

Table of Contents
Beginning Linux Programming, Second Edition...1

Foreword..5

Introduction...6
 Welcome...6
 Who's this Book For?..6
 What's Covered in the Book...6
 What You Need to Use this Book...8
 Source Code..9
 Conventions..9
 Tell Us What You Think...10
 Why Should I Return the Reply Card?...10

 Chapter 1: Getting Started...11
 Overview...11
 What is UNIX?...11
 What is Linux?..11
 Distributions..11
 The GNU Project and the Free Software Foundation...12
 Programming Linux..13
 UNIX Programs..13

 The C Compiler..14
Try It Out − Our First UNIX C Program..14
How It Works..15

 Getting Help..15
Try It Out − Manual Pages and info..16

 Development System Roadmap..17
 Programs...17
 Header Files..18
 Library Files...19
 Static Libraries...19
Try It Out − Static Libraries..20
 Shared Libraries...22

 UNIX Philosophy...23
 Simplicity...23
 Focus..23
 Reusable Components..23
 Filters..23
 Open File Formats..23
 Flexibility...23

 Summary...24

 Chapter 2: Shell Programming...25
 Overview...25
 What is a Shell?..26
 Pipes and Redirection...27

 Redirecting Output...27
 Redirecting Input..28
 Pipes...28

i

Table of Contents
 Chapter 2: Shell Programming

 The Shell as a Programming Language..29
 Interactive Programs...29
 Creating a Script...30
 Making a Script Executable...31

 Shell Syntax..32
 Variables...33
 Conditions..36
 Control Structures...38
 Functions..49
Try It Out − A Simple Function..50
How It Works..50
Try It Out − Returning a Value...51
How It Works..52
 Commands..52
 Command Execution..62
 Here Documents...66
Try It Out − Using Here Documents...66
Try It Out − Another Use for a Here Document...67
How It Works..67
 Debugging Scripts..67

 Putting it All Together..68
 Requirements..68
 Design...69
Try It Out − A CD Application...70
Notes..76

 Summary...77

 Chapter 3: Working with Files...78
 Overview...78
 UNIX File Structure..78

 Directories..79
 Files and Devices..79

 System Calls and Device Drivers...81
 Library Functions..82
 Low−level File Access..82

write...83
read..83
open...84
Initial Permissions...85
umask...86
close...87
ioctl..87
Try It Out − A File Copy Program..87
 Other System Calls for Managing Files...89

 The Standard I/O Library..91
fopen..92
fread...92
fwrite...93
fclose...93

ii

Table of Contents
 Chapter 3: Working with Files

fflush..93
fseek...93
fgetc, getc, getchar...94
fputc, putc, putchar..94
fgets, gets...94
 Formatted Input and Output...95
 Other Stream Functions..98
 Try It Out − Another File Copy Program...99
 Stream Errors..99
 Streams and File Descriptors..100

 File and Directory Maintenance..101
chmod..101
chown..101
unlink, link, symlink..101
mkdir, rmdir...102
chdir, getcwd...102

 Scanning Directories...103
opendir...103
readdir..103
telldir...104
seekdir...104
closedir..104
 Try It Out − A Directory Scanning Program..105
How It Works..106

 Errors...107
 Advanced Topics..107

fcntl..108
mmap...109
 Try It Out − Using mmap...110

 Summary...111

 Chapter 4: The UNIX Environment..112
 Overview...112
 Program Arguments..112

 Try It Out − Program Arguments...113
How It Works..114
 getopt..114
 Try It Out − getopt...115
How It Works..116

 Environment Variables...116
Try It Out − getenv and putenv0...117
 Use of Environment Variables...118
 The environ Variable..119
Try It Out − environ..119
How It Works..119

 Time and Date...119
Try It Out − time...120
How It Works..121
 Try It Out − gmtime...121

iii

Table of Contents
 Chapter 4: The UNIX Environment

How It Works..122
 Try It Out − ctime...123
How It Works..123
 Try It Out − strftime and strptime..125
How It Works..126

 Temporary Files..126
 Try It Out − tmpnam and tmpfile...127
How It Works..127

 User Information...128
Try It Out − User Information...129
How It Works..130
 Other User Information Functions...130

 Host Information...131
Try It Out − Host Information...131
How It Works..132
 Licensing..132

 Logging...132
Try It Out − syslog..134
How It Works..134
 Configuring Logs...134
Try It Out − logmask...135
How It Works..136

 Resources and Limits..136
 Try It Out − Resource Limits...138
How It Works..140

 Summary...140

 Chapter 5: Terminals..141
 Overview...141
 Reading from and Writing to the Terminal...141

Try It Out − Menu Routines in C..141
How It Works..142
Why It Doesn't Quite Work...143
 Handling Redirected Output...144
Try It Out − Checking for Output Redirection..144
How It Works..145
 Talking to the Terminal..145
Try It Out − Using /dev/tty..146

 The Terminal Driver and the General Terminal Interface..147
 Overview..147
 Hardware Model...148

 The termios Structure..149
 Input Modes..150
 Output Modes...151
 Control Modes..152
 Local Modes...152
 Special Control Characters...153
 Terminal Speed...156
 Additional Functions..156

iv

Table of Contents
 Chapter 5: Terminals

Try It Out − A Password Program with termios...157
How It Works..158
Try It Out − Reading Each Character..158
How It Works..159

 Terminal Output..159
 Terminal Type..159
 Identify Your Terminal Type...160
 Using terminfo Capabilities..162

 Detecting Keystrokes..167
Try It Out − Your Very Own kbhit...167
How It Works..169
 Pseudo Terminals...169

 Summary...169

 Chapter 6: Curses..170
 Overview...170
 Compiling with curses..170
 Concepts..171

Try It Out − A Simple curses Program...172
 Initialization and Termination...173
 Output to the Screen..173
 Reading from the Screen...174
 Clearing the Screen...175
 Moving the Cursor..175
 Character Attributes..175

Try It Out − Moving, Inserting and Attributes..176
 The Keyboard..177

 Keyboard Modes..177
 Keyboard Input...178
Try It Out− Keyboard Modes and Input..178
How It Works..179

 Windows...180
 The WINDOW Structure..180
 Generalized Functions..180
 Moving and Updating a Window...181
Try It Out − Multiple Windows..182
 Optimizing Screen Refreshes...184

 Subwindows..185
Try It Out − Subwindows..185
How It Works..187

 The Keypad...187
 Try It Out − Using the Keypad...188

 Color...189
 Try It Out − Colors...190
 Redefining Colors...191

 Pads...191
Try It Out − Using a Pad...192

 The CD Collection Application..193
Try It Out − A New CD Collection Application...194

v

Table of Contents
 Chapter 6: Curses

Try It Out − Looking at main..196
Try It Out − The Menu..196
 Try It Out − Database File Manipulation...198
Try It Out − Querying the CD Database...202

 Summary...206

 Chapter 7: Data Management..207
 Overview...207
 Managing Memory..207

 Simple Memory Allocation..207
Try It Out − Simple Memory Allocation..208
How It Works..208
 Allocating Lots of Memory..208
 Try It Out − Asking for all Physical Memory..209
How It Works..209
Try It Out − Available Memory..210
How It Works..210
 Abusing Memory..211
Try It Out − Abuse Your Memory..211
How It Works..212
 The Null Pointer...212
 Try It Out − Accessing a Null Pointer..212
How It Works..213
How It Works..213
 Freeing Memory...213
Try It Out − Freeing Memory...214
How It Works..214
 Other Memory Allocation Functions...214

 File Locking..215
 Creating Lock Files..215
Try It Out − Creating a Lock File...216
How It Works..216
 Try It Out − Cooperative Lock Files..217
How It Works..218
 Locking Regions...218
 Use of read and write with Locking...221
Try It Out − Locking a File with fcntl...221
How It Works..222
Try It Out − Testing Locks on a File...223
How It Works..225
 Competing Locks...226
 Try It Out − Competing Locks...226
How It Works..228
 Other Lock Commands..228
 Deadlocks...229

 Databases..229
 The dbm Database..229
 The dbm Routines..230
 dbm Access Functions..232

vi

Table of Contents
 Chapter 7: Data Management

 Additional dbm Functions..235
 The CD Application..237

 The CD Application Using dbm...238
Try It Out − cd_data.h...238
Try It Out − app_ui.c...239
 Try It Out − cd_access.c...247

 Summary...253

 Chapter 8: Development Tools...254
 Overview...254
 Problems of Multiple Source Files...254
 The make Command and Makefiles...255

 The Syntax of Makefiles..255
 Options and Parameters to make..255
 Comments in a makefile...258
 Macros in a makefile..258
Try It Out − A Makefile with Macros...259
How It Works..259
 Multiple Targets...260
Try It Out − Multiple Targets..260
How It Works..262
 Built−in Rules..262
 Suffix Rules..263
Try It Out − Suffix Rules..263
How It Works..264
 Managing Libraries with make...264
Try It Out − Managing a Library..264
How It Works..265
 Advanced Topic: Makefiles and Subdirectories..266
 GNU make and gcc..266
Try It Out − gcc −MM...267
How It Works..267

 Source Code Control...267
 RCS..267
 SCCS..273
 CVS..274

 Writing a Manual Page...278
 Distributing Software..281

 The patch Program...281
 Other Distribution Utilities...283

 Summary...285

 Chapter 9: Debugging..286
 Types of Error...286

 Specification Errors..286
 Design Errors..286
 Coding Errors...286

 General Debugging Techniques..287
 A Program with Bugs...287

vii

Table of Contents
 Chapter 9: Debugging

 Code Inspection..289
 Instrumentation...290
Try It Out − Debug Information..291
How It Works..291
 Controlled Execution..292

 Debugging with gdb..293
 Starting gdb..293
 Running a Program...294
 Stack Trace...294
 Examining Variables..295
 Listing the Program..296
 Setting Breakpoints..296
 Patching with the Debugger...299
 Learning more about gdb...300

 More Debugging Tools...300
 Lint: Removing the Fluff from Your Programs...301
 Function Call Tools..302
 Execution Profiling...304

 Assertions..304
 Problems with assert...305
 Try It Out − assert..305
How It Works..306

 Memory Debugging..306
 ElectricFence..307
Try It Out − ElectricFence..307
How It Works..308
 Checker...308
Try It Out − Checker...308
How It Works..309

 Resources..310
 Summary...310

 Chapter 10: Processes and Signals...311
 Overview...311
 What is a Process?..311
 Process Structure...311

 The Process Table..313
 Viewing Processes..313
 System Processes..314
 Process Scheduling...315

 Starting New Processes...316
Try It Out − system...316
How It Works..317
Replacing a Process Image..317
 Try It Out − execlp...318
How It Works..319
Duplicating a Process Image...319
 Try It Out − fork...320
How It Works..321

viii

Table of Contents
 Chapter 10: Processes and Signals

 Waiting for a Process...321
Try It Out − wait..322
How It Works..323
 Zombie Processes...323
Try It Out − Zombies..324
How It Works..324
 Input and Output Redirection...325
 Try It Out − Redirection...325
How It Works..326
 Threads...326

 Signals...326
 Try It Out − Signal Handling...328
How It Works..329
 Sending Signals..330
Try It Out − An Alarm Clock..330
How It Works..331
 Signal Sets..334

 Summary...337

 Chapter 11: POSIX Threads...338
 What is a Thread?...338

 Advantages and Drawbacks of Threads...338
 Checking for Thread Support..339

Try it out − POSIX compliance test..339
How it works...340

 A First Threads Program...340
Try it out − a simple threaded program...342
How it works...343

 Simultaneous Execution...344
Try it out − simultaneous execution of two threads..344
How it works...345

 Synchronization..345
 Synchronization with Semaphores...345
Try it out − a thread semaphore..347
How it works...349
 Synchronization with Mutexes...350
Try it out − a thread mutex..350
How it works...352

 Thread Attributes..353
detachedstate...354
schedpolicy..354
schedparam..355
inheritsched...355
scope..355
stacksize...355
Try it out − setting the detached state attribute...355
How it works...356
Thread Attributes − Scheduling..357
Try is out − scheduling..357

ix

Table of Contents
 Chapter 11: POSIX Threads

How it works...357
 Canceling a Thread...357

Try it out − canceling a thread..358
How it works...360

 Threads in Abundance..360
Try it out − many threads..360
How it works...362

 Summary...363

 Chapter 12: Inter−process Communication: Pipes..364
 Overview...364
 What is a Pipe?..364
 Process Pipes...365

popen...365
pclose...365
 Try It Out − Reading Output From an External Program..365
How It Works..366
 Sending Output to popen..366
Try It Out − Sending Output to an External Program...366
How It Works..367

 The Pipe Call..369
Try It Out − The pipe Function...370
How It Works..371
 Try It Out − Pipes across a fork...371
How It Works..372

 Parent and Child Processes...372
Try It Out − Pipes and exec...372
How It Works..373
 Reading Closed Pipes...374
 Pipes Used as Standard Input and Output..374

 Named Pipes: FIFOs...377
Try It Out − Creating a Named Pipe...378
How It Works..378
 Accessing a FIFO...378
 Try It Out − Accessing a FIFO File...379
How It Works..379

 Advanced Topic: Client/Server using FIFOs..385
 Try It Out − An Example Client/Server Application...385
How It Works..388

 The CD Application..388
 Aims...389
 Implementation...390
Try It Out − The Header File, cliserv.h...392
 Client Interface Functions..393
Try It Out − The Client's Interpreter...393
 The Server Interface...399
Try It Out − server.c..399
 The Pipe..402
Try It Out − Pipes Implementation Header...402

x

Table of Contents
 Chapter 12: Inter−process Communication: Pipes

 Application Summary...407
 Summary...407

 Chapter 13: Semaphores, Message Queues and Shared Memory...409
 Semaphores...409

 Semaphore Definition...410
 A Theoretical Example...410
 UNIX Semaphore Facilities...411
 Using Semaphores..413
Try It Out − Semaphores...414
How It Works..416
 Semaphore Summary...417

 Shared Memory...417
 Overview..417
 Shared Memory Functions...418
 Shared Memory Summary..423

 Message Queues..423
 Overview..424
 Message Queue Functions..424
 Message Queue Summary..429

 The Application..429
Try It Out − Revising the Server Functions..429
Try It Out − Revising the Client Functions...431

 IPC Status Commands..433
 Semaphores..433
 Shared Memory..433
 Message Queues...433

 Summary...434

 Chapter 14: Sockets...435
 Overview...435
 What is a Socket?..435
 Socket Connections...435

Try It Out − A Simple Local Client..436
 Try It Out − A Simple Local Server...437
 Socket Attributes..439
 Creating a Socket..441
 Socket Addresses..442
 Naming a Socket..442
 Creating a Socket Queue..443
 Accepting Connections...443
 Requesting Connections...444
 Closing a Socket...445
 Socket Communications...445
Try It Out − Network Client..446
How It Works..446
 Try It Out − Network Server..446
How It Works..447
 Host and Network Byte Ordering...447

xi

Table of Contents
 Chapter 14: Sockets

 Network Information..449
 Try It Out − Network Information...450
How It Works..451
 Try It Out − Connecting to a Standard Service..452
How It Works..453
 The Internet Daemon..453
 Socket Options...454

 Multiple Clients..454
Try It Out − A Server for Multiple Clients...455
How It Works..457

 select...457
Try It Out − select...458
How It Works..460
 Multiple Clients..460
Try It Out − An Improved Multiple Client/Server..460

 Summary...463

 Chapter 15: Tcl: Tool Command Language...464
 Overview...464
 A Tcl Overview...464

 Our First Tcl Program..464
 Tcl Commands...465
 Variables and Values..466
 Quoting and Substitution..467
 Calculation..470
 Control Structures...471
 Error Handling..473
 String Operations..474
 Arrays...479
 Lists..481
 Procedures..486
 Try It Out − Procedures..486
How It Works..487
 Input and Output...487

 A Tcl Program...491
Try It Out − A Concordance Program...491
How It Works..493
Network Support...493
 Try It Out − socket...494
How It Works..494

 Creating a New Tcl...494
 Tcl Extensions...494

 expect..494
 [incr Tcl]...495
 TclX..495
 Graphics..495

 Summary...495

xii

Table of Contents
 Chapter 16: Programming for X..496

 Overview...496
 What is X?...496

X Server...497
X Protocol..497
Xlib..497
X Clients..497
 X Toolkits...497

 X Window Manager..498
 The X Programming Model..499

 Start Up...499
 Main Loop..500
 Clean Up...500

 Fast Track X Programming...501
 The Tk Toolkit..501

 Windows Programming..502
Try It Out − Saying Hello...503
How It Works..503
 Configuration Files...504
 More Commands..504
 Tk Widgets...505
Try It Out − Learning More..505
How It Works..506
 Tk's Built−in Dialogs...529
Color Chooser..529
Get Open/Save Files..530
 Color Schemes..531
 Fonts...532
 Bindings..532
 BindTags..533
 Geometry Management..535
 Focus and Navigation...537
 Option Database...538
 Inter−application Communication..539
 Selection...539
 Clipboard..540
 Window Manager...541
 Dynamic/Static Loading...542
 Safe Tk...543

 A Mega−Widget...544
Package File Generation..553

 An Application Using the Tree Mega−Widget...554
 Tk Process Log Viewer...556

 Internationalization...566
 Where Now?...567
Tix...567
[incr Tk]...567
BLT...567

 Summary...568

xiii

Table of Contents
 Chapter 17: Programming GNOME using GTK+...569

 Overview...569
 An Introduction to GNOME...569

 The GNOME Architecture...570
 The GNOME Desktop..571
 Programming in GNOME using GTK+...572
 An Application in GNOME...586

 Summary...594

 Chapter 18: The Perl Programming Language..595
 Overview...595

 An Introduction to Perl...595
 A Full Example..612
 Perl on the Command Line...617
 Modules..618
 The CD Database Revisited...621

 Summary...625

 Chapter 19: Programming for the Internet: HTML ..626
 Overview...626
 What is the World Wide Web?...626
 Terminology..627

 The HyperText Transfer Protocol (HTTP)...627
 Multimedia Internet Mail Extensions (MIME)..627
 Standard Generalized Markup Language (SGML)..627
 Document Type Definition (DTD)...627
 HyperText Markup Language (HTML)...627
 Extensible Markup Language (XML)..628
 Cascading Style Sheets (CSS)..628
 Extensible Hypertext Markup Language (XHTML)..628
 Uniform Resource Locator (URL)...628
 Uniform Resource Identifier (URI)..628

 Writing HTML..629
 Try It Out − A Simple HTML Document..629
How It Works..629

 A More Formal Look at HTML..630
 HTML Tags..631
 Images..637
 Try It Out − Adding an Image..638
How It Works..639
 Tables...639
 Try It Out − A Table..640
How It Works..640
Try It Out − Another Table...641
How It Works..642
 Anchors or Hyperlinks...642
 Try It Out − Anchors..643
How It Works..644
 Combining Anchors and Images..644
 Try It Out − Images as Anchors...644

xiv

Table of Contents
 Chapter 19: Programming for the Internet: HTML

How It Works..645
 Non−HTML URLs...645
 Anchors to Other Sites...646
 Try It Out − Links to Other Sites...646
How It Works..647

 Authoring HTML..647
 Serving HTML Pages...648

 Networked HTML Overview...648
 Setting up a Server...649

 Clickable Maps...650
 Server−side Maps...650
 Client−side Maps..651

 Server−side Includes...651
Try It Out − Client−side Maps and Server−side Includes...652
How It Works..654

 Tips for Setting up WWW Pages..654
 Summary...655

 Chapter 20: Internet Programming 2: CGI..656
 Overview...656
 FORM Elements...656

 The FORM Tag..657
 The INPUT Tag..657
 The SELECT Tag...659
 The TEXTAREA Tag..660

 A Sample Page..660
Try It Out − A Simple Query Form...660
How It Works..662

 Sending Information to the WWW Server..663
 Information Encoding...663
 Server Program...663
 Writing a Server−side CGI Program..664
 CGI Programs Using Extended URLs..669
 Try It Out − A Query String...669
 Decoding the Form Data..670
Try It Out − A CGI Decode Program in C..671
How It Works..675

 Returning HTML to the Client...676
Try It Out − Returning HTML to the Client...677

 Tips and Tricks...679
 Making Sure your CGI Program Exits...679
 Redirecting the Client...679
 Dynamic Graphics..680
 Hiding Context Information...680

 An Application..680
 Try It Out − An HTML Database Interface...680
How It Works..683

 Perl..686
Try It Out A mod_perl Module..689

xv

Table of Contents
 Chapter 20: Internet Programming 2: CGI

How it works...690
 Summary...691

 Chapter 21: Device Drivers...692
 Overview...692
 Devices..692

 Device Classes..693
 User and Kernel Space...694

 Character devices..699
 File Operations...700

 A Sample Driver, Schar..702
The MSG macro..702
Registering the Device..703
Module Usage Count...704
Open and Release..704
Reading the Device...705
The current Task..706
Wait Queues..707
Writing to the Device..708
Non−blocking Reads...709
Seeking..709
ioctl..710
Checking User Rights..712
poll...712
Try it out reading and writing to Schar..713
Try it out ioctl...714
Module Parameters..715
Try it out modinfo..716
proc file system interface..716
Sysctl...716
Writable Entries...717
 How Schar Behaves..718
 Review..718

 Time and Jiffies...719
 Small Delays...720
 Timers...721
Try it out The timer implementation in Schar..722
 Giving up the Processor...723
 Task Queues...724
 The Predefined Task Queues..725
 Review..726

 Memory Management...726
 Virtual Memory Areas..727
 Address Space..727
 Types of Memory Locations..728
 Getting Memory in Device Drivers..728
 Transferring Data Between User and Kernel Space...730
 Simple Memory Mapping..732
 I/O Memory..734

xvi

Table of Contents
 Chapter 21: Device Drivers

 Assignment of Devices in Iomap...735
 I/O Memory mmap...735
Try it out the Iomap module...736

 I/O Ports..738
 Portability...739
 Interrupt Handling..739
 The IRQ Handler..741
 Bottom Halves..743
 Reentrancy..743
 Disabling Single Interrupts...744
 Atomicity..745
 Protecting Critical Sections..745

 Block Devices...747
 Radimo A Simple RAM Disk Module..747
 Media Change...749
 Ioctl for Block Devices...750
 The Request Function...750
 The Buffer Cache...752
Try it out Radimo...753
 Going Further...754

 Debugging...754
 Oops Tracing..754
 Debugging Modules...756
 The Magic Key...756
 Kernel Debugger KDB..757
 Remote Debugging...757
 General Notes on Debugging...758

 Portability..758
 Data Types..758
 Endianess..758
 Alignment...759

 Continuing the Quest..759
 Anatomy of the Kernel Source...760

 Appendix A: Portability ..761
 Overview...761
 Language Portability...761

 Preprocessor Symbols..761
 Reserved Names...762
 Limits..763

 Hardware Portability...763
 Sizes..764
 Byte Order..765
 char...765
 Union Packing..765
 Structure Alignment...766
 Pointer Sizes...766
 Function Parameter Evaluation..767

 Moving to C++..767

xvii

Table of Contents
 Appendix A: Portability

 Use the Compiler..767
 Programs are Read by People...768

 Appendix B: FSF and the GNU Project...769
 Overview...769
 The GNU Project..769
 The GNU Public License..769

 Appendix C: Internet Resources..776
 WWW Locations..776

 Linux Specific..776
 Unix and General Programming...778
 HTML & HTTP Information...779

 Newsgroups...781
 General UNIX Groups..781

 FTP Archive Sites...782
 URLs for the Tools Mentioned in Chapter 9..782

 Appendix D: Bibliography..783
 Standards...783
 Other Documentation and Resources..783
 Books Worth a Look...783
 And Finally, Three Books to Read away from the Computer..784

xviii

Beginning Linux Programming, Second Edition
Neil Matthew
and
Richard Stones

Wrox Press Ltd. ®

© 1996 & 1999 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embodied in critical articles or reviews.

The authors and publisher have made every effort in the preparation of this book to ensure the accuracy of the
information. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, Wrox Press nor its dealers or distributors will be held liable for any damages
caused or alleged to be caused either directly or indirectly by this book.

Printing History

First Published, September 1999
Second Reprint, July 2000
Latest Reprint, July 2001

Published by Wrox Press Ltd
Arden House, 1102 Warwick Road, Acock's Green, Birmingham B27 6BH, UK
Printed in United States

ISBN 1−861002−97−1

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products mentioned in
this book by the appropriate use of capitals. However, Wrox cannot guarantee the accuracy of this
information.

Credits

Authors Technical Reviewers

Neil Matthew Steve Caron

Richard Stones Stefaan Eeckels

Donal Fellows

Contributing Authors Chris Harshman

Jens Axboe David Hudson

Simon Cozens Jonathan Kelly

Andrew Froggatt Giles Lean

Krishna Vedati Marty Leisner

1

Ron McCarty

Editors Bill Moss

Martin Brooks Gavin Smyth

Louay Fatoohi Chris Ullman

James Hart Bruce Varney

Ian Maddison James Youngman

Editors (First Edition) Index

Tim Briggs Robin Smith

Jon Hill

Julian Dobson Design / Layout

Tom Bartlett

Managing Editor David Boyce

Paul Cooper Mark Burdett

William Fallon

Development Jonathan Jones

John Franklin John McNulty

Richard Collins

Cover Design

Chris Morris
Thanks to Larry Ewing (lewing@isc.tamu.edu) and the GIMP for the chapter divider.

"Some people have told me they don't think a fat penguin really embodies the grace of Linux, which just tells
me they have never seen an angry penguin charging at them in excess of 100mph. They'd be a lot more careful
about what they say if they had." Linus Torvalds announcing Linux 2.0

Code License

In recognition of the considerable value of software available for free under the GNU copyright restriction,
including the Linux kernel and many of the other programs that are needed to make a usable Linux system,
the authors have agreed with Wrox Press that all the example code in this book, although copyright is retained
by Wrox Press, may be reused under the terms of the GNU Public License, version 2 or later. Thus for all the
code printed in this book, the following license restriction applies:

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

A copy of the GNU General Public License may be found in Appendix B.

Beginning Linux Programming, Second Edition

2

About the Authors

Neil Matthew

Neil Matthew has been interested in and has programmed computers since 1974. A mathematics graduate
from the University of Nottingham, Neil is just plain keen on programming languages and likes to explore
new ways of solving computing problems. He's written systems to program in BCPL, FP (Function
Programming), Lisp, Prolog and a structured BASIC. He even wrote a 6502 microprocessor emulator to run
BBC microcomputer programs on UNIX systems.

In terms of UNIX experience, Neil has used almost every flavor since Version 6, including Xenix, SCO
flavors, Ultrix, BSD 4.2, Microport, System V, SunOS 4, Solaris and, of course, Linux. He's been a UNIX
system administrator on−and−off since 1983. Neil is familiar with the internals of UNIX−like systems and
was involved in the design and implementation of a intelligent communications controller for DEC Ultrix.

He can claim to have been using Linux since August 1993, when he acquired a floppy disk distribution of Soft
Landing (SLS) from Canada, with kernel version 0.99.11. He's used Linux−based computers for hacking C,
C++, Icon, Prolog and Tcl, at home and at work. He also uses and recommends Linux for Internet
connections, usually as a proxy caching server for Windows LANs and also as a file server to Windows
3.11/95 using SAMBA. He's sold a number of Internet firewall systems to UK companies (including Wrox!).

Most of Neil's 'home' projects were originally implemented in SCO UNIX, but they've been ported to Linux
with little or no trouble. He says Linux is much easier because it supports quite a lot of features from other
systems, so that both BSD and System V targeted programs will generally compile with little or no change.

As the head of software and principal engineer at Camtec Electronics in the Eighties, Neil programmed in C
and C++ for real−time embedded systems environments. Since then, he's worked on software development
techniques and quality assurance both as a consultant in communications software development with
Scientific Generics and as a software QA specialist for GEHE UK.

