget

Computer host name is tilde

System is Linux on i686 hardware

Nodename is tilde

Version is 2.2.5-15, #2 Mon May 1016:39:40 GMT 1999

How It Works

This program calls gethostname to obtain the network name of the host computer. In the above examples it
gets the name tilde. More detailed information about this Intel Pentium-Il based Linux computer is returned
by the call to uname. Note that the format of the strings returned by uname is implementation—dependent; ir
the example the version string contains the date that the kernel was compiled.

Note For another example of the use of the uname(2) function, have a look at the Linux source code for the
uname(1) command.

Licensing

A unique identifier for each host computer may be available from the gethostid function:
#include <unistd.h>

long gethostid(void);

The gethostid function is intended to return a unigue value for the host computer. License managers use thi
ensure that software programs can only run on machines that hold valid licenses. On Sun workstations, it
returns a number that is set in non—-volatile memory when the computer is built and so is unique to the syste
hardware.

Other systems, such as Linux, return a value based on the Internet address of the machine, which isn't sect
enough to be used for licensing.

Logging

Many applications need to record their activities. System programs will very often write messages to the
console, or a log file. These messages might indicate errors, warnings or more general information about th
state of the system. For example, the su program might record the fact that a user has tried and failed to gal
superuser privileges.

132



How It Works

Very often, these log messages are recorded in system files in a directory made available for that purpose.
This might be /usr/adm, or /var/log. On a typical Linux installation, the file /var/log/messages contains all
system messages, /var/log/maillog contains other log messages from the mail system and /var/log/debug m
contain debug messages. You can check your system's configuration in the file /etc/syslog.conf. Here are
some sample messages:

Nov 21 17:27:00 tilde kernel: Floppy drive(s): fdO is 1.44M

Nov 21 17:27:00 tilde kernel: snd6 <SoundBlaster 16 4.11> at 0x220
Nov 21 17:27:00 tilde kernel: IP Protocols: ICMP, UDP, TCP

Nov 21 17:27:03 tilde sendmail[62]: starting daemon (8.6.12)

Nov 21 17:27:12 tilde login: ROOT LOGIN ON tty1

Here, we can see the sort of messages that are logged. The first few are reported by the Linux kernel itself,
it boots and detects installed hardware. The mail agent, sendmail, reports that it's starting up. Finally, the log
program reports a superuser login.

Note You may require superuser privilege to view log messages.

Some UNIX systems don't provide a readable messages file in this way, but do provide the administrator wil
tools to read a database of system events. Refer to your system documentation for details.

Even though the format and storage of system messages may vary, the method of producing the messages
standard. The UNIX specification provides an interface for all programs to produce logging messages, using
the syslog function:

#include <syslog.h>

void syslog(int priority, const char *message, arguments...);

The syslog function sends a logging message to the logging facility. Each message has a priority argument
which is a bitwise OR of a severity level and a facility value. The severity level controls how the log message
is acted upon and the facility value records the originator of the message.

Facility values (from syslog.h) include LOG_USER, used to indicate that the message has come from a use
application, (the default) and LOG_LOCALO, LOG_LOCAL1, up to LOG_LOCAL7, which can be assigned
meanings by the local administrator.

The severity levels in descending order of priority are:

Priority Level Description

LOG_EMERG An emergency situation.

LOG_ALERT High priority problem, such as database corruption.
LOG_CRIT Critical error, such as hardware failure.

LOG_ERR Errors.

LOG_WARNING Warning.

LOG_NOTICE Special conditions, requiring attention.

LOG_INFO Informational messages.

LOG_DEBUG Debug messages.

Depending on system configuration, LOG_EMERG messages might be broadcast to all users, LOG_ALERT
messages might be mailed to the administrator, LOG_DEBUG messages might be ignored and the others

133



Try It Out - syslog

written to a messages file. We can write a program that uses the logging facility quite simply. All we need to
do is call syslog when we wish to create a log message.

The log message created by syslog consists of a message header and a message body. The header is cree
from the facility indicator and the date and time. The message body is created from the message parameter
syslog, which acts like a printf format string. Further arguments to syslog are used according to printf style
conversion specifiers in the message string. Additionally, the specifier %m may be used to insert the error
message string associated with the current value of the error variable, errno. This can be useful for logging
error messages.

Try It Out — syslog

In this program we try to open a non-existent file:

#include <syslog.h>
#include <stdio.h>

int main()
{
FILE *f;
f = fopen("not_here","r");
if('f)
syslog(LOG_ERR|LOG_USER,"oops - %m\n");
exit(0);
}

When we compile and run this program, syslog.c, we see no output, but the file /var/log/messages now
contains at the end the line:

Nov 21 17:56:00 tilde syslog: oops — No such file or directory

How It Works

In this program, we try to open a file that doesn't exist. When this fails, we call syslog to record the fact in the
system logs.

Notice that the log message doesn't indicate which program called the log facility, it just records the fact tha
syslog was called with a message. The %m conversion specifier has been replaced by a description of the
error, in this case that the file couldn't be found. This is a little more useful than error 17!

Configuring Logs
Other functions used to alter the behavior of logging facilities are also defined in syslog.h. These are:

#include <syslog.h>
void closelog(void);

void openlog(const char *ident, int logopt, int facility);
int setlogmask(int maskpri);

We can alter the way that our log messages are presented by calling the openlog function. This allows us to
set up a string, ident, that will be prepended to our log messages. We can use this to indicate which prograr

134



Try It Out - logmask

creating the message. The facility parameter records a default facility value to be used for future calls to
syslog. The default is LOG_USER. The logopt parameter configures the behavior of future calls to syslog. It
a bitwise OR of zero or more of the following:

logopt Parameter Description

LOG_PID Includes the process identifier, a unique number allocated to each process by
the system, in the messages.

LOG_CONS Sends messages to the console if they can't be logged.

LOG_ODELAY Opens the log facility at first call to syslog.

LOG_NDELAY Opens the log facility immediately, rather than at first log.

The openlog function will allocate and open a file descriptor that will be used for writing to the logging
facility. You can close this by calling the closelog function. Note that you don't need to call openlog before
calling syslog, since syslog will open the logging facility itself, if required.

We can control the priority level of our log messages by setting a log mask using setlogmask. All future calls
to syslog with priority levels not set in the log mask will be rejected, so you could, for example, use this to
turn off LOG_DEBUG messages without having to alter the body of the program.

We can create the mask for log messages using LOG_MASK(priority) which creates a mask consisting of ju
one priority level, or LOG_UPTO(priority) which creates a mask consisting of all priorities up to and
including the specified priority.

Try It Out — logmask

In this example we'll see logmask in action:

#include <syslog.h>
#include <stdio.h>
#include <unistd.h>

int main()

{

int logmask;

openlog("logmask”, LOG_PID|LOG_CONS, LOG_USER);
syslog(LOG_INFO,"informative message, pid = %d", getpid());
syslog(LOG_DEBUG,"debug message, should appear");
logmask = setlogmask(LOG_UPTO(LOG_NOTICE));
syslog(LOG_DEBUG,"debug message, should not appear");
exit(0);

}

This program, logmask.c, produces no output, but on a typical Linux system towards the end of
Ivar/log/messages we should see the line:

Nov 21 18:19:43 tilde logmask[195]: informative message, pid = 195

The file /var/log/debug should contain:

Nov 21 18:19:43 tilde logmask[195]: debug message, should appear

135



How It Works

How It Works

The program initializes the logging facility with its name, logmask and requests that log messages contain tt
process identifier. The informative message is logged to /var/log/messages and the debug message to
Ivar/log/debug. The second debug message doesn't appear because we call setlogmask to ignore all messe
with a priority below LOG_NOTICE. Note that this may not work on early Linux kernels.

If your installation does not have debug message logging enabled or it is configured differently, you may not
see the debug messages appear. To enable all debug messages add the following line to the end of
letc/syslog.conf and reboot. (You could also just send a hangup signal to the syslogd process). However, be
sure to check your system documentation for the exact configuration details.

*.debug /var/log/debug

logmask.c uses the getpid function, which is defined along with the closely related getppid as follows:

#include <sys/types.h>
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

The functions return the process and parent process identifiers of the calling process. For more information
PIDs, see Chapter 10.

Resources and Limits

Programs running on a UNIX system are subject to resource limitations. These might be physical limits

imposed by hardware (such as memory), limits imposed by system policies (for example, allowed CPU time
or implementation limits (such as the size of an integer or the maximum number of characters allowed in a fi
name). The UNIX specification defines some of these limits, which can be determined by an application. Foi
a further discussion of limits and the consequences of breaking them, refer to Chapter 7 on data manageme

The header file limits.h defines many manifest constants that represent the constraints imposed by the
operating system. These include:

Limit Constant What they're for

NAME_MAX The maximum number of characters in a file name.
CHAR_BIT The number of bits in a char value.

CHAR_MAX The maximum char value.

INT_MAX The maximum int value.

There will be many others that may be of use to an application, so you should refer to your installation's
header files. Note that NAME_MAX is file system specific. For more portable code, you should use the
pathconf function. Refer to the man pages on pathconf for more information.

The header file sys/resource.h provides definitions for resource operations. These include functions for
determining and setting limits on a program's allowed size, execution priority and file resources:

#include <sys/resource.h>
int getpriority(int which, id_t who);

136



How It Works

int setpriority(int which, id_t who, int priority);

int getrlimit(int resource, struct rlimit *r_limit);

int setrlimit(int resource, const struct rlimit *r_limit);
int getrusage(int who, struct rusage *r_usage);

id_tis an integral type used for user and group identifiers. The rusage structure, defined in sys/resource.h, i
used to determine how much CPU time has been used by the current program. It must contain at least thes
members:

rusage Member Description
struct timeval ru_utime The user time used.
struct timeval ru_stime The system time used.

The timeval structure is defined in sys/time.h and contains fields tv_sec and tv_usec representing seconds ¢
microseconds respectively.

CPU time consumed by a program is separated into user time (the time that the program itself has consume
executing its own instructions) and system time (the CPU time consumed by the operating system on the
program's behalf, i.e. the time spent in system calls performing input and output or other system functions).

The getrusage function writes CPU time information to the rusage structure pointed to by the parameter
r_usage. The who parameter can be one of the following constants:

who Constant Description
RUSAGE_SELF Returns usage information about current program only.
RUSAGE_CHILDREN Includes usage information of child processes as well.

We'll meet child processes and task priorities in Chapter 10, but for completeness, we'll cover their
implications for system resources here. For now, it's enough to say that each program that's running has a
priority associated with it and that higher priority programs are allocated more of the available CPU time.
Ordinary users are only able to reduce the priorities of their programs, not increase them.

Applications can determine and alter their (and others') priority with the getpriority and setpriority functions.
The process to be examined or changed by the priority functions can be identified either by process identifie
group identifier, or user. The which parameter specifies how the who parameter is to be treated:

which Parameter Description
PRIO_PROCESS who is a process identifier.
PRIO_PGRP who is a process group.
PRIO_USER who is a user identifier.

So, to determine the priority of the current process, we might call:

priority = getpriority(PRIO_PROCESS, getpid());

The setpriority function allows a new priority to be set, if possible.

The default priority is 0. Positive priorities are used for background tasks that run when no other higher
priority task is ready to run. Negative priorities cause a program to run more frequently, taking a larger share

of the available CPU time. The range of valid priorities is —20 to +20. This is often confusing since the highe
the numerical value, the lower the execution precedence.

137



Try It Out — Resource Limits

getpriority returns a valid priority if successful, and —1 with errno set on error. Because -1 is itself a valid
priority, errno should be set to zero before calling getpriority and checked that it's still zero on return.
setpriority returns 0 if successful, —1 otherwise.

Limits on system resources can be read and set by getrlimit and setrlimit. Both of these functions make use
a general purpose structure, rlimit, to describe resource limits. It's defined in sys/resource.h and has the
following members:

rlimit Member Description
rlim_t rlim_cur The current, soft limit.
rlim_t rlim_max The hard limit.

The defined type rlim_t is an integral type used to describe resource levels. Typically, the soft limit is an
advisory limit that shouldn't be exceeded; doing so may cause library functions to return errors. The hard
limit, if exceeded, may cause the system to attempt to terminate the program, by sending a signal to it.
Examples would be the signal SIGXCPU on exceeding the CPU time limit and the signal SIGSEGV on
exceeding a data size limit. A program may set its own soft limits to any value less than the hard limit. It may
reduce its hard limit. Only a program running with superuser privileges may increase a hard limit.

There are a number of system resources that can be limited. These are specified by the resource parametel
the rlimit functions and are defined in sys/resource.h as:

resource Parameter Description

RLIMIT_CORE The core dump file size limit, in bytes.

RLIMIT_CPU The CPU time limit, in seconds.

RLIMIT_DATA The data (malloc/sbrk) segment limit, in bytes.
RLIMIT_FSIZE The file size limit, in bytes.

RLIMIT_NOFILE The limit on the number of open files.
RLIMIT_STACK The limit on stack size, in bytes.

RLIMIT_AS The limit on address space (stack and data), in bytes.

Here's a program, limits.c, that simulates a typical application. It also sets and breaks a resource limit.

Try It Out — Resource Limits

1. Make the includes for all the functions we're going to be using in this program:

#include <sys/types.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>
#include <stdio.h>
#include <math.h>
2. The void function writes a string to a temporary file 10000 times and then performs some arithmetic

to generate load on the CPU:

void work()
FILE *f;
inti;
double x = 4.5;

138



Try It Out — Resource Limits

f = tmpfile();
for(i = 0; i < 10000; i++) {
fprintf(f,"Do some output\n");
if(ferror(f)) {
fprintf(stderr,"Error writing to temporary file\n");
exit(1);
}
}
for(i = 0; i <1000000; i++)
X = log(x*x + 3.21);
}
3. The main function calls work and then uses the getrusage function to discover how much CPU time |

has used. It displays this information on screen:

int main()

{
struct rusage r_usage;
struct rlimit r_limit;
int priority;

work();
getrusage(RUSAGE_SELF, &r_usage);

printf("CPU usage: User = %ld.%06ld, System = %ld.%06ld\n",
r_usage.ru_utime.tv_sec, r_usage.ru_utime.tv_usec,
r_usage.ru_stime.tv_sec, r_usage.ru_stime.tv_usec);

4. Next, it calls getpriority and getrlimit to find out its current priority and file size limits respectively:

priority = getpriority(PRIO_PROCESS, getpid());
printf("Current priority = %d\n", priority);

getrlimit(RLIMIT_FSIZE, &r_limit);
printf("Current FSIZE limit: soft = %ld, hard = %Id\n",
r_limit.rlim_cur, r_limit.rlim_max);
5. Finally, we set a file size limit using setrlimit and call work again, which fails because it attempts to
create too large a file:

r_limit.rlim_cur = 2048;
r_limit.rlim_max = 4096;
printf("Setting a 2K file size limit\n");
setrlimit(RLIMIT_FSIZE, &r_limit);

work();
exit(0);
}

When we run this program, we can see how much CPU resource is being consumed and the default
priority at which the program is running. Once a file size limit has been set, the program can't write
more than 2048 bytes to a temporary file.

$ cc —o limits limits.c —Im

$ Jlimits

CPU usage: User = 1.460000, System = 1.040000

Current priority = 0

Current FSIZE limit: soft = 2147483647, hard = 2147483647
Setting a 2K file size limit

File size limit exceeded

139



How It Works

We can change the program priority by starting it with the nice command. Here, we see the priority
changes to +10 and as a result it takes longer to execute the program:

$ nice limits

CPU usage: User = 1.310000, System = 0.840000

Current priority = 10

Current FSIZE limit: soft = 2147483647, hard = 2147483647
Setting a 2K file size limit

File size limit exceeded

How It Works

The limits program calls a function, work to simulate the actions of a typical program. It performs some
calculations and produces some output, in this case about 150K to a temporary file. It calls the resource
functions to discover its priority and file size limits. In this case the file size limits are set to maximum values
allowing us to create a 2GB file, disk space permitting. The program then sets its file size limit to just 2K anc
tries again to perform some work. This time, the work function fails as it can't create such a large temporary
file.

Note Limits may also be placed on a program running under a particular shell with the bash ulimit command
In this example the error message 'Error writing to temporary file' may not be printed as we might expect.
This is because some systems (such as Linux 2.2) terminate our program when the resource limit is exceed

It does this by sending a signal, SIGXFSZ. We will learn more about signals and how to use them in Chapte
10. Other POSIX compliant systems may simply cause the function that exceeds the limit to return an error.

Summary

In this chapter, we've looked at the UNIX environment and examined the conditions under which programs
run. We've covered command line arguments and environment variables, both of which can be used to alter
program's default behavior and provide useful program options.

We've seen how a program can make use of library functions to manipulate date and time values, obtain
information about itself and the user and the computer on which it's running.

Since UNIX programs typically have to share precious resources, we've also looked at how those resources
can be determined and managed.

140



Chapter 5: Terminals

Overview

Let's consider what improvements we might like to make to our basic application from Chapter 2. Perhaps tt
most obvious failing is the user interface. It's functional, but not very elegant.

In this chapter, we are going to look at how to take more control of the user's terminal, i.e. both keyboard
input and screen output. More than this, though, we'll learn how we can 'guarantee’ that a variety of user inp
to the terminal from which the program is run is fed back to the program and that the program's output goes
the right place on the screen. Along the way, we'll lay bare a little more of the thinking of the early UNIX
meisters.

Though the re-implemented CD database application won't see the light of day until the end of the next
chapter, we'll do much of the groundwork for that chapter here. The next chapter is on curses, not some
ancient malediction, but a library of functions which provide a higher level of code to control the terminal
screen display. You may want to treat this chapter as a build—up to the next, introducing you to some
philosophy of UNIX and the concept of terminal input and output. Or the low-level access presented here
might be just what you're looking for.

In this chapter, we'll learn about:

» Reading and writing to the terminal

» Terminal drivers and the General Terminal Interface
* termios

» Terminal output and terminfo

 Detecting keystrokes

Reading from and Writing to the Terminal

In Chapter 3, we learned that when a program is invoked from the command prompt, the shell arranges for
the standard input and output streams to be connected to our program. We should be able to interact with tt
user simply by using the getchar and printf routines to read and write these default streams.