Neil is married to Christine and has two children, Alexandra and Adrian. He lives in a converted barn in
Northamptonshire. His interests include computers, music, science fiction, chess, squash, cars and not doing it
yourself.

Richard Stones

Rick started programming at school, more years ago than he cares to remember, on a BBC micro, which with
the help a few spare parts continued functioning for the next 15 years. He graduated from the University of
Nottingham with an Electronic Engineering degree, by which time he had decided that software was more fun
than hardware.

Over the years he has worked for a variety of companies, from the very small with just a few dozen
employees, to multinationals, including the IT services giant EDS. Along the way he has worked on a wide
range of different projects, from embedded real−time communications systems, through accounting systems,
to large help desk systems with multi−gigabyte databases. Many of these projects have either been hosted on
UNIX, or UNIX was the development environment. On one project the entire embedded software was
developed and tested on Linux, and only ported to the target hardware and minimal real−time executive in the
final stages. He is currently employed by the IT department of a pan−European wholesale and distribution
company as a systems architect.

Beginning Linux Programming, Second Edition

3

Ricks first experience of a UNIX style operating system was on a PDP 11/23+, after which BSD4.2 on a VAX
came as a pleasant improvement. After spells using UNIX System V.2, Xenix, SCO UNIX, AIX and a few
others, he first met Linux back in the kernel .99 days, and has been a fan ever since.

A bit of a programming linguist, he has programmed systems in SL−1, a couple of assemblers, Fortran,
Pascal, C, C++, Java, SQL and Perl. Under pressure he has also been known to admit to some familiarity with
Visual Basic, but tries not to advertise this aberration.

Rick lives in a Leicestershire village, with his wife Ann, two children, Jennifer and Andrew, and a pair of cats.
Outside work his passion is for classical music, especially early church music, and he does his best to find
time for some piano practice between lessons. He occasionally does the odd job for Wrox press.

Finally, both authors were co−authors of Instant UNIX (Wrox Press)

Authors Acknowledgements

The authors would like to thank the many people who helped make this book possible.

Neil's wife, Christine, for her understanding of the reasons why we had to write another book, and his children
Alexandra and Adrian for not being sad at losing their Dad for too many weekends.

Rick's wife, Ann, and children, Jennifer and Andrew, for their very considerable patience during the evenings
and weekends while this book was being written.

Heartfelt thanks are also due to Richard Neill, for his considerable assistance in reviewing early drafts of the
first edition, on which he made numerous helpful comments and suggestions. We would also like to pay
tribute to his wife, Angie, and son, Gavin, for putting up with us monopolizing his precious time.

As for the publishing team, we wish to thank the folk at Wrox Press, especially Julian, Tim and Jon for their
work on getting the first edition to fly, and Paul, Richard, James, Louay, and Martin for their enthusiasm and
editing work on the second edition.

We would also like to thank the people who have contributed additional material to the second edition −
Andrew, Jens, Krishna and Simon − and all the people who did excellent work reviewing the second edition.
Its certainly a better book than it would otherwise have been. Thanks guys!

We would also like to thank our one−time employers, Scientific Generics and Mobicom, for their support
during the creation of the first edition.

Neil and Rick would also like to pay homage to two important motivators who have helped make this book
possible. Firstly, Richard Stallman, for the excellent GNU tools and the idea of a free software environment.
Secondly, Linus Torvalds, for starting, and continuing to inspire the cooperative development that gives us the
ever−improving Linux Kernel.

Beginning Linux Programming, Second Edition

4

Foreword
by Alan Cox

Every computer programmer has their own pile of notes and scribbles. They have their code examples saved
from the past heroic dive into the manuals or from Usenet − where sometimes even fools fear to follow (The
other body of opinion is that fools all get free Usenet access and use it non stop.) It is strange perhaps
therefore that so few books follow such a style. In the online world there are a lot of short, to the point,
documents about specific areas of programming and administration. The Linux documentation project
released a whole pile of three to ten page documents covering everything from installing Linux and NT on the
same machine to wiring your coffee machine to Linux. Seriously. Take a look in the mini−how−to index on
http://sunsite.unc.edu/LDP.

The book world, on the other hand, mostly seems to consist of either learned tomes − detailed and very
complete works that you don't have time to read, and dummies−style books − which you buy for friends as a
joke. There are very few books that try to cover the basics of a lot of useful areas. This book is one of them, a
compendium of those programmers notes and scribbles, deciphered (try reading programmer handwriting),
edited and brought together coherently as a book.

This updated second edition of the book has expanded, as Linux has expanded, and now covers writing
threaded programs (otherwise known as "how to shoot yourself in both feet at once") and the GTK toolkit
which is the basis of the GNOME GUI and probably the easiest way to write X windows applications in C.

Perl has crept into the book too. There are people who think Perl's time has come. There are those of us who
think Perl's time should have come and gone again a long time back. Regardless of my views, Perl has
become one of the most powerful (and at times arcane) scripting languages. All Linux programmers,
particularly anyone programming cgi scripts for the web, will meet Perl sooner or later so what better than a
Perl survival kit.

The final chapter is your chance to join the world of kernel programmers. As you will discover it isn't actually
that different to writing modules for large application programs. Put on your pointy hat, grow a beard, drink
Jolt Cola and come join in the fun.

Alan

5

Introduction

Welcome

Welcome to Beginning Linux Programming, an easy−to−use guide to developing programs for the Linux and
other UNIX−style operating systems.

In this book, we aim to give you an introduction to a wide variety of topics important to you as a developer
using UNIX. The word Beginning in the title refers more to the content than to your skill level. We've
structured the book to help you learn more about what UNIX has to offer, however much experience you have
already. UNIX programming is a large field and we aim to cover enough about a wide range of topics to give
you a good 'beginning' in each subject.

Who's this Book For?

If you're a programmer who wishes to get up to speed with the facilities that UNIX (and Linux) offers
software developers, to maximize your programming time and your application's use of the UNIX system,
you've picked up the right book. Clear explanations and a tried and tested step−by−step approach will help
you progress rapidly and pick up all the key techniques.

We assume that you know the basics of getting around in UNIX and, ideally, you'll already have some C or
C++ programming experience in a non−UNIX environment, perhaps MS−DOS or Microsoft Windows.
Where direct comparisons exist, these are indicated in the text.

Important Watch out if you're new to UNIX. This isn't a book on installing or configuring Linux. If you
want to learn more about administering a UNIX system, UNIX concepts and UNIX commands in
general, you may want to take a look at Instant UNIX, by the same authors and Andrew Evans,
also published by Wrox Press (ISBN 1−874416−65−6).

As it aims to be both a tutorial guide to the various tools and sets of functions/libraries available to you on
most UNIX systems and also a handy reference to return to, this book is unique in its straightforward
approach, comprehensive coverage and extensive examples.

What's Covered in the Book

The book has a number of aims:

To teach the use of the standard UNIX C libraries and other facilities as specified by the UNIX98
standard created from the earlier IEEE POSIX and X/Open (SPEC 1170) specifications.

•

To show how to make the most of advanced development tools.•
To give concise introductions to popular rapid development languages like the shell, Tcl and Perl.•
To show how to build graphical user interfaces for the X Window System. We will use both Tk on
vanilla X and GTK+ for GNOME.

•

Having given you firm grounding, to progress to topics of real−world applications which you want to
program.

•

As we cover these topics, we aim to introduce the theory and then illustrate it with an appropriate example and
a clear explanation. You can learn quickly on a first read, and look back over things to brush up on all the
essential elements again if you need to.

6

While the small examples are designed mainly to illustrate a set of functions, or some new theory in action,
behind the book lies a larger sample project: a simple database application for recording audio CD details. As
your knowledge expands, you can develop, re−implement and extend the project to your heart's content.
Having said that, it doesn't dominate any chapter, so you can skip it if you want to, but we feel that it provides
useful additional examples of the techniques that we'll discuss. It certainly provides an ideal way to illustrate
each of the steadily more advanced topics as they are introduced.

Our first meeting with the application occurs at the end of the shell programming chapter and shows how a
fairly large shell script is organized, how the shell deals with user input and how it can construct menus and
store and search data.

After recapping the basic concepts of compiling programs, linking to libraries and accessing the online
manuals, we take a soujourn in shells. We then get stuck into C programming, covering working with files,
getting information from the UNIX environment, dealing with terminal input and output, and the curses
library (which makes interactive input and output more tractable). We're then ready to tackle re−implementing
the CD application in C. The application design remains the same, but the code uses the curses library for a
screen−based user interface.

From there, we cover data management. Meeting the dbm database library is sufficient cause for us to
re−implement the application again, but this time with a design that will last the rest of the book. The
application's user interface is held in one file, while the CD database is a separate program. The database
information is now relational.

The size of these recent applications means that next, we need to deal with nuts−and−bolts issues like
debugging, source code control, software distribution and makefiles.

Chapter 10 marks a watershed in the book. By this point we will have learned a lot about how running
programs behave and can be made to do our bidding. Processes can divide and metamorphose, and they begin
to send signals to one another. We also cover POSIX threads, and see how we can create several threads of
execution inside a single process.

Having multiple processes opens up the prospect of having a client and a server side to the CD application,
with some reliable means of communicating between the two. The client/server application is implemented
twice, keeping the database and UI the same, but adding intermediate communication layers using two
methods: pipes and the System V IPC. To round this section off, we examine sockets, using a TCP/IP network
to enable inter−process communication.

There follows Tcl/Tk's finest hour, as we introduce the Tcl shell and build various X user interfaces with Tk.
After this we give an introduction to developing applications for GNOME with the GIMP toolkit (GTK+),
using the development of a desktop clock as an example.

Next, we look at the Internet, first at HTML and then at the Common Gateway Interface, which allows us to
visit the application one last time. This time, we make the application's user interface available on a remote
Web browser accessing web pages generated by CGI programs executing behind the Apache web server.

As the book's finishing flourish, we give an introduction to writing device drivers an important step along the
path to understanding the Linux kernel itself.

As you'd expect, there's a fair bit more in between, but we hope that this gives you a good idea of the material
we'll be discussing.

Introduction

7

What You Need to Use this Book

In this book, we'll give you a taste of programming for UNIX. To help you get the most from the chapters, we
would really like you to try out the examples as you read. These also provide a good base for experimentation
and will hopefully inspire you to create programs of your own.

An ideal way to get to grips with the UNIX environment in general is with a distribution of Linux, which
brings with it a complete development environment including the GNU C/C++ compiler, associated tools and
other useful bits and pieces. It's freely available, POSIX−based, robust, continuously developing and very
powerful.

Linux is available for many different systems. Its adaptability is such that enterprising souls have persuaded it
to run in one form or another on just about anything with a processor in it! Examples include systems based
on the Alpha, SPARC, ARM, PowerPC and 68000 CPUs as well as the Intel x86/PentiumX chips (and
compatibles) found in today's PCs.

To develop this book we used Intel−based systems, but very little of what we cover is Intel−specific.
Although it is possible to run Linux on a 386 with 2Mb RAM and no hard disk (truly!), to run Linux
successfully and follow the examples in this book, we would recommend a specification of at least:

Pentium processor•
32Mb RAM•
600Mb free hard disk space, preferably in its own partition•
For the X Window System, a supported video card•

Information on supported video cards can be found at http://www.xfree86.org/.

The hardware requirements of the book's code for most of the chapters is fairly minimal. Only the chapters
which need the X Window System will require more computing power (or more patience!)

We wrote this book and developed the examples on two Linux systems with different specifications, so we're
confident that if you can run Linux, you can make good use of this book. Furthermore, we tested the code on
other versions of Linux during the book's technical review.

As for software requirements, you should be aware that a few of the programs need modern versions of the
Linux kernel: 2.2 or greater. The Java Development Kit requires up−to−date versions of the GCC and C
libraries (glibc 2 or later). When it comes to other tools, always try to get hold of the newest versions you can.
For instance, the Tcl and Tk sections require at least versions, 7.5 and 8.0 respectively. The minimum
requirements are stated where necessary and if you have problems with code, using newer tools may help.
Fortunately, you can easily download all these tools and, in Appendix C, we provide an Internet resource
guide to help you find them. If you are using a recent Linux distribution, you should have no problems.

Because Linux and the GNU toolset and others are released under the GPL they have certain properties, one
of which is freedom. They will always have the source code available, and no−one can take that freedom
away. They are, therefore, examples of Open Source software a weaker term for other software that may also
have the source code available subject to certain conditions. With GNU/Linux, you will always have the
option of support either do−it−yourself with the source code, or hire someone else. There are now a growing
number of companies offering commercial support for Linux and associated tools.

 What You Need to Use this Book

8

Source Code

We have tried to provide example programs and code snippets that best illustrate the concepts being discussed
in the text. Please note that, in order to make the new functionality being introduced as clear as possible, we
have taken one or two liberties with coding style.

In particular we do not always check that the return results from every function we call are what we expect. In
production code for real applications we would certainly do this, and you too should adopt a rigorous
approach towards error handling. We discuss some of the ways that errors can be caught and handled in
Chapter 3.

The complete source code from the book is available for download from:

http://www.wrox.com

It's available under the terms of the GNU Public License. We suggest you get hold of a copy to save yourself
a lot of typing, although all the code you need is listed in the book.

If you don't have Internet access, you can send away for a disk of the source code. All the details are in the
back of the book.

Conventions

To help you get the most from the text and keep track of what's happening, we've used a number of
conventions throughout the book.

Important These boxes hold important, not−to−be forgotten, Mission Impossible information
which is directly relevant to the surrounding text.

When we introduce them, we highlight important words. We show keyboard strokes like this: Ctrl−A.

We present code in three different ways:

$ grep "command line" introduction
When the command line is shown, it's in the above style, whereas output is in this style.

Prototypes of UNIX−defined functions and structures are shown in the following style:

#include <stdio.h>

int printf (const char *format, ...);
Lastly in our code examples, the code foreground style shows new, important,
 pertinent code;
while code background shows code that's less important in the present context,
 or has been seen before.

We'll presage example code with a Try It Out, which aims to split the code up where that's helpful, to
highlight the component parts and to show the progression of the application. When it's important, we also
follow the code with a "How It Works" to explain any salient points of the code in relation to previous theory.
We find these two conventions help break up the more formidable code listings into more palatable morsels.

 Source Code

9

Tell Us What You Think

We've worked hard to make this book as useful to you as possible, so we'd like to get a feel for what it is you
want and need to know, and what you think about how we've presented things to you.

We appreciate feedback on our efforts and take both criticism and praise on board in our future editorial
efforts. If you've anything to say, let us know on:

Feedback@wrox.com

or

http://www.wrox.com

Bookmark the site now!

Why Should I Return the Reply Card?

Why not? If you return the reply card in the back of the book, you'll register this copy of Beginning Linux
Programming with Wrox Press, which effectively means that you'll receive free information about updates as
soon as they happen. You'll also receive errata sheets when they become available or are updated. (They will
be updated on the Web page, too.)

As well as having the satisfaction of having contributed to the future line of Wrox books via your much
valued comments and suggestions, you will, as a reward, be given a free subscription to the hugely popular
Developer's Journal. This bi−monthly magazine, read by all the software development industry, is invaluable
to every programmer who wants to keep up with the cutting edge techniques used by the best developers.

 Tell Us What You Think

10

Chapter 1: Getting Started

Overview

In this first chapter, we'll discover what Linux is and how it relates to its inspiration, UNIX. We'll take a
guided tour of the facilities provided by a UNIX development system and we shall write and run our first
program. Along the way, we'll be looking at:

UNIX, Linux and GNU•
Programs and programming languages for UNIX•
Locating development resources•
Static and shared libraries•
The UNIX Philosophy•

What is UNIX?

The UNIX operating system was originally developed at Bell Laboratories, once part of the
telecommunications giant AT&T. Designed in the 1970s for Digital Equipment PDP computers, it has
become a very popular multiuser, multitasking operating system for a wide variety of different hardware
platforms, from PC workstations right up to multiprocessor servers and supercomputers.

Strictly, UNIX is a trademark administered by X/Open and refers to a computer operating system that
conforms to the X/Open specification XPG4.2. This specification, also known as SPEC1170, defines the
names of, interfaces to and behaviors of all UNIX operating system functions. The X/Open specification is
largely a superset of an earlier series of specifications, the P1003, or POSIX specifications, actively being
developed by the IEEE (Institute of Electrical and Electronic Engineers).

Many UNIX−like systems are available, either commercially, such as Sun's Solaris for SPARC and Intel
processors, or for free, such as FreeBSD and Linux. Only a few systems currently conform to the X/Open
specification, which allows them to be branded UNIX98. In the past, compatibility between different UNIX
systems has been a problem, although POSIX was a great help in this respect. With the publication of the
X/Open specification, there's hope that UNIX and the many other UNIX−like systems will converge.

What is Linux?

As you may already know, Linux is a freely distributed implementation of a UNIX−like kernel, the low level
core of an operating system. Because Linux takes the UNIX system as its inspiration, Linux and UNIX
programs are very similar. In fact, almost all programs written for UNIX can be compiled and run under
Linux. Also, many commercial applications sold for commercial versions of UNIX can run unchanged in
binary form on Linux systems. Linux was developed by Linus Torvalds at the University of Helsinki, with the
help of UNIX programmers from across the Internet. It began as a hobby inspired by Andy Tanenbaum's
Minix, a small UNIX system, but has grown to become a complete UNIX system in its own right. The Linux
kernel doesn't use code from AT&T or any other proprietary source.

Distributions

As we have already mentioned, Linux is actually just a kernel. You can obtain the sources for the kernel to
compile and install them and then obtain and install many other freely distributed software programs to make

11

a complete UNIX−like system. These installations are usually referred to as Linux systems, although they
consist of much more than just the kernel. Most of the utilities come from the GNU project of the Free
Software Foundation.

As you can probably appreciate, creating a Linux system from just source code is a major undertaking.
Fortunately, many people have put together 'distributions', usually on CD−ROM, that not only contain the
kernel, but also many other programming tools and utilities. These often include an implementation of the X
Window system, a graphical environment common on many UNIX systems. The distributions usually come
with a setup program and additional documentation (normally all on the CD) to help you install your own
Linux system. Some well known distributions are Slackware, SuSE, Debian, Red Hat and Turbo Linux, but
there are many others.

The GNU Project and the Free Software Foundation

Linux owes its existence to the cooperative efforts of a large number of people. The operating system kernel
itself forms only a small part of a usable development system. Commercial UNIX systems traditionally come
bundled with applications programs which provide system services and tools. For Linux systems, these
additional programs have been written by many different programmers and have been freely contributed.

The Linux community (together with others) supports the concept of free software, i.e. software that is free
from restrictions, subject to the GNU General Public License. Although there may be a cost involved in
obtaining the software, it can thereafter be used in any way desired, and is usually distributed in source form.

The Free Software Foundation was set up by Richard Stallman, the author of GNU Emacs, one of the best
known editors for UNIX and other systems. Stallman is a pioneer of the free software concept and started the
GNU project, an attempt to create an operating system and development environment that will be compatible
with UNIX. It may turn out to be very different from UNIX at the lowest level, but will support UNIX
applications. The name GNU stands for GNU's Not Unix.

The GNU Project has already provided the software community with many applications that closely mimic
those found on UNIX systems. All these programs, so called GNU software, are distributed under the terms of
the GNU Public License (GPL), a copy of which may be found in Appendix B. This license embodies the
concept of 'copyleft' (a pun on 'copyright'). Copyleft is intended to prevent others from placing restrictions on
the use of free software.

Software from the GNU Project distributed under the GPL includes:

GCC A C compiler
G++ A C++ compiler
GDB A source code level debugger
GNU make A version of UNIX make
Bison A parser generator compatible with UNIX yacc

Bash A command shell
GNU Emacs A text editor and environment

Many other packages have been developed and released using free software principles and the GNU Public
License. These include graphical image manipulation tools, spreadsheets, source code control tools, compilers
and interpreters, internet tools and a complete object−based environment: GNOME. We will meet GNOME
again in a later chapter.

 The GNU Project and the Free Software Foundation

12

You can find out more about the free software concept at http://www.gnu.org.

Programming Linux

Many people think that programming UNIX means using C. It's true that UNIX was originally written in C
and that the majority of UNIX applications are written in C, but C is not the only option available to UNIX
programmers. In the course of the book, we'll introduce you to some of the alternatives which can sometimes
provide a neater solution to programming problems.

Important In fact, the very first version of UNIX was written in PDP 7 assembler language in 1969. C was
conceived by Dennis Ritchie around that time and in 1973 he and Ken Thompson rewrote
essentially the entire UNIX kernel in C, quite a feat in the days when system software was
written in assembly language.

A vast range of programming languages are available for UNIX systems, and many of them are free and
available on CD−Rom collections or from FTP archive sites on the Internet. Appendix C contains a list of
useful resources. Here's a partial list of programming languages available to the UNIX programmer:

Ada C C++

Eiffel Forth Fortran

Icon Java JavaScript

Lisp Modula 2 Modula 3

Oberon Objective C Pascal

Perl PostScript Prolog

Python Scheme Smalltalk

SQL Tcl/Tk UNIX Bourne Shell (sh)
In this book, we'll concentrate on just a few of these. We'll see how we can use the UNIX shell (sh) to
develop small to medium−sized applications in the next chapter. We'll direct our attention mostly at exploring
the UNIX programming interfaces from the perspective of the C programmer. In later chapters, we'll take a
look at some alternatives to low−level C programming, especially in the context of programming for the
Internet (HTML, Perl, Java) and under the X Window system (Tcl/Tk, GNOME).

UNIX Programs

Applications under UNIX are represented by two special types of file: executables and scripts. Executable
files are programs that can be run directly by the computer and correspond to DOS .exe files. Scripts are
collections of instructions for another program, an interpreter, to follow. These correspond to DOS .bat files,
or interpreted BASIC programs.

UNIX doesn't require that executables or scripts have a specific file name nor any particular extension. File
system attributes, which we'll meet in Chapter 2, are used to indicate that a file is a program that may be run.
In UNIX, we can replace scripts with compiled programs (and vice versa) without affecting other programs or
the people who call them. In fact, at the user level, there is essentially no difference between the two.

When you log in to a UNIX system, you interact with a shell program (often sh) that undertakes to run
programs for you, in the same way DOS uses COMMAND.COM. It finds the programs you ask for by name
by searching for a file with the same name in a given set of directories. The directories to search are stored in
a shell variable, PATH, in much the same way as under DOS. The search path (to which you can add) is

 Programming Linux

13

configured by your system administrator and will usually contain some standard places where system
programs are stored. These include:

/bin Binaries, programs used in booting the
system.

/usr/bin User binaries, standard programs
available to users.

/usr/local/bin Local binaries, programs specific to an
installation.

An administrator's login, such as root, may use a PATH variable that includes directories where system
administration programs are kept, such as /sbin and /usr/sbin.

Optional operating system components and third−party applications may be installed in subdirectories of /opt,
and installation programs might add to your PATH variable by way of user install scripts.

It is probably a good idea not to delete directories from PATH unless you are sure that you understand what
will result if you do.

Note that UNIX uses the : character to separate entries in the PATH variable, rather than the MS−DOS ;.
(UNIX chose : first, so ask why MS−DOS was different, not why UNIX is different!). Here's an example
PATH variable:

/usr/local/bin:/bin:/usr/bin:.:/home/neil/bin:/usr/X11R6/bin

Here the PATH variable contains entries for the standard program locations, the current directory (.), a user's
home directory and the X Window System.

The C Compiler

Let's start developing for UNIX using C by writing, compiling and running our first UNIX program. It might
as well be that most famous of all, Hello World.

Try It Out − Our First UNIX C Program

Here's the source code for the file hello.c:

#include <stdio.h>

int main()
{
 printf("Hello World\n");
 exit(0);
}

1.

To enter this program, you'll need to use an editor. There are many to choose from on a typical Linux
system. Popular with many users is the vi editor. Both the authors like emacs and so we suggest you
take the time to learn some of the features of this powerful editor. To learn emacs, after starting it
press Ctrl−H, followed by t for the tutorial. emacs has its entire manual available on−line. Try
Ctrl−H and then i for information. Some versions of Emacs may have menus that you can use to
access the manual and tutorial.

2.

On POSIX−compliant systems, the C compiler is called c89. Historically, the C compiler was simply
called cc. Over the years, different vendors have sold UNIX−like systems with C compilers with

3.

 The C Compiler

14

different facilities and options, but often still called cc.

When the POSIX standard was prepared, it was impossible to define a standard cc command with
which all these vendors would be compatible. Instead, the committee decided to create a new standard
command for the C compiler, c89. When this command is present, it will always take the same
options, independent of the machine.

On Linux systems, you might find that any or all of the commands c89, cc and gcc refer to the system
C compiler, usually the GNU C compiler. On UNIX systems, the C compiler is almost always called
cc.

In this book, we'll be using GNU C, because it's provided with Linux distributions and because it
supports the ANSI standard syntax for C. If you're using a UNIX system without GNU C, we
recommend that you obtain and install it. You can find it starting at http://www.gnu.org. Wherever we
use cc in the book, simply substitute the relevant command on your system.
Let's compile, link and run our program.

$ cc −o hello hello.c
$./hello
Hello World
$

4.

How It Works

We invoked the system C compiler which translated our C source code into an executable file called hello.
We ran the program and it printed a greeting. This is just about the simplest example there is, but if you can
get this far with your system, you should be able to compile and run the remainder of the examples in the
book. If this did not work for you, make sure that the C compiler is installed on your system. Red Hat Linux
has an install option called C Development that you should select.

Since this is the first program we've run, it's a good time to point something out. The hello program will
probably be in your home directory. If PATH doesn't include a reference to your home directory, the shell
won't be able to find hello. Furthermore, if one of the directories in PATH contains another program called
hello, that program will be executed instead. This would also happen if such a directory is mentioned in
PATH before your home directory

To get around this potential problem, you can prefix program names with ./ (e.g. ./hello). This specifically
instructs the shell to execute the program in the current directory with the given name.

If you forget the −o name option which tells the compiler where to place the executable, the compiler will
place the program in a file called a.out (meaning assembler output). Just remember to look for an a.out if you
think you've compiled a program and you can't find it! In the early days of UNIX, people wanting to play
games on the system often ran them as a.out to avoid being caught by system administrators and many large
UNIX installations routinely delete all files called a.out every evening.

Getting Help

All UNIX systems are reasonably well−documented with respect to the system programming interfaces and
standard utilities. This is because, since the earliest UNIX systems, programmers have been encouraged to
supply a manual page with their programs. These manual pages, which are sometimes provided in a printed
form, are invariably available online.

How It Works

15

The man command provides access to the online manual pages. The pages vary considerably in quality and
detail. Some may simply refer the reader to other, more thorough documentation, while others give a complete
list of all options and commands that a utility supports. In either case, the manual page is a good place to start.

The GNU software suite and some other free software uses an online documentation system called info. You
can browse full documentation online using a special program, info, or via the info command of the emacs
editor. The benefit of the info system is that you can navigate the documentation using links and
cross−references to jump directly to relevant sections. For the documentation author, the info system has the
benefit that its files can be automatically generated from the same source as the printed, typeset
documentation.

Try It Out − Manual Pages and info

Let's look for documentation of the GNU C compiler. First, the manual page.

$ man gcc

GCC(1) GNU Tools GCC(1)

NAME
 gcc, g++ − GNU project C and C++ Compiler (egcs−1.1.2)

SYNOPSIS
 gcc [option | filename]...
 g++ [option | filename]...

WARNING
 The information in this man page is an extract from the
 full documentation of the GNU C compiler, and is limited
 to the meaning of the options.

 This man page is not kept up to date except when volun−
 teers want to maintain it. If you find a discrepancy
 between the man page and the software, please check the
 Info file, which is the authoritative documentation.

 If we find that the things in this man page that are out
 of date cause significant confusion or complaints, we will
 stop distributing the man page. The alternative, updating
 the man page when we update the Info file, is impossible
 because the rest of the work of maintaining GNU CC leaves
 us no time for that. The GNU project regards man pages as
 obsolete and should not let them take time away from other
 things.

 For complete and current documentation, refer to the Info
 file 'gcc' or the manual Using and Porting GNU CC (for
 version 2.0). Both are made from the Texinfo source file
 gcc.texinfo.
...

If we wish, we can read about the options that the compiler supports for each of the target processors
that can be used. The manual page in this case is quite long, but forms only a small part of the total
documentation for GNU C (and C++).

When reading manual pages you can use the spacebar to read the next page, Return to read the next

1.

Try It Out − Manual Pages and info

16

line and q to quit altogether.
To get more information on GNU C, we can try info.

$ info gcc

File: gcc.info, Node: Top, Next: Copying, Up: (DIR)

Introduction

 This manual documents how to run, install and port the GNU compiler,
as well as its new features and incompatibilities, and how to report
bugs. It corresponds to EGCS version 1.1.2.

* Menu:

* G++ and GCC:: You can compile C or C++ programs.
* Invoking GCC:: Command options supported by 'gcc'.
* Installation:: How to configure, compile and install GNU CC.
* C Extensions:: GNU extensions to the C language family.
* C++ Extensions:: GNU extensions to the C++ language.
* Trouble:: If you have trouble installing GNU CC.
* Bugs:: How, why and where to report bugs.
* Service:: How to find suppliers of support for GNU CC.
* VMS:: Using GNU CC on VMS.

* Portability:: Goals of GNU CC's portability features.
* Interface:: Function−call interface of GNU CC output.
* Passes:: Order of passes, what they do, and what each file is for.
* RTL:: The intermediate representation that most passes work on.
* Machine Desc:: How to write machine description instruction patterns.
* Target Macros:: How to write the machine description C macros.
* Config:: Writing the 'xm−MACHINE.h' file.
−zz−Info: (gcc.info.gz)Top, 36 lines −Top− Subfile: gcc.info−1.gz−−−−−−−−−−−
Welcome to Info version 3.12f. Type "C−h" for help, "m" for menu item.

We're presented with a long menu of options that we can select to move around a complete text
version of the documentation. Menu items and a hierarchy of pages allow us to navigate a very large
document. On paper, the GNU C documentation runs to many hundreds of pages.

The info system also contains its own help page in info form pages, of course. If you type Ctrl−H,
you'll be presented with some help which includes a tutorial on using info. The info program is
available with many Linux distributions and can be installed on other UNIX systems.

2.

Development System Roadmap

For a UNIX developer, it can be important to know a little about where tools and development resources are
located. Let's take a brief look at some important directories and files. We'll concentrate on Linux here, but
similar principles apply equally to other UNIX−like systems.

Programs

Programs are usually kept in directories reserved for the purpose. Programs supplied by the system for
general use, including program development, are found in /usr/bin. Programs added by system administrators
for a specific host computer or local network are found in /usr/local/bin.

 Development System Roadmap

17

Administrators favor /usr/local, as it keeps vendor supplied files and later additions separate from the
programs supplied by the system. Keeping /usr organized in this way may help when the time comes to
upgrade the operating system, since only /usr/local need be preserved. We recommend that you compile your
programs to run and access required files from the /usr/local hierarchy.

Additional features and programming systems may have their own directory structures and program
directories. Chief among these is the X Window system, which is commonly installed in a directory called
/usr/X11. Alternative locations include /usr/X11R6 for Revision 6, also used by the XFree86 variant for Intel
processors distributed by the XFree consortium and used by many Linux distributions and /usr/openwin for
the Sun Open Windows system provided with Solaris.

The GNU compiler system's driver program, gcc (which we used in our programming example earlier on), is
typically located in /usr/bin or /usr/local/bin, but it will run various compiler support programs from another
location. This location is specified when you compile the compiler itself and varies with the host computer
type. For Linux systems, this location might be a version specific subdirectory of /usr/lib/gcc−lib/. The
separate passes of the GNU C/C++ compiler, and GNU specific header files, are stored here.

Header Files

For programming in C and other languages, we need header files to provide definitions of constants and
declarations for system and library function calls. For C, these are almost always located in /usr/include and
subdirectories thereof. You can normally find header files that depend on the particular form of UNIX or
Linux that you are running in /usr/include/sys and /usr/include/linux.

Other programming systems will also have include files that are stored in directories which get searched
automatically by the appropriate compiler. Examples include /usr/include/X11 for the X Window system and
/usr/include/g++−2 for GNU C++.

You can use include files in subdirectories or non−standard places by specifying the −I flag to the C
compiler. For example,

$ gcc −I/usr/openwin/include fred.c

will direct the compiler to look in the directory /usr/openwin/include, as well as the standard places, for
header files included in the fred.c program. Refer to the manual page for your C compiler for more details.

It's often convenient to use the grep command to search header files for particular definitions and function
prototypes. Suppose you need to know the name of the defines that are used for returning the exit status from
a program. Simply change to the /usr/include directory and grep for a probable part of the name. Like this:

$ grep EXIT_ *.h
...
stdlib.h:#define EXIT_FAILURE 1 /* Failing exit status. */
stdlib.h:#define EXIT_SUCCESS 0 /* Successful exit status. */
...
$

Here grep searches all the files in the directory with a name ending in .h for the string EXIT_. In this example,
it has found (among others) the definition we need in the file stdlib.h.

 Header Files

18

Library Files

Libraries are collections of precompiled functions that have been written to be reusable. Typically, they
consist of sets of related functions to perform a common task. Examples include libraries of screen handling
functions (the curses library) and database access routines (the dbm library). We'll meet these libraries in later
chapters.

Standard system libraries are usually stored in /lib and /usr/lib. The C compiler (or more exactly, the linker)
needs to be told which libraries to search, as by default, it searches only the standard C library. This is a
remnant of the days when computers were slow and CPU cycles expensive. It's not enough to put a library in
the standard directory and hope that the compiler will find it; libraries need to follow a very specific naming
convention and need to be mentioned on the command line.

A library name always starts with lib. Then follows the part indicating what library this is (like c for the C
library, or m for the mathematical library). The last part of the name starts with a dot ., and specifies the type
of the library:

.a for traditional, static libraries•

.so and .sa for shared libraries (See below.)•

Usually, the libraries exist in both static and shared formats, as a quick ls /usr/lib will show. You can instruct
the compiler to search a library either by giving it the full path name or by using the −l flag. For example,

$ cc −o fred fred.c /usr/lib/libm.a

tells the compiler to compile file fred.c, call the resulting program file fred and search the mathematical
library in addition to the standard C library to resolve references to functions. A similar result is achieved
through:

$ cc −o fred fred.c −lm

The −lm (no space between the l and the m) is shorthand (Shorthand is much valued in UNIX circles.) for the
library called libm.a in one of the standard library directories (in this case /usr/lib). An additional advantage of
the −lm notation is that the compiler will automatically choose the shared library when it exists.

Although libraries usually are found in standard places in the same way as header files, we can add to the
search directories by using the −L (uppercase letter) flag to the compiler. For example,

$ cc −o x11fred −L/usr/openwin/lib x11fred.c −lX11

will compile and link a program called x11fred using the version of the library libX11 found in the directory
/usr/openwin/lib.

Static Libraries

The simplest form of library is just a collection of object files kept together in a ready−to−use form. When a
program needs to use a function stored in the library, it includes a header file that declares the function. The
compiler and linker take care of combining the program code and the library into a single executable program.
You must use the −l option to indicate which libraries, other than the standard C runtime library, are required.

 Library Files

19

Static libraries, also known as archives, conventionally have names that end with .a. Examples are
/usr/lib/libc.a and /usr/X11/lib/libX11.a for the standard C library and the X11 library.

We can create and maintain our own static libraries very easily by using the ar (for archive) program and
compiling functions separately with cc −c. You should try to keep functions in separate source files as much
as possible. If functions need access to common data, you can place them in the same source file and use
'static' variables declared in that file.

Try It Out − Static Libraries

Let's create our own, small library containing two functions and then use one of them in an example
program. The functions are called fred and bill and just print greetings. We'll create separate source
files (called imaginatively fred.c and bill.c) for each of them.

#include <stdio.h>

void fred(int arg)
{
 printf("fred: you passed %d\n", arg);
}
#include <stdio.h>

void bill(char *arg)
{
 printf("bill: you passed %s\n", arg);
}

We can compile these functions individually to produce object files ready for inclusion into a library.
We do this by invoking the C compiler with the −c option that prevents the compiler from trying to
create a complete program. This would fail because we haven't defined a function called main.

$ cc −c bill.c fred.c
$ ls *.o
bill.o fred.o

1.

Now let's write a program that calls the function bill. First, it's a good idea to create a header file for
our library. This will declare the functions in our library and should be included by all programs that
wish to use our library.

/*
 This is lib.h. It declares the functions fred and bill for users
*/

void bill(char *);
void fred(int);

In fact it's a good idea to include the header file in the files fred.c and bill.c too. This will help the
compiler pick up any errors.

2.

The calling program (program.c) can be very simple. It includes the library header file and calls one
of the functions from the library.

#include "lib.h"

int main()
{
 bill("Hello World");

3.

Try It Out − Static Libraries

20

 exit(0);
}

We can now compile the program and test it. For now, we'll specify the object files explicitly to the
compiler, asking it to compile our file and link it with the previously compiled object module bill.o.

$ cc −c program.c
$ cc −o program program.o bill.o
$./program
bill: you passed Hello World
$

4.

Now let's create and use a library. We use the ar program to create the archive and add our object files
to it. The program is called ar because it creates archives or collections of individual files placed
together in one large file. Note that we can also use ar to create archives of files of any type. (Like
many UNIX utilities, it is a very generic tool.)

$ ar crv libfoo.a bill.o fred.o
a − bill.o
a − fred.o

The library is created and the two object files added. To use the library successfully, some systems,
notably those derived from Berkeley UNIX, require that a table of contents be created for the library.
We do this with the ranlib command. This step isn't necessary (but harmless) when, as in Linux, we're
using the GNU software development tools.

$ ranlib libfoo.a

Our library is now ready to use. We can add to the list of files to be used by the compiler to create our
program like this:

$ cc −o program program.o libfoo.a
$./program
bill: you passed Hello World
$

We can also use the −l option to access our library, but as it is not in any of the standard places, we
have to tell the compiler where to find it by using the −L option like this:

 $ cc −o program program.o −L. −lfoo

The −L. option tells the compiler to look in the current directory for libraries. The −lfoo option tells
the compiler to use a library called libfoo.a (or a shared library, libfoo.so if one is present).

To see which functions are included in an object file, library or executable program, we can use the
nm command. If we take a look at program and lib.a, we see that the library contains both fred and
bill, but that program contains only bill. When the program is created, it only includes functions from
the library that it actually needs. Including the header file, which contains declarations for all of the
functions in the library, doesn't cause all of the library to be included in the final program.

If you're familiar with MS−DOS or Microsoft Windows software development, there are a number of
direct analogies here.

Item UNIX DOS

object module func.o FUNC.OBJ

5.

Try It Out − Static Libraries

21

static library lib.a LIB.LIB

program program PROGRAM.EXE

Shared Libraries

One disadvantage of static libraries is that when we run many programs at the same time and they all use
functions from the same library, we may end up with many copies of the same functions in memory and
indeed many copies in the program files themselves. This can consume a large amount of valuable memory
and disk space.

Many UNIX systems support shared libraries that can overcome both of these disadvantages. A complete
discussion of shared libraries and their implementation on different systems is beyond the scope of this book,
so we'll restrict ourselves to the visible implementation under Linux.

Shared libraries are stored in the same places as static libraries, but have a different extension. On a typical
Linux system, the shared version of the standard C library is /lib/libc.so.N, where N represents a major
version number, currently 6.

At the time of writing many Linux distributions were going through a process of updating the versions of both
the C/C++ compiler used and the C library. The example outputs shown below are taken from a Redhat 6.0
distribution using GNU libc 2.1. Your output may differ slightly if you are not using this distribution.

When a program uses a shared library, it is linked in such a way that it doesn't contain function code itself, but
references to shared code that will be made available at run time. When the resulting program is loaded into
memory to be executed, the function references are resolved and calls are made to the shared library, which
will be loaded into memory if needed.

In this way, the system can arrange for a single copy of a shared library to be used by many applications at
once and stored just once on the disk. An additional benefit is that the shared library can be updated
independently of the programs that rely on it. Symbolic links from the file /lib/libc.so.6 to the actual library
revision (/lib/libc−2.1.1.so at the time of writing) are used.

For Linux systems, the program (the dynamic loader) that takes care of loading shared libraries and resolving
client program function references is ld.so or ld−linux.so.2. The additional locations searched for shared
libraries are configured in the file /etc/ld.so.conf, which needs to be processed by ldconfig if changed, for
example when X11 shared libraries are added.

You can see which shared libraries are required by a program by running the utility ldd:

$ ldd program
 libc.so.6 => /lib/libc.so.6 (0x4001a000)
 /lib/ld−linux.so.2 => /lib/ld−linux.so.2 (0x40000000)

In this case, we see that the standard C library (libc) is shared (.so). Our program requires major Version 6,
which is provided in this case by GNU libc version 2.1.1. Other UNIX systems will make similar
arrangements for access to shared libraries. Refer to your system documentation for details.

In many ways, shared libraries are similar to dynamic−link libraries used under Microsoft Windows. The .so
libraries correspond to .DLL files and are required at run time, while the .sa libraries are similar to .LIB files
that get included in the program executable.

 Shared Libraries

22

UNIX Philosophy

We hope to convey a flavor of UNIX programming in the following chapters. Although programming in C is
in many ways the same whatever the platform, it's true to say that UNIX developers have a special view of
program and system development.

The UNIX operating system encourages a certain programming style. Here are a few characteristics shared by
typical UNIX programs and systems.

Simplicity

Many of the most useful UNIX utilities are very simple and, as a result, small and easy to understand. KISS
(Keep It Small and Simple) is a good technique to learn. Larger, more complex systems are guaranteed to
contain larger, more complex bugs and debugging is a chore that we'd all like to avoid!

Focus

It's often better to make a program perform one task well. A program with 'feature bloat' can be difficult to
use and difficult to maintain. Programs with a single purpose are easier to improve as better algorithms or
interfaces are developed. In UNIX, small utilities are often combined to perform more demanding tasks as and
when the need arises, rather than trying to anticipate a user's needs in one large program.

Reusable Components

Make the core of your application available as a library. Well−documented libraries with simple but flexible
programming interfaces can help others to develop variations or apply the techniques to new application areas.
Examples include the dbm database library, a suite of reusable functions rather than a single database
management program.

Filters

Very many UNIX applications can be used as filters. That is, they transform their input and produce an
output. As we'll see, UNIX provides facilities that allow quite complex applications to be developed from
other UNIX programs by combining them in new and novel ways. Of course, this kind of re−use is enabled by
the development methods that we've just mentioned.

Open File Formats

The more successful and popular UNIX programs use configuration files and data files that are plain ASCII
text. If this is an option for your program development, it's a good choice. It enables users to use standard
tools to change and search for configuration items and to develop new tools for performing new functions on
the data files. A good example of this is the ctags source code cross−reference system, which records symbol
location information as regular expressions suitable for use by searching programs.

Flexibility

You can't anticipate exactly how ingeniously users will use your program. Try to be as flexible as possible in
your programming. Try to avoid arbitrary limits on field sizes or number of records. If you can, write the
program so that it's network−aware and able to run across a network as well as on a local machine. Never

 UNIX Philosophy

23

assume that you know everything that the user might want to do.

Summary

In this introductory chapter, we've taken note of the things in common between Linux and proprietary UNIX
systems and the wide variety of programming systems available to us as UNIX developers.

We've written a simple program and library to demonstrate the basic C tools, comparing them with their
MS−DOS equivalents. Finally, we've looked at UNIX programming.

 Summary

24

Chapter 2: Shell Programming

Overview

Having just started this book on programming UNIX in C, we almost immediately take a detour into shell
programming. Why?

Well, the shell leads a double life. While it has similarities to the DOS command processor Command.com,
it's actually much more powerful, really a programming language in its own right. Not only can you execute
commands and call UNIX utilities, you can also write them. It's an interpreted language, which generally
makes debugging easier, because you can execute single lines, plus there's no recompile time. However, this
can make the shell unsuitable for time−critical or processor−intensive tasks.

Why use it to program? Well, you can program the shell quickly and simply, and a shell is always available
even on the most basic UNIX installation. So, for simple prototyping, you can find out if your idea works. It's
also ideal for any small utilities that perform some relatively simple task, where efficiency is less important
than easy configuration, maintenance and portability. You can use the shell to organize process control, so
commands run in a predetermined sequence dependent on the successful completion of each stage.

Note There are probably loads of examples on your UNIX account already, like package installers, autoconf
from the Free Software Foundation (FSF), .xinitrc and startx and the scripts in /etc/rc.d to configure the
system on boot−up.

Here we come to a bit of UNIX philosophy. UNIX is built on and depends upon a high level of code reuse.
You build a small and simple utility, and people use it as one link in a string of others to form a command. A
simple example is:

$ ls −al | more

This uses the ls and more utilities and pipes the output of the file listing to a screen−at−a−time display. Each
utility is one more building block. You can often use many small scripts together to create large and complex
suites of programs.

For example, if you want to print a reference copy of the bash man pages, use: man bash | col −b | lpr.

Furthermore, because of UNIX's file handling, the users of these utilities usually don't need to know what
language the utilities are written in. If the utility needs to run faster, it's quite usual to prototype UNIX utilities
in the shell and re−implement them later in C or C++ when they have proven their worth. Conversely, if they
work well enough, leave well alone!

Other interpreted languages that people like to use as an alternative to C or C++ include Perl, Tcl/Tk and
Python.

Whether you ever re−implement the script depends on whether it needs optimizing, whether it needs to be
portable, whether it should be easy to change and whether (as usually happens) it outgrows its original
purpose.

So, whether you're faced with a nightmare of a shell script in your system administration, whether you want to
prototype your latest big (but beautifully simple) idea or just want to speed up some repetitive task, this
chapter is for you.

25

Throughout the chapter, we'll be learning the syntax, structures and commands available to you when you're
programming the shell, usually making use of interactive (screen−based) examples. These should serve as a
useful synopsis of most of the shell's features and their effect. At the end of the chapter, we program a
real−life script which is reprogrammed and extended in C throughout the book.

In this chapter, we'll cover:

What a shell is.•
Basic considerations.•
The subtleties of syntax: variables, conditions and program control.•
Lists.•
Functions.•
Commands and command execution.•
Here documents.•
Debugging.•

What is a Shell?

Let's review the shell's function and the different shells available for UNIX.

A shell is a program that acts as the interface between you and the UNIX system, allowing you to enter
commands for the operating system to execute. In that respect, it resembles DOS, but it hides the details of the
kernel's operation from the user. So, file redirection just uses < and >, a pipe is represented by |, output from a
subprocess by $(...), and the implementation details are handled for you. In that respect, it's a high−level
programming language for UNIX itself.

Because UNIX is so modular, you can slot in one of the many different shells in use. Most of them are derived
from the original Bourne shell.

Shell Name A Bit of History

sh (Bourne) The original shell.

csh, tcsh and zsh The C shell, created by Bill Joy of Berkeley UNIX fame. Probably the
second most popular shell after bash.

ksh, pdksh The Korn shell and its public domain cousin. Written by David Korn.

bash The Linux staple, from the GNU project. bash, or Bourne Again Shell, has

 What is a Shell?

26

the advantage that the source code is freely available and even if it's not
currently running on your UNIX system, it has probably been ported to it.

rc More C than csh. Also from the GNU project.
Except for the C shell and a small number of derivatives, all of these are very similar and are closely aligned
with the shell specified in the X/Open 4.2 and POSIX 1003.2 specifications. POSIX 1003.2 lays down the
minimum specification for a shell, but the extended specification in X/Open provides a more friendly and
powerful shell. X/Open is usually the more demanding specification, but also yields a friendlier system. We
have only listed here some of the better known shell variants, there are many others.

In this chapter, we'll mostly use those features common to POSIX−compatible shells and we'll assume that the
shell has been installed as /bin/sh as the default.

Important In many Linux systems the command /bin/sh is often no more than a link to the actual shell in
use. On many Linux systems it is a link to /bin/bash, the bash shell. Check your system with the
command ls −l /bin/sh. If you ever need to know which version of bash you are running, just
invoke /bin/bash −version, or echo $BASH_VERSION if you are at a bash command prompt,
and it will tell you.

We'll meet the tclsh and wish shells used by Tcl and Tk respectively later in the book (Chapters 14 and 15).

The GNU project has also put a set of basic shell utilities, Shellutils, which may offer better performance than
system−provided alternatives on some installations. If you want to archive text files using only shell scripts,
check out the shar package.

Pipes and Redirection

Before we get down to the details of shell programs, we need to say a little about how inputs and outputs of
UNIX programs (not just shell programs) can be redirected.

Redirecting Output

You may already be familiar with some redirection, such as,

$ ls −l > lsoutput.txt

which saves the output of the ls command into a file called lsoutput.txt.

However, there is much more to redirection than this simple example. We'll learn more about the standard file
descriptors in a Chapter 3, but for now all we need to know is that file descriptor 0 is the standard input to a
program, file descriptor 1 is the standard output and file descriptor 2 is the standard error output. You can
redirect each of these independently. In fact, you can also redirect other file descriptors, but it's unusual to
want to redirect any other than the standard ones, 0, 1 and 2.

In the above example we redirect the standard output, using the > operator, into a file. By default, if the file
already exists, it will be overwritten. If you want to change the default behavior, you can use the command set
−C, which sets the noclobber option to prevent a file being overwritten using redirection. We'll see more
options to the set command later in the chapter.

To append to the file, we would use the >> operator.

 Pipes and Redirection

27

$ ps >> lsoutput.txt

will append the output of the ps command to the file.

To redirect the standard error output, we preface the > operator with the number of the file descriptor we wish
to redirect. Since the standard error is on file descriptor 2, we use the 2> operator. This is often useful to
discard error information, to prevent it appearing on the screen.

Suppose we want to use the kill command to kill a process from a script. There is always a slight risk that the
process will die before the kill command is executed. If this happens, kill will write an error message to the
standard error output, which, by default, will appear on the screen. By redirecting both the standard output and
error, we can prevent the kill command writing any text to the screen.

The command,

$ kill −HUP 1234 > killout.txt 2>killerr.txt

will put the output and error information into separate files.

If we prefer to capture both sets of output into a single file, we use the >& operator to combine the two
outputs. So,

$ kill −1 1234 > killouterr.txt 2>&1

will put both the output and error outputs into the same file. Notice the order of the operators. This reads as
'redirect standard output to the file killouterr.txt, then direct standard error to the same place as the standard
output'. If you get the order wrong, the redirect won't work as you expect.

Since we can discover the result of the kill command using the return code (of which more later), we probably
don't want to save either standard output or standard error. We can use the UNIX universal 'bit bucket' of
/dev/null to efficiently discard the entire output, like this:

$ kill −1 1234 > /dev/null 2>&1

Redirecting Input

Rather like redirecting output, we can also redirect input. As a trivial example:

$ more < killout.txt

Obviously, this is a rather silly example under UNIX, since the UNIX more command is quite happy to accept
filenames as parameters, unlike the DOS equivalent.

Pipes

We can connect processes together using the pipe | operator. In UNIX, unlike DOS, processes connected by
pipes can run simultaneously and are automatically rescheduled as data flows between them.

As a simple example, we could use the sort command to sort the output from ps.

If we don't use pipes, we must use several steps, like this:

 Redirecting Input

28

$ ps > psout.txt
$ sort psout.txt > pssort.out

Much more elegant is to connect the processes with a pipe, like this:

$ ps | sort > pssort.out

Since we probably want to see the output paginated on the screen, we could connect a third process, more, all
on the same command line:

$ ps | sort | more

There's practically no limit to the number of connected processes. Suppose we want to see all the different
process names that are running, excluding shells. We could use:

$ ps −xo comm | sort | uniq | grep −v sh | more

This takes the output of ps, sorts it into alphabetical order, extracts processes using uniq, then uses grep −v sh
to remove the process named sh and finally displays it paginated on the screen.

Now that we've seen some basic shell operations, it's time to move on to scripts.

The Shell as a Programming Language

There are two ways of writing shell programs. You can type in a sequence of commands and allow the shell to
execute them interactively, or you can store those commands in a file which you can then invoke as a
program.

Interactive Programs

Just typing in the shell script on the command line is a quick and easy way of trying out small code fragments.

Important To change to a different shell if bash isn't the default on your system, for example, just
type in the shell's name (e.g. /bin/bash) to run the new shell and change the command
prompt. If bash isn't installed on your system, you can download it for free from the GNU
web site at http://www.gnu.org. The sources are highly portable, and the chances are it
will compile on your UNIX straight 'out of the box'.

Suppose we have a large number of C files and we wish to compile only the files that contain the string
POSIX. Rather than search using the grep command for the string in the files, then compile the files
containing the string, we could perform the whole operation in an interactive script like this:

$ for file in *
> do
> if grep −l POSIX $file
> then
> more $file
> fi
> done
posix
This is a file with POSIX in it − treat it well
$

 The Shell as a Programming Language

29

Note how the normal $ shell prompt changes to a > when you type in shell commands. You can type away,
the shell will decide when you're finished and the script will execute immediately.

In this example, the grep command prints out the files it finds containing POSIX and then more prints the
contents of the file to the screen. Finally, the shell prompt returns. Note also that we've called the shell
variable that deals with each of the files file to self−document the script.

The shell also performs wildcard expansion (also called globbing), though you knew that already, right? What
you may not know is that you can request single character wildcards using ?, while [set] allows any of a
number of single characters to be checked. [^set] negates the set − anything but the set you've specified. Brace
expansion using {} (available on some shells, including bash) allows you to group arbitrary strings together in
a set which the shell will expand. For example,

$ ls my_{finger,toe}s

will list those two files which share some common identifier. We've used the shell to check every file in the
current directory.

Actually, experienced UNIX users would probably perform this simple operation in a much more efficient
way, perhaps with a command such as,

$ more `grep −l POSIX *`

or the synonymous construction:

$ more $(grep −l POSIX *)

while

$ grep −l POSIX * | more

will output the name of the file whose contents matched the pattern POSIX. In this script, we see the shell
making use of other commands, such as grep and more, to do the hard work. The shell is simply allowing us
to 'glue' several existing commands together in new and powerful ways.

Going through this long rigmarole every time we want to execute a sequence of commands is a bore. We need
to store the commands in a file, conventionally referred to as a shell script, so we can execute them whenever
we like.

Creating a Script

First, using any text editor, we must create a file containing the commands. Create a file called first.sh that
looks like this:

#!/bin/sh

first.sh
This file looks through all the files in the current
directory for the string POSIX, and then displays those
files to the standard output.

for file in *
do

 Creating a Script

30

 if grep −q POSIX $file
 then
 more $file
 fi
done

exit 0

Comments start with a # and continue to the end of a line. Conventionally, though, # is usually kept in the first
column. Having made such a sweeping statement, we next note that the first line, #!/bin/sh, is a special form
of comment, the #! characters tell the system that the one argument that follows on the line is the program to
be used to execute this file. In this case /bin/sh is the default shell program.

Note the absolute path specified in the comment. Since some UNIX implementations have a limit of 32
characters on the interpreter path length, it's wise to keep at least a symbolic link to your favorite shell in /bin.
If you try and invoke a command with a very long name or in a deeply nested directory, it may not function
correctly.

Because the script is essentially treated as standard input to the shell (something prepared earlier), it can
contain any UNIX commands referenced by your PATH environment variable.