Let's try and rewrite our menu routines in C, using just those two routines, calling it menul.c.

Try It Out — Menu Routines in C

1. Start with the following lines, which define the array to be used as a menu and prototype the
getchoice function:

#include <stdio.h>

char *menu[] = {
"a — add new record",
"d — delete record",
"g - quit”,
NULL,

b

int getchoice(char *greet, char *choices[]);

141



How It Works

2. The main function calls getchoice with the sample menu, menu:

int main()

{

int choice = 0;

do
{

choice = getchoice("Please select an action", menu);
printf("You have chosen: %c\n", choice);
} while(choice '="q");
exit(0);
}
3. Now for the important code: the function that both prints the menu and reads the user's input:

int getchoice(char *greet, char *choices[])
{

int chosen = 0;

int selected;

char **option;

do {
printf("Choice: %s\n",greet);
option = choices;
while(*option) {
printf("%s\n",*option);
option++;
}
selected = getchar();
option = choices;
while(*option) {
if(selected == *option[0]) {
chosen = 1;
break;

}

option++;

if(lchosen) {
printf("Incorrect choice, select again\n®);

} while(chosen);
return selected;

}
How It Works

getchoice prints the program introduction, greet, and the sample menu, choices, and asks the user to choos
the initial character. The program then loops until getchar returns a character that matches the first letter of
one of the option array's entries.

When we compile and run this program, we discover that it doesn't behave as we expected. Here's some
dialogue to demonstrate the problem:

$ menul

Choice: Please select an action
a — add new record

d - delete record

g — quit

142



Why It Doesn't Quite Work

a

You have chosen: a

Choice: Please select an action
a — add new record

d - delete record

g — quit

Incorrect choice, select again
Choice: Please select an action
a — add new record

d - delete record

g — quit

q

You have chosen: q
$

Here the user had to enter a/Return/g/Return to make selections. There seem to be at least two problems. 1
most serious is that we are getting Incorrect choice after every correct choice. Plus, we still have to press
Return before our program reads our input.

Why It Doesn't Quite Work

The two problems are closely related. By default, terminal input is not made available to a program until the
user presses Return. In most cases this is a benefit, since it allows the user to correct typing mistakes using
Backspace or Delete. Only when they're happy with what they see on the screen do they press Return to mi
the input available to the program.

This behavior is called canonical, or standard, mode. All the input is processed in terms of lines. Until a line
of input is complete (usually when the user presses Return) the terminal interface manages all the key pres:t
including Backspace, and no characters may be read by the application.

The opposite of this is non—canonical mode, where the application has much greater control over the
processing of input characters. We'll come back to these two modes again a little later on.

Amongst other things, the UNIX terminal handler likes translating interrupt characters to signals and can
automatically perform Backspace and Delete processing for you, so you don't have to re—implement it in ea
program you write. We'll find out more about signals in Chapter 10.

So, what's happening in our program? Well, UNIX is saving the input until the user presses Return, then
passing both the choice character and the subsequent Return to the program. So, each time you enter a me
choice, the program calls getchar, processes the character, then calls getchar again, which immediately rett
with the Return character.

The character the program actually sees isn't an ASCII carriage return, CR (decimal 13, hex 0D), but a line
feed, LF (decimal 10, hex OA). This is because, internally, UNIX always uses a line feed to end lines of text,
i.e. UNIX uses a line feed alone to mean a newline, where other systems, such as DOS, use a carriage retu
and a line feed together as a pair. If the input or output device also sends or requires a carriage return, the
UNIX terminal processing takes care of it. This might seem a little strange if you're used to DOS or other
environments, but one of the very considerable benefits is that there is no real difference between text and
binary files on UNIX. Only when you input or output to a terminal or some printers and plotters are carriage
returns processed.

We can correct the major deficiency in our menu routine simply by ignoring the additional line feed characte
with some code such as this:

143



Handling Redirected Output

do {
selected = getchar();
} while(selected == "\n");

This solves the immediate problem. We'll return to the second problem of needing to press Return, and a m
elegant solution to the line feed handling later.

Handling Redirected Output

It's very common for UNIX programs, even interactive ones, to have their input or output redirected, either tc
files or to other programs. Let's see how our program behaves when we redirect its output to a file.

$ menul > file
a

q
$

We could regard this as successful, since the output has been redirected to a file rather than to the terminal
However, there are cases where we want to prevent this from happening, or where we want to separate
prompts that we want the user to see, from other output that can be safely redirected.

We can tell whether the standard output has been redirected by finding out if the low—level file descriptor is
associated with a terminal. The isatty system call does this. We simply pass it a valid file descriptor and it
tests to see if that is currently connected to a terminal.

#include <unistd.h>

int isatty(int fd);
The isatty system call returns 1 if the open file descriptor, fd, is connected to a terminal and 0 otherwise.

In our program we are using file streams, but isatty operates only on file descriptors. To provide the necesse
conversion we need to combine the isatty call with the fileno routine that we met in Chapter 3.

What are we going to do if stdout has been redirected? Just quitting isn't good enough because the user ha:
way of knowing why the program failed to run. Printing a message on stdout won't help either, since it must
have been redirected away from the terminal. One solution is to write to stderr, which isn't redirected by the
shell > file command.

Try It Out — Checking for Output Redirection

4. Using the program menul.c you created in the last section, make a new include, change the main
function to the following and call the new file menu2.c.

#include <unistd.h>

|nt main()
{

int choice = 0;

if(lisatty(fileno(stdout))) {
fprintf(stderr,"You are not a terminal'\n");
exit(1);

}

144



How It Works

do {
choice = getchoice("Please select an action", menu);
printf("You have chosen: %c\n", choice);
} while(choice '="q");
exit(0);
}

5. Now look at the following sample output:

$ menu2

Choice: Please select an action
a — add new record

d - delete record

g — quit

q

You have chosen: q

$ menu?2 > file
You are not a terminal!
$

How It Works

The new section of code uses the isatty function to test whether the standard output is connected to a termil
and halts execution if it isn't. This is the same test the shell uses to decide whether to offer prompts. It's
possible, and quite common, to redirect both stdout and stderr away from the terminal. We can direct the er
stream to a different file like this:

$ menu?2 >file 2>file.error

$

Or combine the two output streams into a single file like this:

$ menu2 >file 2>&1
$

(If you're not familiar with output redirection, take another look at Chapter 2 where we explain this syntax in
more detail.) In this case you'll need to send a message to the console.

Talking to the Terminal

If we need to prevent the parts of our program that interact with the user being redirected, but still allow it to
happen to other input or output, we need to separate the interaction from stdout and stderr. We can do this |
reading and writing directly to the terminal. Since UNIX is inherently a multiuser system, usually with many
terminals either directly connected or connected across a network, how can we discover the correct termina
use?

Fortunately, UNIX makes things easy for us by providing a special device, /dev/tty, which is always the
current terminal, or login session. Since UNIX treats everything as a file, we can use normal file operations t
read and write to /devi/tty.

Let's modify our choice program so that we can pass parameters to the getchoice routine, to provide better
control over the output. We're up to menu3.c.

145



Try It Out — Using /dev/tty
Try It Out — Using /devi/tty

6. Load up menu2.c and change the code to this, so that input and output come from and are directed 1
/devitty:

#include <stdio.h>
#include <unistd.h>

char *menu[] = {
"a — add new record",
"d — delete record",
"q - quit",
NULL,

h

int getchoice(char *greet, char *choices[], FILE *in, FILE *out);

int main()

{
int choice = 0;
FILE *input;
FILE *output;

if(lisatty(fileno(stdout))) {
fprintf(stderr,"You are not a terminal, OK.\n");

}

input = fopen("/dev/tty", "r");

output = fopen("/devi/tty", "w");

if(linput || loutput) {
fprintf(stderr,"Unable to open /dev/tty\n");
exit(1);

}

do {
choice = getchoice("Please select an action", menu, input, output);
printf("You have chosen: %c\n", choice);

} while(choice '="q");

exit(0);

}

int getchoice(char *greet, char *choices[], FILE *in, FILE *out)
{

int chosen = 0;

int selected;

char **option;

do {
fprintf(out,"Choice: %s\n",greet);
option = choices;
while(*option) {
fprintf(out,"%s\n",*option);
option++;
}
do {
selected = fgetc(in);
} while(selected == "\n");
option = choices;
while(*option) {
if(selected == *option[0]) {
chosen =1;

146



The Terminal Driver and the General Terminal Interface

break;

}
option++;
}
if(lchosen) {
fprintf(out,"Incorrect choice, select again\n");

}
} while(chosen);
return selected;

}

Now when we run the program with the output redirected, we can still see the prompts and the norm,
program output is separated:

$ menu3 > file

You are not a terminal, OK.
Choice: Please select an action
a — add new record

d - delete record

g - quit

d

Choice: Please select an action
a — add new record

d - delete record

g — quit

q

$ cat file

You have chosen: d

You have chosen: q

The Terminal Driver and the General Terminal Interface

Sometimes, a program needs much finer control over the terminal than can be achieved using simple file
operations. UNIX provides a set of interfaces that allow us to control the behavior of the terminal driver, to
give us much greater control of the processing of terminal input and output.

Overview

As the diagram shows, we can control the terminal through a set of function calls (the General Terminal
Interface, or GTI) separate from those used for reading and writing. This keeps the data (read/write) interfac
very clean, while still allowing detailed control over the terminal behavior. That's not to say that the terminal
I/O interface is clean-it's got to deal with a wide variety of different hardware.

147



Hardware Model

User Program i <

read/write Control
interface interface
v
Terminal i
Driver i <4
in the Kernel i

In UNIX terminology, the control interface sets a 'line discipline'. It allows a program considerable flexibility
in specifying the behavior of the terminal driver.

The main features that we can control are:

Line editing Whether to allow Backspace for editing.

Buffering Whether to read characters immediately, or read them after a configurable delay.

Echo Allows us to control echoing, such as when reading passwords.

CRI/LF Mapping for input and output, what happens when you print a \n.

Line speeds Little used on a PC console, but very important for modems and terminals on serjal
lines.

Hardware Model

Before we look at the General Terminal Interface in detail, it's very important that we understand the
hardware model that it's intended to drive.

The conceptual arrangement (and for some UNIX sites it will physically be like this) is to have a UNIX
machine connected via a serial port to a modem and then via a telephone line and another modem to a rem
terminal. In fact, this is just the kind of setup used by some small Internet service providers. It's a distant
relative of the client/server paradigm, used when the program ran on a mainframe and users worked at dum
terminals.

148



The termios Structure

)

read/write control
interface interface

v v

A

Data and control lines Data and control lines
v v

o= g

"telephone’ lines

If you're working on a PC running Linux, this may seem an overly complex model. However, as both of the
authors have modems, we can, if we choose, use a terminal emulation program like minicom to run a remot
logon session on each other's machines just like this, using a pair of modems and a telephone line.

The advantage of using such a hardware model is that most 'real world' situations will form a subset of this,
the most complex case. Supporting them will be much easier than if the model had omitted such functionalit

The termios Structure

termios is the standard interface specified by POSIX and is similar to the System V interface termio. The
terminal interface is controlled by setting values in a structure of type termios, and by using a small set of
function calls. Both are defined in the header file termios.h.

Important Programs that use the function calls defined in termios.h will need to be linked with an
appropriate function library. This will normally be the curses library, so when compiling the
examples in this chapter, you'll need to add —Icurses to the end of the compiler command line.
On Linux systems, these become ncurses and —Incurses, respectively.

The values that can be manipulated to affect the terminal are grouped into various modes:

* Input

¢ Output

* Control

* Local

 Special control characters

A minimum termios structure is typically declared like this (although the X/Open specification allows
additional fields to be included):

#include <termios.h>

struct termios {
tcflag_t c_iflag;
tcflag_t c_oflag;

149



Input Modes

tcflag_t c_cflag;
tcflag_t c_lflag;
cc_t c_cc[NCCS];
%
The member names correspond with the five parameter types listed above.

We can initialize a termios structure for the terminal by calling the function tcgetattr, which has the
prototype:

#include <termios.h>

int tcgetattr(int fd, struct termios *termios_p);

This call writes the current values of the terminal interface variables into the structure pointed to by
termios_p. If these values are then altered, we can reconfigure the terminal interface with the tcsetattr
function:

#include <termios.h>

int tcsetattr(int fd, int actions, const struct termios *termios_p);

The actions field for tcsetattr controls how any changes are applied. The three possibilities are:

TCSANOW Change values immediately.

TCSADRAIN Change values when current output is complete.

TCSAFLUSH Change values when current output is complete, but discard any input currently
available and not yet returned in a read call.

Important Note that it's very important for programs to restore terminal settings to the values they had
before the program started. It's always the responsibility of a program to initially save and restor
these settings when it finishes.

We'll now look more closely at the modes and related function calls. Some of the detail of the modes is rath

specialized and rarely used, so we'll only cover the main features here. If you need to know more, you shoul

consult your local man pages or a copy of the POSIX or X/Open specification.

The most important mode to take in on your first read is the local mode. The canonical and non-canonical
modes are the solution to the second of our problems in the first application. We can instruct the program to
wait for a line of input or pounce on input as soon as it is typed.

Input Modes

The input modes control how input (characters received by the terminal driver at a serial port or keyboard) is
processed before being passed on to the program. We control them by setting flags in the ¢_iflag member o
the termios structure. All the flags are defined as macros and can be combined with a bitwise OR. This is th
case for all the terminal modes.

The macros that can be used for c_iflag are:

* BRKINT Generate an interrupt when a break condition is detected on the line.
* IGNBRK Ignore break conditions on the line.

* ICRNL Convert a received carriage return to a newline.

* IGNCR Ignore received carriage returns.

150



Output Modes

« INLCR Convert received newlines to carriage returns.

* IGNPAR Ignore characters with parity errors.

* INPCK Perform parity checking on received characters.
« PARMRK Mark parity errors.

« ISTRIP Strip (set to seven bits) all incoming characters.
« IXOFF Enable software flow control on input.

« IXON Enable software flow control on output.

Important If neither BRKINT nor IGNBRK are set, a break condition on the line is read as a
NULL (0x00) character.

You won't very often need to change the input modes, as the default values are usually the most suitable, s
we won't discuss them further here.

Output Modes

These modes control how output characters are processed, i.e. how characters sent from a program are
processed before being transmitted to the serial port or screen. As you might expect, many of these are
counterparts of the input modes. Several additional flags exist, which are mainly concerned with allowing for
slow terminals that require time to process characters such as carriage returns. Almost all of these are eithe
redundant (as terminals get faster) or better handled using the terminfo database of terminal capabilities,
which we'll use later in this chapter.

We control output modes by setting flags in the ¢_oflag member of the termios structure. The macros that w
can use in c_oflag are:

« OPOST Turn on output processing.

*« ONLCR Convert any output newline to a carriage return/line feed pair.
« OCRNL Convert any output carriage return to a newline.
*« ONOCR No carriage return output in column 0.

* ONLRET A newline also does a carriage return.

* OFIL Send fill characters to provide delays.

* OFDEL Use DEL as a fill character, rather then NULL.

*« NLDLY Newline delay selection.

« CRDLY Carriage return delay selection.

« TABDLY Tab delay selection.

*« BSDLY Backspace delay selection.

« VTDLY Vertical tab delay selection.

 FFDLY Form feed delay selection.

Important If OPOST is not set, all the other flags are
ignored.

The output modes are also hot commonly used, so we won't consider them further here.

151



Control Modes

Control Modes

These modes control the hardware characteristics of the terminal. We specify control modes by setting flags
in the ¢_cflag member of the termios structure, which has the following macros:

* CLOCAL Ignore any modem status lines.

« CREAD Enable the receipt of characters.

» CS5 Use five bits in sent or received characters.

* CS6 Use six bits in sent or received characters.

» CS7 Use seven bits in sent or received characters.

« CS8 Use eight bits in sent or received characters.

*« CSTOPB Use two stop bits per character, rather than one.
« HUPCL Hang up modem on close.

« PARENB Enable parity generation and detection.

« PARODD Use odd parity rather than even parity.

Important If HUPCL is set, when the terminal driver detects that the last file descriptor referring to
the terminal has been closed it will set the modem control lines to 'hang-up' the line.

The control modes are mainly used when the serial line is connected to a modem, although they may be us
when talking to a terminal. Normally, it's easier to change your terminal's configuration than to change the
default line behavior by using the control modes of termios.

Local Modes

These modes control various characteristics of the terminal. We specify local modes by setting flags in the
c_Iflag member of the termios structure, with the macros:

« ECHO Enable local echoing of input characters.

« ECHOE Perform a Backspace, Space, Backspace combination on receiving ERASE.
* ECHOK Perform erase line on the KILL character.

* ECHONL Echo newline characters.

« ICANON Enable canonical input processing (see below).

« [IEXTEN Enable implementation specific functions.

* ISIG Enable signals.

« NOFLSH Disable flush on queue.

« TOSTOP Send background processes a signal on write attempts.

The two most important flags here are ECHO, which allows you to suppress the echoing of typed characters
and the ICANON flag which switches the terminal between two very distinct modes of processing received
characters. If the ICANON flag is set, then the line is said to be in canonical mode; if not, the line is in
non-canonical mode.

We'll explain canonical mode and non—canonical mode in greater detail once we've met the special control
characters that are used in both these modes.

152



Special Control Characters

Special Control Characters

These are a collection of characters, like Ctrl-C, that are acted upon in special ways when the user types
them. The c_cc array member of the termios structure contains the characters mapped to each of the suppc
functions. The position of each character (its index into the array) is defined by a macro, but there's no
limitation that they must be control characters.

The c_cc array is used in two very different ways, depending on whether or not the terminal is set to
canonical mode (i.e. the setting of the ICANON flag in the c_Iflag member of termios).

It's important to realize that there is some overlap in the way the array index values are used for the two
different modes. Because of this, you should never mix values from these two modes.

For canonical mode, the array indices are:

* VEOF EOF character

* VEOL EOL character

* VERASE ERASE character
* VINTR INTR character

* VKILL KILL character

* VQUIT QUIT character

* VSUSP SUSP character

*« VSTART START character
* VSTOP STOP character

For non—canonical mode, the array indices are:

* VINTR INTR character

* VMIN MIN value

* VQUIT QUIT character

* VSUSP SUSP character

* VTIME TIME value

* VSTART START character
* VSTOP STOP character

Since the special characters and non-canonical MIN and TIME values are so important for more advanced
input character processing, we'll explain them in some detail.

Characters

Character Description

INTR This character will cause the terminal driver to send a SIGINT signal to processes connectec
to the terminal. We'll meet signals in more detail in Chapter 10.

QUIT This character will cause the terminal driver to send a SIGQUIT signal to processes
connected to the terminal.

ERASE This character will cause the terminal driver to delete the last character on the line.

KILL This character will cause the terminal driver to delete the entire line.

EOF This character will cause the terminal driver to pass all characters on the line to the
application reading input. If the line is empty, a read call will return zero characters, as

153



Special Control Characters

though a read had been attempted at the end of a file.
EOL This character acts as a line terminator, in addition to the more usual newline character.
SUSP This character will cause the terminal driver to send a SIGSUSP signal to processes
connected to the terminal. If your UNIX supports job control, the current application will be
suspended.
STOP This character acts to 'flow off', i.e. prevent further output to the terminal. It's used to
support XON/XOFF flow control and is usually set to the ASCII XOFF character, Ctrl1S.
START This character restarts output after a STOP character, often the ASCII XON charactey.

The TIME and MIN Values

The values of TIME and MIN are used only in non—canonical mode and act together to control the reading o
input. Together, they control what happens when a program attempts to read a file descriptor associated wit
terminal.

There are four cases:
MIN =0 and TIME =0

In this case, a read will always return immediately. If some characters are available they will be returned,; if
none are available, read will return zero and no characters will have been read.

MIN =0 and TIME >0

In this case, the read will return when any character is available to be read, or when TIME tenths of a secon
have elapsed. If no character was read because the timer expired, read will return zero. Otherwise, it will
return the number of characters read.

MIN > 0 and TIME = 0

In this case, the read will wait until MIN characters can be read and then return that number of characters.
Zero is returned on end of file.

MIN >0 and TIME >0

This is the most complex case. When read is called, it waits for a character to be received. When the first
character and every subsequent time a character is received, an inter—character timer is started (or restarte
it was already running). The read will return when either MIN characters can be read or the inter-character
time of TIME tenths of a second expires. This can be useful for telling the difference between a single press
the Escape key and the start of a function key escape sequence. Be aware, though, that network
communications or high processor loads neatly erase such fine timing information.

By setting non—canonical mode and using the MIN and TIME values, programs can perform
character—by—character processing of input.

Accessing Terminal Modes from the Shell

If you want to see the termios settings that are currently being used while you're using the shell, you can ge
list using the command:

$ stty —a

154



Special Control Characters

On our Linux systems, which have some extensions to the standard termios, the output is:

speed 38400 baud; rows 25; columns 80; line = 0;

intr = ~C; quit =\, erase = *?; kill = "U; eof = ~D; eol = <undef>;

eol2 = <undef>; start = ~Q; stop = \S; susp = "Z; rprnt = *R; werase = "W;

Inext = AV; flush = 2O; min = 1; time = 0;

—parenb —parodd cs8 hupcl —cstopb cread —clocal —crtscts

—ignbrk —brkint —ignpar —parmrk —inpck —istrip —inlcr —igncr icrnl ixon ixoff
—iuclc —ixany —imaxbel

opost —olcuc —ocrnl onlcr —onocr —onlret —ofill —ofdel nl0 crO tab0 bsO0 vt0 ffO
isig icanon —iexten echo echoe echok —echonl —noflsh —xcase —tostop —echoprt
—echoctl echoke

Amongst other things, we can see that the EOF character is Ctrl-D and that echoing is enabled. When you'l
experimenting with terminal control, it's very easy to get the terminal left in a non—-standard state, which
makes using it very difficult. There are several ways out of this difficulty.

If your version of stty supports it, you can use the command:
$ stty sane

If you have lost the mapping of the carriage return key to the newline character (which terminates the line),
you may need to enter stty sane, but rather than press Return, enter Ctrl-J (which is the newline character).

The second method is to use the stty —g command to write the current stty setting in a form ready to re-reac
On the command line, you can use:

$ stty —g > save_stty
<experiment with settings>

$ stty $(cat save_stty)

You may still need to use Ctrl-J rather than Return for the final stty command. You can use the same
technique in a shell script:

save_stty="$(stty —g)"
<alter stty settings>
stty $save_stty

If you're really stuck, the third method is to go to a different terminal, use the ps command to find the shell
you have made unusable and then use kill HUP <process id> to force the shell to terminate. Since stty
parameters are always reset before a logon prompt is issued, you should be able to log in normally.
Setting Terminal Modes from the Command Prompt

We can also use the stty command to set the terminal modes directly from the command prompt.

To set a mode in which our shell script could perform single character reads, we need to turn off canonical
mode, set MIN to 1 and TIME to 0. The command is:

$ stty —icanon min 1 time 0

155



Terminal Speed

Now that the terminal is set to read characters immediately you can try to run our first program, menul, aga
You should find it works as originally intended.

We could also improve our attempt to check for a password (Chapter 2) by turning echoing off before we
prompt for the password. The command to do this is:

$ stty —echo

Remember to use stty echo to turn echoing back on after you try this!

Terminal Speed

The final function served by the termios structure is manipulating the line speed. No members are defined fc
terminal speed; instead it's set by function calls. Input and output speeds are handled separately.

The four call prototypes are:

#include <termios.h>

speed_t cfgetispeed(const struct termios *);
speed_t cfgetospeed(const struct termios *);
int cfsetispeed(struct termios *, speed_t speed);
int cfsetospeed(struct termios *, speed_t speed);

Notice that these act on a termios structure, not directly on a port. This means that, to set a new speed, you
must read the current settings with tcgetattr, set the speed using one of the above calls, then write the termi
structure back using tcsetattr. Only after the call to tcsetattr will the line speed be changed.

Various values are allowed for speed in the function calls above, the most important are:

* BO Hang up the terminal
* B1200 1200 baud

* B2400 2400 baud

* B9600 9600 baud

* B19200 19200 baud

* B38400 38400 baud

There are no speeds greater than 38400 defined by the standard and no standard method of supporting ser
ports at speeds greater than this.

Important Some systems, including Linux define B57600, B115200 and B230400 for selecting faster
speeds. If you're using an earlier version of Linux and these constants are unavailable, you can
use the command setserial to obtain non-standard speeds of 57600 and 115200. In this case,
these speeds will be used when B38400 is selected. Both of these methods are non—portable, s
be careful when you're using them.

Additional Functions

There are a small number of additional functions for the control of terminals. These work directly on file
descriptors, without needing to get and set termios structures. Their definitions are:

#include <termios.h>

156



Try It Out — A Password Program with termios

int tcdrain(int fd);
int tcflow(int fd, int flowtype);
int tcflush(int fd, int in_out_selector);

The functions have the following purposes:

« tcdrain causes the calling program to wait until all queued output has been sent.
« tcflow is used to suspend or restart output.
« tcflush can be used to flush input, output or both.

Now that we've covered the rather large subject of the termios structure, let's look at a few practical
examples. Possibly the simplest is the disabling of echo to read a password. We do this by turning off the
ECHO flag.

Try It Out — A Password Program with termios

1. Our password program, password.c, begins with the following definitions:

#include <termios.h>
#include <stdio.h>

#define PASSWORD_LEN 8

int main()

{

struct termios initialrsettings, newrsettings;
char password[PASSWORD_LEN + 1];

2. Next, add in a line to get the current settings from the standard input and copy them into the termios
structure that we created above.

tcgetattr(fileno(stdin), &initialrsettings);
3. Make a copy of the original settings to replace them at the end. Turn off the ECHO flag on the
newrsettings and ask the user for their password:

newrsettings = initialrsettings;
newrsettings.c_lflag &= ~ECHO;

printf("Enter password: ");
4. Next, set the terminal attributes to newrsettings and read in the password. Lastly, reset the terminal
attributes to their original setting and print the password to render all the previous effort useless.

if(tcsetattr(fileno(stdin), TCSAFLUSH, &newrsettings) != 0) {
fprintf(stderr,"Could not set attributes\n");

}

else {
fgets(password, PASSWORD_LEN, stdin);
tesetattr(fileno(stdin), TCSANOW, &initialrsettings);
fprintf(stdout, "\nYou entered %s\n", password);

}
exit(0);

157



How It Works

How It Works

$ password
Enter password:
You entered hello

$

In this example, the word hello is typed but not echoed at the Enter password: prompt. No output is produce
until the user presses Return.

We're careful only to change the flags we need to change, using the construct X &= ~FLAG (which clears th
bit defined by FLAG in the variable X). If needed, we could use X |= FLAG to set a single bit defined by
FLAG, although this wasn't necessary in the above example.

When we're setting the attributes, we use TCSAFLUSH to discard any type ahead. This is a good way of
encouraging users not to start typing their password until echo has been turned off. We also restore the
previous setting before our program terminates.

Another common use of the termios structure is to put the terminal into a state where we can read each
character as it is typed. We do this by turning off canonical mode and using the MIN and TIME settings.

Try It Out — Reading Each Character

1. Using our new knowledge, we can make changes to our menu program. The following code bears
much resemblance to password.c, but needs to be inserted into menu3.c to make our new program,
menu4.c. For a start, we must include a new header file at the top of the program:

#include <stdio.h>
#include <unistd.h>
#include <termios.h>

2. Then we need to declare a couple of new variables in the main function:

int choice = 0;

FILE *input;

FILE *output;

struct termios initial_settings, new_settings;

3. We need to change the terminal's characteristics before we call the getchoice function, so that's whe
we place these lines:

fprintf(stderr, "Unable to open /dev/tty\n");
exit(1);

}

tcgetattr(fileno(input),&initial_settings);

new_settings = initial_settings;

new_settings.c_Iflag &= ~ICANON;

new_settings.c_Iflag &= ~ECHO;

new_settings.c_cc[VMIN] = 1;

new_settings.c_cc[VTIME] = 0;

if(tcsetattr(fileno(input), TCSANOW, &new_settings) != 0) {
fprintf(stderr,"could not set attributes\n");

}

4. We should also return the settings to their original values before exiting:

do {

158



How It Works

choice = getchoice("Please select an action", menu, input, output);
printf("You have chosen: %c\n", choice);
} while (choice !'="q";
tcsetattr(fileno(input), TCSANOW, &initial_settings);
exit(0);
}
Note that we need to check against carriage returns \r now that we're in non—canonical mode, because the default mapy
do {
selected = fgetc(in);
} while (selected =="\n' || selected == "\r");
5. Unfortunately, if the user now types Ctrl-C at our program, it will terminate. We can disable
processing of these special characters by clearing the ISIG flag in the local modes. Add the following

line to main.

new_settings.c_lflag &= ~ISIG;

How It Works

If we put these changes into our menu program, we now get an immediate response and the character we t
isn't echoed:

$ menu4

Choice: Please select an action
a — add new record

d - delete record

g - quit

You have chosen: a

Choice: Please select an action
a — add new record

d - delete record

g — quit
You have chosen: g
$

If we type Ctrl-C, it's passed directly to the program and treated as an incorrect choice.

Terminal Output

Using the termios structure, we have control over keyboard input, but it would be good to have the same lev
of control over the way a program's output is presented on the screen. We used printf at the start of the cha,
to output characters to the screen, but with no way of placing the output at a particular position on the scree

Terminal Type

Many UNIX systems are used with terminals, although in many cases today the ‘terminal’ may actually be a
PC running a terminal program. Historically, there have been a very large number of terminals from different
manufacturers. Although they nearly all use escape sequences (a string of characters starting with the esca
character) to provide control over the position of the cursor and other attributes, such as bold and blinking,
they are generally not very well standardized in the way they do this. Some older terminals also have differe
scrolling capabilities, may or may not erase when backspace is sent, and so on.

Important There is an ANSI standard set of escape sequences (mostly based on the sequences used in th
Digital Equipment Corporation VT series terminals, but not identical). Many PC terminal

159



Identify Your Terminal Type

programs provide an emulation of a standard terminal, often VT100, VT220 or ANSI, and
sometimes others as well.
This variety of terminals would be a major problem for programmers wishing to write software that controls
the screen and runs on many terminal types. For example, an ANSI terminal uses the sequence Escape—[-
to move the cursor up one line. An ADM-3a terminal (very common some years ago), uses the single contre
character Ctrl-K.

Writing a program that can deal with the many different types of terminal that might be connected to a UNIX
system would seem to be an extremely daunting task. The program would need different source code for ea
type of terminal.

Not surprisingly, there is a solution in a package known as terminfo. Instead of each program having to cate
for every sort of terminal, the program looks up a database of terminal types to get the correct information. |
most modern UNIX systems this has been integrated with another package called curses, which we will mee
in the next chapter.

On Linux, we'll use the implementation of curses known as ncurses, and include ncurses.h to provide
prototypes for our terminfo functions. The terminfo functions themselves are declared in their own header fils
term.h. Or at least, that used to be the case. With newer Linux versions, there's a blurring of the line betwee
terminfo and ncurses, to the point where many programs requiring terminfo functions must also include the
ncurses header file.

Identify Your Terminal Type

The UNIX environment contains a variable, TERM, that is set to the type of terminal being used. It's usually
set automatically by the system at logon time. The system administrator may set a default terminal type for

each of the directly connected terminals and may arrange for remote, networked users to be prompted for a
terminal type. The value of TERM can be negotiated via telnet and is passed by rlogin.

A user can query the shell to discover the system's idea of the terminal he or she is using.

$ echo $TERM
xterm
$

In this case, the shell is being run from a program called xterm, a terminal emulator for the X Window
system.

The terminfo package contains a database of capabilities and escape sequences for a large number of
terminals and provides a uniform programming interface for using them. A single program can then be writte
that will take advantage of future terminals as the database is extended, rather than each application having
provide support for the many different terminals.

The terminfo capabilities are described by attributes. These are stored in a set of compiled terminfo files,
conventionally found in /usr/lib/terminfo or /usr/share/terminfo. For each terminal (and many printers, which
can also be specified in terminfo) there's a file that defines its capabilities and how its features can be
accessed. To avoid creating a very large directory, the actual files are stored in subdirectories, where the
subdirectory name is simply the first letter of the terminal type. Thus, the VT100 definition is found in
...terminfo/v/vt100.

160



Identify Your Terminal Type

terminfo files are written one per terminal type in a source format that is (just about!) readable, then compile
using the tic command into a more compact and efficient format for use by application programs. Curiously,
the X/Open specification refers to source and compiled format definitions, but fails to mention the tic
command for actually getting from source to compiled formats. You can use the infocmp program to print a
readable version of a compiled terminfo entry.

Here's an example terminfo file for the VT100 terminal:

$ infocmp vt100
vt100|vt100—am]|dec vt100 (w/advanced video),
am, mir, msgr, xenl, xon,
cols#80, it#8, lines#24, vt#3,
acsc=""aaffggjjkklmmnnooppqqrrssttuuvvwwxxyyzz{{|[}}~~,
bel="G, blink=\E[5m$<2>, bold=\E[1m$<2>,
clear=\E[H\E[J$<50>, cr=\r, csr=\E[%i%p1%d;%p2%dr,
cub=\E[%p1%dD, cub1=\b, cud=\E[%p1%dB, cud1=\n,
cuf=\E[%p1%dC, cufl=\E[C$<2>,
cup=\E[%i%p1%d;%p2%dH$<5>, cuu=\E[%pl%dA,
CUUl=\E[A$<2>, ed=\E[J$<50>, el=\E[K$<3>,
el1=\E[1K$<3>, enacs=\E(B\E)0, home=\E[H, ht=\t,
hts=\EH, ind=\n, kal=\EOq, ka3=\EOs, kb2=\EOr, kbs=\b,
kc1=\EOp, kc3=\EOn, kcub1=\EOD, kcud1=\EOB,
kcufl=\EOC, kcuul=\EOA, kent=\EOM, kfO=\EOy, kf1=\EOP,
kf10=\EOX, kf2=\EOQ, kf3=\EOR, kf4=\EOS, kf5=\EOt,
kf6=\EOu, kf7=\EOv, kf8=\EOI, kf9=\EOw, rc=\ES8,
rev=\E[7m$<2>, ri=\EM$<5>, rmacs="0, rmkx=\E[?1I\E>,
rmso=\E[m$<2>, rmul=\E[m$<2>,
rs2=\E>\E[?3N\E[?4\E[?5\E[?7h\E[?8h, sc=\E7,
sgr=\E[0%?%p1%p6%6|%t; 1%;%?%p2%t;4%;%?%p1%p3%|%t; 7%;%?%p4%t; 5%; % ?%p9%t "N%e O%;,
sgrO=\E[m”"0%$<2>, smacs="N, smkx=\E[?1h\E=,
smso=\E[1;7m$<2>, smul=\E[4m$<2>, tbc=\E[3g,

Each terminfo definition consists of three types of entry. Each entry is called a capname and defines a
terminal capability.

Boolean capabilities simply indicate whether a terminal supports a particular feature. For example, the
Boolean capability xon is present if the terminal supports XON/XOFF flow control, cubl is present if a
‘cursor left' command given while the cursor is in column 0 will put the cursor in the right-maost column.

Numeric capabilities define sizes, such as lines, the number of lines on the screen and cols, the number of
columns on the screen. The actual number is separated from the capability name by a # character. To defin
terminal as having 80 columns and 24 lines, we would write cols#80, lines#24.

String capabilities are slightly more complex. They are used for two distinct types of capability: defining
output strings needed to access terminal features and defining the input strings that will be received when tt
user presses certain keys, normally function keys or special keys on the numeric keypad. Some string
capabilities are quite simple, such as el, which is "erase to end of line". On a VT100 terminal, the escape
sequence needed to do this is Esc—[-K. This is written el=\E[K in terminfo source format.