The exit command ensures that the script returns a sensible exit code (more on this later in the chapter). This
is rarely checked when programs are run interactively, but if you want to invoke this script from another script
and check whether it succeeded, returning an appropriate exit code is very important. Even if you never intend
to allow your script to be invoked from another, you should still exit with a reasonable code. Such an attitude,
though, flies in the face of a very important part of the UNIX philosophy: reuse. Go on, have faith in the
usefulness of your script.

A zero denotes success in shell programming. Since the script as it stands can't detect any failures, we always
return success. We'll come back to the reasons for using a zero exit code for success later in the chapter, when
we look at the exit command in more detail.

Although we have used the extension '.sh' on this example, Linux, and UNIX in general rarely makes use of
the file name extension to determine the type of a file. We could have omitted the .sh, or added a different
extension if we wished, the shell doesn't care. Most pre−installed scripts will not have any filename extension,
and the best way to check if they are a script or not is to use the file command, i.e. file first.sh or file
/bin/bash.

Making a Script Executable

Now we have our script file, we can run it in two ways. The simpler way is to invoke the shell with the name
of the script file as a parameter, thus:

$ /bin/sh first.sh

This should work, but it would be much better if we could simply invoke the script by typing its name, giving
it the respectability of other UNIX commands.

We do this by changing the file mode to make the file executable for all users using the chmod command:

$ chmod +x first.sh

 Making a Script Executable

31

Important Of course, this isn't the only way to use chmod to make a file executable. Use man
chmod to find out more about octal arguments and other options.

We can then execute it using the command:

$ first.sh

This may not work and you may get an error saying the command wasn't found. This is probably because the
shell environment variable PATH isn't set to look in the current directory. To fix this, either type
PATH=$PATH:. on the command line, or edit your .bash_profile file to add this command to the end of the
file, then log out and back in again Alternatively, type ./first.sh in your scripts directory to give the shell the
relative path to the file.

Important You shouldn't change the PATH variable like this for the root user. It's a security loophole,
because the system administrator logged in as root can be tricked into invoking a fake version of
a standard command. One of the authors admits to doing this once, just to prove a point to the
system administrator about security of course! It's a slight risk on ordinary accounts to include
the current directory in the path, so if you are particularly concerned just get into the habit of
pre−pending ./ to all commands that are in the local directory.

Once we're confident that our script is executing properly, we can move it to a more appropriate location than
the current directory. If the command is just for yourself, you could create a bin directory in your home
directory and add that to your path. If you want the script to be executable by others, you could use
/usr/local/bin or another system directory as a convenient location for adding new programs. If you don't have
root permissions on your UNIX system, you could ask the system administrator to copy your file for you,
although you may have to convince them first. To prevent other users changing the script, perhaps
accidentally, you should remove write access from it. The sequence of commands for the administrator to set
ownership and permissions would be something like this:

cp first.sh /usr/local/bin
chown root /usr/local/bin/first.sh
chgrp root /usr/local/bin/first.sh
chmod 755 /usr/local/bin/first.sh

Notice that, rather than altering a specific part of the permission flags, we use the absolute form of the chmod
here, since we know exactly what permissions we require.

If you prefer, you can use the rather longer, but perhaps more obvious form of the chmod command, which
would be:

chmod u=rwx,go=rx /usr/local/bin/first.sh

Check the manual entry for chmod for more details.

Important Remember that in UNIX you can delete a file if you have write permission on the directory that
contains it. To be safe you should ensure that only root can write to directories containing files
that you want to keep safe.

Shell Syntax

Having seen an example of a simple shell program, it's now time to look in more depth at the programming
power of the shell. The shell is quite an easy programming language to learn, not least because it's easy to test

 Shell Syntax

32

small program fragments interactively before combining them into bigger scripts. We can use the modern
UNIX shell to write quite large, structured programs.

In the next few sections, we'll cover:

Variables: strings, numbers, environment and parameter.•
Conditions: shell Booleans.•
Program Control: if, elif, for, while, until, case.•
Lists.•
Functions.•
Commands built into the shell.•
Getting the result of a command.•
Here documents.•

Variables

We don't usually declare variables in the shell before we use them. Instead, we create them when we first use
them, for example, when we assign an initial value to them. By default, all variables are considered and stored
as strings, even when they are assigned numeric values. The shell and some utilities will convert 'numeric'
strings to their values in order to operate on them as required. UNIX is a case−sensitive system and the shell
considers the variable foo to be different from Foo, and both are different from FOO.

Within the shell, we can get at the contents of a variable by preceding its name with a $ character and
outputting its contents with the echo command. Whenever we use them, we need to give variables a preceding
$, except when an assignment is being made to the variable. On the command line, we can set various values
of the variable salutation:

$ salutation=Hello
$ echo $salutation
Hello
$ salutation="Yes Dear"
$ echo $salutation
Yes Dear
$ salutation=7+5
$ echo $salutation
7+5

Important Note how a string must be delimited by inverted commas if it contains spaces. Also note that
there must be no spaces on either side of the equals sign.

We can assign user input to a variable by using the read command. This takes one parameter, the name of the
variable to be read into, then waits for the user to enter some text. The read normally continues when the user
presses the Return key.

Quoting

Before we move on, we need to be clear about one feature of the shell: the use of quotes.

Normally, parameters are separated by whitespace characters, i.e. a space, a tab, or a newline character. If you
want a parameter to contain one or more whitespace characters, you must quote the parameter.

 Variables

33

The behavior of variables such as $foo inside quotes depends on the type of quotes you use. If you enclose a $
variable expression in double quotes, it's replaced with its value when the line is executed. If you enclose it in
single quotes, no substitution takes place. You can also remove the special meaning of the $ symbol by
prefacing it with a \.

Normally, strings are enclosed in double quotes, which protects variables from being separated by whitespace,
but allows $ expansion to take place.

Try It Out − Variables

Let's see the effect of quotes on the output of a variable:

#!/bin/sh

myvar="Hi there"

echo $myvar
echo "$myvar"
echo '$myvar'
echo \$myvar

echo Enter some text
read myvar

echo '$myvar' now equals $myvar
exit 0

This gives the output:

Hi there
Hi there
$myvar
$myvar
Enter some text
Hello World
$myvar now equals Hello World

How It Works

The variable myvar is created and assigned the string Hi there. The contents of the variable are displayed with
the echo command, showing how prefacing the variable with a $ character expands the contents of the
variable. We see how using double quotes doesn't affect the substitution of the variable, while single quotes
and the backslash do. We also use the read command to get a string from the user.

Environment Variables

When a shell script starts, some variables are initialized from values in the environment. These are normally
capitalized to distinguish them from user−defined (shell) variables in scripts, which are conventionally lower
case. The variables created will depend on your personal configuration. Many are listed in the manual pages,
but the principal ones are:

Environment Variable Description

$HOME The home directory of the current user.

$PATH A colon−separated list of directories to search for commands.

Variables

34

$PS1 A command prompt, usually $.

$PS2 A secondary prompt, used when prompting for additional input, usually >.

$IFS An input field separator. A list of characters that are used to separate words
when the shell is reading input, usually space, tab and new line characters.

$0 The name of the shell script

$# The number of parameters passed.

$$ The process ID of the shell script, often used inside a script for generating
unique temporary filenames, for example /tmp/tmpfile_$$

Important If you want to check out how the program works in a different environment by running env
<command>, try looking at the env manual pages.

Also, we'll see later how to set environment variables in subshells using the export command.
Parameter Variables

If your script is invoked with parameters, some additional variables are created. Even if no parameters are
passed, the environment variable $# listed above does still exist, but has a value of 0.

The parameter variables are:

Parameter Variable Description

$1, $2, The parameters given to the script.

$* A list of all the parameters, in a single variable, separated by the first character
in the environment variable IFS.

$@ A subtle variation on $*, that doesn't use the IFS environment variable.
As for the difference between the $* and $@ parameters, here's an explanation culled from the X/Open
specification.

When the parameter expansion occurs within a double−quoted string, $* expands to a single field with the
value of each parameter separated by the first character of the IFS (internal field separator) variable, or by a
space character if IFS is unset. If IFS is set to a null string, which isn't equivalent to unsetting it, the parameter
values will be concatenated. For example:

$ IFS=''
$ set foo bar bam
$ echo "$@"
foo bar bam
$ echo "$*"
foobarbam
$ unset IFS
$ echo "$*"
foo bar bam

As you can see, within double quotes, $@ expands the positional parameters as separate fields, regardless of
the IFS value. In general, if you want access to the parameters, $@ is the sensible choice.

As well as printing the contents of variables using the echo command, we can also read them in using the read
command.

Variables

35

Try It Out − Parameter and Environment Variables

The following script demonstrates some simple variable manipulation. Once you've typed in the script and
saved it as try_variables, don't forget to make it executable with chmod +x try_variables.

#!/bin/sh

salutation="Hello"
echo $salutation
echo "The program $0 is now running"
echo "The second parameter was $2"
echo "The first parameter was $1"
echo "The parameter list was $*"
echo "The user's home directory is $HOME"

echo "Please enter a new greeting"
read salutation

echo $salutation
echo "The script is now complete"
exit 0

If we run this script, we get the output:

$./try_variables foo bar baz
Hello
The program ./try_variables is now running
The second parameter was bar
The first parameter was foo
The parameter list was foo bar baz
The user's home directory is /home/rick
Please enter a new greeting
Sire
Sire
The script is now complete
$

How It Works

This script creates the variable salutation, displays its contents, then shows how various parameter variables
and the environment variable $HOME already exist and have appropriate values.

We'll return to parameter substitution in more detail later.

Conditions

Fundamental to all programming languages is the ability to test conditions and perform different actions based
on those decisions. Before we talk about that, though, we'll look at the conditional constructs that we can use
in shell scripts and then look at the control structures that use them.

A shell script can test the exit code of any command that can be invoked from the command line, including
those scripts that you have written yourself. That's why it's important to always include an exit command at
the end of any scripts that you write.

Variables

36

The test, or [] Command

In practice, most scripts make extensive use of the [] or test command, the shell's Boolean check. On most
systems, these commands are synonymous. Having a command [] might seem a little odd, but actually, within
the code it does make the syntax of commands look simple, very neat and more like other programming
languages.

Important These commands call an external program in some UNIX shells, but they tend to be built in to
more modern ones. We'll come back to this when we look at commands in a later section.

Since the test command is infrequently used outside shell scripts, many UNIX users who have
never written shell scripts try to write simple programs and call them test. If such a program
doesn't work, it's probably conflicting with the shell's test command. To find out whether your
system has an external command of a given name, try something like which test, which will
usually yield /bin/test or /usr/bin/test.

We'll introduce the test command using one of the simplest conditions: checking to see if a file exists. The
command for this is test −f <filename>, so, within a script, we can write:

if test −f fred.c
then
...
fi

We can also write it like this:

if [−f fred.c]
then
...
fi

The test command's exit code (whether the condition is satisfied) determines whether the conditional code is
run.

Important Note that you must put spaces between the [] braces and the condition being checked.
You can remember this by remembering that [is just the same as writing test, and
would always leave a space after the test word.

If you prefer putting then on the same line as the if, you must add a semicolon to separate the test from the
then:

if [−f fred.c]; then
...
fi

The condition types that you can use with the test command fall into three types.

String Comparison

String Comparison Result

string1 = string2 True if the strings are equal.

string1 != string2 True if the strings are not equal.

Conditions

37

−n string True if the string is not null.

−z string True if the string is null (an empty string).
Arithmetic Comparison

Arithmetic Comparison Result

expression1 −eq expression2 True if the expressions are equal.

expression1 −ne expression2 True if the expressions are not equal

expression1 −gt expression2 True if expression1 is greater than expression2.

expression1 −ge expression2 True if expression1 is greater than or equal to expression2.

expression1 −lt expression2 True if expression1 is less than expression2.

expression1 −le expression2 True if expression1 is less than or equal to expression2.

! expression True if the expression is false, and vice versa.
File Conditionals

File Conditional Result

−d file True if the file is a directory.

−e file True if the file exists.

−f file True if the file is a regular file.

−g file True if set−group−id is set on file.

−r file True if the file is readable.

−s file True if the file has non−zero size.

−u file True if set−user−id is set on file.

−w file True if the file is writeable.

−x file True if the file is executable.

Important Note that, historically, the −e option has not been portable, so −f is more usually used

You may be wondering what the set−group−id and set−user−id (also known as set−gid
and set−uid) bits are. The set−uid bit gives a program the permissions of its owner,
rather than its user, while the set−gid bit gives a program the permissions of its group.
The bits are set with chmod, using the s and g options.

Remember set−gid and set−uid flags have no effect when set on shell scripts.
Before the test can be true, all the file conditional tests require that the file also exists. This list is just the
commonly used options to the test command, so for a complete list refer to the manual entry. If you're using
bash, where test is built in, type help test to get more details. We'll use some of these options later in the
chapter.

Now we know about conditions, we can look at the control structures that use them.

Control Structures

The shell has a set of control structures, and, once again, they're very similar to other programming languages.
For some structures (like the case statement), the shell offers more power. Others are just subtle syntax
changes.

Conditions

38

Important In the following sections, the statements are the series of commands to perform when/while/until
the condition is fulfilled.

if

The if statement is very simple. It tests the result of a command and then conditionally executes a group of
statements:

if condition
then
 statements
else
 statements
fi

Try It Out − Using the if Command

A common use is to ask a question, then make a decision based on the answer:

#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

if [$timeofday = "yes"]; then
 echo "Good morning"
else
 echo "Good afternoon"
fi

exit 0

This would give the following output:

Is it morning? Please answer yes or no
yes
Good morning
$

This script uses the [] command to test the contents of the variable timeofday. The result of this is evaluated
by the if command, which then allows different lines of code to be executed.

Important Notice that we use extra whitespace to indent the statements inside the if. This is just a
convenience for the human reader, the shell ignores the additional whitespace.

elif

Unfortunately, there are several problems with this very simple script. It will take any answer except yes as
meaning no. We can prevent this using the elif construct, which allows us to add a second condition to be
checked when the else portion of the if is executed.

Try It Out − Doing Further Checks with an elif

We can modify our previous script so that we report an error message if the user types in anything other than
yes or no. We do this by replacing the else with elif, and adding another condition.

Control Structures

39

#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

if [$timeofday = "yes"]
then
 echo "Good morning"
elif [$timeofday = "no"]; then
 echo "Good afternoon"
else
 echo "Sorry, $timeofday not recognized. Enter yes or no"
 exit 1
fi

exit 0

How It Works

This is quite similar to the last example, but now uses the elif command, which tests the variable again if the
first if condition was not true. If neither of the tests are successful, an error message is printed and the script
exits with the value 1, which the caller can use in a calling program to check if the script was successful.

A Problem with Variables

This fixes the most obvious defect, but a more subtle problem is lurking. Let's try this new script, but just
press Return rather than answering the question. We get the error message:

[: =: unary operator expected

What went wrong? The problem is in the first if clause. When the variable timeofday was tested, it consisted
of a blank string, so the if clause looks like,

if [= "yes"]

which isn't a valid condition. To avoid this, we must use quotes around the variable,

if ["$timeofday" = "yes"]

so an empty variable gives us the valid test:

if ["" = "yes"]

Our new script is now,

#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

if ["$timeofday" = "yes"]
then
 echo "Good morning"
elif ["$timeofday" = "no"]; then
 echo "Good afternoon"
else

Control Structures

40

 echo "Sorry, $timeofday not recognized. Enter yes or no"
 exit 1
fi

exit 0

which is safe against just pressing Return in answer to the question.

Important If you want the echo command to delete the trailing newline the best choice is to use the
printf command (see later) rather than the echo command. Some shells allow echo −e, but
that's not supported on all systems..

for

We use the for construct for looping through a range of values, which can be any set of strings. They could be
simply listed in the program or, more commonly, the result of a shell expansion of filenames.

The syntax is simply:

for variable in values
do
 statements
done

Try It Out − for Loop with Fixed Strings

The values are normally strings, so we can write:

#!/bin/sh

for foo in bar fud 43
do
 echo $foo
done
exit 0

We get the output:

bar
fud
43

Important What would happen if you changed the first line from for foo in bar fud 43 to for foo in "bar fud
43"? Remember that adding the quotes tells the shell to consider everything between them as a
single string. This is one way of getting spaces to be stored in a variable .

How It Works

This example creates the variable foo and assigns it a different value each time around the for loop. Since the
shell considers all variables to contain strings by default, it's just as valid to use the string 43 as the string fud.

Control Structures

41

Try It Out − for Loop with Wildcard Expansion

As we said earlier, it's more common to use the for loop with a shell expansion for filenames. By this, we
mean using a wildcard for the string value and letting the shell fill out all the values at run time.

We've already seen this in our original example, first.sh. The script used shell expansion, the * expanding to
the names of all the files in the current directory. Each of these in turn is then used as the variable $i inside the
for loop. Let's quickly look at another wildcard expansion:

Imagine you want to print all the scripts files starting with 'f' in the current directory, and you know that all
your scripts end in .sh. You could do it like this:

#!/bin/sh

for file in $(ls f*.sh); do
 lpr $file
done
exit 0

How It Works

This illustrates the use of the $(command) syntax, which we'll review in more detail later (in the section on
command execution). Basically, the parameter list for the for command is provided by the output of the
command enclosed in the $() sequence.

The shell expands f*.sh to give the names of all the files matching this pattern.

Important Remember that all expansion of variables in shell scripts is done when the script is
executed, never when it's written. So, syntax errors in variable declarations are only
found at execution time, as we saw earlier when we were quoting 'empty' variables.

while

Since all shell values are considered as strings by default, the for loop is good for looping through a series of
strings, but a little awkward to use for executing commands a fixed number of times.

Look how tedious a script becomes if we want to loop through twenty values using a for loop:

#!/bin/sh

for foo in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
do
 echo "here we go again"
done
exit 0

Even with wildcard expansion, you might be in the situation where you just don't know how many times
you'll need to loop. In that case, we can use a while loop, which has the syntax:

while condition do
 statements
done

For example, the ubiquitous password program:

Control Structures

42

#!/bin/sh

echo "Enter password"
read trythis

while ["$trythis" != "secret"]; do
 echo "Sorry, try again"
 read trythis
done
exit 0

An example of the output from this script is:

Enter password
password
Sorry, try again
secret
$

Clearly this isn't a very secure way of asking for a password, but it does serve to illustrate the while statement!
The statements between do and done will be continuously executed until the condition is no longer true. In
this case, we're checking that the value of trythis isn't equal to secret. The loop will continue until $trythis
equals secret. We then continue executing the script at the statement immediately following the done.

Try It Out − Here We Go Again, Again

By combining the while construct with arithmetic substitution, we can execute a command a fixed number of
times. This is less cumbersome than the for loop we saw earlier.

#!/bin/sh

foo=1

while ["$foo" −le 20]
do
 echo "Here we go again"
 foo=$(($foo+1))
done

exit 0

Important Note that the $(()) construct was a ksh invention, since included in the X/Open specification.
Older shells will use expr instead, which we'll come across later. However, this is slower and
more resource−intensive, where available you should use the $(()) form of the command.

How It Works

This script uses the [] command to test the value of foo against the value 20 and executes the loop body if it's
smaller or equal. Inside the while loop the syntax (($foo+1)) is used to perform arithmetic evaluation of the
expression inside the braces, so foo is incremented each time around the loop.

Since foo can never be the empty string, we don't need to protect it with double quotes when testing its value.
We only do this because it's a good habit to get into.

Control Structures

43

until

The until statement has the syntax:

until condition
do
 statements
done

This is very similar to the while loop, but with the condition test reversed. In other words, the loop continues
until the condition becomes true, not while the condition is true.

The until statement fits naturally when we want to loop forever until something happens. As an example, we
can set up an alarm which works when another user, whose login name we pass on the command line, logs on:

#!/bin/sh

until who | grep "$1" > /dev/null
do
 sleep 60
done

now ring the bell and announce the expected user.

echo −e \\a
echo "**** $1 has just logged in ****"

exit 0

case

The case construct is a little more complex than those we have encountered so far. Its syntax is:

case variable in
 pattern [| pattern] ...) statements;;
 pattern [| pattern] ...) statements;;
 ...
esac

While this may look a little intimidating, the case construct allows us to match the contents of a variable
against patterns in quite a sophisticated way and then allows execution of different statements depending on
which pattern was matched. Notice that each pattern line is terminated with double semicolons (;;). You can
put multiple statements between each pattern and the next, so a double semicolon is needed to mark where
one statement ends and the next pattern begins.

The ability to match multiple patterns and execute multiple statements makes the case construct a good way of
dealing with user input. The best way to see how case works is with an example. We'll develop it over three
Try It Out examples, improving the pattern matching each time.

Try It Out − case I: User Input

We can write a new version of our input testing script and, using the case construct, make it a little more
selective and forgiving of unexpected input.

#!/bin/sh

Control Structures

44

echo "Is it morning? Please answer yes or no"
read timeofday

case "$timeofday" in
 yes) echo "Good Morning";;
 no) echo "Good Afternoon";;
 y) echo "Good Morning";;
 n) echo "Good Afternoon";;
 *) echo "Sorry, answer not recognized";;
esac

exit 0

How It Works

When the case statement is executing, it takes the contents of timeofday and compares it to each string in turn.
As soon as a string matches the input, the case command executes the code following the) and finishes.

The case command performs normal expansion on the strings that it's using for comparison. You can,
therefore, specify part of a string followed by the wildcard, *. Using a single * will match all possible strings.
So, we always put one after the other matching strings to make sure the case statement ends with some default
action if no other strings are matched. This is possible because the case statement compares against each
string in turn. It doesn't look for a 'best' match, just the first match. The default condition often turns out to be
the 'impossible' condition, so using * can help in debugging scripts.

Try It Out − case II: Putting Patterns Together

The case construct above is clearly more elegant than the multiple if statement version, but by putting the
patterns together, we can make a much cleaner version:

#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

case "$timeofday" in
 yes | y | Yes | YES) echo "Good Morning";;
 n* | N*) echo "Good Afternoon";;
 *) echo "Sorry, answer not recognized";;
esac

exit 0

How It Works

In this script, we have used multiple strings in each entry of the case so case tests several different strings for
each possible statement. This makes the script both shorter and, with practice, easier to read. We also show
how *s can be used, although this may match unintended patterns. For example, if the user enters never, this
will be matched by n* and Good Afternoon printed, which isn't the intended behavior. Note also that *
wildcard expression doesn't work within quotes.

Control Structures

45

Try It Out − case IIl: Executing Multiple Statements

Finally to make the script reusable, we need to have a different exit value when the default pattern is used. We
also add a set construct to show this in action:

#!/bin/sh

echo "Is it morning? Please answer yes or no"
read timeofday

case "$timeofday" in
 yes | y | Yes | YES)
 echo "Good Morning"
 echo "Up bright and early this morning"
 ;;
 [nN]*)
 echo "Good Afternoon"
 ;;
 *)
 echo "Sorry, answer not recognized"
 echo "Please answer yes or no"
 exit 1
 ;;
esac

exit 0

How It Works

To show a different way of pattern matching, we change the way in which the 'no' case is matched. We also
show how multiple statements can be executed for each pattern in the case statement. Notice that we're careful
to put the most explicit matches first and the most general match last. This is important because the case will
execute the first match it finds, not the best match. If we put the *) first, it would always be matched,
regardless of what was input.

Important Note that the ;; before esac is optional. Unlike C programming, where leaving out a break is poor
programming practice, leaving out the final ;; is no problem if the last case is the default, since
no other cases will be considered.

To make the case matching more powerful, we could use something like this:

[yY] | [Yy][Ee][Ss])

This restricts the permitted letters, while allowing a variety of answers and gives more control than the *
wildcard.

Lists

Sometimes, we want to connect commands together in a series. For instance, we may want several different
conditions to be met before we execute a statement like:

if [−f this_file]; then
 if [−f that_file]; then
 if [−f the_other_file]; then
 echo "All files present, and correct"
 fi

Control Structures

46

 fi
fi

or you might want at least one of a series of conditions to be true:

if [−f this_file]; then
 foo="True"
elif [−f that_file]; then
 foo="True"
elif [−f the_other_file]; then
 foo="True"
else
 foo="False"
fi
if ["$foo" = "True"]; then
 echo "One of the files exists"
fi

Although these can be implemented using multiple if statements, as you can see, the results are awkward. The
shell has a special pair of constructs for dealing with lists of commands: the AND list and the OR list. These
are often used together, but we'll review their syntax separately.

The AND List

The AND list construct allows us to execute a series of commands, executing the next command only if all the
previous commands have succeeded. The syntax is:

statement1 && statement2 && statement3 && ...

Starting at the left, each statement is executed and, if it returns true, the next statement to the right is executed.
This continues until a statement returns false, when no more statements in the list are executed. The && tests
the condition of the preceding command.

Each statement is executed independently, allowing us to mix many different commands in a single list, as the
script below shows. The AND list as a whole succeeds if all commands are executed successfully, and it fails
otherwise.

Try It Out − AND Lists

In the following script, we touch file_one (to check whether it exists and create it if it doesn't) and then
remove file_two. Then, the AND list tests for the existence of each of the files and echoes some text in
between.

#!/bin/sh

touch file_one
rm −f file_two

if [−f file_one] && echo "hello" && [−f file_two] && echo " there"
then
 echo "in if"
else
 echo "in else"
fi

exit 0

Control Structures

47

Try the script and you'll get the following result:

hello
in else

How It Works

The touch and rm commands ensure that the files in the current directory are in a known state. The && list
then executes the [−f file_one] statement, which succeeds because we just made sure that the file existed.
Since the previous statement succeeded, the echo command is executed. This also succeeds (echo always
returns true). The third test, [−f file_two] is executed. This fails because the file doesn't exist. Since the last
command failed, the final echo statement isn't executed. The result of the && list is false, since one of the
commands in the list failed, so the if statement executes its else condition.

The OR List

The OR list construct allows us to execute a series of commands until one succeeds, then not execute any
more. The syntax is:

statement1 || statement2 || statement3 || ...

Starting at the left, each statement is executed. If it returns false, the next statement to the right is executed.
This continues until a statement returns true, when no more statements are executed.

The || list is very similar to the && list, except that the rules for executing the next statement are now that the
previous statement must fail.

Try It Out − OR Lists

Copy the previous example and change the shaded lines in the following listing:

#!/bin/sh

rm −f file_one

if [−f file_one] || echo "hello" || echo " there"
then
 echo "in if"
else
 echo "in else"
fi

exit 0

This will give you the output:

hello
in if

How It Works

The first two lines simply set up the files for the rest of the script. The first command, [−f file_one] fails,
since the file doesn't exist. The echo statement is then executed. Surprise, surprise, this returns true and no
more commands in the || list are executed. The if succeeds, because one of the commands in the || list (the

Control Structures

48

echo) was true.

The result of both of these constructs is the result of the last statement to be executed.

These list type constructs execute in a similar way to those in C when multiple conditions are being tested.
Only the minimum number of statements are executed to determine the result. Statements that can't affect the
result are not executed. This is commonly referred to as short circuit evaluation.

Combining these two constructs is a logician's heaven. Try out:

[−f file_one] && command for true || command for false

This will execute the first command if the test succeeds and the second otherwise. It's always best to
experiment with these more unusual lists.

Statement Blocks

If you want to use multiple statements in a place where only one is allowed, such as in an AND or OR list,
you can do so by enclosing them in braces {} to make a statement block. For example, in the application
presented later in this chapter, you'll see the following code:

get_confirm && {
 grep −v "$cdcatnum" $tracks_file > $temp_file
 cat $temp_file > $tracks_file
 echo
 add_record_tracks
}

Functions

You can define functions in the shell and, if you write shell scripts of any size, you'll want to use them to
structure your code.

Important As an alternative, you could break a large script into lots of smaller scripts, each of which
performs a small task. This has several drawbacks: executing a second script from within a script
is much slower than executing a function. It's more difficult to pass back results and there can be
a very large number of small scripts. You should consider the smallest part of your script that
sensibly stands alone and use that as your measure of when to break a large script into a
collection of smaller ones..