Special keys are defined in a similar way. For example, function key f1 on a VT100 sends the sequence
Esc-O-P. This is defined as kf1=\EOP.

Things get slightly more complicated where the escape sequence needs some parameters. Most terminals «
move the cursor to a specified row and column location. It's clearly impractical to have a different capability
for each possible cursor location, so a generic capability string is used, with parameters defining the values

161



Using terminfo Capabilities

be inserted when the stings are used. For example, a VT100 terminal uses the sequence
Esc—[-<row>-;—-<col>-H to move the cursor to a specified location. In terminfo source format, this is
written with the rather intimidating cup=\E[%i%p1%d;%p2%dH$<5>.

This means:

* \E Send Escape.

e [ Send the [ character.

* %i Increment the arguments.

%pl Put the first argument on the stack.

%d Output the number on the stack as a decimal number.
; Send the ; character.

%p2 Put the second argument on the stack.

%d Output the number on the stack as a decimal number.
H Send the H character.

This seems rather more complex than it might be, but allows for the parameters to be in a fixed order,
independent of which order the terminal expects them to appear in the final escape sequence. The %i to
increment the arguments is required because standard cursor addressing is specified as starting from (0,0) .
the top left of the screen, but the VT100 addresses this location as (1,1). The final $<5> indicates that a delz
equivalent to five character output times is required to allow the terminal to process the cursor movement.

Important We could define many, many capabilities, but, fortunately most UNIX systems come
with most terminals predefined. If you need to add a new terminal, you'll find the
complete capability list in the manual under terminfo. A good starting point is
usually to locate a terminal that is similar to your new terminal and define the new
terminal as a variation on the existing terminal, or work through the capabilities one
at a time, updating them where required.

The standard reference outside the man pages is the O'Reilly title Termcap and
Terminfo, ISBN 0-937175-22-6.

Using terminfo Capabilities

Now that we know how to define terminal capabilities, we need to learn how to access them. When we're
using terminfo, the first thing we need to do is to set up the terminal type by calling setupterm. This will
initialize a TERMINAL structure for the current terminal type. We'll then be able to ask for capabilities for
the terminal and use its facilities. We do this with the setupterm call like this:

#include <term.h>

int setupterm(char *term, int fd, int *errret);

The setupterm library function sets the current terminal type to that specified by the parameter term. If term
a null pointer, the TERM environment variable will be used. An open file descriptor to be used for writing to
the terminal must be passed as fd. The function outcome is stored in the integer variable pointed to by errre
this isn't a null pointer. The value written will be:

* —1 No terminfo database.

* 0 No matching entry in terminfo database.
* 1 Success.

162



Using terminfo Capabilities

The setupterm function returns the constant OK if it succeeds and ERR if it fails. If errret is set to a null
pointer setupterm will print a diagnostic message and exit the program if it fails, as in this example:

#include <stdio.h>
#include <term.h>
#include <ncurses.h>

int main()

{
setupterm("unlisted",fileno(stdout),(int *)0);
printf("Done.\n");
exit(0);

}

The output from running this program on your system may not be exactly that given here, but the meaning
should be clear enough. Done. isn't printed, since setupterm caused the program to exit when it failed.

$ cc —o badterm badterm.c —l/usr/include/ncurses —Incurses
$ badterm

‘'unlisted': unknown terminal type.

$

Notice the compilation line in the example: on this Linux system, the ncurses header file is in the directory
{usr/include/ncurses, so we have to specifically instruct the compiler to look there with the —I option. Some
Linux systems have arranged for the ncurses library to be available in the standard locations. On these syst
we can simply include curses.h, and specify —Icurses for the library.

For our menu choice function, we would like to be able to clear the screen, move the cursor around the scre
and write at different locations on the screen. Once we've called setupterm, we can access the terminfo
capabilities with three function calls, one for each of the capability types:

#include <term.h>

int tigetflag(char *capname);
int tigetnum(char *capname);
char *tigetstr(char *capname);

The functions tigetflag, tigetnum and tigetstr return the value of Boolean, numeric and string terminfo
capabilities, respectively. On failure (for example if the capability isn't present), tigetflag returns -1, tigetnum
returns —2 and tigetstr returns (char *)-1.

Let's use the terminfo database to find out the size of the terminal by retrieving the cols and lines capabilitie:
with this program, sizeterm.c:

#include <stdio.h>
#include <term.h>
#include <ncurses.h>

int main()

{

int nrows, ncolumns;

setupterm(NULL, fileno(stdout), (int *)0);

nrows = tigetnum("lines");

ncolumns = tigetnum(“cols");

printf("This terminal has %d columns and %d rows\n", ncolumns, nrows);

163



Using terminfo Capabilities

exit(0);

}
$ echo $TERM

vt100

$ sizeterm

This terminal has 80 columns and 24 rows
$

If we run the program inside a window on a workstation, we'll get answers that reflect the current window's
size:

$ echo $TERM

xterm

$ sizeterm

This terminal has 88 columns and 40 rows
$

If we use tigetstr to retrieve the cursor motion capability (cup) of the xterm terminal type we get a
parameterized answer: \E[%p1%d;%p2%dH.

This capability requires two parameters: a row and column to move the cursor to. Both coordinates are
measured starting at zero from the top left corner of the screen.

We can substitute the parameters in a capability with actual values using the tparm function. Up to nine
parameters can be substituted and a usable escape sequence is returned.

#include <term.h>

char *tparm(char *cap, long p1, long p2, ..., long p9);
Outputting Control Strings to the Terminal

Once we've constructed the terminal escape sequence with tparm, we must send it to the terminal. To proce
this properly, you shouldn't send the string to the terminal with printf. Instead, use one of the special functior
provided that correctly process any required delays while the terminal completes an operation. These
functions are:

#include <term.h>

int putp(char *const str);
int tputs(char *const str, int affcnt, int (*putfunc)(int));

On success, putp returns OK; on failure ERR. The putp function takes the terminal control string and sends
to stdout.

So, to move to row 5, column 30 of the screen, we can use a block of code like this:

char *cursor;

char *esc_sequence;

cursor = tigetstr("cup");
esc_sequence = tparm(cursor,5,30);
putp(esc_sequence);

The tputs function is provided for those situations when the terminal isn't accessed via stdout and allows yol
to specify the function to be used for outputting the characters. It returns the result of the user specified

164



Using terminfo Capabilities

function putfunc. The affcnt parameter is intended to indicate the number of lines affected by the change. It
normally set to 1. The function used to output the string must have the same parameters and return type as
putchar function. Indeed, putp(string) is equivalent to the call tputs(string, 1, putchar). We'll see tputs used
with a user specified output function later.

Be aware that some older Linux distributions define the final parameter of the tputs function as int
(*putfunc)(char), which would oblige us to alter the definition of the char_to_terminal function in our next
Try It Out.

Important If you consult the manual pages for information on tparm and terminal capabilities, you may
come across the tgoto function. The reason we haven't used this function, when it apparently
offers an easier solution to moving the cursor, is that the X/Open specification (Single UNIX
Specification Version 2) does not include them as of the 1997 edition. We therefore recommend
that you don't use any of these functions in hew programs.

We're almost ready to add screen handling to our menu choice function. The only thing left to do is to clear

the screen, simply using clear. Some terminals don't support the clear capability which leaves the cursor at 1

top left corner of the screen. In this case we can position the cursor at the top left corner and use the 'delete

end of display' command, ed.

Putting all this information together, we'll write the final version of our sample menu program, screenmenu.c
where we 'paint' the options on the screen for the user to pick a valid one.

Try It Out — Total Terminal Control

We can rewrite the getchoice function from menu4.c to give us total terminal control. In this listing, the main
function has been omitted because it isn't changed. Other differences from menu4.c are highlighted.

#include <stdio.h>
#include <unistd.h>
#include <termios.h>
#include <term.h>
#include <curses.h>

static FILE *output_stream = (FILE *)0;

char *menu[] = {
"a — add new record",
"d — delete record",
"q - quit",
NULL,

h

int getchoice(char *greet, char *choices[], FILE *in, FILE *out);
int char_to_terminal(int char_to_write);

int main()

{

int getchoice(char *greet, char *choices[], FILE *in, FILE *out)

{

int chosen = 0;
int selected;
int screenrow, screencol = 10;

165



Using terminfo Capabilities

char **option;
char *cursor, *clear;

output_stream = out;

setupterm(NULL,fileno(out), (int *)0);
cursor = tigetstr("cup");
clear = tigetstr("clear");

screenrow = 4;
tputs(clear, 1, (int *) char_to_terminal);
tputs(tparm(cursor, screenrow, screencol), 1, char_to_terminal);
fprintf(out, "Choice: %s", greet);
screenrow += 2;
option = choices;
while(*option) {
tputs(tparm(cursor, screenrow, screencol), 1, char_to_terminal);
fprintf(out,"%s", *option);
screenrow++;
option++;

}

do {
selected = fgetc(in);
option = choices;
while(*option) {
if(selected == *option[0]) {
chosen = 1;
break;

}

option++;

if(lchosen) {
tputs(tparm(cursor, screenrow, screencol), 1, char_to_terminal);
fprintf(out,"Incorrect choice, select again\n");

} while(chosen);
tputs(clear, 1, char_to_terminal);
return selected,;

}

int char_to_terminal(int char_to_write)

{
if (output_stream) putc(char_to_write, output_stream);
return O;

}

How It Works

The rewritten getchoice function implements the same menu as in previous examples, but the output routine
are modified to make use of the terminfo capabilities. If you want to see the You have chosen: message for
more than a moment before the screen is cleared ready for the next selection, add a call to sleep in the mai
function:

do {
choice = getchoice("Please select an action", menu, input, output);
printf("\nYou have chosen: %c\n", choice);
sleep(1);
} while (choice !'="q";

166



Detecting Keystrokes

The last function in this program, char_to_terminal, includes a call to the putc function, which we mentioned
in Chapter 3.

To round off this chapter, we'll look at a quick example of how to detect keystrokes.

Detecting Keystrokes

People who have programmed MS-DOS often look for the UNIX equivalent of the kbhit function, which
detects whether a key has been pressed without actually reading it. Unfortunately, they fail to find it, since
there's no direct equivalent. UNIX programmers don't notice the omission, because UNIX is normally
programmed in such a way that programs should rarely, if ever, busy—wait on an event. Since this is the
normal use for kbhit, it's rarely missed on UNIX.

However, when you're porting programs from MS-DOS, it's often convenient to emulate kbhit, which you
can do using the non-canonical input mode.

Try It Out — Your Very Own kbhit

1. We begin with the standard headings and declare a couple of structures for the terminal settings.
peek_character is used in the test of whether or not a key has been pressed. Then we prototype the
functions we'll be using later.

#include <stdio.h>
#include <termios.h>
#include <term.h>
#include <curses.h>
#include <unistd.h>
static struct termios initial_settings, new_settings;
static int peek_character = -1;
void init_keyboard();
void close_keyboard();
int kbhit();
int readch();
2. The main function calls init_keyboard to configure the terminal, then just loops once a second,
calling kbhit each time it does so. If the key hit is g, close_keyboard returns the behavior to normal

and the program exits.

int main()

{
intch =0;

init_keyboard();
while(ch 1='q") {
printf("looping\n");
sleep(1);
if(kbhit()) {
ch = readch();
printf("you hit %c\n",ch);
}
}

close_keyboard();
exit(0);
}
3.init_keyboard and close_keyboard configure the terminal at the start and end of the program.

167



Detecting Keystrokes

void init_keyboard()

{
tcgetattr(0,&initial_settings);
new_settings = initial_settings;
new_settings.c_lflag &= ~ICANON,;
new_settings.c_Iflag &= ~ECHO;
new_settings.c_Iflag &= ~ISIG;
new_settings.c_cc[VMIN] = 1;
new_settings.c_cc[VTIME] = 0;
tcsetattr(0, TCSANOW, &new_settings);

}

void close_keyboard()

{

}
4. Now for the function that checks for the keyboard hit:

tcsetattr(0, TCSANOW, &initial_settings);

int kbhit()

{
char ch;
int nread;

if(peek_character I= -1)

return 1;
new_settings.c_cc[VMIN]=0;
tcsetattr(0, TCSANOW, &new_settings);
nread = read(0,&ch,1);
new_settings.c_cc[VMIN]=1;
tcsetattr(0, TCSANOW, &new_settings);

if(nread == 1) {
peek_character = ch;
return 1;
}
return O;
}
5. The character pressed is read by the next function, readch, which then resets peek_character to -1

the next loop.

int readch()
{

char ch;

if(peek_character I= -1) {
ch = peek_character;
peek_character = -1;
return ch;

}

read(0,&ch,1);

return ch;

}
When we run the program, we get:

$ kbhit
looping
looping
looping
you hit h

168



How It Works

looping
looping
looping
you hit d
looping
you hit gq
$

How It Works

The terminal is configured in init_keyboard to read one character before returning (MIN=1, TIME=0). kbhit
changes this behavior to check for input and return immediately (MIN=0, TIME=0) and then restores the
original settings before exiting.

Notice that we have to read the character that has been pressed, but store it locally ready for returning wher
it's required.

Pseudo Terminals

Many UNIX systems, and LINUX too, have a feature called pseudo—terminals. These are devices that beha
much like the terminals we have been using in this chapter, except that they have no associated hardware.
They can be used to provide a terminal-like interface to other programs.

For example, using pseudo-terminals it is possible to make two chess programs play each other, despite th
fact that the programs themselves were designed to interact with a human player at a terminal. A applicatior
acting as an intermediary passes one program's moves to the other and vice versa. It uses pseudo-termina
fool the programs into behaving normally without a terminal being present.

Pseudo-terminals were at one time implemented in a system-specific manner, if at all. They have now beel
incorporated into the Single UNIX Specification as UNIX98 Pseudo-Terminals or PTYs.

Summary
In this chapter we've learned about three different aspects of controlling the terminal. In the first part of the
chapter, we learned about detecting redirection and how to talk directly to a terminal even when the standar

file descriptors have been redirected.

We then learned about the General Terminal Interface and the termios structure that provides detailed contr
over UNIX terminal handling.

Finally, we learned how to use the terminfo database and related functions to manage screen output in a
terminal independent fashion.

169



Chapter 6: Curses

Overview

In the last chapter, we saw how to obtain much finer control over the input of characters and how to provide
character output in a terminal-independent way. The problem with using the general terminal interface (GTI
or termios) and manipulating escape sequences with tparm and its related functions is that it requires a lot ©
lower—level code. For many programs a higher—level interface would be more desirable. We would like to be
able to simply draw on the screen and use a library of functions to take care of terminal dependencies
automatically.

In this chapter, we'll learn about just such a library, the curses library. curses is important standard as a
halfway house between simple 'line-based' programs and the fully graphical (and generally much harder to
program) X Window system programs. Linux does have the svgalib, but that is not a standard UNIX library.
The curses library is used in many full screen applications as a reasonably easy, and terminal-independent
way to write full-screen, albeit character—based, programs. It's generally much easier to write such progran
with curses than to use escape sequences directly. curses can also manage the keyboard, providing an eas
use, non-blocking character input mode. It's used by the people's pet-hate text editor, vi. We'll cover:

 Using the curses library

» The concepts of curses

« Basic input and output control
» Multiple windows

» Keypad

* Color

We will finish by re-implementing the CD Collection program in C, summarizing what we've learned in these
last few chapters.

Compiling with curses

Since curses is a library, to use it we must include a header file, functions and macros from an appropriate
system library. But before that, some history. There have been several different implementations of curses.
The original version appeared in BSD UNIX and was then incorporated into the System V flavors of UNIX.
As we developed the examples for this chapter, we used ncurses, a freeware emulation of System V Releas
4.0 curses that was developed under Linux. This implementation is highly portable to other UNIX versions.
There are even versions of curses for MS-DOS and MS-Windows. If you find that the curses library bundle
with your flavor of UNIX doesn't support some features, we suggest you try and obtain a copy of ncurses as
an alternative.

Important The X/Open specification defines two levels of curses: base and extended. The version of
ncurses current when this book was written doesn't yet implement all of the extended features,
though it does implement the 'useful' ones, such as multiple windows and color support. Few
curses programs will need the extended facilities that are not implemented in ncurses.

Extended curses contains a motley crew of additional routines, including a range of functions for
handling multicolumn characters and color manipulation routines.

170



Concepts

When you're compiling curses programs, you must include the header file curses.h, and link against the cur:
library with —lcurses. Depending on your system setup, this may already be ncurses. You can check how yo
curses is setup, by doing a Is —I /usr/include/*curses.h to look at the header files, and Is —I /usr/lib/*curses* tc
check the library files. If you find that the curses files are links to ncurses files, then (using gcc) you should
able to compile the files in this chapter using a command such as:

$ gcc program.c —o program —lcurses

If, however, your curses setup is not automatically using ncurses, you may have to explicitly force the use o
ncurses by using a compile command such as this.

$ gcc -l/usr/include/ncurses program.c —o program —Incurses

where the —I option specifies the directory in which to search for the header file. The makefile in the
downloadable code assumes your setup uses ncurses by default, so you will have to change it, or compile k
hand if this is not the case on your system.

If you're unsure how curses is set up on your system, refer to the manual pages for ncurses.

Concepts

The curses routines work on screens, windows and subwindows. A screen is the device (usually a terminal
screen) to which we are writing. It occupies all the available display on that device. Of course, if it's a termin.
window inside an X Window, the screen is simply all the character positions available inside the terminal
window. There is always at least one curses window, stdscr, which is the same size as the physical screen.
You can create additional windows that are smaller than the screen. Windows can overlap each other and c
have many subwindows, but each subwindow must always be contained inside its parent window.