If you're appalled at the idea of using the shell for large programs, remember that the FSF
autoconf program and several UNIX package installation programs are shell scripts. You can
always guarantee that a basic shell will be on a UNIX system. In fact, most UNIX systems can't
even boot without /bin/sh, never mind allowing users to log in, so you can be certain that your
script will have a shell available to interpret it on a huge range of UNIX and Linux systems.

To define a shell function, we simply write its name, followed by empty () parentheses and enclose the
statements in {} braces:

function_name () {
 statements
}

Control Structures

49

Try It Out − A Simple Function

Let's start with a really simple function:

#!/bin/sh

foo() {
 echo "Function foo is executing"
}

echo "script starting"
foo
echo "script ended"

exit 0

Running the script will show:

script starting
Function foo is executing
script ending

How It Works

This script starts executing at the top, so nothing different there. But when it finds the foo() { construct, it
knows that a function called foo is being defined. It stores the fact that foo refers to a function and continues
executing after the matching }. When the single line foo is executed, the shell now knows to execute the
previously defined function. When this function completes, execution resumes at the line after the call to foo.

You must always define a function before you can invoke it, a little like the Pascal style of function definition
before invocation, except there are no forward declarations in the shell. This isn't a problem, since all scripts
start executing at the top, so simply putting all the functions before the first call of any function will always
cause all functions to be defined before they can be invoked.

When a function is invoked, the positional parameters to the script, $*, $@, $#, $1, $2 and so on are replaced
by the parameters to the function. That's how you read the parameters passed to the function. When the
function finishes, they are restored to their previous values.

Important Some older shells may not restore the value of positional parameters after functions
execute. It's wise not to rely on this behavior if you want your scripts to be portable.

We can make functions return numeric values using the return command. The usual way to make functions
return strings is for the function to store the string in a variable, which can then be used after the function
finishes. Alternatively you can echo a string and catch the result, like this.

foo () { echo JAY;}

result="$(foo)"

Note that you can declare local variables within shell functions by using the local keyword. The variable is
then only in scope within the function. Otherwise, the function can access the other shell variables which are

Try It Out − A Simple Function

50

essentially global in scope. If a local variable has the same name as a global variable, it overlays that variable
but only within the function. For example, we can make the following changes to the above script to see this
in action:

#!/bin/sh

sample_text="global variable"

foo() {
 local sample_text="local variable"

 echo "Function foo is executing"
 echo $sample_text
}

echo "script starting"
echo $sample_text

foo

echo "script ended"
echo $sample_text

exit 0

In the absence of a return command specifying a return value, a function returns the exit status of the last
command executed.

In the next script, my_name, we show how parameters to a function are passed and how functions can return a
true or false result.

Try It Out − Returning a Value

After the shell header, we define the function yes_or_no:

#!/bin/sh

yes_or_no() {
 echo "Is your name $* ?"
 while true
 do
 echo −n "Enter yes or no: "
 read x
 case "$x" in
 y | yes) return 0;;
 n | no) return 1;;
 *) echo "Answer yes or no"
 esac
 done
}

1.

Then, the main part of the program begins:

echo "Original parameters are $*"

if yes_or_no "$1"
then
 echo "Hi $1, nice name"

2.

Try It Out − Returning a Value

51

else
 echo "Never mind"
fi
exit 0

Typical output from this script might be:

$./my_name.sh Rick Neil
Original parameters are Rick Neil
Is your name Rick ?
Enter yes or no: yes
Hi Rick, nice name
$

How It Works

As the script executes, the function yes_or_no is defined, but not yet executed. In the if statement, the script
executes the function yes_or_no, passing the rest of the line as parameters to the function, after substituting
the $1 with the first parameter to the original script, Rick. The function uses these parameters, which are now
stored in the positional parameters $1, $2 and so on, and returns a value to the caller. Depending on the return
value, the if construct executes the appropriate statement.

As we've seen, the shell has a rich set of control structures and conditional statements. We now need to learn
some of the commands that are built into the shell and then we'll be ready to tackle a real programming
problem with no compiler in sight!

Commands

You can execute two types of command from inside a shell script. There are the 'normal' commands that you
could also execute from the command prompt and there are the 'built−in' commands that we mentioned
earlier. These 'built−in' commands are implemented internally to the shell and can't be invoked as external
programs. Most internal commands are, however, also provided as stand−alone programs − it's part of the
POSIX specification. It generally doesn't matter if the command is internal or external, except that internal
commands execute more efficiently.

Important While we're talking about re−implementing commands, it may interest you to see how UNIX can
use just a single program for several commands or different files. Look at the mv, cp, and ln
commands, with ls −l. On many systems, these are actually a single file, having multiple names
created using the ln (link) command. When the command is invoked, it looks at its first
argument, which under UNIX is the name of the command, to discover what action it should
perform.

Here we'll cover only the main commands, both internal and external, that we use when we're programming
scripts. As a UNIX user, you probably know many other commands that are valid at the command prompt.
Always remember that you can use any of these in a script, in addition to the built−in commands we present
here.

break

We use this for escaping from an enclosing for, while or until loop before the controlling condition has been
met. You can give break and additional numeric parameter, which is the number of loops to break out of. This
can make scripts very hard to read and we don't suggest you use it. By default break escapes a single level.

How It Works

52

#!/bin/sh

rm −rf fred*
echo > fred1
echo > fred2
mkdir fred3
echo > fred4

for file in fred*
do
 if [−d "$file"]; then
 break;
 fi
done

echo first directory starting fred was $file

rm −rf fred*
exit 0

The : Command

The colon command is a null command. It's occasionally useful to simplify the logic of conditions, being an
alias for true. Since it's built−in it runs faster than true, though it's also much less readable.

You may see it used as a condition for while loops; while : implements an infinite loop, in place of the more
common while true.

The : construct is also useful in the conditional setting of variables. For example:

: ${var:=value}

Without the :, the shell would try to evaluate $var as a command.

Important In some, mostly older shell scripts, you may see the colon used at the start of a line to introduce a
comment, but modern scripts should always use # to start a comment line, since this executes
more efficiently.

#!/bin/sh

rm −f fred
if [−f fred]; then
 :
else
 echo file fred did not exist
fi

exit 0

continue

Rather like the C statement of the same name, this command makes the enclosing for, while or until loop
continue at the next iteration, with the loop variable taking the next value in the list.

#!/bin/sh

Commands

53

rm −rf fred*
echo > fred1
echo > fred2
mkdir fred3
echo > fred4

for file in fred*
do
 if [−d "$file"]; then
 echo "skipping directory $file"
 continue
 fi
 echo file is $file
done

rm −rf fred*
exit 0

continue can take an optional parameter, the enclosing loop number at which to resume, so you can partially
jump out of nested loops. This parameter is rarely used as it often makes scripts much harder to understand.
For example:

for x in 1 2 3
do
 echo before $x
 continue 1
 echo after $x
done

The output will be:

before 1
before 2
before 3

The . Command

The dot command executes the command in the current shell:

. ./shell_script

Normally, when a script executes an external command or script, a new environment (a subshell) is created,
the command is executed in the new environment and the environment is then discarded, apart from the exit
code which is returned to the parent shell. But the external source and the dot command (two more synonyms)
run the commands listed in a script in the same shell that called the script.

This means that normally, any changes to environment variables that the command makes are lost. The dot
command, on the other hand, allows the executed command to change the current environment. This is often
useful when you use a script as a 'wrapper' to set up your environment for the later execution of some other
command. For example, if you're working on several different projects at the same time, you may find you
need to invoke commands with different parameters, perhaps to invoke an older version of the compiler for
maintaining an old program.

In shell scripts, the dot command works like the #include directive in C or C++. Though it doesn't literally
include the script, it does execute the command in the current context, so you can use it to incorporate variable

Commands

54

and function definitions into a script.

In the following example, we use the dot command on the command line, but we can just as well use it within
a script.

Try It Out − The . Command

Suppose we have two files containing the environment settings for two different development
environments. To set the environment for the old, classic commands, classic_set, we could use:

#!/bin/sh

version=classic
PATH=/usr/local/old_bin:/usr/bin:/bin:.
PS1="classic> "

1.

while for the new commands we use latest_set:

#!/bin/sh

version=latest
PATH=/usr/local/new_bin:/usr/bin:/bin:.
PS1=" latest version> "

We can set the environment by using these scripts in conjunction with the dot command, as in the
sample session below:

$. ./classic_set
classic> echo $version
classic
classic> . latest_set
latest version> echo $version
latest
latest version>

2.

echo

Despite the X/Open exhortation to use the printf command in modern shells, we've been following 'common
practice' by using the echo command to output a string followed by a newline character.

A common problem is how to suppress the newline character. Unfortunately, different versions of UNIX have
implemented different solutions. The normal method is to use,

echo −n "string to output"

but you'll often come across:

echo −e "string to output\c"

Important The second option, echo −e, makes sure that the interpretation of backslash escaped
characters, such as \t for tab and \n for carriage returns, is enabled. It's usually set by
default. See the man pages for details. If you need a portable way to remove the trailing
newline, you can use the external tr command to get rid of it, but it will execute rather
more slowly. In general it's better to stick to printf if you need to loose the newline and

Commands

55

printf is available on your system.
eval

The eval command allows you to evaluate arguments. It's built into the shell and doesn't normally exist as a
separate command. It's probably best demonstrated with a short example borrowed from the X/Open
specification itself:

foo=10
x=foo
y='$'$x
echo $y

This gives the output $foo. However,

foo=10
x=foo
eval y='$'$x
echo $y

gives the output 10. Thus, eval is a bit like an extra $: it gives you the value of the value of a variable.

The eval command is very useful, allowing code to be generated and run on the fly. It does complicate script
debugging, but can let you do things that are otherwise difficult−to−impossible.

exec

The exec command has two different uses. It's normally used for replacing the current shell with a different
program.

For example,

exec wall "Thanks for all the fish"

in a script will replace the current shell with the wall command. No lines in the script after the exec will be
processed, because the shell that was executing the script no longer exists.

The second use of exec is to modify the current file descriptors.

exec 3< afile

This causes file descriptor three to be opened for reading from file afile. It's rarely used.

exit n

The exit command causes the script to exit with exit code n. If you use it at the command prompt of any
interactive shell, it will log you out. If you allow your script to exit without specifying an exit status, the status
of the last command executed in the script will be used as the return value. It's always good practice to supply
an exit code.

In shell script programming, exit code 0 is success, codes 1 through 125 inclusive are error codes that can be
used by scripts. The remaining values have reserved meanings:

Commands

56

Exit Code Description

126 The file was not executable

127 A command was not found.

128 and above A signal occurred.
Using zero as success may seem a little unusual to many C or C++ programmers. The big advantage in scripts
is that it allows us to use 125 user−defined error codes, without the need for a global error code variable.

Here's a simple example that returns success if a file called .profile exists in the current directory:

#!/bin/sh

if [−f .profile]; then
 exit 0
fi

exit 1

If you're a glutton for punishment, or at least for terse scripts, you can rewrite this using the combined AND
and OR list we saw earlier:

[−f .profile] && exit 0 || exit 1

export

The export command makes the variable named as its parameter available in subshells. By default, variables
created in a shell are not available in further (sub)shells invoked from that shell. The export command creates
an environment variable from its parameter which can be seen by other scripts and programs invoked from the
current program. More technically, the exported variables form the environment variables in any child
processes derived from the shell. This is best illustrated with an example of two scripts, export1 and export2.

Try It Out − Exporting Variables

We list export2 first:

#!/bin/sh

echo "$foo"
echo "$bar"

1.

Now for export1. At the end of this script, we invoke export2:

#!/bin/sh

foo="The first meta−syntactic variable"
export bar="The second meta−syntactic variable"

export2

If we run these, we get:

$ export1

The second meta−syntactic variable
$

2.

Commands

57

The first blank line occurs because the variable foo was not available in export2, so $foo evaluated to
nothing. echoing a null variable gives a newline.

Once a variable has been exported from a shell, it's exported to any scripts invoked from that shell and also to
any shell they invoke in turn and so on. If the script export2 called another script, it would also have the value
of bar available to it.

Important The commands set −a or set −allexport will export all variables thereafter.
expr

The expr command evaluates its arguments as an expression. It's most commonly used for simple arithmetic,
in the form:

x=`expr $x + 1`

Important The `` characters make x take the result of executing the command expr $x + 1. We'll mention
more about command substitution later in the chapter.

In fact, expr is a powerful command that can perform many expression evaluations. The principal ones are:

Expression Evaluation Description

expr1 | expr2 expr1 if expr1 is non−zero, otherwise expr2.

expr1 & expr2 Zero if either expression is zero, otherwise expr1.

expr1 = expr2 Equal.

expr1 > expr2 Greater than.

expr1 >= expr2 Greater than or equal to.

expr1 < expr2 Less than.

expr1 <= expr2 Less than or equal to.

expr1 != expr2 Not equal.

expr1 + expr2 Addition.

expr1 − expr2 Subtraction.

expr1 * expr2 Multiplication.

expr1 / expr2 Integer division.

expr1 % expr2 Integer modulo.
In newer scripts, expr is normally replaced with the more efficient $(()) syntax, which we'll meet later.

printf

The printf command is only available in more recent shells. X/Open suggests that we should use it in
preference to echo for generating formatted output.

The syntax is:

printf "format string" parameter1 parameter2

The format string is very similar to that used in C or C++, with some restrictions. Principally, floating point
isn't supported, because all arithmetic in the shell is performed as integers. The format string consists of any

Commands

58

combination of literal characters, escape sequences and conversion specifiers. All characters in the format
string other than % and \ appear literally in the output.

The following escape sequences are supported:

Escape Sequence Description

\\ Backslash character.

\a Alert (ring the bell or beep).

\b Backspace character.

\f Form feed character.

\n Newline character.

\r Carriage return.

\t Tab character.

\v Vertical tab character.

\ooo The single character with octal value ooo.

The conversion specifier is quite complex, so we'll list only the common usage here. More details can be
found in the manual. The conversion specifier consists of a % character, followed by a conversion character.
The principal conversions are:

Conversion Specifier Description

d Output a decimal number.

c Output a character.

s Output a string.

% Output the % character.

The format string is then used to interpret the remaining parameters and output the result. For example:

$ printf "%s\n" hello
hello
$ printf "%s %d\t%s" "Hi There" 15 people
Hi There 15 people

Notice how we must use " " to protect the Hi There string and make it a single parameter.

return

The return command causes functions to return. We mentioned this when we looked at functions earlier.
return takes a single numeric parameter which is available to the script calling the function. If no parameter is
specified, return defaults to the exit code of the last command.

set

The set command sets the parameter variables for the shell. It can be a useful way of using fields in
commands that output space−separated values.

Suppose we want to use the name of the current month in a shell script. The system provides a date command,
which contains the month as a string, but we need to separate it from the other fields. We can do this using a

Commands

59

combination of the $() construct to execute the date command and return the result (which we'll look at in
more detail very soon) and the set command. The date command output has the month string as its second
parameter:

#!/bin/sh

echo the date is $(date)
set $(date)
echo The month is $2

exit 0

This program sets the parameter list to the date command's output and then uses the positional parameter $2 to
get at the month.

Notice that we used date command as a simple example to show how to extract positional parameters. Since
the date command is sensitive to the language local, in reality we would have extracted the name of the month
using date +%B. The date command has many other formatting options, see the manual page for more details.

We can also use the set command to control the way the shell executes, by passing it parameters. The most
commonly used is set −x which makes a script display a trace of its currently executing command.

Important We'll meet set and some more of its options when we look at debugging later on in the
chapter.

shift

The shift command moves all the parameter variables down by one, so $2 becomes $1, $3 becomes $2, and so
on. The previous value of $1 is discarded, while $0 remains unchanged. If a numerical parameter is specified
in the call to shift, the parameters will move that many spaces. The other variables $*, $@ and $# are also
modified in line with the new arrangement of parameter variables.

shift is often useful for scanning through parameters, and if your script requires ten or more parameters, you'll
need shift to access the tenth and beyond.

Just as an example, we can scan through all the positional parameters like this:

#!/bin/sh

while ["$1" != ""]; do
 echo "$1"
 shift
done

exit 0

trap

The trap command is used for specifying the actions to take on receipt of signals, which we'll meet in more
detail later in the book. A common use is to tidy up a script when it is interrupted. Historically, shells always
used numbers for the signals, but new scripts should use names taken from the #include file signal.h, with the
SIG prefix omitted. To see the signals, you can use type trap −l.

Commands

60

Important For those not familiar with signals, they are events sent asynchronously to a program.
By default, they normally cause the program to terminate.

The trap command is passed the action to take, followed by the signal name (or names) to trap on.

trap command signal

Remember that the scripts are normally interpreted from 'top' to 'bottom' so you must specify the trap
command before the part of the script you wish to protect.

To reset a trap condition to the default, simply specify the command as −. To ignore a signal, set the command
to the empty string ''. A trap command with no parameters prints out the current list of traps and actions.

These are the more important signals covered by the X/Open standard that can be caught (with the
conventional signal number in brackets):

Signal Description

HUP (1) Hang up; usually sent when a terminal goes off line, or a user logs out.

INT (2) Interrupt; usually sent by pressing Ctrl−C.

QUIT (3) Quit; usually sent by pressing Ctrl−\.

ABRT (6) Abort; usually sent on some serious execution error.

ALRM (14) Alarm; usually used for handling time−outs.

TERM (15) Terminate; usually sent by the system when it's shutting down.
Try It Out − Trapping Signals

The following script demonstrates some simple signal handling:

#!/bin/sh

trap 'rm −f /tmp/my_tmp_file_$$' INT
echo creating file /tmp/my_tmp_file_$$
date > /tmp/my_tmp_file_$$

echo "press interrupt (CTRL−C) to interrupt"
while [−f /tmp/my_tmp_file_$$]; do
 echo File exists
 sleep 1
done
echo The file no longer exists

trap − INT
echo creating file /tmp/my_tmp_file_$$
date > /tmp/my_tmp_file_$$

echo "press interrupt (control−C) to interrupt"
while [−f /tmp/my_tmp_file_$$]; do
 echo File exists
 sleep 1
done

echo we never get here
exit 0

If we run this script, pressing Ctrl−C (or whatever your interrupt keys are) in each of the loops, we get the
output:

Commands

61

creating file /tmp/my_tmp_file_141
press interrupt (CTRL−C) to interrupt
File exists
File exists
File exists
File exists
The file no longer exists
creating file /tmp/my_tmp_file_141
press interrupt (CTRL−C) to interrupt
File exists
File exists
File exists
File exists

How It Works

This script uses the trap command to arrange for the command rm −f /tmp/my_tmp_file_$$ to be executed
when an INT (interrupt) signal occurs. The script then enters a while loop which continues while the file
exists. When the user presses Ctrl−C, the statement rm −f /tmp/my_tmp_file_$$ is executed, then the while
loop resumes. Since the file has now been deleted, the first while loop terminates normally.

The script then uses the trap command again, this time to specify that no command be executed when an INT
signal occurs. It then recreates the file and loops inside the second while statement. When the user presses
Ctrl−C this time, there is no statement configured to execute, so the default behavior occurs, which is to
immediately terminate the script. Since the script terminates immediately, the final echo and exit statements
are never executed.

unset

The unset command removes variables or functions from the environment. It can't do this to read−only
variables defined by the shell itself, such as IFS. It's not often used.

The script,

#!/bin/sh

foo="Hello World"
echo $foo

unset foo
echo $foo

writes Hello World once and a newline the second time.

Important Writing foo= has a similar effect in the above program to unset, but setting foo to null isn't the
same as removing foo from the environment.

Command Execution

When we're writing scripts, we often need to capture the result of a command's execution for use in the shell
script, i.e. we want to execute a command and put the output of the command in a variable. We do this using
the $(command) syntax, which we met in the earlier set command example. There is also an older form,
`command`, which is still in common usage.

Commands

62

Important Note that, with the older form of the command execution, the backquote ` is used, not the single
quote' that we used in earlier shell quoting (to protect against variable expansion). Only use this
form for shell scripts that you need to be very portable.

All new scripts should use the $(...) form, which was introduced to avoid some rather complex rules covering
the use of the characters $, ` and \ inside the back−quoted command. If a backquote is used within the `...`
construct, it must be escaped with a \ character. These catch programmers out and sometimes even
experienced shell programmers are forced to experiment to get the quoting correct in backquoted commands.

The result of the $(command) is simply the output from the command. Note that this isn't the return status of
the command, but the string output. For example:

#!/bin/sh

echo The current directory is $PWD
echo The current users are $(who)

exit 0

Because the current directory is a shell environment variable, the first line doesn't need to use this command
execution construct. The result of who, however, does need this construct if it is to be available to the script.

The concept of putting the result of a command into a script variable is very powerful, as it makes it easy to
use existing commands in scripts and capture their output. If you ever find yourself trying to convert a set of
parameters that are the output of a command on standard output, and capture them as arguments for a
program, you may well find the command xargs can do it for you. Look in the manual for further details.

A problem sometimes arises when the command we want to invoke outputs some whitespace before the text
we want, or more output than we actually require. In such a case, we can use the set command as we have
already shown.

Arithmetic Expansion

We've already used the expr command, which allows simple arithmetic commands to be processed, but this is
quite slow to execute, since a new shell is invoked to process the expr command.

A newer and better alternative is $(()) expansion. By enclosing the expression we wish to evaluate in $(()), we
can perform simple arithmetic much more efficiently:

#!/bin/sh

x=0
while ["$x" −ne 10]; do
 echo $x
 x=$(($x+1))
done

exit 0

Parameter Expansion

We've seen the simplest form of parameter assignment and expansion, where we write:

foo=fred
echo $foo

Command Execution

63

A problem occurs when we want to append extra characters to the end of a variable. Suppose we want to write
a short script to process files called 1_tmp and 2_tmp. We could try:

#!/bin/sh

for i in 1 2
do
 my_secret_process $i_tmp
done

But on each loop, we'll get:

my_secret_process: too few arguments

What went wrong?

The problem is that the shell tried to substitute the value of the variable $i_tmp, which doesn't exist. The shell
doesn't consider this an error, it just substitutes a blank, so no parameters at all were passed to
my_secret_process. To protect the expansion of the $i part of the variable, we need to enclose the i in {} like
this:

#!/bin/sh

for i in 1 2
do
 my_secret_process ${i}_tmp
done

On each loop, the value of i is substituted for ${i}, to give the actual file names. We've substituted the value
of the parameter into a string.

We can perform many parameter substitutions in the shell. Often, these provide an elegant solution to many
parameter processing problems.

The common ones are:

Parameter Expansion Description

${param:−default} If param is null, set it to the value of default.

${#param} Gives the length of param.

${param%word} From the end, removes the smallest part of param that matches
word and returns the rest.

${param%%word} From the end, removes the longest part of param that matches
word and returns the rest.

${param#word} From the beginning, removes the smallest part of param that
matches word and returns the rest.

${param##word} From the beginning, removes the longest part of param that
matches word and returns the rest.

These substitutions are often useful when we're working with strings. The last four that remove parts of
strings are especially useful for processing filenames and paths, as the example below shows.

Command Execution

64

Try It Out − Parameter Processing

Each portion of the following script illustrates the parameter matching operators:

#!/bin/sh

unset foo
echo ${foo:−bar}

foo=fud
echo ${foo:−bar}

foo=/usr/bin/X11/startx
echo ${foo#*/}
echo ${foo##*/}

bar=/usr/local/etc/local/networks
echo ${bar%local*}
echo ${bar%%local*}

exit 0

This gives the output:

bar
fud
usr/bin/X11/startx
startx
/usr/local/etc
/usr

How It Works

The first statement ${foo:−bar} gives the value bar, since foo had no value when the statement was executed.
The variable foo is unchanged, as it remains unset.

Important ${foo:=bar}, however, would set the variable to $foo. This string operator checks that foo exists
and isn't null. If it is, it returns its value, but otherwise, it sets foo to bar and returns that instead.

${foo:?bar} will print foo: bar and abort the command if foo doesn't exist or is set to null.

Lastly, ${foo:+bar} returns bar if foo exists and isn't null. What a set of choices!
The {foo#*/} statement matches and removes only the left / (remember * matches zero or more characters).
The {foo##*/} matches and removes as much as possible, so removes the rightmost /, and all the characters
before it.

The {bar%local*} statement matches characters from the right, until the first occurrence of local (followed by
any number of characters) is matched, but the {bar%%local*} matches as many characters as possible from
the right, until it finds the leftmost local.

Since UNIX is based around filters, the result of one operation must often be redirected manually. Let's say
you want to convert a gif file into a jpeg file using the cjpeg program.

$ cjpeg image.gif > image.jpg

Command Execution

65

Sometimes, however, you want to perform this type of operation on a large number of files. How do you
automate the redirection? As easily as this:

#!/bin/sh
for image in *.gif
do
 cjpeg $image > ${image%%gif}jpg
done

This script, giftojpeg, creates a jpeg file for each gif file in the current directory.

Here Documents

One special way of passing input to a command from a shell script is to use a here document. This allows a
command to execute as though it were reading from a file or the keyboard, whereas in fact it's getting input
from the script.

A here document starts with the leader <<, followed by a special sequence of characters that will be repeated
at the end of the document. << is the shell's label redirector, which, in this case, forces the command input to
be the here document. These act as a marker to tell the shell where the here document ends. The marker
characters must not appear in the lines to be passed to the command, so it's best to make them memorable and
fairly unusual.

Try It Out − Using Here Documents

The simplest example is simply to feed input to the cat command:

#!/bin/sh

cat <<!FUNKY!
hello
this is a here
document
!FUNKY!

This gives the output:

hello
this is a here
document

Here documents might seem a rather curious feature, but they're actually very powerful because they allow us
to invoke an interactive program like an editor and feed it some predefined input. However, they're more
commonly used for outputting large amounts of text from inside a script, as we saw above, and avoiding
having to use echo statements for each line. We've used ! marks on each side of the identifier to ensure that
there's no confusion.

If we wish to process several lines in a file in a predetermined way, we could use the ed line editor and feed it
commands from a here document in a shell script.

 Here Documents

66

Try It Out − Another Use for a Here Document

Let's start with a file, a_text_file, containing:

That is line 1
That is line 2
That is line 3
That is line 4

1.

We can edit this file using a combination of a here document and the ed editor:

#!/bin/sh

ed a_text_file <<!FunkyStuff!
3
d
.,\$s/is/was/
w
q
!FunkyStuff!

exit 0

If we run this script, the file now contains:

That is line 1
That is line 2
That was line 4

2.

How It Works

The shell script simply invokes the ed editor and passes to it the commands that it needs to move to the third
line, delete the line and then replace is with was in the current line (since line three was deleted, the current
line is now what was the last line). These ed commands are taken from the lines in the script that form the
here document, i.e. the lines between the markers !FunkyStuff!.

Important Notice the \ inside the here document to protect the $ from shell expansion. The \ escapes the $,
so the shell knows not to try to expand $s/is/was/ to its value, which of course it doesn't have.
Instead, the shell passes the text \$ as $, which can then be interpreted by the ed editor.

Debugging Scripts

Debugging shell scripts is usually quite easy, but there are no specific tools to help. We'll quickly summarize
the common methods.

When an error occurs, the shell will normally print out the line number of the line containing the error. If the
error isn't immediately apparent, we can add some extra echo statements to display the contents of variables
and test code fragments by simply typing them into the shell interactively.

Since scripts are interpreted, there's no compilation overhead in modifying and retrying a script.

The main way to trace more complicated errors is to set various shell options. To do this, you can either use
command line options after invoking the shell, or you can use the set command. We summarize the options in
the following table:

Try It Out − Another Use for a Here Document

67

Command Line Option set Option Description

sh −n <script> set −o noexec
set −n

Checks for syntax errors only; doesn't execute
commands.

sh −v <script> set −o verbose
set −v

Echoes commands before running them.

sh −x <script> set −o xtrace
set −x

Echoes commands after processing on the
command line.

set −o nounset
set −u

Gives an error message when an undefined
variable is used.

You can set the set option flags on, using −o, and off, using +o, and likewise for the abbreviated versions.

You can achieve a simple execution trace by using the xtrace option. For an initial check, you can use the
command line option, but for finer debugging, you can put the xtrace flags (setting an execution trace on and
off) inside the script around the problem code. The execution trace causes the shell to print each line in the
script, with variables expanded, before executing the line. The level of expansion is denoted (by default) by
the number of + signs at the start of each line. You can change the + to something more meaningful by setting
the PS4 shell variable in your shell configuration file.

In the shell, you can also find out the program state wherever it exits by trapping the EXIT signal, with a line
something like this placed at the start of the script:

trap 'echo Exiting: critical variable = $critical_variable' EXIT

Putting it All Together

Now that we've seen the main features of the shell as a programming language, it's time to write an example
program to put some of what we have learned to use.

Throughout this book, we're going to be building a CD database application to show the techniques we've
been learning. We start with a shell script, but pretty soon we'll do it again in C, add a database, and so on. So,
let's start.

Requirements

We're going to design and implement a program for managing CDs. Suppose we have an extensive CD
collection. An electronic catalogue seems an ideal project to implement as we learn about programming
UNIX.

We want, at least initially, to store some basic information about each CD, such as the label, type of music and
artist or composer. We would also like to store some simple track information.

We want to be able to search on any of the 'per CD' items, but not on any of the track details.

To make the mini−application complete, we would also like to be able to enter, update and delete all the
information from within the application.

 Putting it All Together

68

Design

The three requirements−updating, searching and displaying the data−suggest that a simple menu will be
adequate. All the data we need to store is textual and, assuming our CD collection isn't too big, we have no
need for a complex database, so some simple text files will do. Storing information in text files will keep our
application simple and if our requirements change, it's almost always easier to manipulate a text file than any
other sort of file. As the last resort, we could even use an editor to manually enter and delete data, rather than
write a program to do it.

We need to make an important design decision about our data storage: will a single file suffice and, if so, what
format should it have? Most of the information we expect to store occurs only once per CD (we'll skip lightly
over the fact that some CDs contain the work of many composers or artists), except track information. Just
about all CDs have more than one track.

Should we fix a limit on the number of tracks we can store per CD? That seems rather an arbitrary and
unnecessary restriction, so let's reject that idea straight away!

If we allow a flexible number of tracks, we have three options:

Use a single file, use one line for the 'title' type information and then 'n' lines for the track information
for that CD.

•

Put all the information for each CD on a single line, allowing the line to continue until no more track
information needs to be stored.

•

Separate the title information from the track information and use a different file for each.•

Only the third option allows us to easily fix the format of the files, which we'll need to do if we ever wish to
convert our database into a relational form (more on this in Chapter 7), so that's the option we'll choose.

The next decision is what to put in the files.

Initially, for each CD title, we'll choose to store:

The CD catalog number•
The title•
The type (classical, rock, pop, jazz, etc.)•
The composer or artist•

For the tracks, simply:

Track number•
Track name•

In order to 'join' the two files, we must relate the track information to the rest of the CD information. To do
this, we'll use the CD catalog number. Since this is unique for each CD, it will appear only once in the titles
file and once per track in the tracks file.

Let's look at an example titles file:

Catalog Title Type Composer

CD123 Cool sax Jazz Bix

 Design

69

CD234 Classic violin Classical Bach

CD345 Hits99 Pop Various
And its corresponding tracks file:

Catalog Track No. Title

CD123 1 Some jazz

CD123 2 More jazz

CD345 1 Dizzy

CD234 1 Sonata in D minor
The two files 'join' using the Catalog field. Remember, there are normally multiple rows in the tracks file for a
single entry in the titles file.

The last thing we need to decide is how to separate the entries. Fixed−width fields are normal in a relational
database, but are not always the most convenient. Another common method is a comma, which we'll use here
(i.e. a comma−separated variable, or CSV, file).

In the following Try It Out, just so you don't get totally lost, we'll be using the following functions:

get_return()
get_confirm()
set_menu_choice()
insert_title()
insert_track()
add_record_tracks()
add_records()
find_cd()
update_cd()
count_cds()
remove_records()
list_tracks()

Try It Out − A CD Application

First in our sample script is, as always, a line ensuring that it's executed as a shell script, followed by
some copyright information:

#!/bin/sh

Very simple example shell script for managing a CD collection.
Copyright (C) 1996−99 Wrox Press.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hopes that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA.

1.

Try It Out − A CD Application

70

The first thing to do is to ensure that some global variables that we'll be using throughout the script
are set up. We set the title and track files and a temporary file. We also trap Ctrl−C, so our temporary
file is removed if the user interrupts the script.

menu_choice=""
current_cd=""
title_file="title.cdb"
tracks_file="tracks.cdb"
temp_file=/tmp/cdb.$$
trap 'rm −f $temp_file' EXIT

2.

Now we define our functions, so that the script, executing from the top line, can find all the function
definitions before we attempt to call any of them for the first time.

To avoid rewriting the same code in several places, the first two functions are simple utilities.

get_return() {
 echo −e "Press return \c"
 read x
 return 0
}

get_confirm() {
 echo −e "Are you sure? \c"
 while true
 do
 read x
 case "$x" in
 y | yes | Y | Yes | YES)
 return 0;;
 n | no | N | No | NO)
 echo
 echo "Cancelled"
 return 1;;
 *) echo "Please enter yes or no" ;;
 esac
 done
}

3.

Here, we come to the main menu function, set_menu_choice. The contents of the menu vary
dynamically, with extra options being added if a CD entry has been selected.

Note that echo −e may not be portable to some shells.

set_menu_choice() {
 clear
 echo "Options :−"
 echo
 echo " a) Add new CD"
 echo " f) Find CD"
 echo " c) Count the CDs and tracks in the catalog"
 if ["$cdcatnum" != ""]; then
 echo " l) List tracks on $cdtitle"
 echo " r) Remove $cdtitle"
 echo " u) Update track information for $cdtitle"
 fi
 echo " q) Quit"
 echo
 echo −e "Please enter choice then press return \c"
 read menu_choice

4.

Try It Out − A CD Application

71

 return
}

Two more very short functions, insert_title and insert_track, for adding to the database files. Though
some people hate one−liners like these, they help make other functions clearer.

They are followed by the larger add_record_track function that uses them. This function uses pattern
matching to ensure no commas are entered (since we're using commas as a field separator) and also
arithmetic operations to increment the current track number as tracks are entered.

insert_title() {
 echo $* >> $title_file
 return
}

insert_track() {
 echo $* >> $tracks_file
 return
}

add_record_tracks() {
 echo "Enter track information for this CD"
 echo "When no more tracks enter q"
 cdtrack=1
 cdttitle=""
 while ["$cdttitle" != "q"]
 do
 echo −e "Track $cdtrack, track title? \c"
 read tmp
 cdttitle=${tmp%%,*}
 if ["$tmp" != "$cdttitle"]; then
 echo "Sorry, no commas allowed"
 continue
 fi
 if [−n "$cdttitle"] ; then
 if ["$cdttitle" != "q"]; then
 insert_track $cdcatnum,$cdtrack,$cdttitle
 fi
 else
 cdtrack=$((cdtrack−1))
 fi
 cdtrack=$((cdtrack+1))
 done
}

5.

The add_records function allows entry of the main CD information for a new CD.

add_records() {
 # Prompt for the initial information

 echo −e "Enter catalog name \c"
 read tmp
 cdcatnum=${tmp%%,*}

 echo −e "Enter title \c"
 read tmp
 cdtitle=${tmp%%,*}

 echo −e "Enter type \c"
 read tmp
 cdtype=${tmp%%,*}

6.

Try It Out − A CD Application

72

 echo −e "Enter artist/composer \c"
 read tmp
 cdac=${tmp%%,*}

 # Check that they want to enter the information

 echo About to add new entry
 echo "$cdcatnum $cdtitle $cdtype $cdac"

 # If confirmed then append it to the titles file

 if get_confirm ; then
 insert_title $cdcatnum,$cdtitle,$cdtype,$cdac
 add_record_tracks
 else
 remove_records
 fi

 return
}

The find_cd function searches for the catalog name text in the CD title file, using the grep command.
We need to know how many times the string was found, but grep only returns a value telling us if it
matched zero times or many. To get around this, we store the output in a file, which will have one line
per match, then count the lines in the file.

The word count command, wc, has whitespace in its output, separating the number of lines, words and
characters in the file. We use the $(wc −l $temp_file) notation to extract the first parameter from the
output to set the linesfound variable. If we wanted another, later parameter we would use the set
command to set the shell's parameter variables to the command output.

We change the IFS (Internal Field Separator) to a , (comma), so we can separate the
comma−delimited fields. An alternative command is cut.

find_cd() {
 if ["$1" = "n"]; then
 asklist=n
 else
 asklist=y
 fi
 cdcatnum=""
 echo −e "Enter a string to search for in the CD titles \c"
 read searchstr
 if ["$searchstr" = ""]; then
 return 0
 fi

 grep "$searchstr" $title_file > $temp_file

 set $(wc −l $temp_file)
 linesfound=$l

 case "$linesfound" in
 0) echo "Sorry, nothing found"
 get_return
 return 0
 ;;
 1) ;;
 2) echo "Sorry, not unique."

7.

Try It Out − A CD Application

73

 echo "Found the following"
 cat $temp_file
 get_return
 return 0
 esac

 IFS=","
 read cdcatnum cdtitle cdtype cdac < $temp_file
 IFS=" "

 if [−z "$cdcatnum"]; then
 echo "Sorry, could not extract catalog field from $temp_file"
 get_return
 return 0
 fi

 echo
 echo Catalog number: $cdcatnum
 echo Title: $cdtitle
 echo Type: $cdtype
 echo Artist/Composer: $cdac
 echo
 get_return

 if ["$asklist" = "y"]; then
 echo −e "View tracks for this CD? \c"
 read x
 if ["$x" = "y"]; then
 echo
 list_tracks
 echo
 fi
 fi
 return 1
}

update_cd allows us to re−enter information for a CD. Notice that we search (grep) for lines that start
(^) with the $cdcatnum followed by a ,, and that we need to wrap the expansion of $cdcatnum in {} so
we can search for a , with no whitespace between it and the catalogue number. This function also uses
{} to enclose multiple statements to be executed if get_confirm returns true.

update_cd() {
 if [−z "$cdcatnum"]; then
 echo "You must select a CD first"
 find_cd n
 fi
 if [−n "$cdcatnum"]; then
 echo "Current tracks are :−"
 list_tracks
 echo
 echo "This will re−enter the tracks for $cdtitle"
 get_confirm && {
 grep −v "^${cdcatnum}," $tracks_file > $temp_file
 mv $temp_file $tracks_file
 echo
 add_record_tracks
 }
 fi
 return
}

8.

count_cds gives us a quick count of the contents of our database.9.

Try It Out − A CD Application

74

count_cds() {
 set $(wc −l $title_file)
 num_titles=$l
 set $(wc −l $tracks_file)
 num_tracks=$l
 echo found $num_titles CDs, with a total of $num_tracks tracks
 get_return
 return
}

remove_records strips entries from the database files, using grep −v to remove all matching strings.
Notice we must use a temporary file.

If we tried to do this,

grep −v "^$cdcatnum" > $title_file

the $title_file would be set to empty by the > output redirection before the grep had chance to execute,
so grep would read from an empty file.

remove_records() {
 if [−z "$cdcatnum"]; then
 echo You must select a CD first
 find_cd n
 fi
 if [−n "$cdcatnum"]; then
 echo "You are about to delete $cdtitle"
 get_confirm && {
 grep −v "^${cdcatnum}," $title_file > $temp_file
 mv $temp_file $title_file
 grep −v "^${cdcatnum}," $tracks_file > $temp_file
 mv $temp_file $tracks_file
 cdcatnum=""
 echo Entry removed
 }
 get_return
 fi
 return
}

10.

List_tracks again uses grep to extract the lines we want, cut to access the fields we want and then
more to provide a paginated output. If you consider how many lines of C code it would take to
re−implement these 20−odd lines of code, you'll appreciate how powerful a tool the shell can be.

list_tracks() {
 if ["$cdcatnum" = ""]; then
 echo no CD selected yet
 return
 else
 grep "^${cdcatnum}," $tracks_file > $temp_file
 num_tracks=$(wc −l $temp_file)
 if ["$num_tracks" = "0"]; then
 echo no tracks found for $cdtitle
 else {
 echo
 echo "$cdtitle :−"
 echo
 cut −f 2− −d , $temp_file
 echo
 } | ${PAGER:−more}
 fi

11.

Try It Out − A CD Application

75

 fi
 get_return
 return
}

Now all the functions have been defined, we can enter the main routine. The first few lines simply get
the files into a known state, then we call the menu function, set_menu_choice, and act on the output.

When quit is selected, we delete the temporary file, write a message and exit with a successful
completion condition.

rm −f $temp_file
if [! −f $title_file]; then
 touch $title_file
fi
if [! −f $tracks_file]; then
 touch $tracks_file
fi

Now the application proper

clear
echo
echo
echo "Mini CD manager"
sleep 1

quit=n
while ["$quit" != "y"];
do
 set_menu_choice
 case "$menu_choice" in
 a) add_records;;
 r) remove_records;;
 f) find_cd y;;
 u) update_cd;;
 c) count_cds;;
 l) list_tracks;;
 b)
 echo
 more $title_file
 echo
 get_return;;
 q | Q) quit=y;;
 *) echo "Sorry, choice not recognized";;
 esac
done

#Tidy up and leave

rm −f $temp_file
echo "Finished"
exit 0

12.

Notes

The trap command at the start of the script is intended to trap the user pressing Ctrl−C. This may be either the
EXIT or the INT signal, depending on the terminal setup.

Notes

76

There are other ways of implementing the menu selection, notably the select construct in bash and ksh (which,
however, isn't specified in X/Open) which is a dedicated menu choice selector. Check it out if your script can
afford to be slightly less portable. Multi−line information given to users could also make use of here
documents.

You might have noticed that there's no validation of the primary key when a new record is started; the new
code just ignores the subsequent titles with the same code, but incorporates their tracks into the first title's
listing:

1 First CD Track 1
2 First CD Track 2
1 Another CD
2 With the same CD key

We'll leave this and other improvements to your imagination and creativity, as you can modify the code under
the terms of the GPL.

Summary

In this chapter, we've seen that the shell is a powerful programming language in its own right. Its ability to
call other programs easily and then process their output makes the shell an ideal tool for tasks involving the
processing of text and files.

Next time you need a small utility program, consider whether you can solve your problem by combining some
of the many UNIX commands with a shell script. You'll be surprised just how many utility programs you can
write without a compiler.

 Summary

77

Chapter 3: Working with Files

Overview

In this chapter, we'll be looking at UNIX files and directories and how to manipulate them. We'll learn how to
create files, open them, read, write and close them. We'll also learn how programs can manipulate directories,
to create, scan and delete them, for example. After the last chapter's diversion into shells, we now start
programming in C.

Before proceeding to the way UNIX handles file I/O, we'll review the concepts associated with files,
directories and devices. To manipulate files and directories, we need to make system calls (the UNIX parallel
of the Windows API), but there also exists a whole range of library functions, the standard I/O library (stdio),
to make file handling more efficient.

We'll spend the majority of the chapter detailing the various calls to handle files and directories. So, this
chapter will cover:

Files and devices•
System calls•
Library functions•
Low−level file access•
Managing files•
The standard I/O library•
Formatted input and output•
File and directory maintenance•
Scanning directories•
Errors•
Advanced topics•

UNIX File Structure

"Why," you may be asking, "are we covering file structure? I know about that already." Well, files in the
UNIX environment are particularly important, as they provide a simple and consistent interface to the
operating system services and to devices. In UNIX, everything is a file. Well almost!

This means that, in general, programs can use disk files, serial ports, printers and other devices in exactly the
same way as they would use a file. We'll cover some exceptions such as network connections later, but, in the
main, you only need to use five basic functions: open, close, read, write and ioctl.

Directories, too, are special sorts of files. In modern UNIX versions, even the superuser may not write to
them directly. All users ordinarily use the high level opendir/readdir interface to read directories without
needing to know the system specific details of directory implementation. We'll return to special directory
functions later in the chapter.

Really, almost everything is represented as a file under UNIX, or can be made available via special files. Even
though there are, by necessity, subtle differences from the conventional files we know and love, the general
principle still holds. Let's look at the special cases we've mentioned so far.

78

Directories

As well as its contents, a file has a name and some properties or 'administrative information', i.e. the file's
creation/ modification date and its permissions. The properties are stored in the inode, which also contains the
length of the file and where on the disk it's stored. The system uses the number of the file's inode; the
directory structure just names the file for our benefit.

A directory is a file that holds the inode numbers and names of other files. Each directory entry is a link to a
file's inode; remove the filename and you remove the link. (You can see the inode number for a file by using
ln −i.) Using the ln command, you can make links to the same file in different directories. If the number of
links to a file (the number after the permissions in ls −l) reaches zero, the inode and the data it references are
no longer in use and are marked as free.

Files are arranged in directories, which may also contain subdirectories. These form the familiar file system
hierarchy. A user, neil, usually has his files stored in a 'home' directory, perhaps /home/neil, with
subdirectories for electronic mail, business letters, utility programs, and so on. Note that many UNIX shells
have an excellent notation for getting straight to your home directory: the tilde ~. For another user, type ~user.
As you know, home directories for each user are usually subdirectories of a higher level directory created
specifically for this purpose, in this case /home. Note though that the standard library functions unfortunately
do not understand the tilde notation in file name parameters.

The /home directory is itself a subdirectory of the root directory, /, which sits at the top of the hierarchy and
contains all of the system's files in subdirectories. The root directory normally includes /bin for system
programs ('binaries'), /etc for system configuration files and /lib for system libraries. Files that represent
physical devices and that provide the interface to those devices are conventionally found in a directory called
/dev. More information on the Linux file system layout is available in the Linux File System Standard, or you
can check out man hier for a description of the directory hierarchy.

Files and Devices

Even hardware devices are very often represented (mapped) by files in UNIX. For example, as root, you
mount a CD−ROM drive as a file,

$ mount −t iso9660 /dev/hdc /mnt/cd_rom
$ cd /mnt/cd_rom

 Directories

79

which takes the CD−ROM device (loaded as hdc during boot−up) and mounts its current contents as the file
structure beneath /mnt/cd_rom. You then move around within the CD−ROM's directories just as normal,
except, of course, that the contents are read−only.

Three important device files are /dev/console, /dev/tty and /dev/null.

/dev/console

This device represents the system console. Error messages and diagnostics are often sent to this device. Each
UNIX system has a designated terminal or screen to receive console messages. At one time, it might have
been a dedicated printing terminal. On modern workstations, it's usually the 'active' virtual console, while
under X, it will be a special console window on the screen.

/dev/tty

The special file /dev/tty is an alias (logical device) for the controlling terminal (keyboard and screen, or
window) of a process, if it has one. For instance, processes running from cron won't have a controlling
terminal, so won't be able to open /dev/tty.

Where it can be used, /dev/tty allows a program to write directly to the user, without regard to which
pseudo−terminal or hardware terminal the user is using. It is useful when the standard output has been
redirected. One example of this is in the command ls −R | more where the program more has to prompt the
user for each new page of output. We'll see more of /dev/tty in Chapter 5.

Note that while there's only one /dev/console device, there are effectively many different physical devices
accessed through /dev/tty.

/dev/null

This is the null device. All output written to this device is discarded. An immediate end of file is returned
when the device is read, and it can be used as a source of empty files by using the cp command. Unwanted
output is often redirected to /dev/null.

Important Another way of creating empty files is to use the touch <filename> command, which changes
the modification time of a file, or creates a new file if none exists with the given name. It won't
empty it of its contents, though.

$ echo do not want to see this >/dev/null
$ cp /dev/null empty_file

Other devices found in /dev include hard and floppy disks, communications ports, tape drives, CD−ROMs,
sound cards and some devices representing the system's internal state. There's even a /dev/zero which acts as a
source of null bytes to create files of zeros. You need superuser permissions to access some of these devices;
normal users can't write programs to directly access low−level devices like hard disks. The names of the
device files may vary from system to system. Solaris and Linux both have applications that run as superuser to
manage the devices which would be otherwise inaccessible, for example, mount for user−mountable file
systems.

In this chapter we'll concentrate on disk files and directories. We'll cover another device, the user's terminal,
in Chapter 5.

Files and Devices

80

System Calls and Device Drivers

We can access and control files and devices using a small number of functions. These functions, known as
system calls, are provided by UNIX (and Linux) directly and are the interface to the operating system itself.

At the heart of the operating system, the kernel, are a number of device drivers. These are a collection of
low−level interfaces for controlling system hardware, which we will cover in detail in chapter 21. For
example, there will be a device driver for a tape drive, which knows how to start the tape, wind it forwards
and backwards, read and write to it, and so on. It will also know that tapes have to be written to in blocks of a
certain size. Because tapes are sequential in nature, the driver can't access tape blocks directly, but must wind
the tape to the right place.

Similarly, a low−level hard disk device driver will only write whole numbers of disk sectors at a time, but
will be able to access any desired disk block directly, because the disk is a random access device.

To provide a similar interface, device drivers encapsulate all of the hardware−dependent features.
Idiosyncratic features of the hardware tend to be made available through ioctl.

Device files in /dev are all used in the same way; they can all be opened, read, written and closed. For
example, the same open call that is used to access a regular file is used to access a user terminal, a printer, or a
tape drive.

The low−level functions used to access the device drivers, the system calls, include:

open•
Open a file or device.

read•
Read from an open file or device.

write•
Write to a file or device.

close•
Close the file or device.

ioctl•
Pass control information to a device driver.

The ioctl system call is used to provide some necessary hardware−specific control (as opposed to regular
input and output), so its use varies from device to device. For example, a call to ioctl can be used to rewind a
tape drive or to set the flow control characteristics of a serial port. For this reason, ioctl isn't necessarily
portable from machine to machine. In addition, each driver defines its own set of ioctl commands.

These and other system calls are usually documented in section 2 of the UNIX man pages. Prototypes
providing the parameter lists and function return types for system calls, and associated #defines of constants,
are provided in include files. The particular ones required for each system call will be included with the
descriptions of individual calls.

 System Calls and Device Drivers

81

Library Functions

The problem with using low−level system calls directly for input and output is that they can be very
inefficient. Why? Well:

There's a performance penalty in making a system call. This is because UNIX has to switch from
running your program code to executing its own kernel code and back again and system calls are
therefore expensive compared to function calls.

•

The hardware has limitations and this can impose restrictions on the size of data blocks that can be
read or written by the low−level system call at any one time. For example, tape drives often have a
minimum block size, say 10k, that they can write. So, if you attempt to write less than this, the drive
will still advance the tape by 10k, leaving gaps on the tape.

•

To provide a higher level interface to devices and disk files, UNIX provides a number of standard libraries.
These are collections of functions that you can include in your own programs to handle these problems. A
good example is the standard I/O library that provides buffered output. You can effectively write data blocks
of varying sizes and the library functions arrange for the low−level system calls to be provided with full
blocks as the data is made available. This dramatically reduces the system call overhead.

Library functions are usually documented in section 3 of the UNIX man pages and often have a standard
include file associated with them, such as stdio.h for the standard I/O library.

To summarize the discussion of the last few sections, here's a figure of the UNIX system showing where the
various file functions exist relative to the user, the device drivers, the kernel and the hardware:

Low−level File Access

Each running program, called a process, has associated with it a number of file descriptors. These are small
integers that you can use to access open files or devices. How many of these are available will vary depending
on how the UNIX system has been configured. When a program starts, it usually has three of these descriptors
already opened. These are:

0•
Standard input

1•
Standard output

2•
Standard error

 Library Functions

82

You can associate other file descriptors with files and devices by using the open system call, which we'll be
meeting shortly. The file descriptors that are automatically opened, however, already allow us to create some
simple programs using write.

write

#include <unistd.h>

size_t write(int fildes, const void *buf, size_t nbytes);

The write system call arranges for the first nbytes bytes from buf to be written to the file associated with the
file descriptor fildes. It returns the number of bytes actually written. This may be less than nbytes if there has
been an error in the file descriptor, or if the underlying device driver is sensitive to block size. If the function
returns 0, it means no data was written, if −1, there has been an error in the write call and the error will be
specified in the errno global variable.

With this knowledge, let's write our first program, simple_write.c:

#include <unistd.h>
#include <stdlib.h>

int main()
{
 if ((write(1, "Here is some data\n", 18)) != 18)
 write(2, "A write error has occurred on file descriptor 1\n",46);

 exit(0);
}

This program simply prints a message on the standard output. When a program exits, all open file descriptors
are automatically closed, so we don't need to close them explicitly. This won't be the case, however, when
we're dealing with buffered output.

$ simple_write
Here is some data
$

A point worth noting again is that write might report that it wrote fewer bytes than you asked it to. This is not
necessarily an error. In your programs you will need to check errno to detect errors, and call write again to
write any remaining data.

All the examples in this chapter assume that you have the current directory in your PATH and that,
consequently, you're not running them while you're a superuser. If you do not have the current directory in
your PATH (an essential superuser precaution) you can run the program specifying the directory explicitly
like this:

$./simple_write

read

#include <unistd.h>

size_t read(int fildes, void *buf, size_t nbytes);

write

83

The read system call reads up to nbytes bytes of data from the file associated with the file descriptor fildes
and places them in the data area buf. It returns the number of data bytes actually read, which may be less than
the number requested. If a read call returns 0, it had nothing to read; it reached the end of the file. Again, an
error on the call will cause it to return −1.

This program, simple_read.c, copies the first 128 bytes of the standard input to the standard output. It copies
all of the input if there are less than 128 bytes.

#include <unistd.h>
#include <stdlib.h>

int main()
{
 char buffer[128];
 int nread;

 nread = read(0, buffer, 128);
 if (nread == −1)
 write(2, "A read error has occurred\n", 26);

 if ((write(1,buffer,nread)) != nread)
 write(2, "A write error has occurred\n",27);

 exit(0);
}

If we run the program, we should see:

$ echo hello there | simple_read
hello there
$ simple_read < draft1.txt
Files

In this chapter we will be looking at files and directories and how to manipulate them. We will learn how to create files, o$

Note how the next shell prompt appears at the end of the last line of output because, in this example, the 128
bytes don't form a whole number of lines.

open

To create a new file descriptor we need to use the open system call.

#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

int open(const char *path, int oflags);
int open(const char *path, int oflags, mode_t mode);

Note Strictly speaking, we don't need to include sys/types.h and sys/stat.h to use open on POSIX systems, but
they may be necessary on some UNIX systems.

In simple terms, open establishes an access path to a file or device. If successful, it returns a file descriptor
that can be used in read, write and other system calls. The file descriptor is unique and isn't shared by any
other processes that may be running. If two programs have a file open at the same time, they maintain distinct
file descriptors. If they both write to the file, they will continue to write where they left off. Their data isn't

open

84

interleaved, but one will overwrite the other. Each keeps its own idea of how far into the file (the offset) it has
read or written. We can prevent unwanted clashes of this sort by using file locking, which we'll be looking at
in Chapter 7.

The name of the file or device to be opened is passed as a parameter, path, and the oflags parameter is used to
specify actions to be taken on opening the file.

The oflags are specified as a bitwise OR of a mandatory file access mode and other optional modes. The open
call must specify one of the following file access modes:

Mode Description

O_RDONLY Open for read−only

O_WRONLY Open for write−only

O_RDWR Open for reading and writing
The call may also include a combination (bitwise OR) of the following optional modes in the oflags
parameter:

O_APPEND•
Place written data at the end of the file.

O_TRUNC•
Set the length of the file to zero, discarding existing
contents.

O_CREAT•
Creates the file, if necessary, with permissions given
in mode.