The curses library maintains two data structures that act like a map of the terminal screen, stdscr and cursci

stdscr, the more important, is a structure updated when curses functions produce output. The stdscr data
structure is the 'standard screen'. It acts in much the same way as stdout, the standard output, does for the
library. It's the default output window in curses programs. This output doesn't appear on the screen until the
program calls refresh, when the curses library compares the contents of stdscr (what the screen should look
like) with the second structure curscr (what the screen currently looks like). curses then uses the differences
between these two structures to update the screen.

Some curses programs need to know that curses maintains a stdscr structure, as it's required as a paramet:
a few curses functions. However, the actual stdscr structure is implementation—dependent and should nevel
accessed directly. curses programs shouldn't need to use curscr.

Thus, the process for the output of characters in a curses program is:

* Use curses functions to update a logical screen.
» Ask curses to update the physical screen with refresh.

The advantage of a two—-level approach is that curses screen updates are very efficient and, although this is

so important on a console screen, it makes a considerable difference if you're running your program over a
slow serial or modem link.

171



Try It Out — A Simple curses Program

A curses program will make many calls to logical screen output functions, possibly moving the cursor all ove
the screen to get to the right position for writing text and drawing lines and boxes. At some stage, the user w
need to see all of this output. When this happens, typically during a call to refresh, curses will calculate the
optimum way of making the physical screen correspond to the logical screen. By using appropriate terminal
capabilities and by optimizing cursor motions, curses will often be able to update the screen with far fewer
characters being output than if all the screen writes had happened immediately. The curses library takes its
name from this cursor optimization feature. Although the number of characters output is not as important as
was in the days of dumb terminals and low speed modems, the curses library survives as a useful addition t
the programmer's toolkit.

The layout of the logical screen is a character array, arranged by lines and columns with the screen position
(0,0) at the top left-hand corner.

All the curses functions use coordinates with the y value (lines) before the x (columns) value. Each position
holds not only the character for that screen location, but also its attributes. The attributes that can be display
depend on the physical terminal's capabilities, but usually at least bold and underline are available.

Because the curses library needs to create and destroy some temporary data structures, all curses program
must initialize the library before use and then allow curses to restore settings after use. This is done with a
of function calls, initscr and endwin.

Let's write a very simple curses program, screenl.c, to show these and other basic function calls in action.
We'll then describe the function prototypes.

Try It Out — A Simple curses Program

1. We add in the curses.h header file and in the main function we make calls to initialize and reset the
curses library.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main() {
initscr();

172



Initialization and Termination

endwin();
exit(EXIT_SUCCESS);
}
2.In between, we move the cursor to the point (5,15) on the logical screen, print "Hello World" and

refresh the actual screen. Lastly, we use the call sleep(2) to suspend the program for two seconds, <
we can see the output before the program ends.

move(5, 15);
printw("%s", "Hello World");
refresh();

sleep(2);

While the program is running, we see "Hello World" in the top left quadrant of an otherwise blank screen.

-] tmbGridcully:~/chap06_curses | -]_1]

5

Hallo Worldl

o
1

Initialization and Termination

As we've already seen, all curses programs must start with initscr and end with endwin. Here are their head
file definitions.

#include <curses.h>

WINDOW *initscr(void);
int endwin(void);

The initscr function should only be called once in each program. The initscr function returns a pointer to the
stdscr structure if it succeeds. If it fails, it simply prints a diagnostic error message and causes the program
exit.

The endwin function returns OK on success and ERR on failure. You can call endwin to leave curses and th
later resume curses operation by calling clearok(stdscr, 1) and refresh. This effectively makes curses forget
what the physical screen looks like and forces it to perform a complete redisplay.

The WINDOW structure is simply the structure that curses uses to store the intended screen display. This
structure is opaque, i.e. curses doesn't give access to its internals.

Output to the Screen

There are several basic functions provided for updating the screen. These are:

#include <curses.h>

173



Reading from the Screen

int addch(const chtype char_to_add);

int addchstr(chtype *const string_to_add);
int printw(char *format, ...);

int refresh(void);

int box(WINDOW *win_ptr, chtype vertical_char, chtype horizontal_char);
int insch(chtype char_to_insert);

int insertin(void);

int delch(void);

int deleteln(void);

int beep(void);

int flash(void);

curses has its own character type, chtype, which may have more bits than a standard char. For the Linux
version of ncurses, chtype is actually an unsigned long.

The add... functions add the character or string specified at the current location. The printw function formats
string in the same way as printf and adds it to the current location. The refresh function causes the physical
screen to be updated, returning OK on success and ERR if an error occurred. The box function allows you t
draw a box around a window. In standard curses, you may only use 'normal’ characters for the vertical and
horizontal line characters.

Important In extended curses, though, you can use the two defines ACS_VLINE and
ACS_HLINE for a better looking box. For this, your terminal needs to support line
drawing characters, though that's pretty much standard now.
The insch function inserts a character, moving existing characters right, though what will happen at the end
a line isn't specified and will depend on the terminal you're using. insertln inserts a blank line, moving existin
lines down by one. The two delete functions are analogous to the two insert functions.

To make a sound, you can call beep. A very small number of terminals are unable to make any sound, so st
curses setups will cause the screen to flash when beep is called. If you work in a busy office, where beeps ¢
come from any number of machines, you might find you prefer this yourself. As you might expect, flash
causes the screen to flash, but if this isn't possible, it tries to make a sound on the terminal.

Reading from the Screen

We can read characters from the screen, although this facility isn't commonly used. It's done with the
following functions.

#include <curses.h>

chtype inch(void);
int instr(char *string);
int innstr(char *string, int number_of_characters);

The inch function should always be available, but the instr and innstr functions are not always supported. Tr

inch function returns a character and its attribute information from the current screen location of the cursor.
Notice that inch doesn't return a character, but a chtype, whilst instr and innstr write to arrays of chars.

174



Clearing the Screen
Clearing the Screen

There are four principal ways of clearing an area of the screen. These are:

#include <curses.h>

int erase(void);
int clear(void);
int clrtobot(void);
int clrtoeol(void);

The erase function writes blanks to every screen location. The clear function, like erase, clears the screen,
enforces a screen redisplay by also calling clearok. clearok enforces a clear screen sequence and redisplay
when the next refresh is called.

The clear function usually uses a terminal command that erases the entire screen, rather than simply
attempting to erase any currently non-blank screen locations. This makes the clear function a reliable way c
completely erasing the screen. The combination of clear followed by refresh can provide a useful redraw
command.

clrtobot clears the screen from the cursor position onwards and clrtoeol clears the line from the cursor to the
end of the line.

Moving the Cursor

A single function is provided for moving the cursor, with an additional command for controlling where curses
leaves the cursor after screen updates:

#include <curses.h>

int move(int new_y, int new_x);
int leaveok(WINDOW *window_ptr, bool leave_flag);

The move function simply moves the logical cursor position to the specified location. Remember that the
screen coordinates are specified with (0,0) as the top left—hand corner of the screen. In most versions of
curses, the two extern integers LINES and COLUMNS contain the physical screen size and can be used to
determine the maximum allowed values for new_y and new_x. Calling move won't, in itself, cause the
physical cursor to move. It only changes the location on the logical screen at which the next output will
appear. If you want the screen cursor to move immediately after calling move, follow it with a call to refresh.

The leaveok function sets a flag which controls where curses leaves the physical cursor after a screen upda
By default, the flag is false and, after a refresh, the hardware cursor will be left in the same position on the
screen as the logical cursor. If the flag is set to true, the hardware cursor may be left randomly, anywhere or
the screen. Generally the default option is preferred.

Character Attributes

Each curses character can have certain attributes, which control how it's displayed on the screen, assuming
that the display hardware can support the requested attribute. The defined attributes are A_BLINK, A BOLL
A_DIM, A_REVERSE, A_STANDOUT and A_UNDERLINE. You can use these functions to set attributes
singly or collectively.

175



Try It Out — Moving, Inserting and Attributes

#include <curses.h>

int attron(chtype attribute);
int attroff(chtype attribute);
int attrset(chtype attribute);
int standout(void);
int standend(void);

The attrset function sets the curses attributes, attron and attroff turn on and off specified attributes without
disturbing others, while standout and standend provide a more generic emphasized, or 'stand out' mode. Th
is commonly mapped to reverse video on most terminals.

Now that we know more about managing the screen, we can try out a more complex example, moveadd.c. |
the purposes of this example, we'll include several calls to refresh and sleep, to enable you to see what the
screen looks like as each stage. Normally, curses programs would refresh the screen as little as possible,
because it's not a very efficient operation. The code is slightly contrived for the purposes of illustration.

Try It Out — Moving, Inserting and Attributes

1. We include some header files, define some character arrays and a pointer to those arrays and then
initialize the curses structures.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main()

{
const char witch_one[] =" First Witch ";
const char witch_two[] = " Second Witch ";
const char *scan_ptr;

initscr();
2. Now for the three initial sets of text that appear at intervals on the screen. Note the on and off flaggir
of text attributes.

move(5, 15);
attron(A_BOLD);
printw("%s", "Macbeth");
attroff(A_BOLD);
refresh();

sleep(1);

move(8, 15);

attron(A_DIM);

printw("%s", "Thunder and Lightning");
attroff(A_DIM);

refresh();

sleep(1);

move(10, 10);

printw("%s", "When shall we three meet again");
move(11, 23);

printw("%s", "In thunder, lightning, or in rain ?");
move(13, 10);

printw("%s", "When the hurlyburly's done,");
move(14,23);

176



The Keyboard

printw("%s", "When the battle's lost and won.");
refresh();
sleep(1);
3. Lastly, the actors are identified and their names are inserted a character at the time. We also add the
reset function at the end of the main function.

attron(A_DIM);
scan_ptr = witch_one + strlen(witch_one);
while(scan_ptr != witch_one) {
move(10,10);
insch(*scan_ptr—-);

}

scan_ptr = witch_two + strlen(witch_two);
while (scan_ptr != witch_two) {

move(13, 10);

insch(*scan_ptr—-);

}
attroff(A_DIM);

refresh();
sleep(1);

endwin();

exit(EXIT_SUCCESS);
}

When we run this program, the final screen looks like this:

= | tenb Gridcully:~fchap06_curses |l

Thunder and Lightnirg

First Hitch When shall ve three seet again
In thurder, lightning, o in rain 7

Bacond Hitch When the hurluourly's done,
Hen the battle's lost and won,

The Keyboard

As well as providing an easier interface to controlling the screen, curses also provides an easier method for
controlling the keyboard.

Keyboard Modes

The keyboard reading routines are controlled by modes. The functions that set the modes are:

#include <curses.h>

int echo(void);

int noecho(void);
int cbreak(void);
int nocbreak(void);
int raw(void);

int noraw(void);

177



Keyboard Input

The two echo functions simply turn the echoing of typed characters on and off. The remaining four function
calls control how characters typed on the terminal are made available to the curses program.

To explain cbreak, we need to understand the default input mode. When a curses program starts by calling
initscr, the input mode is set to what is termed cooked mode. This means that all processing is done on a
line—by-line basis, i.e. input is only available after the user has pressed Return. Keyboard special character
are enabled, so typing the appropriate key sequences can generate a signal in the program Flow control is
enabled. By calling cbreak, a program may set the input mode to cbreak mode where characters are availat
to the program immediately they are typed. As in cooked mode, keyboard special characters are enabled , &
simple keys, like backspace, are passed directly to the program to be processed, so if you want the backspze
key to function as expected, you have to program it yourself.

A call to raw turns off special character processing, so it becomes impossible to generate signals or flow
control by typing special character sequences. Calling nocbreak sets the input mode back to Cooked mode,
leaves special character processing unchanged; calling noraw restores both Cooked mode and special
character handling.

Keyboard Input

Reading the keyboard is very simple. The principal functions are:

#include <curses.h>

int getch(void);

int getstr(char *string);

int getnstr(char *string, int number_of_characters);
int scanw(char *format, ...);

These act in a very similar way to their non—curses equivalents getchar, gets and scanf. Note that getstr
provides no way of limiting the string length returned, so you should use it only with great caution. If your
version of curses supports getnstr, which allows you to limit the number of characters read, you should use
in preference to getstr. This is very similar to the behavior of gets and fgets that we met in Chapter 3.

Here's a short example program, ipmode.c, to show how to handle the keyboard.

Try It Out— Keyboard Modes and Input

1. First, we set up the program and the initial curses calls.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>
#include <string.h>

#define PW_LEN 25
#define NAME_LEN 256

int main() {
char name[NAME_LEN];
char password[PW_LEN];
char *real_password = "xyzzy";
inti=0;

initscr();

178



How It Works

move(5, 10);
printw("%s", "Please login:");

move(7, 10);
printw("%s", "User name: ");
getstr(name);

move(9, 10);
printw("%s", "Password: ");
refresh();

2.When the user enters their password, we need to stop the password being echoed to the screen. Th
we check the password against xyzzy.

cbreak();
noecho();

memset(password, "\0', sizeof(password));

while (i < PW_LEN) {
password[i] = getch();
move(9, 20 +i);
addch(™*";
refresh();
if (password[i] == '\n') break;
if (strcmp(password, real_password) == 0) break;
i++;

}

3. Finally, we re—enable the keyboard echo and print out success or failure.

echo();
nocbreak();

move(11, 10);

if (strcmp(password, real_password) == 0) printw("%s", "Correct");
else printw("%s", "Wrong");

refresh();

endwin();
exit(EXIT_SUCCESS);

}

Try it and see.
How It Works

Having stopped the echoing of keyboard input and set the input mode to Cbreak, we set up a region of
memory ready for the password. Each character of the password entered is processed immediately and a *
shown at the next position on the screen. We need to refresh the screen each time. Then we compare the t
strings, entered and real passwords, using strcmp.

Important If you're using a very old version of the curses library, you may need to make some minor
changes to the program to get the screen refreshes correct. In particular, a refresh call may nee
to be added before the getstr call. In modern curses, getstr is defined as calling getch, which
refreshes the screen automatically.

179



Windows
Windows

Until now, we have used the terminal as a full screen output medium. This is often sufficient for small and
simple programs, but the curses library goes a long way beyond that. We can display multiple windows of
different sizes concurrently on the physical screen. Many of the functions in this section are only supported |
what X/Open terms extended curses. However, since they are supported by ncurses, there should be little
problem in them being made available on most platforms. We're now going to move on and learn how to use
multiple windows. We're also going to see how the commands we have used so far are generalized to the
multiple window scenario.

The WINDOW Structure

Although we have mentioned stdscr, the standard screen, we have so far had little need to use it, since alm
all of the functions that we've met so far assume that they're working on stdscr and it does not need to be
passed as a parameter.

The stdscr is just a special case of the WINDOW structure, like stdout is a special case of a file stream. The
WINDOW structure is normally declared in curses.h and while it can be instructive to examine it, programs
should never access it directly, since the structure can and does change between implementations.

We can create and destroy windows using the newwin and delwin calls:

#include <curses.h>

WINDOW *newwin(int num_of_lines, int num_of_cols, int start_y, int start_x);
int delwin(WINDOW *window_to_delete);

The newwin function creates a new window, with a screen location of (start_y,start_x) and with the specified
number of lines and columns. It returns a pointer to the new window, or null if the creation failed. If you want
the new window to have its bottom right—hand corner in the bottom right—hand corner of the screen, you car
give the number of lines or columns as zero. All windows must fit within the current screen, so newwin will
fail if any part of the new window would fall outside the screen area. The new window created by newwin is
completely independent of all existing windows. By default, it will be placed on top of any existing windows,
hiding (but not changing) their contents.

The delwin function deletes a window previously created by newwin. Since memory has probably been
allocated when newwin was called, you should always delete windows when they are no longer required.
Take care never to try and delete curses' own windows, stdscr and curscr!

Having created a new window, how do we write to it? The answer is that almost all the functions that we've
seen so far have generalized versions that operate on specified windows, and, for convenience, these also
include cursor motion.

Generalized Functions

We've already used the addch and printw functions for adding characters to the screen. Along with many ot
functions, these can be prefixed, either with a w for window, mv for move, or mvw for move and window. If
you look in the curses header file for most implementations of curses, you'll find that many of the functions
we've used so far are simply macros (#defines) that call these more general functions.

180



Moving and Updating a Window

When the w prefix is added, an additional WINDOW pointer must be prepended to the argument list. When
the mv prefix is added, two additional parameters, a 'y and an x location, must be prepended. These specify
location where the operation will be performed. The y and x are relative to the window rather than the
screen,(0,0) being the top left of the window.

When the mvw prefix is added, three additional parameters, a WINDOW pointer, as well as y and x values,
must be passed. Confusingly, the WINDOW pointer always comes before the screen coordinates, even thot
the prefix might suggest the y and x come first.

As an example, here is the full set of prototypes for just the addch and printw sets of functions.

#include <curses.h>

int addch(const chtype char);

int waddch(WINDOW *window_pointer, const chtype char)

int mvaddch(int y, int x, const chtype char);

int mvwaddch(WINDOW *window_pointer, int y, int x, const chtype char);
int printw(char *format, ...);

int wprintw(WINDOW *window_pointer, char *format, ...);

int mvprintw(int y, int X, char *format, ...);

int mvwprintw(WINDOW *window_pointer, int y, int X, char *format, ...);

Many other functions, such as inch, also have move and window variants available.

Moving and Updating a Window

These commands allow us to move and redraw windows.

#include <curses.h>

int mvwin(WINDOW *window_to_move, int new_y, int new_Xx);
int wrefresh(WINDOW *window_ptr);

int wclear(WINDOW *window_ptr);

int werase(WINDOW *window_ptr);

int touchwin(WINDOW *window_ptr);

int scrollok(WINDOW *window_ptr, bool scroll_flag);

int scroll(WINDOW *window_ptr);

The mvwin function moves a window on the screen. Since all parts of a window must fit within the screen
area, mvwin will fail if you attempt to move a window so that any part of it falls outside the screen area.

The wrefresh, wclear and werase functions are simply generalizations of the functions we met earlier; they
just take a WINDOW pointer so that they can refer to a specific window, rather than stdscr.

The touchwin function is rather special. It informs the curses library that the contents of the window pointed
to by its parameter have been changed. This means that curses will always redraw that window next time
wrefresh is called, even if you haven't actually changed the contents of the window. This function is often
useful for arranging which window to display when you have several overlapping windows stacked on the
screen.