O_EXCL•
Used with O_CREAT, ensures that the caller creates
the file. The open is atomic, i.e. it's performed with
just one function call. This protects against two
programs creating the file at the same time. If the file
already exists, open will fail.

Other possible values for oflags are documented in the open manual page, found in section 2 of the manual
(use man 2 open).

open returns the new file descriptor (always a non−negative integer) if successful, or −1 if it fails, when open
also sets the global variable errno to indicate the reason for the failure. We'll be looking at errno more closely
in a later section. The new file descriptor is always the lowest numbered unused descriptor, a feature that can
be quite useful in some circumstances. For example, if a program closes its standard output and then calls
open again, the file descriptor 1 will be reused and the standard output will have been effectively redirected to
a different file or device.

There is also a creat call standardized by POSIX, but is not often used. It doesn't only create the file, as one
might expect, but also opens it it's equivalent to calling open with oflags equal to
O_CREAT|O_WRONLY|O_TRUNC.

Initial Permissions

When we create a file using the O_CREAT flag with open, we must use the three parameter form. mode, the
third parameter, is made from a bitwise OR of the flags defined in the header file sys/stat.h. These are:

S_IRUSR Read permission, owner.•
S_IWUSR Write permission, owner.•

Initial Permissions

85

S_IXUSR Execute permission, owner.•
S_IRGRP Read permission, group.•
S_IWGRP Write permission, group.•
S_IXGRP Execute permission, group.•
S_IROTH Read permission, others.•
S_IWOTH Write permission, others.•
S_IXOTH Execute permission, others.•

For example,

open ("myfile", O_CREAT, S_IRUSR|S_IXOTH);

has the effect of creating a file called myfile, with read permission for the owner and execute permission for
others, and only those permissions.

$ ls −ls myfile
0 −r−−−−−−−x 1 neil software 0 Sep 22 08:11 myfile*

There are a couple of factors which may affect the file permissions. Firstly, the permissions specified are only
used if the file is being created. Secondly, the user mask (specified by the shell's umask command) affects the
created file's permissions. The mode value given in the open call is ANDed with the inverse of the user mask
value at run time. For example, if the user mask is set to 001 and the S_IXOTH mode flag is specified, the file
won't be created with 'other' execute permission, because the user mask specifies that 'other' execute
permission isn't to be provided. The flags in the open and creat calls are in fact requests to set permissions.
Whether or not the requested permissions are set depends on the run−time value of umask.

umask

The umask is a system variable that encodes a mask for file permissions to be used when a file is created.
You can change the variable by executing the umask command to supply a new value. The value is a
three−digit octal value. Each digit is the result of ANDing values from 1, 2 or 4. The separate digits refer to
'user', 'group' and 'other' permissions, respectively. Thus:

Digit Value Meaning

1 0 No user permissions are to be disallowed

4 User read permission is disallowed.

2 User write permission is disallowed

1 User execute permission is disallowed

2 0 No group permissions are to be disallowed

4 Group read permission is disallowed

2 Group write permission is disallowed

1 Group execute permission is disallowed

3 0 No other permissions are to be disallowed

4 Other read permission is disallowed

2 Other write permission is disallowed

1 Other execute permission is disallowed
For example, to block 'group' write and execute, and 'other' write, the umask would be:

umask

86

Digit Value

1 0

2 2

1

3 2
Values for each digit are ANDed together; so digit 2 will have 2 & 1, giving 3. The resulting umask is 032.

When we create a file via an open or creat call, the mode parameter is compared with the umask. Any bit
setting in the mode parameter which is also set in the umask is removed. The end result of this is that the user
can set up their environment to say 'Don't create any files with (say) write permission for others, even if the
program creating the file requests that permission.' This doesn't prevent a program or user subsequently using
the chmod command (or chmod system call in a program) to add other write permissions, but it does help
protect the user by saving them from having to check and set permissions on all new files.

close

#include <unistd.h>

int close(int fildes);

We use close to terminate the association between a file descriptor, fildes, and its file. The file descriptor
becomes available for reuse. It returns 0 if successful and −1 on error. Note that it can be important to check
the return result from close. Some file systems, particularly networked ones, may not report an error writing to
a file until the file is closed.

The number of files that any one running program may have open at once is limited. The limit, defined by the
constant OPEN_MAX in limits.h, will vary from system to system, but POSIX requires that it be at least 16.
This limit may itself be subject to local system−wide limits.

ioctl

#include <unistd.h>

int ioctl(int fildes, int cmd, ...);

ioctl is a bit of a rag−bag of things. It provides an interface for controlling the behavior of devices, their
descriptors and configuring underlying services. Terminals, file descriptors, sockets, even tape drives may
have ioctl calls defined for them and you need to refer to the specific device's man page for details. POSIX
only defines ioctl for streams, which are beyond the scope of this book.

ioctl performs the function indicated by cmd on the object referenced by the descriptor fildes. It may take an
optional third argument depending on the functions supported by a particular device.

Try It Out − A File Copy Program

We now know enough about the open, read and write system calls to write a low−level program,
copy_system.c, to copy one file to another, character by character.

Important

close

87

We'll do this in a number of ways during this chapter to compare the efficiency of each
method. For brevity, we'll assume that the input file exists and the output file does not
and that all reads and writes succeed. Of course, in real−life programs, we would check
that these assumptions are valid!

#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

int main()
{
 char c;
 int in, out;

 in = open("file.in", O_RDONLY);
 out = open("file.out", O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);
 while(read(in,&c,1) == 1)
 write(out,&c,1);

 exit(0);
}

Note that the #include <unistd.h> line must come first as it defines flags regarding POSIX compliance that
may affect other include files.

First of all you will need to make a test input file, say 1Mb in size and name it file.in.

Running the program will give something like the following:

$ time copy_system
4.67user 146.90system 2:32.57elapsed 99%CPU
...
$ ls −ls file.in file.out
1029 −rw−r−−−r− 1 neil users 1048576 Sep 17 10:46 file.in
1029 −rw−−−−−−− 1 neil users 1048576 Sep 17 10:51 file.out

Here we use the UNIX time facility to measure how long the program takes to run. We can see that the 1Mb
input file, file.in, was successfully copied to file.out which was created with read/write permissions for owner
only. However, the copy took two and a half minutes and consumed virtually all the CPU time. It was this
slow because it had to make over two million system calls.

We can improve matters by copying in larger blocks. Take a look at this modified program, copy_block.c,
which copies the files in 1k blocks, again using system calls:

#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdlib.h>

int main()
{
 char block[1024];
 int in, out;
 int nread;

 in = open("file.in", O_RDONLY);

close

88

 out = open("file.out", O_WRONLY|O_CREAT, S_IRUSR|S_IWUSR);
 while((nread = read(in,block,sizeof(block))) > 0)
 write(out,block,nread);

 exit(0);
}

Now try the program, first removing the old output file:

$ rm file.out
$ time copy_block
0.01user 1.09system 0:01.90elapsed 57%CPU
...
$ ls −ls file.in file.out
1029 −rw−r−−r−− 1 neil users 1048576 Sep 17 10:46 file.in
1029 −rw−−−−−−− 1 neil users 1048576 Sep 17 10:57 file.out

Now the program takes a little under two seconds as it only requires around 2000 system calls. Of course,
these times are very system−dependent, but they do show that system calls have a measurable overhead, so it's
worth optimizing their use.

Other System Calls for Managing Files

There are a number of other system calls that operate on these low−level file descriptors. These allow a
program to control how a file is used and to return status information. We reference them here, so you can
make use of them, but you may want to miss them out on a first reading.

lseek

#include <unistd.h>
#include <sys/types.h>

off_t lseek(int fildes, off_t offset, int whence);

The lseek system call sets the read/write pointer of a file descriptor, fildes, i.e. you can use it to set where in
the file the next read or write will occur. You can set the pointer to an absolute location in the file or to a
position relative to the current position or the end of file. The offset parameter is used to specify the position
and the whence parameter specifies how the offset is used. whence can be one of the following:

SEEK_SET offset is an absolute position•
SEEK_CUR offset is relative to the current position•
SEEK_END offset is relative to the end of the file•

lseek returns the offset measured in bytes from the beginning of the file that the file pointer is set to, or −1 on
failure. The type off_t, used for the offset in seek operations, is an implementation−dependent type defined in
sys/types.h.

fstat, stat and lstat

#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>

int fstat(int fildes, struct stat *buf);

 Other System Calls for Managing Files

89

int stat(const char *path, struct stat *buf);
int lstat(const char *path, struct stat *buf);

Note Note that the inclusion of sys/types.h is deemed 'optional, but sensible'.
The fstat system call returns status information about the file associated with an open file descriptor. The
information is written to a structure, buf, the address of which is passed as a parameter.

The related functions stat and lstat return status information for a named file. They produce the same results,
except when the file is a symbolic link. lstat returns information about the link itself, while stat returns
information about the file that the link refers to.

The members of the structure, stat, may vary between UNIX systems, but will include:

stat Member Description

st_mode File permissions and file type information

st_ino The inode associated with the file

st_dev The device the file resides on

st_uid The user identity of the file owner

st_gid The group identity of the file owner

st_atime The time of last access

st_ctime The time of last change to permissions, owner, group or content

st_mtime The time of last modification to contents

st_nlink The number of hard links to the file
The st_mode flags returned in the stat structure also have a number of associated macros defined in the
header file sys/stat.h. These macros include names for permission and file type flags and some masks to help
with testing for specific types and permissions.

The permissions flags are the same as for the open system call above. File−type flags include:

S_IFBLK Entry is a block special device.•
S_IFDIR Entry is a directory.•
S_IFCHR Entry is a character special device.•
S_IFIFO Entry is a FIFO (named pipe).•
S_IFREG Entry is a regular file.•
S_IFLNK Entry is a symbolic link.•

Other mode flags include:

S_ISUID Entry has setUID on execution.•
S_ISGID Entry has setGID on execution.•

Masks to interpret the st_mode flags include:

S_IFMT File type.•
S_IRWXU User read/write/execute permissions.•
S_IRWXG Group read/write/execute permissions.•
S_IRWXO Others read/write/execute permissions.•

 Other System Calls for Managing Files

90

There are some macros defined to help with determining file types. These just compare suitably masked mode
flags with a suitable device−type flag. These include:

S_ISBLK Test for block special file.•
S_ISCHR Test for character special file.•
S_ISDIR Test for directory.•
S_ISFIFO Test for FIFO.•
S_ISREG Test for regular file.•
S_ISLNK Test for symbolic link.•

For example, to test that a file doesn't represent a directory and has execute permission set for the owner and
no other permissions, we can use the test:

struct stat statbuf;
mode_t modes;

stat("filename",&statbuf);
modes = statbuf.st_mode;

if(!S_ISDIR(modes) && (modes & S_IRWXU) == S_IXUSR)
 ...

dup and dup2

#include <unistd.h>

int dup(int fildes);
int dup2(int fildes, int fildes2);

The dup system calls provide a way of duplicating a file descriptor, giving two or more different descriptors
that access the same file. These might be used for reading and writing to different locations in the file. The
dup system call duplicates a file descriptor, fildes, returning a new descriptor. The dup2 system call
effectively copies one file descriptor to another by specifying the descriptor to use for the copy.

These calls can also be useful when you're using multiple processes communicating via pipes. We'll meet the
dup system call again in Chapter 11.

The Standard I/O Library

The standard I/O library and its header file stdio.h, provide a versatile interface to low−level I/O system calls.
The library, now part of ANSI standard C whereas the system calls we met earlier are not, provides many
sophisticated functions for formatting output and scanning input. It also takes care of the buffering
requirements for devices.

In many ways, you use this library in the same way that you use low−level file descriptors. You need to open
a file to establish an access path. This returns a value that is used as a parameter to other I/O library functions.
The equivalent of the low−level file descriptor is called a stream and is implemented as a pointer to a
structure, a FILE *.

Note Don't confuse these file streams with either C++ iostreams or with the STREAMS paradigm
of inter−process communication introduced in AT&T UNIX System V Release 3, which is
beyond the scope of this book. For more information on STREAMS, check out the X/Open

Other System Calls for Managing Files

91

spec and the AT&T STREAMS Programming Guide that accompanies System V.

Three file streams are automatically opened when a program is started. They are stdin, stdout and stderr.
These are declared in stdio.h and represent the standard input, output and error output, respectively, which
correspond to the low level file descriptors 0, 1 and 2.

In this next section, we'll look at:

fopen, fclose•
fread, fwrite•
fflush•
fseek•
fgetc, getc, getchar•
fputc, putc, putchar•
fgets, gets•
printf, fprintf and sprintf•
scanf, fscanf and sscanf•

fopen

#include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

The fopen library function is the analog of the low level open system call. You use it mainly for files and
terminal input and output. Where you need explicit control over devices, you're better off with the low−level
system calls, as they eliminate potentially undesirable side effects from libraries, like input/output buffering.

fopen opens the file named by the filename parameter and associates a stream with it. The mode parameter
specifies how the file is to be opened. It's one of the following strings:

"r" or "rb" Open for reading only•
"w" or "wb" Open for writing, truncate to zero length•
"a" or "ab" Open for writing, append to end of file•
"r+" or "rb+" or "r+b" Open for update (reading and writing)•
"w+" or "wb+" or "w+b" Open for update, truncate to zero length•
"a+" or "ab+" or "a+b" Open for update, append to end of file•

The b indicates that the file is a binary file rather than a text file. Note that, unlike DOS, UNIX doesn't make a
distinction between text and binary files. It treats all files exactly the same, effectively as binary files. It's also
important to note that the mode parameter must be a string, and not a character. Always use "r", and never 'r'.

If successful, fopen returns a non−null FILE * pointer. If it fails, it returns the value NULL, defined in stdio.h.

fread

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nitems, FILE *stream);

The fread library function is used to read data from a file stream. Data is read into a data buffer given by ptr

fopen

92

from the stream, stream. Both fread and fwrite deal with data records. These are specified by a record size,
size, and a count, nitems, of records to transfer. It returns the number of items (rather than the number of
bytes) successfully read into the data buffer. At the end of a file, fewer than nitems may be returned, including
zero. As with all of the standard I/O functions that write to a buffer, it's the programmer's responsibility to
allocate the space for the data and check for errors. See ferror and feof later in this chapter.

fwrite

#include <stdio.h>

size_t fwrite (const void *ptr, size_t size, size_t nitems, FILE *stream);

The fwrite library call has a similar interface to fread. It takes data records from the specified data buffer and
writes them to the output stream. It returns the number of records successfully written.

Important Note that fread and fwrite are not recommended for use with structured data. Part of
the problem is that files written with fwrite are potentially non−portable between
different machines. We'll discuss further issues of portability in Appendix A.

fclose

#include <stdio.h>

int fclose(FILE *stream);

The fclose library function closes the specified stream, causing any unwritten data to be written. It's important
to use fclose, because the stdio library will buffer data. If the program needs to be sure that data has been
completely written, it should call fclose. Note, however, that fclose is called automatically on all file streams
that are still open when a program ends normally, but then of course you do not get a chance to check for
errors reported by fclose. The number of available streams is limited, in the same way that file descriptors are
limited, with the actual limit, FOPEN_MAX, defined in stdio.h, set to at least eight.

fflush

#include <stdio.h>

int fflush(FILE *stream);

The fflush library function causes all outstanding data on a file stream to be written immediately. You can use
this to ensure that, for example, an interactive prompt has been sent to a terminal before any attempt to read a
response. It's also useful for ensuring that important data has been committed to disk before continuing. You
can sometimes use it when you're debugging a program to make sure that the program is writing data and not
hanging. Note that an implied flush operation is carried out when fclose is called, so you don't need to call
fflush before fclose.

fseek

#include <stdio.h>

int fseek(FILE *stream, long int offset, int whence);

fwrite

93

The fseek function is the file stream equivalent of the lseek system call. It sets the position in the stream for
the next read or write on that stream. The meaning and values of the offset and whence parameters are the
same as those we gave for lseek above. However, where lseek returns an off_t, fseek returns an integer: 0 if it
succeeds, −1 if it fails, with errno set to indicate the error. So much for standardization!

fgetc, getc, getchar

#include <stdio.h>

int fgetc(FILE *stream);
int getc(FILE *stream);
int getchar();

The fgetc function returns the next byte, as a character, from a file stream. When it reaches the end of the file
or there is an error, it returns EOF. You must use ferror or feof to distinguish the two cases.

The getc function is equivalent to fgetc, except that you can implement it as a macro, in which case the stream
argument must not have side effects (i.e. it can't affect variables that are neither local nor passed to the
functions as parameters). Also, you can't then use the address of getc as a function pointer.

The getchar function is equivalent to getc(stdin) and reads the next character from the standard input.

fputc, putc, putchar

#include <stdio.h>

int fputc(int c, FILE *stream);
int putc(int c, FILE *stream);
int putchar(int c);

The fputc function writes a character to an output file stream. It returns the value it has written, or EOF on
failure.

As with fgetc/getc, the function putc is equivalent to fputc, but you may implement it as a macro.

The putchar function is equivalent to putc(c,stdout), writing a single character to the standard output. Note
that putchar takes and getchar returns characters as ints, not char. This allows the end of file (EOF) indicator
to take the value −1, outside the range of character numbers codes.

fgets, gets

#include <stdio.h>

char *fgets(char *s, int n, FILE *stream);
char *gets(char *s);

The fgets function reads a string from an input file stream. It writes characters to the string pointed to by s
until a newline is encountered, n−1 characters have been transferred or the end of file is reached, whichever
occurs first. Any newline encountered is transferred to the receiving string and a terminating null byte, \0, is
added. Only a maximum of n−1 characters are transferred in any one call, because the null byte must be added
to finish the string, and make up the n bytes.

fgetc, getc, getchar

94

When it successfully completes, fgets returns a pointer to the string s. If the stream is at the end of a file, it
sets the EOF indicator for the stream and fgets returns a null pointer. If a read error occurs, fgets returns a null
pointer and sets errno to indicate the type of error.

The gets function is similar to fgets, except that it reads from the standard input and discards any newline
encountered. It adds a trailing null byte to the receiving string. Note that gets doesn't limit the number of
characters that can be transferred, so it could overrun its transfer buffer. Consequently, you should avoid using
it and use fgets instead. Many security issues on the Internet can be traced back to programs that are made to
overflow a buffer of some sort or another. This is one such, so be careful!

Formatted Input and Output

There are a number of library functions for producing output in a controlled fashion that you may be familiar
with if you've programmed in C. These functions include printf and friends for printing values to a file stream
and scanf et al. for reading values from a file stream.

printf, fprintf and sprintf

#include <stdio.h>

int printf(const char *format, ...);
int sprintf(char *s, const char *format, ...);
int fprintf(FILE *stream, const char *format, ...);

The printf family of functions format and output a variable number of arguments of different types. The way
each is represented in the output stream is controlled by the format parameter, which is a string that contains
ordinary characters to be printed and codes, called conversion specifiers, that indicate how and where the
remaining arguments are to be printed.

The printf function produces its output on the standard output. The fprintf function produces its output on a
specified stream. The sprintf function writes its output and a terminating null character into the string s passed
as a parameter. This string must be large enough to contain all of the output. There are other members of the
printf family that deal with their arguments in different ways. See the printf manual page for more details,

Ordinary characters are passed unchanged into the output. Conversion specifiers cause printf to fetch and
format additional arguments passed as parameters. They always start with a % character. Here's a simple
example,

printf("Some numbers: %d, %d, and %d\n", 1, 2, 3);

which produces, on the standard output:

Some numbers: 1, 2, and 3

To print a % character, we need to use %%, so that it doesn't get confused with a conversion specifier.

Here are some of the most commonly used conversion specifiers:

%d, %i Print an integer in decimal.•
%o, %x Print an integer in octal, hexadecimal.•
%c Print a character.•

 Formatted Input and Output

95

%s Print a string.•
%f Print a floating point (single precision) number.•
%e Print a double precision number, in fixed format.•
%g Print a double in a general format.•

It's very important that the number and type of the arguments passed to printf match the conversion specifiers
in the format string. An optional size specifier is used to indicate the type of integer arguments. This is either
h, for example %hd, to indicate a short int, or l, for example %ld, to indicate a long int. Some compilers can
check these printf statements, but they aren't infallible. If you are using the GNU compiler gcc Wformat does
this.

Here's another example:

char initial = 'A';
char *surname = "Matthew";
double age = 10.5;

printf("Hello Miss %c %s, aged %g\n", initial, surname, age);

This produces:

Hello Miss A Matthew, aged 10.5

You can gain greater control over the way items are printed by using field specifiers. These extend the
conversion specifiers to include control over the spacing of the output. A common use is to set the number of
decimal places for a floating point number, or to set the amount of space around a string.

Field specifiers are given as numbers immediately after the % character in a conversion specifier. Here are
some more examples of conversion specifiers and resulting output. To make things a little clearer, we'll use
vertical bars to show the limits of the output.

Format Argument | Output |

%10s "Hello" | Hello|

%−10s "Hello" |Hello |

%10d 1234 | 1234|

%−10d 1234 |1234 |

%010d 1234 |0000001234 |

%10.4f 12.34 | 12.3400|

%*s 10,"Hello" | Hello|
All of these examples have been printed in a field width of ten characters. Note that a negative field width
means that the item is written left−justified within the field. A variable field width is indicated by using an
asterisk, *. In this case, the next argument is used for the width. A leading zero indicates the item is written
with leading zeros. According to the POSIX specification, printf doesn't truncate fields; rather it expands the
field to fit. So, for example if we try to print a string longer than the field, the field grows:

Format Argument | Output |

%10s "HelloTherePeeps" |HelloTherePeeps|
The printf functions return an integer, the number of characters written. This doesn't include the terminating
null in the case of sprintf. On error, these functions return a negative value and set errno.

 Formatted Input and Output

96

scanf, fscanf and sscanf

#include <stdio.h>

int scanf(const char *format, ...);
int fscanf(FILE *stream, const char *format, ...);
int sscanf(const char *s, const char *format, ...);

The scanf family of functions work in a similar way to the printf group, except that they read items from a
stream and place values into variables at the addresses they're passed as pointer parameters. They use a format
string to control the input conversion in the same way and many of the conversion specifiers are the same.

It's very important that the variables used to hold the values scanned in by the scanf functions are of the
correct type and that they match the format string precisely. If they don't, your memory could be corrupted
and your program could crash. There won't be any compiler errors, but if you're lucky, you might get a
warning!

The format string for scanf and friends contains both ordinary characters and conversion specifiers, as for
printf. However, the ordinary characters are used to specify characters that must be present in the input.

Here is a simple example:

int num;
scanf("Hello %d", &num);

This call to scanf will only succeed if the next five characters on the standard input match "Hello". Then, if
the next characters form a recognizable decimal number, the number will be read and the value assigned to the
variable num. A space in the format string is used to ignore all whitespace (spaces, tabs, form feeds and
newlines) in the input between conversion specifiers. This means that the call to scanf will succeed and place
1234 into the variable num given either of the following inputs.

Hello 1234
Hello1234

Whitespace is also usually ignored in the input when a conversion begins. This means that a format string of
%d will keep reading the input, skipping over spaces and newlines until a sequence of digits is found. If the
expected characters are not present, the conversion fails and scanf returns. This can lead to problems if you
are not careful, an infinite loop can occur in your program if you leave a non−digit character in the input while
scanning for integers.

Other conversion specifiers are:

%d Scan a decimal integer.•
%o, %x Scan an octal, hexadecimal integer.•
%f, %e, %g Scan a floating point number.•
%c Scan a character (whitespace not skipped).•
%s Scan a string.•
%[] Scan a set of characters (see below).•
%% Scan a % character.•

Like printf, scanf conversion specifiers may also have a field width to limit the amount of input consumed. A
size specifier (either h for short or l for long) indicates whether the receiving argument is shorter or longer

Formatted Input and Output

97

than the default. This means that %hd indicates a short int, %ld a long int, and %lg a double precision floating
point number.

A specifier beginning * indicates that the item is to be ignored, that is not written into a receiving argument.

We use the %c specifier to read a single character in the input. This doesn't skip initial whitespace characters.

We use the %s specifier to scan strings, but we must take care. It will skip leading whitespace, but stops at the
first whitespace character in the string, so we're better using it for reading words, rather than general strings.
Also, without a field−width specifier, there's no limit to the length of string it might read, so the receiving
string must be sufficient to hold the longest string in the input stream. It's better to use a field specifier, or to
use a combination of fgets and sscanf to read in a line of input and scan that.

We use the %[] specifier to read a string composed of characters from a set. The format %[A−Z] will read a
string of capital letters. If the first character in the set is a caret, ^, the specifier reads a string that consists of
characters not in the set. So, to read a string with spaces in it, but stopping at the first comma, we can use
%[^,].

Given the input line,

Hello, 1234, 5.678, X, string to the end of the line

this call to scanf will correctly scan four items:

char s[256];
int n;
float f;
char c;

scanf("Hello,%d,%g, %c, %[^\n]", &n,&f,&c,s);

The scanf functions return the number of items successfully read, which will be zero if the first item fails. If
the end of the input is reached before the first item is matched, EOF is returned. If a read error occurs on the
file stream, the stream error flag will be set and the error variable, errno, will be set to indicate the type of
error. See the section on stream errors below for more details.

In general, scanf and friends are not highly regarded, for three reasons:

Traditionally, the implementations have been buggy.•
They're inflexible to use.•
They lead to code where it's very difficult to work out what is being parsed.•

Try to use other functions, like fread or fgets to read input lines and the string functions to break the input into
the items you need.

Other Stream Functions

There are a number of other stdio library functions that use either stream parameters or the standard streams
stdin, stdout, stderr:

fgetpos Get the current position in a file stream.•

 Other Stream Functions

98

fsetpos Set the current position in a file stream.•
ftell Return the current file offset in a stream.•
rewind Reset the file position in a stream.•
freopen Reuse a file stream.•
setvbuf Set the buffering scheme for a stream.•
remove Equivalent to unlink, unless the path parameter is a directory in which case it's equivalent to
rmdir.

•

These are all library functions documented in section 3 of the UNIX man pages.

You can use the file stream functions to re−implement the file copy program, but using library functions. Take
a look at copy_stdio.c.

Try It Out − Another File Copy Program

The program is very similar to earlier versions, but the character−by−character copy is accomplished using
calls to the functions referenced in stdio.h:

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int c;
 FILE *in, *out;

 in = fopen("file.in","r");
 out = fopen("file.out","w");

 while((c = fgetc(in)) != EOF)
 fputc(c,out);

 exit(0);
}

Running this program as before, we get:

$ time copy_stdio
1.69user 0.78system 0:03.70elapsed 66%CPU

This time, the program runs in 3.7 seconds, not as fast as the low level block version, but a great deal better
than the other single character at a time version. This is because the stdio library maintains an internal buffer
within the FILE structure and the low level system calls are only made when the buffer fills. Feel free to
experiment yourself with testing line−by−line and block stdio copying code to see how they perform, relative
to the three examples we've tested here.

Stream Errors

To indicate an error, many of the stdio library functions return out of range values, such as null pointers or
the constant EOF. In these cases, the error is indicated in the external variable errno:

#include <errno.h>

extern int errno;

 Try It Out − Another File Copy Program

99

Important Note that many functions may change the value of errno. Its value is only valid when a function
has failed. You should inspect it immediately after a function has indicated failure. You should
always copy it into another variable before using it, because printing functions, such as fprintf,
might alter errno themselves.

You can also interrogate the state of a file stream to determine whether an error has occurred, or the end of file
has been reached.

#include <stdio.h>

int ferror(FILE *stream);
int feof(FILE *stream);
void clearerr(FILE *stream);

The ferror function tests the error indicator for a stream and returns non−zero if it's set, zero otherwise.