The two scroll functions control scrolling of a window. The scrollok function, when passed a Boolean true
(usually non-zero) allows a window to scroll. By default, windows can't scroll. The scroll function simply
scrolls the window up one line. Some curses implementations also have a wsctl function which additionally
takes a number of lines to scroll, which may be a negative number. We'll return to scrolling a little later in the

181



Try It Out — Multiple Windows

chapter.

Now that we know how to manage more than a single window, let's put these new functions to work in a
program, multiwl.c. For the sake of brevity, error checking is omitted.

Try It Out — Multiple Windows

1. As usual let's get our definitions sorted first:

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main()

{
WINDOW *new_window_ptr;
WINDOW *popup_window_ptr;
int x_loop;
inty_loop;
char a_letter ='a’;

initscr();
2. Then we fill the base window with characters, refreshing the actual screen once the logical screen h:
been filled.

move(5, 5);
printw("%s", "Testing multiple windows");
refresh();

for (y_loop = 0; y_loop < LINES - 1;y_loop++) {
for (x_loop = 0; x_loop < COLS - 1; x_loop++) {
mvwaddch(stdscr, y_loop, x_loop, a_letter);
a_letter++;
if (a_letter > 'z") a_letter ='a’;
}
}

[* Update the screen */
refresh();
sleep(2);

3. Now we create a new 10x20 window and add some text to it before drawing it on the screen.

new_window_ptr = newwin(10, 20, 5, 5);
mvwprintw(new_window_ptr, 2, 2, "%s", "Hello World");
mvwprintw(new_window_ptr, 5, 2, "%s",

"Notice how very long lines wrap inside the window");
wrefresh(new_window_ptr);
sleep(2);

4. We now change the contents of the background window and, when we refresh the screen, the windc
pointed to by new_window_ptr is obscured.

a_letter ='0";
for (y_loop = 0; y_loop < LINES -1; y_loop++) {
for (x_loop = 0; x_loop < COLS - 1; x_loop++) {
mvwaddch(stdscr, y_loop, x_loop, a_letter);
a_letter++;
if (a_letter >'9")

182



Try It Out — Multiple Windows

a_letter ='0";
}
}

refresh();
sleep(2);
5. If we make a call to refresh the new window, nothing will change, because we haven't changed the
new window.

wrefresh(new_window_ptr);
sleep(2);
6. But if we touch the window first and trick curses into thinking that the window has been changed, the
next call to wrefresh will bring the new window to the front again.

touchwin(new_window_ptr);
wrefresh(new_window_ptr);
sleep(2);
7. Next, we add another overlapping window with a box around it.

popup_window_ptr = newwin(10, 20, 8, 8);
box(popup_window_ptr, '|', '=");
mvwprintw(popup_window_ptr, 5, 2, "%s", "Pop Up Window!");
wrefresh(popup_window_ptr);
sleep(2);
8. Then we fiddle with the new and pop—up windows before clearing and deleting them.

touchwin(new_window_ptr);
wrefresh(new_window_ptr);
sleep(2);
wclear(new_window_ptr);
wrefresh(new_window_ptr);
sleep(2);
delwin(new_window_ptr);
touchwin(popup_window_ptr);
wrefresh(popup_window_ptr);
sleep(2);
delwin(popup_window_ptr);
touchwin(stdscr);

refresh();

sleep(2);

endwin();
exit(EXIT_SUCCESS);

}

Unfortunately, it's not practical to show you this running in the book, but here is a screen shot after the first
popup window has been drawn.

183



Optimizing Screen Refreshes

File Ect Semings Help

After the background has been changed, and a popup window has been drawn, we see this.

File Ect Semings Help

As you can see from the example code, you need to be quite careful about refreshing windows to ensure thi
they appear on the screen in the correct order. If you ask curses to refresh a window, it doesn't store any
information about the hierarchy of windows. To ensure that curses draws the windows in the correct order,
you must refresh them in the correct order. One way of doing this is to store all the pointers to your windows
in an array or list, which you maintain in the order they should appear on the screen.

Optimizing Screen Refreshes

As we saw in the example above, refreshing multiple windows can be a little tricky, but not overly onerous.
However, a potentially more serious problem arises when the terminal to be updated is on a slow link, perhe
over a modem.

In this case, it's important to minimize the number of characters drawn on the screen, since, on slow links,
screen draws can be uncomfortably slow. curses provides a special way of doing this, with a pair of function
wnoutrefresh and doupdate.

#include <curses.h>

int wnoutrefresh(WINDOW *window_ptr);
int doupdate(void);

The wnoutrefresh function determines which characters would need sending to the screen, but doesn't actu
send them. The doupdate function actually sends the changes to the terminal. If you simply call wnoutrefres
followed immediately by doupdate, the effect is the same as calling wrefresh. However, if you wish to redrav

184



Subwindows

a stack of windows, you can call wnoutrefresh on each window (in the correct order, of course) and then cal
doupdate only after the last wnoutrefresh. This allows curses to perform its screen update calculations on e:
window in turn and only then output the updated screen. This almost always allows curses to minimize the
number of characters that needs to be sent.

Subwindows

Now that we've looked at multiple windows, we can look at a special case of multiple windows, called
subwindows. We create and destroy subwindows with the calls:

#include <curses.h>

WINDOW *subwin(WINDOW *parent, int num_of_lines, int num_of_cols,
int start_y, int start_x);
int delwin(WINDOW *window_to_delete);

The function subwin has almost the same parameter list as newwin and subwindows are deleted in just the
same way as other windows, with a delwin call. Just like new windows, we can use the range of mvw
functions to write to subwindows. Indeed, most of the time, subwindows behave in a very similar fashion to
new windows, with one very important exception:

Subwindows don't themselves store a separate set of screen characters; they share the same character sto
space as the parent window specified when the subwindow is created. This means that any changes made
subwindow are also made in the underlying parent window, so when a subwindow is deleted the screen
doesn't change.

At first sight, subwindows seem a pointless exercise. Why not just make the changes to the parent window?
The main use for subwindows is to provide a clean way of scrolling parts of another window. The need to
scroll a small subsection of the screen is surprisingly common when writing a curses program. By making th
a subwindow and then scrolling, the subwindow, we achieve the desired result.

Important One restriction imposed by using subwindows is that the application should call touchwin on the
parent window before refreshing the screen.

Try It Out — Subwindows

1. First, the initial code section. The base window display is initialized with some text.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

#define NUM_NAMES 14

int main()
{
WINDOW *sub_window_ptr;
int x_loop;
inty_loop;
int counter;
char a_letter ='A’;

char *names[NUM_NAMES] = {"David Hudson,", "Andrew Crolla,", "James Jones,",

"Ciara Loughran,", "Peter Bradley,", "Nancy Innocenzi,",

185



Subwindows

"Charles Cooper,", "Rucha Nanavati,", "Bob Vyas,",

"Abdul Hussain,", "Anne Pawson,", "Alex Hopper,",
"Russell Thomas,", "Nazir Makandra,"};

initscr();

for (y_loop = 0; y_loop < LINES - 1;y_loop++) {

for (x_loop = 0; x_loop < COLS - 1; x_loop++) {
mvwaddch(stdscr, y_loop, x_loop, a_letter);
a_letter++;
if (a_letter >'Z") a_letter ="'A’;

}
}
2.We now create the new scrolling subwindow and, as advised, we must 'touch’ the parent window

before refreshing the screen.

sub_window_ptr = subwin(stdscr, 10, 20, 10, 10);
scrollok(sub_window_ptr, 1);
touchwin(stdscr);
refresh();
sleep(1);
3. Then we erase the contents of the subwindow, print text to it and refresh it. The scrolling text is

achieved by a loop.

werase(sub_window_ptr);
mvwoprintw(sub_window_ptr, 2, 0, "%s",
"This window will now scroll as names are added ");
wrefresh(sub_window_ptr);
sleep(1);

for (counter = 0; counter < NUM_NAMES; counter++) {
wprintw(sub_window_ptr, "%s ", names[counter]);
wrefresh(sub_window_ptr);
sleep(1);

4. Having finished this loop, we delete the subwindow. Then we refresh the base screen.

delwin(sub_window_ptr);
touchwin(stdscr);
refresh();

sleep(1);

endwin();
exit(EXIT_SUCCESS);

}

Towards the end of the program, we see the output:

186



How It Works

How It Works

After arranging for the sub_window_ptr to point to the result of the subwin call, we make the subwindow
scrollable. Even after the subwindow has been deleted and the base window (strdcr) refreshed, the text on t
screen remains the same. This is because the subwindow was actually updating the character data for stds

The Keypad

We've already seen some of the facilities that curses provides for handling the keyboard. Many keyboards
have, at the very least, cursor keys and function keys. Many also have a keypad and other keys, such as In:
and Home.

Decoding these keys is a difficult problem on most terminals, since they normally send a string of characters
starting with the escape character. Not only does the application have the problem of distinguishing betweer
single press of the Escape key and a string of characters caused by pressing a function key, but it must alsc
cope with different terminals using different sequences for the same logical key.

Fortunately, curses provides an elegant facility for managing function keys. For each terminal, the sequence
sent by each of its function keys is stored, normally in a terminfo structure, and the include file curses.h has
set of defines prefixed by KEY _ that define the logical keys.

The translation between the sequences and logical keys is disabled when curses starts and has to be turne
by the keypad function. If the call succeeds, it returns OK, otherwise ERR.

#include <curses.h>

int keypad(WINDOW *window_ptr, bool keypad_on);

Once keypad mode has been enabled by calling keypad with keypad_on set to true, curses takes over the
processing of key sequences, so that reading the keyboard may now not only return the key that was presse
but also one of the KEY__ defines for logical keys.

There are three slight restrictions when using Keypad mode.

The first problem is that the recognition of escape sequences is timing—dependent and many network
protocols will group characters into packets (leading to improper recognition of escape sequences), or sepal
them (leading to function key sequences being recognized as Escape and individual characters). This beha
is worst over WANs and other busy links. The only workaround is to try to program terminals to send single,
unique characters for each function key that you want to use, although this limits the number of control

187



Try It Out — Using the Keypad

characters.

Secondly, in order for curses to separate a press of the Escape key from a keyboard sequence starting with
Escape, it must wait for a brief period of time. Sometimes, a very slight delay on processing of the Escape k
can be noticed once Keypad mode has been enabled.

The third restriction is that curses can't process non—-unigue escape sequences. If your terminal has two
different keys that can send the same sequence, curses will simply not process that sequence, since it can't
which logical key it should return.

Important In our opinion, having escape sequences for some keys and also putting an Escape key on the
keyboard (heavily used for cancels) was a most unfortunate design decision, but one that we
must accept and manage as best we can.

Here's a short program, keypad.c, showing how the keypad mode can be used. When you run this program

pressing Escape and notice the slight delay while the program waits to see if the Escape is simply the start ¢

an escape sequence, or a single key press.

Try It Out — Using the Keypad

1. Having initialized the program and the curses library, we set the keypad mode TRUE.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

#define LOCAL_ESCAPE_KEY 27

int main()

{
int key;

initscr();
crmode();
keypad(stdscr, TRUE);

2. Next, we must turn echo off to prevent the cursor being moved when some cursor keys are pressed.
The screen is cleared and some text displayed. The program waits for each key stroke and, unless it
g, or produces an error, the key is printed. If the key strokes match one of the terminal's keypad
sequences, that is printed instead.

noecho();

clear();

mvprintw(5, 5, "Key pad demonstration. Press 'q' to quit");
move(7, 5);

refresh();

key = getch();

while(key != ERR && key !="'qg") {
move(7, 5);
clrtoeol();

if (key >="A" && key <="Z") ||
(key >="a' && key <='2")) {
printw("Key was %c", (char)key);
}

188



Color

else {
switch(key) {
case LOCAL_ESCAPE_KEY: printw("%s", "Escape key"); break;
case KEY_END: printw("%s", "END key"); break;
case KEY_BEG: printw("%s", "BEGINNING key"); break;
case KEY_RIGHT: printw("%s", "RIGHT key"); break;
case KEY_LEFT: printw("%s", "LEFT key"); break;
case KEY_UP: printw("%s", "UP key"); break;
case KEY_DOWN: printw("%s", "DOWN key"); break;
default: printw("Unmatched — %d", key); break;
} I* switch */

} I* else */

refresh();
key = getch();
} I+ while */

endwin();
exit(EXIT_SUCCESS);

}

Color

Originally, very few 'dumb'’ terminals supported color, so most early versions of curses had no support for it.
Now, color is fairly standard and is supported in ncurses and most other modern curses implementations.

Each character cell on the screen can be written in one of a number of different colors, against one of a
number of different colored backgrounds. For example, we can write text in green on a red background.

Color support in curses is slightly unusual in that the color for a character isn't defined independently of its
background. We must define the foreground and background colors of a character as a pair, called, not
surprisingly, a color pair.

Before you can use color capability in curses, you must check that the current terminal supports color and tt
initialize the curses color routines. For this, you use a pair of routines, has_colors and start_color.

#include <curses.h>

bool has_colors(void);
int start_color(void);

The has_colors routine returns true if color is supported. You should then call start_color, which returns OK
color has been initialized successfully. Once start_color has been called and the colors initialized, the variak
COLOR_PAIRS is set to the maximum number of color pairs that the terminal can support. A limit of 64
color pairs is common. The variable COLORS defines the maximum number of colors available, which is
often as few as eight.

Before you can use colors as attributes, you must initialize the color pairs that you wish to use. You do this
with the init_pair function. Color attributes are accessed with the COLOR_PAIR function.

#include <curses.h>
int init_pair(short pair_number, short foreground, short background);

int COLOR_PAIR(int pair_number);
int pair_content(short pair_number, short *foreground, short *background);

189



Try It Out — Colors

curses.h usually defines some basic colors, starting with COLOR_. An additional function, pair_content,
allows previously defined color pair information to be retrieved.

To define color pair number 1 to be red on green, we would use:

init_pair(1, COLOR_RED, COLOR_GREEN);

We can then access this color pair as an attribute, using COLOR_PAIR like this:
wattron(window_ptr, COLOR_PAIR(1));

This would set future additions to the screen to be red on a green background.

Since a COLOR_PAIR is an attribute, we can combine it with other attributes. On a PC, we can often acces:
screen high intensity colors by combining the COLOR_PAIR attribute with the additional attribute A_BOLD,
by using a bitwise OR of the attributes:

wattron(window_ptr, COLOR_PAIR(1) | A_BOLD);

Let's check these functions in an example, color.c.

Try It Out — Colors

1. First off, we check whether the program's display terminal supports color. If it does, we start the colo
display.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <curses.h>

int main()

{

int i
initscr();

if (lhas_colors()) {
endwin();
fprintf(stderr, "Error — no color support on this terminal\n");
exit(1);

}

if (start_color() != OK) {
endwin();
fprintf(stderr, "Error — could not initialize colors\n™);
exit(2);
}
2.We can now print out the allowed number of colors and color pairs. We create seven color pairs and

display them one at a time.

clear();

mvprintw(5, 5, "There are %d COLORS, and %d COLOR_PAIRS available",
COLORS, COLOR_PAIRS);

refresh();

190



Redefining Colors

init_pair(1, COLOR_RED, COLOR_BLACK);
init_pair(2, COLOR_RED, COLOR_GREEN);
init_pair(3, COLOR_GREEN, COLOR_RED);
init_pair(4, COLOR_YELLOW, COLOR_BLUE);
init_pair(5, COLOR_BLACK, COLOR_WHITE);
init_pair(6, COLOR_MAGENTA, COLOR_BLUE);
init_pair(7, COLOR_CYAN, COLOR_WHITE);

for(i=1;i<=7;i++) {
attroff(A_BOLD);
attrset(COLOR_PAIR(i));
mvprintw(5 + i, 5, "Color pair %d", i);
attrset(COLOR_PAIR() | A_BOLD);
mvprintw(5 + i, 25, "Bold color pair %d", i);
refresh();
sleep(1);

}

endwin();
exit(EXIT_SUCCESS);

}

This example gives the following output:

= mb Gridculy :~ichapl6_curses [E

There are 3 COLORS, and 64 COLOR PRIRS avalilable

Bold color pair $
Bold color pair

Bold colore Eir E}

Color Elr

Redefining Colors

A few terminals allow only a limited number of colors on the screen at any one time, but allow us to redefine
the colors available. curses supports this facility with the init_color function.

#include <curses.h>

int init_color(short color_number, short red, short green, short blue);

This allows an existing color (in the range 0 to COLORS) to be redefined with new intensity values, in the
range 0 to 1000. This is much like defining color values for a VGA palette for a PC screen.

Pads

When you're writing more advanced curses programs, it's sometimes easier to build a logical screen and the
output all or part of it to the physical screen later. Occasionally, it's also better to have a logical screen that i
actually bigger than the physical screen and only display part of the logical screen at any one time.

It's not easy for us to do this with the curses functions that we've met so far, since all windows must be no

191



Try It Out — Using a Pad

larger than the physical screen. curses does provide a special data structure, a pad, for manipulating logical
screen information that doesn't fit within a normal window.

A pad structure is very similar to a WINDOW structure and all the curses routines that write to windows can
also be used on pads. However, pads do have their own routines for creation and refreshing.

We create pads in much the same way that we create normal windows:

#include <curses.h>

WINDOW *newpad(int number_of_lines, int number_of_columns);

Note that the return value is a pointer to a WINDOW structure, the same as newwin. Pads are deleted with
delwin, just like windows.

Pads do have different routines for refreshing. Since a pad isn't confined to a particular screen location, we
must specify the region of the pad we wish to put on the screen and also the location it should occupy on the
screen. We do this with the prefresh function:

#include <curses.h>

int prefresh(WINDOW *pad_ptr, int pad_row, int pad_column,
int screen_row_min, int screen_col_min,
int screen_row_max, int screen_col_max);

This causes an area of the pad, starting at (pad_row, pad_column) to be written to the screen in the region
defined by (screen_row_min, screen_col_min) to (screen_row_max, screen_col_max).

An additional routine, pnoutrefresh, is also provided. It acts in the same way as wnoutrefresh, for more
efficient screen updates.

Let's check these out with a quick program, pad.c.
Try It Out — Using a Pad

1. At the start of this program, we initialize the pad structure and then create a pad, which returns a
pointer to that pad. We add characters to fill the pad structure (which is 50 characters wider and
longer than the terminal display.)

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main()
{
WINDOW *pad_ptr;
int x,y;
int pad_lines;
int pad_caols;
char disp_char;

initscr();

pad_lines = LINES + 50;

pad_cols = COLS + 50;

pad_ptr = newpad(pad_lines, pad_cols);

192



The CD Collection Application
disp_char ='a’;

for (x = 0; x < pad_lines; x++) {
for (y = 0; y < pad_cols; y++) {
mvwaddch(pad_ptr, x, y, disp_char);
if (disp_char == 'z") disp_char = 'a’;
else disp_char++;
}
}
2.We can now draw different areas of the pad on the screen at different locations before quitting.

prefresh(pad_ptr, 5, 7, 2, 2, 9, 9);

sleep(1);

prefresh(pad_ptr, LINES + 5, COLS + 7, 5, 5, 21, 19);
sleep(1);

delwin(pad_ptr);

endwin();

exit(EXIT_SUCCESS);

}

Running the program, you should see something like this:

| timb@ridcully:~/chap06_curses

Fl

i
yzabcdef
rstuvuxy
k Imnopor
deffghijklmnopgrst
wxyyzabcdefghijklm
porrstuvexyzabcdef
ijkklmnopgrstuvusy
beddefghi jk Imnopgr
wxyzabcdefghijk
porstuvwxyzabcd
ijkImnopogrstuve
bedefghi jk Imnop
uvwxryzabodefghi
nopgrstuvwxyzab
ghijk Imnoporstu
zabcdefghijk lmn
stuvwryzabcdefyg
Inmnopogrstuvwxyz
efghijklnnopogrs
wyzabcdefghijkl

The CD Collection Application

Now that we've learned about the facilities that curses has to offer, we can develop our sample application.
Here's a version written in C using the curses library. It offers some advantages in that the information is mc
clearly displayed on the screen and a scrolling window is used for track listings.

The whole application is eight pages long, so we've split it up into sections and functions within each sectior
You can get the full source code from the Wrox web site and, as with all the programs in this book, it's unde

193



Try It Out — A New CD Collection Application
the Gnu Public License. (See Appendix B.)

Important We've written this version of the CD database application using the information presented in
Chapters 5 and 6. It's derived from the shell script presented in Chapter 2. It hasn't been
redesigned for the C implementation, so you can still see many features of the shell original in
this version.

There are some problems with this implementation that we will resolve in later revisions. For
example, it doesn't deal with commas in titles and it has a practical limit on tracks per CD to
keep them on screen.
Looking at the code, there are several distinct sections, and these form the "Try It Out" headings. The code
conventions used here are slightly different from most of the rest of the book, here code foreground is only
used to show where other application functions are called.

Try It Out — A New CD Collection Application

1. First, we include all those header files and then some global constants.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <curses.h>

#define MAX_STRING 80 /* Longest allowed response */
#define MAX_ENTRY 1024 /* Longest allowed database entry */

#define MESSAGE_LINE 6 /* Misc. messages on this line  */
#define ERROR_LINE 22 /* Line to use for errors */
#define Q_LINE 20 /* Line for questions */

#define PROMPT_LINE 18 [* Line for prompting on */

2. Next, we need some global variables. The variable current_cd is used to store the current CD title
with which we are working. It's initialized so that the first character is null to indicate 'no CD
selected'. The \0 is strictly unnecessary, but it ensures the variable is initialized, which is generally a
‘good thing'. The variable current_cat will be used to record the catalog number of the current CD.

static char current_cd[MAX_STRING] = "\0";
static char current_catfMAX_STRING];

3. Some file names are now declared. These files are fixed in this version to keep things simple, as is tl
temporary file name. This could cause a problem if the program is run by two users in the same
directory.

Important A better way to obtain database file names would be either by program arguments or
from environment variables. We also need an improved method of generating a unique
temporary file name, for which we could use the POSIX tmpnam function. We'll address
many of these issues in later versions.

const char *title_file = "title.cdb";
const char *tracks_file = "tracks.cdb";
const char *temp_file = "cdb.tmp";

4. Now, finally, we get onto the function prototypes.

194



Try It Out — A New CD Collection Application

void clear_all_screen(void);
void get_return(void);
int get_confirm(void);
int getchoice(char *greet, char *choicesl]);
void draw_menu(char *options[], int highlight,
int start_row, int start_col);
void insert_title(char *cdtitle);
void get_string(char *string);
void add_record(void);
void count_cds(void);
void find_cd(void);
void list_tracks(void);
void remove_tracks(void);
void remove_cd(void);
void update_cd(void);
5. Before we look at their implementation, we need some structures (actually an array of menu options’
for the menus. The first character is the character to return when the choice is selected; the remainir

text is to be displayed. The extended menu is displayed when a CD is currently selected.

char *main_menu([] =
{
"add new CD",
"find CD",
"count CDs and tracks in the catalog",
"quit”,
0,
h

char *extended_menu[] =

{
"add new CD",

"find CD",
"count CDs and tracks in the catalog",
"list tracks on current CD",
"remove current CD",
"update track information",
"quit”,
0,
h

That's the initialization done with. Now we move onto the program functions, but first, | reckon we need to
summarize the inter—relations of these functions, all sixteen of them. They split into functions to:

1. Draw the menu

2.Add CDs to the database
3. Retrieve and display CD data

195



Try It Out — Looking at main

Try It Out — Looking at main

main allows us to make selections from the menu until we select quit.

int main()
{
int choice;
initscr();
do {
choice = getchoice("Options:",
current_cd[0] ? extended_menu : main_menu);
switch (choice) {
case 'q"
break;
case ‘a"
add_record();
break;
case 'c":
count_cds();
break;
case 'f"
find_cd();
break;
case 'I'"
list_tracks();
break;
case 'r"
remove_cd();
break;
case 'u"
update_cd();
break;
}
} while (choice !'="'qg";
endwin();
exit(EXIT_SUCCESS);

}

Let's now look at the detail of the functions associated with the three program subsections. First, we look at
the three functions that relate to the program's user interface.

Try It Out — The Menu

1. The getchoice function called by main is the principal function in this section. getchoice is passed
greet, an introduction, and choices, which points either to the main or the extended menu (dependin
on whether or not a CD has been selected). You can see this in the main function above.

int getchoice(char *greet, char *choices|])
{
static int selected_row = 0;
int max_row = 0;
int start_screenrow = MESSAGE_LINE, start_screencol = 10;
char **option;
int selected;
int key = 0;

option = choices;
while (*option) {

196



Try It Out — Looking at main

max_row-++;
option++;
}
[* protect against menu getting shorter when CD deleted */
if (selected_row >= max_row)
selected_row = 0;

clear_all_screen();
mvprintw(start_screenrow — 2, start_screencol, greet);

keypad(stdscr, TRUE);
cbreak();
noecho();

key = 0;
while (key !='q" && key |I= KEY_ENTER && key I="\n") {
if (key == KEY_UP) {
if (selected_row == 0)
selected_row = max_row - 1;
else
selected_row——;
}
if (key == KEY_DOWN) {
if (selected_row == (max_row - 1))
selected_row = 0;
else
selected_row++;

selected = *choices[selected_row];
draw_menu(choices, selected_row, start_screenrow,
start_screencol);
key = getch();
}

keypad(stdscr, FALSE);
nocbreak();
echo();

if (key =='q")
selected ='q’;

return (selected);

}
2. Note how there are two more local functions called from within getchoice: clear_all_screen and

draw_menu. We'll look at draw_menu first:

void draw_menu(char *options[], int current_highlight,
int start_row, int start_col)
{
int current_row = 0;
char **option_ptr;
char *txt_ptr;

option_ptr = options;
while (*option_ptr) {
if (current_row == current_highlight) {
mvaddch(start_row + current_row, start_col — 3, ACS_BULLET);
mvaddch(start_row + current_row, start_col + 40, ACS_BULLET);
}else {
mvaddch(start_row + current_row, start_col — 3,"");
mvaddch(start_row + current_row, start_col + 40, ' ");

197



Try It Out — Database File Manipulation
}

txt_ptr = options[current_row];
txt_ptr++;

}

mvprintw(start_row + current_row + 3, start_col,
"Move highlight then press Return ");
refresh();
}
3.clear_all_screen, which, surprisingly enough, clears the screen and rewrites the title. If a CD is

selected, its information is displayed.

void clear_all_screen()
{
clear();
mvprintw(2, 20, "%s", "CD Database Application");
if (current_cd[0]) {
mvprintw(ERROR_LINE, 0, "Current CD: %s: %s\n",
current_cat, current_cd);
}

refresh();

}

Now we look at the functions which add to or update the CD database. The functions called from main are
add_record, update_cd and remove_cd. This function makes several calls to functions that will be defined ir
the next few sections.

Try It Out — Database File Manipulation

1. First, how do we add a new CD record to the database?

void add_record()
{
char catalog_number[MAX_STRING];
char cd_title[MAX_STRING];
char cd_type[MAX_STRING];
char cd_artistftMAX_STRING];
char cd_entry[MAX_STRING];

int screenrow = MESSAGE_LINE;
int screencol = 10;

clear_all_screen();
mvprintw(screenrow, screencol, "Enter new CD details");
screenrow += 2;

mvprintw(screenrow, screencol, "Catalog Number: *);
get_string(catalog_number);
screenrow++;

mvprintw(screenrow, screencol, " CD Title: );
get_string(cd_title);
SCreenrow++;

mvprintw(screenrow, screencol, " CD Type: "),

get_string(cd_type);
screenrow++;

198



Try It Out — Database File Manipulation

mvprintw(screenrow, screencol, " Artist: ");
get_string(cd_artist);
screenrow++;

mvprintw(PROMPT_LINE-2, 5, "About to add this new entry:");
sprintf(cd_entry, "%s,%s,%s,%s",
catalog_number, cd_title, cd_type, cd_artist);

mvprintw(PROMPT_LINE, 5, "%s", cd_entry);
refresh();
move(PROMPT_LINE, 0);
if (get_confirm()) {

insert_title(cd_entry);

strepy(current_cd, cd_title);

strepy(current_cat, catalog_number);
}

}
2. get_string prompts for and reads in a string at the current screen position. It also deletes any trailing

newline.

void get_string(char *string)

{

int len;

wgetnstr(stdscr, string, MAX_STRING);
len = strlen(string);
if (len > 0 && string[len — 1] =="\n")
string[len — 1] ="\0;
}

3. get_confirm prompts and reads user confirmation. It reads the user's input string and checks the first
character for Y or y. If it finds any other character, it gives no confirmation.

int get_confirm()

int confirmed = 0;
char first_char;

mvprintw(Q_LINE, 5, "Are you sure? ");
clrtoeol();
refresh();

cbreak();

first_char = getch();

if (first_char == "Y' || first_char =="y") {
confirmed = 1;

}

nocbreak();

if (Iconfirmed) {
mvprintw(Q_LINE, 1," Cancelled");
clrtoeol();
refresh();
sleep(1);

}

return confirmed;

}
4. Lastly, we look at insert_title. This adds a title to the CD database by appending the title string to the

end of the titles file.

199



Try It Out — Database File Manipulation

void insert_title(char *cdtitle)
{
FILE *fp = fopen(title_file, "a");
if (tfp) {
mvprintw(ERROR_LINE, 0, "cannot open CD titles database");
}else {
fprintf(fp, "%s\n", cdtitle);
fclose(fp);
}
}
. On to the other file manipulation functions called by main. We start with update_cd. This function

uses a scrolling, boxed subwindow and needs some constants, which we define globally, because tr
will be needed later for the list_tracks function. These are:

#define BOXED_LINES 11
#define BOXED_ROWS 60
#define BOX_LINE_POS 8
#define BOX_ROW_POS 2

update_cd allows the user to re—enter the tracks for the current CD. Having deleted the previous
tracks record, it prompts for new information.

void update_cd()
{
FILE *tracks_fp;
char track_name[MAX_STRING];
int len;
int track = 1;
int screen_line = 1;
WINDOW *box_window_ptr;
WINDOW *sub_window_ptr;

clear_all_screen();
mvprintw(PROMPT_LINE, 0, "Re—entering tracks for CD. ");
if (Iget_confirm())
return;
move(PROMPT_LINE, 0);
clrtoeol();

remove_tracks();
mvprintw(MESSAGE_LINE, 0, "Enter a blank line to finish");

tracks_fp = fopen(tracks_file, "a");

The listing continues in just a moment. We're making this brief intermission to highlight how we enter
the information in a scrolling, boxed window. The trick is to set up a subwindow, draw a box around
the edge, then add a new, scrolling, subwindow just inside the boxed subwindow.

box_window_ptr = subwin(stdscr, BOXED_LINES + 2, BOXED_ROWS + 2,
BOX_LINE_POS - 1, BOX_ROW_POS - 1);
if (Ibox_window_ptr)
return;
box(box_window_ptr, ACS_VLINE, ACS_HLINE);

sub_window_ptr = subwin(stdscr, BOXED_LINES, BOXED_ROWS,
BOX_LINE_POS, BOX_ROW_POS);
if (Isub_window_ptr)
return;

200



}

Try It Out — Database File Manipulation

scrollok(sub_window_ptr, TRUE);
werase(sub_window_ptr);
touchwin(stdscr);

do {
mvwprintw(sub_window_ptr, screen_line++, BOX_ROW_POS + 2,
"Track %d: ", track);
clrtoeol();
refresh();
wgetnstr(sub_window_ptr, track_name, MAX_STRING);
len = strlen(track_name);
if (len > 0 && track_name[len - 1] == "\n")
track_name[len - 1] ="\0;
if (*track_name)
fprintf(tracks_fp, "%s,%d,%s\n",
current_cat, track, track_name);
track++;
if (screen_line > BOXED_LINES - 1) {
/* time to start scrolling */
scroll(sub_window_ptr);
screen_line——;
}
} while (*track_name);
delwin(sub_window_ptr);

fclose(tracks_fp);

6. The last function called from main is remove_cd.

void remove_cd()

{

FILE *titles_fp, *temp_fp;
char entry[MAX_ENTRY];
int cat_length;

if (current_cd[0] == "0")
return;

clear_all_screen();
mvprintw(PROMPT_LINE, 0, "About to remove CD %s: %s. ",
current_cat, current_cd);
if (Iget_confirm())
return;

cat_length = strlen(current_cat);

[* Copy the titles file to a temporary, ignoring this CD */
titles_fp = fopen(title_file, "r");
temp_fp = fopen(temp_file, "w");

while (fgets(entry, MAX_ENTRY, titles_fp)) {
/* Compare catalog number and copy entry if no match */
if (strncmp(current_cat, entry, cat_length) != 0)
fputs(entry, temp_fp);
}

fclose(titles_fp);
fclose(temp_fp);

/* Delete the titles file, and rename the temporary file */

unlink(title_file);
rename(temp_file, title_file);

201



Try It Out — Querying the CD Database

/* Now do the same for the tracks file */
remove_tracks();

* Reset current CD to ‘None' */
current_cd[0] = "\0";
}
7.We now need only list remove_tracks, the function which deletes the tracks from the current CD. It's

called by both update_cd and remove_cd.

void remove_tracks()

{
FILE *tracks_fp, *temp_fp;
char entry[MAX_ENTRY];
int cat_length;

if (current_cd[0] =="\0")
return;

cat_length = strlen(current_cat);

tracks_fp = fopen(tracks_file, "r");
if (Itracks_fp)

return;

temp_fp = fopen(temp_{file, "w");

while (fgets(entry, MAX_ENTRY, tracks_fp)) {
/* Compare catalog number and copy entry if no match */
if (strncmp(current_cat, entry, cat_length) != 0)
fputs(entry, temp_fp);
}
fclose(tracks_fp);
fclose(temp_fp);

[* Delete the tracks file, and rename the temporary file */
unlink(tracks_file);
rename(temp_file, tracks_file);

}
Try It Out — Querying the CD Database

1. Essential to all acquisitive hobbies is a knowledge of how many of whatever you collect you own.
The next function performs this function admirably; it scans the database, counting titles and tracks.

void count_cds()

{
FILE *titles_fp, *tracks_fp;
char entry[MAX_ENTRY];
int titles = 0;
int tracks = 0;

titles_fp = fopen(title_file, "r");
if (titles_fp) {
while (fgets(entry, MAX_ENTRY, titles_fp))
titles++;
fclose(titles_fp);
}
tracks_fp = fopen(tracks_file, "r");
if (tracks_fp) {

202



Try It Out — Querying the CD Database

while (fgets(entry, MAX_ENTRY, tracks_fp))
tracks++;
fclose(tracks_fp);
}
mvprintw(ERROR_LINE, 0,
"Database contains %d titles, with a total of %d tracks.",
titles, tracks);
get_return();

2.You've lost the sleeve notes from your favorite CD, but don't worry! Having carefully typed the
details across, you can now find the track listing using find_cd. It prompts for a substring to match in
the database and sets the global variable current_cd to the CD title found.

void find_cd()
{
char match[MAX_STRING], entry[MAX_ENTRY];
FILE *titles_fp;
int count = 0;
char *found, *title, *catalog;

mvprintw(Q_LINE, 0, "Enter a string to search for in CD titles: ");
get_string(match);

tittes_fp = fopen(title_file, "r");
if (titles_fp) {
while (fgets(entry, MAX_ENTRY, titles_fp)) {

[* Skip past catalog number */
catalog = entry;
if ((found == strstr(catalog, ","))) {
*found = "\0;
title = found + 1;

[* Zap the next comma in the entry to reduce it to

title only */
if ((found == strstr(title, ","))) {
*found = "\0';

/* Now see if the match substring is present */

if ((found == strstr(title, match))) {
count++;
strepy(current_cd, title);
strcpy(current_cat, catalog);

}

}
}

fclose(titles_fp);
}
if (count 1=1) {
if (count == 0) {
mvprintw(ERROR_LINE, 0, "Sorry, no matching CD found. ");
}
if (count > 1) {
mvprintw(ERROR_LINE, 0,
"Sorry, match is ambiguous: %d CDs found. ", count);
}

current_cd[0] = "\0";
get_return();

203



Try It Out — Querying the CD Database
}

Though catalog points at a larger array than current_cat and could conceivably overwrite memory, th
check in fgets prevents this.

3. Lastly, we need to be able to list the selected CD's tracks on the screen. We make use of the #define
for the subwindows used in update_cd in the last section.

void list_tracks()

{
FILE *tracks_fp;
char entry[MAX_ENTRY];
int cat_length;
int lines_op = 0;
WINDOW *track_pad_ptr;
int tracks = 0;
int key;
int first_line = 0;

if (current_cd[0] =="0") {
mvprintw(ERROR_LINE, 0, "You must select a CD first. ");
get_return();
return;

clear_all_screen();
cat_length = strlen(current_cat);

[* First count the number of tracks for the current CD */
tracks_fp = fopen(tracks_file, "r");
if ('tracks_fp)
return;
while (fgets(entry, MAX_ENTRY, tracks_fp)) {
if (strncmp(current_cat, entry, cat_length) == 0)
tracks++;

fclose(tracks_fp);

/* Make a new pad, ensure that even if there is only a single
track the PAD is large enough so the later prefresh() is always
valid.
*/
track_pad_ptr = newpad(tracks + 1 + BOXED_LINES, BOXED_ROWS + 1);
if (Itrack_pad_ptr)
return;

tracks_fp = fopen(tracks_file, "r");
if (tracks_fp)
return;

mvprintw(4, 0, "CD Track Listing\n");

[* write the track information into the pad */
while (fgets(entry, MAX_ENTRY, tracks_fp)) {
/* Compare catalog number and output rest of entry */
if (strncmp(current_cat, entry, cat_length) == 0) {
mvwoprintw(track_pad_ptr, lines_op++, 0, "%s",
entry + cat_length + 1);
}

fclose(tracks_fp);

204



Try It Out — Querying the CD Database

if (lines_op > BOXED_LINES) {
mvprintw(MESSAGE_LINE, 0,
"Cursor keys to scroll, RETURN or g to exit");
} else {
mvprintw(MESSAGE_LINE, 0, "RETURN or g to exit");

wrefresh(stdscr);
keypad(stdscr, TRUE);
cbreak();
noecho();
key = 0;
while (key !='q' && key |I= KEY_ENTER && key !="\n") {
if (key == KEY_UP) {
if (first_line > 0)
first_line—;
}
if (key == KEY_DOWN) {
if (first_line + BOXED_LINES + 1 < tracks)
first_line++;
}

/* now draw the appropriate part of the pad on the screen */
prefresh(track_pad_ptr, first_line, O,
BOX_LINE_POS, BOX_ROW_POS,
BOX_LINE_POS + BOXED_LINES, BOX_ROW_POS + BOXED_ROWS);
key = getch();
}

delwin(track_pad_ptr);
keypad(stdscr, FALSE);
nocbreak();
echo();
}
4. The last two functions call get_return, which prompts for and reads a carriage return, ignoring other
characters:

void get_return()

int ch;

mvprintw(23, 0, "%s", " Press return ");

refresh();

while ((ch = getchar()) !="\n' && ch != EOF);
}

If you run this program, you should see something like:

- b y=fchap06, pp |l

CD Database fipplication
Options:

add rew CD
§ find CD 3
count CDs and tracks in the catalog
list tracks on current CD
remove current CD
update track information
quit

Move highlight then press Retun

Current CD: takeS: So Muxch 2 Sy

205



Summary
Summary

In this chapter we have explored the curses library. curses provides a good way for text—-based programs to
control the screen and read the keyboard. Although the curses library doesn't offer as much control as the
general terminal interface (GTI) and direct terminfo access, it's considerably easier to use. If you're writing a
full screen, text—based application, you should consider using the curses library to manage the screen and
keyboard for you.

206



Chapter 7. Data Management

Overview

In Chapter 3, we learned about files and in Chapter 4 we touched on the subject of resource limits. In this
chapter, we're going to look initially at ways of managing your resource allocation, then of dealing with files
that are accessed by many users more or less simultaneously and lastly at one tool provided in most UNIX
systems for overcoming the limitations of data files.

We can summarize these topics as three ways of managing data:

» Dynamic memory management: what to do and what UNIX won't let you do.
« File locking: cooperative locking, locking regions of shared files and avoiding deadlocks.
» The dbm database: a database library featured in UNIX.

Managing Memory

On all computer systems memory is a scarce resource. No matter how much memory is available, it never
seems to be enough. It wasn't so long ago that being able to address even a single megabyte of memory w:
considered more than anyone would ever need, but now sixty four times that is considered a bare minimum
for a single—user personal computer, and many systems have much more.

From the earliest versions of the operating system, UNIX has had a very clean approach to managing
memory. UNIX applications are never permitted to access physical memory directly. It might appear so to th
application, but what the application is seeing is a carefully controlled illusion.

UNIX has always provided processes with a flat, unsegmented memory model-each process 'sees' its own
memory area. Almost all versions of UNIX also provide memory protection, which guarantees that incorrect
(or malicious) programs don't overwrite the memory of other processes or the operating system. In general,
the memory allocated to one process can be neither read nor written to by any other process. Almost all
versions of UNIX use hardware facilities to enforce this private use of memory.

Simple Memory Allocation

We allocate memory using the malloc call in the standard C library.
#include <stdlib.h>
void *malloc(size_t size);

Notice that the X/Open specification differs from some UNIX implementations by not requiring a special
malloc.h include file. Note also that the size parameter that specifies the number of bytes to allocate isn't a
simple int, although it's usually an unsigned integer type.

We can allocate a great deal of memory on most UNIX systems. Let's try.

207



Try It Out — Simple Memory Allocation

Try It Out — Simple Memory Allocation

Type in the following program, memoryl.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define A MEGABYTE (1024 * 1024)

int main()

{

char *some_memory;
int megabyte = A_MEGABYTE;
int exit_code = EXIT_FAILURE;

some_memory = (char *)malloc(megabyte);

if (some_memory != NULL) {
sprintf(some_memory, "Hello World\n");
printf("%s", some_memory);
exit_code = EXIT_SUCCESS;

}

exit(exit_code);

}
When we run this program, it outputs:

$ memoryl
Hello World

How It Works

This program asks the malloc library to give it a pointer to a megabyte of memory. We check to ensure that
malloc was successful and then use some of the memory to show that it exists. When you run the program,
you should see Hello World printed out, showing that malloc did indeed return the megabyte of usable
memory. We don't check that all of the megabyte is present; we have to put some trust in the malloc code!

Notice that since malloc returns a void * pointer, we cast the result to the char * that we need. The malloc
function is guaranteed to return memory that is aligned so that it can be cast to a pointer of any type.

The simple reason is that most current Linux and UNIX systems use 32-bit integers and use 32-bit pointers
for pointing to memory, which allows you to specify up to 4 gigabytes. This ability to address directly with a
32-bit pointer without needing segment registers or other tricks is termed a flat 32—-bit memory model. This
model is also used in Windows NT/2000 and Windows 9x for 32-bit applications. There are a few flavors of
UNIX that are restricted to 16-bit, but they are very few and far between. You shouldn't rely on integers beir
32-bit, however, as there are also an increasing number of 64-bit versions of Linux and UNIX in use.

Allocating Lots of Memory

Now that we've seen UNIX exceed the limitations of the DOS memory model, let's give it a more difficult
problem. The next program will ask to allocate rather more memory than is physically present in the machin
so we might expect malloc to start failing somewhere a little short of the actual amount of memory present,
since the kernel and all the other running processes will be using some memory.

208



Try It Out — Asking for all Physical Memory

Try It Out — Asking for all Physical Memory

With memory2.c, we're going to ask for all the machine's memory:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define A MEGABYTE (1024 * 1024)

int main()

{

char *some_memory;
size_t size_to_allocate = A_MEGABYTE;
int megs_obtained = 0;

while (megs_obtained < 512) {
some_memory = (char *)malloc(size_to_allocate);
if (some_memory != NULL) {
megs_obtained++;
sprintf(some_memory, "Hello World");
printf("%s — now allocated %d Megabytes\n", some_memory, megs_obtained);

}

else {
exit(EXIT_FAILURE);

}

}
exit(EXIT_SUCCESS):;

}
The output, somewhat abbreviated, is:

$ memory2
Hello World — now allocated 1 Megabytes
Hello World — now allocated 2 Megabytes

Hello World — now allocated 511 Megabytes
Hello World — now allocated 512 Megabytes

How It Works

The program is very similar to the previous example. It simply loops, asking for more and more memory. Th
surprise is that it works at all, because we appear to have created a program that uses every single byte of
physical memory on the authors machine. Notice that we use the size_t type for our call to malloc. This is
actually an unsigned int in the current Linux implementation.

The other interesting feature, is that, at least on this machine, it ran the program in the blink of an eye. So, r
only have we apparently used up all the memory, but we've done it very quickly indeed.

Let's investigate further and see just how much memory we can allocate on this machine with memory3.c.

Since it's now clear that UNIX can do some very clever things with requests for memory, we'll allocate
memory just 1k at a time and write to each block that we obtain.

209



Try It Out — Available Memory
Try It Out — Available Memory

This is memory3.c. By its very nature, it's extremely system—unfriendly and could affect a multi-user
machine quite seriously. If you're at all concerned about the risk it's better not to run it at all; it won't harm
your understanding if you don't.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define ONE_K (1024)

int main()

{

char *some_memory;

int size_to_allocate = ONE_K;
int megs_obtained = 0;

int ks_obtained = 0;

while (1) {
for (ks_obtained = 0; ks_obtained < 1024; ks_obtained++) {
some_memory = (char *)malloc(size_to_allocate);
if (some_memory == NULL) exit(EXIT_FAILURE);
sprintf(some_memory, "Hello World");

}
megs_obtained++;
printf("Now allocated %d Megabytes\n", megs_obtained);

}
exit(EXIT_SUCCESS);

}
This time, the output, again abbreviated, is,

$ memory3
Now allocated 1 Megabytes

Now allocated 153 Megabytes
Now allocated 154 Megabytes

and then the program ends. It also takes quite a few seconds to run and visibly slows down around the sam
number as the physical memory in the machine. However the program has allocated rather more memory tf
the author physically has in his machine at the time of writing.

How It Works

The memory that the application is being allocated is managed by the UNIX kernel. Each time the program
asks for memory or tries to read or write to memory that it has allocated, the UNIX kernel takes charge to
decide how to handle the request.

Initially, the kernel was simply able to use free physical memory to satisfy the application's request for
memory, but once physical memory was full, it started using what's called swap space. On most versions of
UNIX, this is a separate disk area. If you're familiar with MS Windows, the UNIX swap space acts a little like
the MS Windows swap file. However, unlike MS Windows, there's no local heap, global heap or any
discardable memory segments to worry about-the UNIX kernel does all the management for you.

210



Abusing Memory

The kernel moves data and program code between physical memory and the swap space, so that each time
read or write memory, the data always appears to have been in physical memory, wherever it was actually
located before you attempted to access it.

In more technical terms, UNIX implements a demand paged virtual memory system. All memory seen by us
programs is virtual, i.e. it doesn't actually exist at the physical address the program uses. UNIX divides all
memory into pages, commonly 4096 bytes per page. When a program tries to access memaory, a virtual to
physical translation is made, although how this is implemented and the time it takes depend on the particula
hardware you're using. When the access is to memory that isn't physically resident, there is a page fault anc
control is passed to the UNIX kernel.

UNIX checks the address being accessed and, if it's a legal address for that program, determines which pac
of physical memory to make available. It then either allocates it, if it had never been written before, or, if it
was stored on the disk in the swap space, reads the memory page containing the data into physical memory
(possibly moving an existing page out to disk). Then, after mapping the virtual memory address to match the
physical address, it allows the user program to continue. UNIX applications don't need to worry about this
activity because the implementation is all hidden in the UNIX kernel.

Eventually, when the application exhausts both the physical memory and the swap space, or when the
maximum stack size is exceeded, the UNIX kernel finally refuses the request for further memory.

So, what does this mean to the application programmer? Basically, it's all good news. UNIX is very good at
managing memory and will allow application programs to use very large amounts of memory and even very
large single blocks of memory. However, you must remember that allocating two blocks of memory won't
result in a single continuously addressable block of memory. What you get is what you ask for: two separate
blocks of memory.

So does this apparently limitless supply of memory mean that there's no point in checking the return from
malloc? Definitely not. One of the most common problems in C programs using dynamically allocated
memory is to write beyond the end of an allocated block. When this happens, the program may not terminat
immediately, but you have probably overwritten some data used internally by the malloc library routines.

Usually, the result is that future calls to malloc may fail, not because there's no memory to allocate, but
because the memory structures have been corrupted. These problems can be quite difficult to track down ai
in programs, the sooner the error is detected, the better the chances of tracking down the cause. In Chapter
on debugging and optimizing, we'll meet some tools that can help you track down memory problems.

Abusing Memory

Suppose we try and do 'bad' things with memory. Let's allocate some memory and then attempt to write pas
the end, in memory4.c.

Try It Out — Abuse Your Memory

#include <stdlib.h>
#define ONE_K (1024)
int main()

{

char *some_memory;

211



How It Works

char *scan_ptr;

some_memory = (char *)malloc(ONE_K);
if (some_memory == NULL) exit(EXIT_FAILURE);

scan_ptr = some_memory;
while(1) {
*scan_ptr ="'\0";
scan_ptr++;

}
exit(EXIT_SUCCESS);

}
The output is simply:

$ memory4
Segmentation fault (core dumped)

How It Works

The UNIX memory management system has protected the rest of the system from this abuse of memory. T
ensure that one badly behaved program (this one) can't damage any other programs, UNIX has terminated

Each running program on a UNIX system sees its own memory map, which is different from every other
program's. Only the operating system knows how physical memory is arranged and not only manages it for
user programs, but also protects user programs from each other.

The Null Pointer

Unlike MS-DOS, modern UNIX systems are very protective about writing or reading from a null pointer,
although the actual behavior is implementation—specific.

Try It Out — Accessing a Null Pointer

Let's find out what happens when we access a null pointer in memory5a.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main()

{

char *some_memory = (char *)0;

printf("A read from null %s\n", some_memory);
sprintf(some_memory, "A write to nul\n");
exit(EXIT_SUCCESS);

}
The output is:

$ memory5a
A read from null (null)
Segmentation fault(core dumped)

212



How It Works

How It Works

The first printf attempts to print out a string obtained from a null pointer, then the sprintf attempts to write to :
null pointer. In this case, Linux (in the guise of the GNU 'C' library) has been forgiving about the read and he
simply given us a 'magic' string containing the characters ( n u 1 1)\0. It hasn't been so forgiving about the
write and has terminated the program. This can sometimes be helpful in tracking down program bugs.

If we try this again, but this time don't use the GNU 'C' library, we discover that reading from location zero is
not permitted:

This is memory5b.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main()

{

char z = *(const char *)0;
printf("l read from location zero\n");

exit(EXIT_SUCCESS);
}

The output is:

$ memory5b
Segmentation fault(core dumped)

How It Works

This time we attempt to read directly from location zero. There is no GNU libc library between us and the
kernel this time, and our program is terminated. You should note that some versions of UNIX do permit
reading from location zero, but Linux doesn't.

Freeing Memory

Up to now, we've been simply allocating memory and then hoping that when the program ends, the memory
we've used hasn't been lost. Fortunately, the UNIX memory management system is quite capable of ensurir
that memory is returned to the system when a program ends. However, most programs don't simply want to
allocate some memory, use it for a short period, then exit. A much more common use is dynamically using
memory as required.

Programs that use memory on a dynamic basis should always release unused memory back to the malloc
memory manager using the free call. This allows separate blocks to be remerged and allows the malloc libre
to look after memory, rather than the application managing it. If a running program (process) uses and then
frees memory, that free memory remains allocated to the process. However, if it's not being used, the UNIX
memory manager will be able to page it out from physical memory to swap space, where it has little impact
the use of resources.

#include <stdlib.h>

void free(void *ptr_to memory);

213



Try It Out — Freeing Memory

A call to free should only be made with a pointer to memory allocated by a call to malloc, calloc or realloc.
We'll meet calloc and realloc very shortly.

Try It Out — Freeing Memory

This program's called memory6.c:

#include <stdlib.h>
#define ONE_K (1024)

int main()

{

char *some_memory;
int exit_code = EXIT_FAILURE;

some_memory = (char *)malloc(ONE_K);
if (some_memory != NULL) {
free(some_memory);
exit_code = EXIT_SUCCESS;

}

exit(exit_code);

}

How It Works

This program simply shows how to call free with a pointer to some previously allocated memory.

Important Remember that once you've called free on a block of memory, it no longer belongs to the
process. It's not being managed by the malloc library. Never try to read or write memory after
calling free on it.

Other Memory Allocation Functions

There are two other memory allocation functions that are not used as often as malloc and free. These are
calloc and realloc. The prototypes are:

#include <stdlib.h>

void *calloc(size_t number_of_elements, size_t element_size);
void *realloc(void *existing_memory, size_t new_size);

Although calloc allocates memory that can be freed with free, it has rather different parameters. It allocates
memory for an array of structures and requires the number of elements and the size of each element as its
parameters. The allocated memory is filled with zeros and if calloc is successful, a pointer to the first elemer
is returned. Like malloc, subsequent calls are not guaranteed to return contiguous space, so you can't enlar
an array created by calloc by simply calling calloc again and expecting the second call to return memory
appended to that returned by the first call.

The realloc function changes the size of a block of memory that has been previously allocated. It's passed a
pointer to some memory previously allocated by malloc, calloc or realloc and resizes it up or down as

requested. The realloc function may have t