The feof function tests the end−of−file indicator within a stream and returns non−zero if it is set, zero
otherwise. You use it like this:

if(feof(some_stream))
 /* We're at the end */

The clearerr function clears the end−of−file and error indicators for the stream to which stream points. It has
no return value and no errors are defined. You can use it to recover from error conditions on streams. One
example might be to resume writing to a stream after a disk full error has been resolved.

Streams and File Descriptors

Each file stream is associated with a low level file descriptor. You can mix low−level input and output
operations with higher level stream operations, but this is generally unwise, as the effects of buffering can be
difficult to predict.

#include <stdio.h>

int fileno(FILE *stream);
FILE *fdopen(int fildes, const char *mode);

We can determine which low−level file descriptor is being used for a file stream by calling the fileno
function. It returns the file descriptor for a given stream, or −1 on failure. This can be a useful function to use
if you need low−level access to an open stream, for example to call fstat on it.

We can create a new file stream based on an already opened file descriptor by calling the fdopen function.
Essentially, this function is providing stdio buffers around an already open file descriptor, which might be an
easier way to explain it.

The fdopen function operates in the same way as the fopen function, but, instead of a file name, it takes a low
level file descriptor. This can be useful if we have used open to create a file, perhaps to get fine control over
the permissions, but want to use a stream for writing to it. The mode parameter is the same as for the fopen
function and must be compatible with the file access modes established when the file was originally opened.
fdopen returns the new file stream or NULL on failure.

 Streams and File Descriptors

100

File and Directory Maintenance

The standard libraries and system calls provide complete control over the creation and maintenance of files
and directories.

chmod

You can change the permissions on a file or directory using the chmod system call. This forms the basis of
the chmod shell program.

#include <sys/stat.h>

int chmod(const char *path, mode_t mode);

The file specified by path is changed to have the permissions given by mode. The modes are specified as in
the open system call, a bitwise OR of required permissions. Unless the program has been given appropriate
privileges, only the owner of the file or a superuser can change its permissions.

chown

A superuser can change the owner of a file using the chown system call.

#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);

The call uses the numeric values of the user and group IDs (culled from getuid and getgid calls) and a constant
which can restrict who can change file ownership. The owner and group of a file are changed if the
appropriate privileges are set.

Note POSIX actually allows systems where non−superusers can change file ownerships. All
'proper' POSIX systems won't allow this, but, strictly speaking, it's an extension (for FIPS
151−2). The kind of systems we'll be dealing with in this book are XSI (X/Open System
Interface) conformant and they do enforce ownership rules.

unlink, link, symlink

We can remove a file using unlink.

#include <unistd.h>

int unlink(const char *path);
int link(const char *path1, const char *path2);
int symlink(const char *path1, const char *path2);

The unlink system call removes the directory entry for a file decrements the link count for it. It returns 0 if the
unlinking was successful, −1 on an error. You must have write and execute permissions in the directory where
the file has its directory entry for this call to function.

If the count reaches zero and no process has the file open, the file is deleted. In actual fact, the directory entry
is always removed, but the file's space will not be recovered until the last process (if any) closes it. The rm
program uses this call. Additional links represent alternative names for a file, normally created by the ln

 File and Directory Maintenance

101

program. We can create new links to a file programmatically by using the link system call.

Creating a file with open and then calling unlink on it is a trick some programmers use to create transient files.
These files are available to the program only while they are open, they will effectively be automatically
deleted when the program exits and the file is closed.

The link system call creates a new link to an existing file, path1. The new directory entry is specified by
path2. We can create symbolic links using the symlink system call in a similar fashion. Note that symbolic
links to a file do not prevent the file from being effectively deleted as normal (hard) links do.

mkdir, rmdir

We can create and remove directories using the mkdir and rmdir system calls.

#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

The mkdir system call is used for creating directories and is the equivalent of the mkdir program. mkdir
makes a new directory with path as its name. The directory permissions are passed in the parameter mode and
are given as in the O_CREAT option of the open system call and, again, subject to umask.

#include <unistd.h>

int rmdir(const char *path);

The rmdir system call removes directories, but only if they are empty. The rmdir program uses this system call
to do its job.

chdir, getcwd

A program can navigate directories in much the same way as a user moves around the UNIX file system. As
we use the cd command in the shell to change directory, so a program can use the chdir system call.

#include <unistd.h>

int chdir(const char *path);

A program can determine its current working directory by calling the getcwd function.

#include <unistd.h>

char *getcwd(char *buf, size_t size);

The getcwd function writes the name of the current directory into the given buffer, buf. It returns null if the
directory name would exceed the size of the buffer (an ERANGE error), given as the parameter size. It returns
buf on success.

Important getcwd may also return null if the directory is removed (EINVAL) or permissions changed
(EACCESS) while the program is running.

mkdir, rmdir

102

Scanning Directories

A common problem on UNIX systems is scanning directories, i.e. determining the files that reside in a
particular directory. In shell programs, it's easy just let the shell expand a wildcard expression. In the past,
different UNIX variants have allowed programmatic access to the low−level file system structure. We can,
still, open a directory as a regular file and directly read the directory entries, but different file system
structures and implementations have made this approach non−portable. A standard suite of library functions
has now been developed that make directory scanning much simpler.

The directory functions are declared in a header file, dirent.h. They use a structure, DIR, as a basis for
directory manipulation. A pointer to this structure, called a directory stream (a DIR *), acts in much the
same way as a file steam (FILE *) does for regular file manipulation. Directory entries themselves are
returned in dirent structures, also declared in dirent.h, as one should never alter the fields in the DIR structure
directly.

We'll review these functions:

opendir, closedir•
readdir•
telldir•
seekdir•

opendir

The opendir function opens a directory and establishes a directory stream. If successful, it returns a pointer to
a DIR structure to be used for reading directory entries.

#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *name);

opendir returns a null pointer on failure. Note that a directory stream uses a low−level file descriptor to access
the directory itself, so opendir could fail with too many open files.

readdir

#include <sys/types.h>
#include <dirent.h>

struct dirent *readdir(DIR *dirp);

The readdir function returns a pointer to a structure detailing the next directory entry in the directory stream
dirp. Successive calls to readdir return further directory entries. On error, and at the end of the directory,
readdir returns NULL. POSIX compliant systems leave errno unchanged when returning NULL at end of
directory and set it when an error occurs.

Note that readdir scanning isn't guaranteed to list all the files (and subdirectories) in a directory if there are
other processes creating and deleting files in the directory at the same time.

 Scanning Directories

103

The dirent structure containing directory entry details includes the following entries:

ino_t d_ino The inode of the file.•
char d_name[] The name of the file.•

To determine further details of a file in a directory, we need a call to stat.

telldir

#include <sys/types.h>
#include <dirent.h>

long int telldir(DIR *dirp);

The telldir function returns a value that records the current position in a directory stream. You can use this in
subsequent calls to seekdir to reset a directory scan to the current position.

seekdir

#include <sys/types.h>
#include <dirent.h>

void seekdir(DIR *dirp, long int loc);

The seekdir function sets the directory entry pointer in the directory stream given by dirp. The value of loc,
used to set the position, should have been obtained from a prior call to telldir.

closedir

#include <sys/types.h>
#include <dirent.h>

int closedir(DIR *dirp);

The closedir function closes a directory stream and frees up the resources associated with it. It returns 0 on
success and −1 if there is an error.

In the next program, printdir.c, we put together a lot of the file manipulation functions to create a simple
directory listing. Each file in a directory is listed on a line by itself. Each subdirectory has its name, followed
by a slash and the files in it are listed indented by four spaces.

The program changes directory into the subdirectories so that the files it finds have usable names, i.e. they can
be passed directly to opendir. The program will fail on very deeply nested directory structures, because there's
a limit on the allowed number of open directory streams.

We could, of course, make it more general by taking a command line argument to specify the start point.
Check out the Linux source code of such utilities as ls and find for ideas on a more general implementation.

telldir

104

Try It Out − A Directory Scanning Program

We start with the appropriate headers and then a function, printdir, which prints out the current
directory. It will recurse for subdirectories, using the depth parameter for indentation.

#include <unistd.h>
#include <stdio.h>
#include <dirent.h>
#include <string.h>
#include <sys/stat.h>
#include <stdlib.h>

void printdir(char *dir, int depth)
{
 DIR *dp;
 struct dirent *entry;
 struct stat statbuf;

 if((dp = opendir(dir)) == NULL) {
 fprintf(stderr,"cannot open directory: %s\n", dir);
 return;
 }
 chdir(dir);
 while((entry = readdir(dp)) != NULL) {
 lstat(entry−>d_name,&statbuf);
 if(S_ISDIR(statbuf.st_mode)) {
 /* Found a directory, but ignore . and .. */
 if(strcmp(".",entry−>d_name) == 0 ||
 strcmp("..",entry−>d_name) == 0)
 continue;
 printf("%*s%s/\n",depth,"",entry−>d_name);
 /* Recurse at a new indent level */
 printdir(entry−>d_name,depth+4);
 }
 else printf("%*s%s\n",depth,"",entry−>d_name);
 }
 chdir("..");
 closedir(dp);
}

1.

Now we move onto the main function:

int main()
{
 printf("Directory scan of /home/neil:\n");
 printdir("/home/neil",0);
 printf("done.\n");

 exit(0);
}

2.

The program produces output like this (edited for brevity):

$ printdir
Directory scan of /home/neil:
.less
.lessrc
.term/
 termrc
.elm/
 elmrc

3.

 Try It Out − A Directory Scanning Program

105

Mail/
 received
 mbox
.bash_history
.fvwmrc
.tin/
 .mailidx/
 .index/
 563.1
 563.2
posted
attributes
active
tinrc
done.

How It Works

Most of the action is within the printdir function, so that's where we'll look. After some initial error checking,
using opendir, to see that the directory exists, printdir makes a call to chdir to the directory specified. While
the entries returned by readdir aren't null, the program checks to see whether the entry is a directory. If it isn't,
it prints the file entry with indentation depth.

If the entry is a directory, we meet a little bit of recursion. After the . and .. entries (the current and parent
directories) have been ignored, the printdir function calls itself and goes through the same process again. How
does it get out of these loops? Once the while loop has finished, the call chdir("..") takes it back up the
directory tree and the previous listing can continue. Calling closedir(dp) makes sure that the number of open
directory streams isn't higher than it needs to be.

As a taster for the discussion of the UNIX environment in Chapter 4, let's look at one way we can make the
program more general. The program is limited because it's specific to the directory /home/neil. With the
following changes to main, we could turn it into a more useful directory browser:

int main(int argc, char* argv[])
{
 char *topdir = ".";
 if (argc >= 2)
 topdir=argv[1];

 printf("Directory scan of %s\n",topdir);
 printdir(topdir,0);
 printf("done.\n");

 exit(0);
}

We've changed three lines and added five, but now it's a general−purpose utility with an optional parameter of
the directory name, which defaults to the current directory. You can run it using the command:

$ printdir /usr/local | more

The output will be paged so that the user can page back and forth through the output. Hence, the user has quite
a convenient little general−purpose directory tree browser. With very little effort, you could add space usage
statistics, limit depth of display, and so on.

How It Works

106

Errors

As we've seen, many of the system calls and functions described in this chapter can fail for a number of
reasons. When they do, they indicate the reason for their failure by setting the value of the external variable
errno. This variable is used by many different libraries as a standard way to report problems. It bears repeating
that the program must inspect the errno variable immediately after the function giving problems, since it may
be overwritten by the next function called, even if that function itself doesn't fail.

The values and meanings of the errors are listed in the header file errno.h. They include:

EPERM Operation not permitted•
ENOENT No such file or directory•
EINTR Interrupted system call•
EIO I/O Error•
EBUSY Device or resource busy•
EEXIST File exists•
EINVAL Invalid argument•
EMFILE Too many open files•
ENODEV No such device•
EISDIR Is a directory•
ENOTDIR Isn't a directory•

There are a couple of useful functions for reporting errors when they occur: strerror and perror.

#include <string.h>

char *strerror(int errnum);

The strerror function maps an error number into a string describing the type of error that has occurred. This
can be useful for logging error conditions.

#include <stdio.h>

void perror(const char *s);

The perror function also maps the current error, as reported in errno, into a string and prints it on the standard
error stream. It's preceded by the message given in the string s (if not null), followed by a colon and a space.
For example,

perror("program");

might give the following on the standard error output:

program: Too many open files

Advanced Topics

Here, we'll cover a couple of topics that you might like to skip because they're seldom used. Having said that,
we've put them here for your reference because they can provide simple solutions to some tricky problems.

 Errors

107

fcntl

The fcntl system call provides further ways to manipulate low level file descriptors.

#include <fcntl.h>

int fcntl(int fildes, int cmd);
int fcntl(int fildes, int cmd, long arg);

You can perform several miscellaneous operations on open file descriptors with the fcntl system call,
including duplicating them, getting and setting file descriptor flags, getting and setting file status flags and
managing advisory file locking.

The various operations are selected by different values of the command parameter, cmd as defined in fcntl.h.
Depending on the command chosen, the system call will require a third parameter, arg.

The call,

fcntl(fildes, F_DUPFD, newfd);

returns a new file descriptor with a numerical value equal to or greater than the integer newfd. The new
descriptor is a copy of the descriptor fildes. Depending on the number of open files and the value of newfd,
this can be effectively the same as dup(fildes).

The call,

fcntl(fildes, F_GETFD)

returns the file descriptor flags as defined in fcntl.h. These include FD_CLOEXEC, which determines
whether or not the file descriptor is closed after a successful call to one of the exec family of system calls.

The call,

fcntl(fildes, F_SETFD, flags)

is used to set the file descriptor flags, usually just FD_CLOEXEC.

The calls,

fcntl(fildes, F_GETFL)
fcntl(fildes, F_SETFL, flags)

respectively get and set the file status flags and access modes. You can extract the file access modes by using
the mask O_ACCMODE defined in fcntl.h. Other flags include those passed in a third argument to open when
used with O_CREAT. Note that you can't set all flags. In particular, you can't set file permissions using fcntl.

You can also implement advisory file locking via fcntl. Refer to section 2 of the man pages for more
information, or wait for Chapter 7, where we'll be discussing file locking.

fcntl

108

mmap

UNIX provides a useful facility that allows programs to share memory, and the good news is that it's been
included in version 2.0 of the Linux kernel. The mmap (for memory map) function sets up a segment of
memory that can be read or written by two or more programs. Changes made by one program are seen by the
others.

You can use the same facility to manipulate files. You can make the entire contents of a disk file look as if it's
an array in memory. If the file consists of records that can be described by C structures, you can update the
file using structure array accesses.

This is made possible by the use of virtual memory segments that have special permissions set. Reading from
and writing to the segment causes the operating system to read and write the appropriate part of the disk file.

The mmap function creates a pointer to a region of memory associated with the contents of the file accessed
through an open file descriptor.

#include <sys/mman.h>

void *mmap(void *addr, size_t len, int prot, int flags, int fildes, off_t off);

You can alter the start of the file data that is accessed by the shared segment by passing the off parameter. The
open file descriptor is passed as fildes. The amount of data that can be accessed (i.e. the length of the memory
segment) is set via the len parameter.

You can use the addr parameter to request a particular memory address. If it's zero, the resulting pointer is
allocated automatically. This is the recommended usage as it is difficult to be portable otherwise, systems vary
as to the available address ranges.

The prot parameter is used to set access permissions for the memory segment. This is a bitwise OR of the
following constant values.

PROT_READ The segment can be read.•
PROT_WRITE The segment can be written.•
PROT_EXEC The segment can be executed.•
PROT_NONE The segment can't be accessed.•

The flags parameter controls how changes made to the segment by the program are reflected elsewhere.

MAP_PRIVATE The segment is private, changes are local.

MAP_SHARED The segment changes are made in the file.

MAP_FIXED The segment must be at the given address, addr.
The msync function causes the changes in part or all of the memory segment to be written back to (or read
from) the mapped file.

#include <sys/mman.h>

int msync(void *addr, size_t len, int flags);

The part of the segment to be updated is given by the passed start address, addr, and length, len. The flags
parameter controls how the update should be performed.

mmap

109

MS_ASYNC Perform asynchronous writes.

MS_SYNC Perform synchronous writes.

MS_INVALIDATE Read data back in from the file.
The munmap function releases the memory segment.

#include <sys/mman.h>

int munmap(void *addr, size_t len);

The following program, mmap_eg.c, shows a file of structures being updated using mmap and array−style
accesses. Unfortunately, Linux kernels before 2.0 don't fully support this use of mmap. The program does
work correctly on Sun Solaris and other systems.

Try It Out − Using mmap

We start by defining a RECORD structure and then create NRECORDS versions each recording their
number. These are appended to the file records.dat.

#include <unistd.h>
#include <stdio.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <stdlib.h>

typedef struct {
 int integer;
 char string[24];
} RECORD;

#define NRECORDS (100)

int main()
{
 RECORD record, *mapped;
 int i, f;
 FILE *fp;

 fp = fopen("records.dat","w+");
 for(i=0; i<NRECORDS; i++) {
 record.integer = i;
 sprintf(record.string,"RECORD−%d",i);
 fwrite(&record,sizeof(record),1,fp);
 }
 fclose(fp);

1.

We now change the integer value of record 43 to 143, and write this to the 43rd record's string:

 fp = fopen("records.dat","r+");
 fseek(fp,43*sizeof(record),SEEK_SET);
 fread(&record,sizeof(record),1,fp);

 record.integer = 143;
 sprintf(record.string,"RECORD−%d",record.integer);

 fseek(fp,43*sizeof(record),SEEK_SET);
 fwrite(&record,sizeof(record),1,fp);
 fclose(fp);

2.

 Try It Out − Using mmap

110

We now map the records into memory and access the 43rd record in order to change the integer to
243 (and update the record string), again using memory mapping:

 f = open("records.dat",O_RDWR);
 mapped = (RECORD *)mmap(0, NRECORDS*sizeof(record),
 PROT_READ|PROT_WRITE, MAP_SHARED, f, 0);

 mapped[43].integer = 243;
 sprintf(mapped[43].string,"RECORD−%d",mapped[43].integer);

 msync((void *)mapped, NRECORDS*sizeof(record), MS_ASYNC);
 munmap((void *)mapped, NRECORDS*sizeof(record));
 close(f);

 exit(0);
}

3.

Later, we'll meet another shared memory facility: System V shared memory.

Summary

In this chapter, we've seen how UNIX provides direct access to files and devices. We've seen how library
functions build upon these low−level functions to provide flexible solutions to programming problems. In
consequence, we've been able to write a fairly powerful directory−scanning routine in just a few lines of code.

We've also learned enough about file and directory handling to convert the fledgling CD application that we
created at the end of Chapter 2 to a C program, using a more structured file−based solution. At this stage,
however, we could add no new functionality to the program, so we'll postpone our rewrite until we've learned
how to handle the screen and keyboard, which is the subject of the next two chapters.

 Summary

111

Chapter 4: The UNIX Environment

Overview

When we write a program for UNIX, we have to take into account that the program will run in a
multitasking environment. This means that there will be other programs running at the same time sharing
the machine resources such as memory, disk space and CPU time. There may even be several instances of the
same program running at the same time. It's important that these programs don't interfere with one another, are
aware of their surroundings and can act appropriately.

In this chapter, we will consider the environment that programs operate in, how they can use that environment
to gain information about operating conditions and how users of the programs can alter their behavior. In
particular, we'll be looking at:

Passing arguments to programs•
Environment variables•
Finding out what the time is•
Temporary files•
Getting information about the user and the host computer•
Causing and configuring log messages•
Discovering the limits imposed by the system•

Program Arguments

When a UNIX program written in C runs, it starts at the function main. For UNIX programs, main is declared
as,

int main(int argc, char *argv[])

where argc is a count of the program arguments and argv is an array of character strings representing the
arguments themselves.

You might also see UNIX programs declaring main as:

main()

This will still work, as the return type will default to int and formal parameters that are not used in a function
need not be declared. argc and argv are still there, but if you don't declare them, you can't use them.

Whenever the operating system starts a new program, the parameters argc and argv are set up and passed to
main. These parameters are usually supplied by another program, very often the shell that has requested that
the operating system start the new program. The shell takes the command line that it's given, breaks it up into
individual words and uses these for the argv array. Remember that a UNIX shell performs wild card
expansion of file name arguments before argc and argv are set, whereas the DOS shell expects programs to
accept arguments with wild cards.

For example, if in the shell, we give the command,

$ myprog left right 'and center'

112

the program myprog will be started at main, with parameters:

argc: 4
argv: {"myprog", "left", "right", "and center"}

Note that the argument count includes the name of the program itself and the argv array contains the program
name as its first element, argv[0]. Because we used quotes in the shell command, the fourth argument consists
of a string containing spaces.

You'll be familiar with all of this if you've programmed in ISO/ANSI C. The arguments to main correspond
to the positional parameters in shell scripts, $0, $1, and so on. While ISO/ANSI C states that main must return
int, the X/Open specification contains the explicit declaration given above.

Command line arguments are useful for passing information to programs. We could use them in a database
application to pass the name of the database we wish to use. This would allow us to use the same program on
more than one database. Many utility programs also use command line arguments to change their behavior or
to set options. You would usually set these so−called flags or switches using command line arguments that
begin with a dash. For example, the sort program takes a −r switch to reverse the normal sort order:

$ sort −r file

Command line options are very common and using them consistently will be a real help to those who use your
program. In the past, each utility program adopted its own approach to command line options, which led to
some confusion. For example, take a look at the way these commands take parameters:

$ tar cvfB /tmp/file.tar 1024
$ dd if=/dev/fd0 of=/tmp/file.dd bs=18k
$ ls −lstr
$ ls −l −s −t −r

Another little foible of some programs is to make the option +x (for example) perform the opposite function
to −x.

Remembering the order and meaning of all these program options is difficult enough without having to cope
with idiosyncratic formats. Often the only recourse is to a −h (help) option or a man page, if the programmer
has provided one. As we'll soon see, there's a neat solution to these problems, provided by getopt. For the
moment, though, let's just look at dealing with program arguments as they are passed.

Try It Out − Program Arguments

Here's a program, args.c, that examines its own arguments:

#include <stdio.h>

int main(int argc, char *argv[])
{
 int arg;

 for(arg = 0; arg < argc; arg++) {
 if(argv[arg][0] == '−')
 printf("option: %s\n", argv[arg]+1);
 else
 printf("argument %d: %s\n", arg, argv[arg]);
 }

 Try It Out − Program Arguments

113

 exit(0);
}

When we run this program, it just prints out its arguments and detects options. The intention is that the
program takes a string argument and an optional file name argument introduced by a −f option. Other options
might also be defined:

$./args −i −lr 'hi there' −f fred.c
argument 0: args
option: i
option: lr
argument 3: hi there
option: f
argument 5: fred.c

How It Works

The program simply uses the argument count, argc, to set up a loop to examine all of the program arguments.
It detects options by looking for an initial dash.

In this example, if we intended the options −l and −r to be available, we've missed the fact that the −lr perhaps
ought to be treated the same as −l −r.

The X/Open specification defines a standard usage for command line options (the Utility Syntax Guidelines)
and also provides a standard programming interface for providing command line switches in C programs: the
getopt function.

All command line switches should start with a dash and consist of a single letter or number. Options that take
no further argument can be grouped together behind one dash. So, the two ls examples we met earlier do
follow the guidelines. Each option should be followed by any value it requires as a separate argument. The dd
example breaks this rule; the tar example separates options and their values completely!

getopt

To help us adhere to these guidelines, Linux gives us the getopt facility, which supports the use of options
with and without values and is simple to use.

#include <unistd.h>

int getopt(int argc, char *const argv[], const char *optstring);
extern char *optarg;
extern int optind, opterr, optopt;

The getopt function takes the argc and argv parameters as passed to the program's main function and an
options specifier string. This string tells getopt what options are defined for the program and whether or not
they have associated values. The optstring is simply a list of characters, each representing a single character
option. If a character is followed by a colon, it indicates that the option has an associated value which will be
taken as the next argument. The getopts command in bash performs a very similar function.

The call,

getopt(argc, argv, "if:lr");

How It Works

114

would be used to handle our example above. It allows for simple options −i, −l , −r and −f, followed by a
filename argument. Calling the command with the same parameters but in a different order will alter the
behavior. Try it out when we get to the sample code on the following page.

The return result for getopt is the next option character found in the argv array (if there is one). We call getopt
repeatedly to get each option in turn. It has the following behavior:

If the option takes a value, that value is pointed to by the external variable optarg.

getopt returns −1 when there are no more options to process. A special argument, −−, will cause getopt to stop
scanning for options.

It returns ? if there is an unrecognized option, which it stores in the external variable optopt.

If an option requires a value (such as −f in our example) and no value is given, getopt returns :.

The external variable, optind, is set to the index of the next argument to process. getopt uses it to remember
how far it's got. Programs would rarely need to set this variable. When all the option arguments have been
processed, optind indicates where the remaining arguments can be found at the end of the argv array.

Some versions of getopt will stop at the first non−option argument, returning −1 and setting optind. Others,
such as that provided with Linux, can process options wherever they occur in the program arguments. Note
that, in this case, getopt effectively rewrites the argv array so that all of the non−option arguments are
presented together, starting at argv[optind]. For the GNU version of getopt this behavior is controlled by the
POSIXLY_CORRECT environment variable. If set, getopt will stop at the first non−option argument.
Additionally, some getopt implementations also print error messages for unknown options. Note that the
POSIX specification says that, if the opterr variable is non−zero, getopt will print an error message to stderr.
We'll see an example of both these behaviors in a little while.

Try It Out − getopt

Let's use getopt for our example and call the new program argopt.c:

#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[])
{
 int opt;
while((opt = getopt(argc, argv, "if:lr")) != −1) {
 switch(opt) {
 case 'i':
 case 'l':
 case 'r':
 printf("option: %c\n", opt);
 break;
 case 'f':
 printf("filename: %s\n", optarg);
 break;
 case ':':
 printf("option needs a value\n");
 break;
 case '?':
 printf("unknown option: %c\n", optopt);

 Try It Out − getopt

115

 break;
 }
 }
 for(; optind < argc; optind++)
 printf("argument: %s\n", argv[optind]);
 exit(0);
}

Now, when we run the program, we see that all the command line arguments are handled automatically:

$./argopt −i −lr 'hi there' −f fred.c −q
option: i
option: l
option: r
filename: fred.c
argopt: invalid option−q
unknown option: q
argument: hi there

How It Works

The program repeatedly calls getopt to process option arguments until none remain, when getopt returns −1.
For each option, the appropriate action is taken, including dealing with unknown options and missing values.
Depending on your version of getopt you might see slightly different output from that shown above,
especially error messages, but the meaning will be clear.

Once all options have been processed, the program simply prints out the remaining arguments as before, but
starting from optind.

Environment Variables

We met environment variables in Chapter 2. These are variables that can be used to control the behavior of
shell scripts and other programs. You can also use them to configure the user's environment. For example,
each user has an environment variable, HOME, that defines his home directory, the default starting place for
his or her session. As we've seen, we can examine environment variables from the shell prompt:

$ echo $HOME
/home/neil

You can also use the shell's set command to list all of the environment variables.

The UNIX specification defines many standard environment variables used for a variety of purposes,
including terminal type, default editors, time zones and so on. A C program may gain access to environment
variables using the putenv and getenv functions.

#include <stdlib.h>

char *getenv(const char *name);
int putenv(const char *string);

The environment consists of strings of the form name=value. The getenv function searches the environment
for a string with the given name and returns the value associated with that name. It will return null if the
requested variable doesn't exist. If the variable exists but has no value, getenv succeeds with a string, the first
byte of which is null. The string returned by getenv, and held in static storage provided by getenv, mustn't be

How It Works

116

overwritten by the application, as it will by any subsequent calls to getenv.

The putenv function takes a string of the form name=value and adds it to the current environment. It will fail
and return −1 if it can't extend the environment due to lack of available memory. When this happens, the error
variable errno will be set to ENOMEM.

Let's write a program to print out the value of any environment variable we choose. We'll also arrange to set
the value if we give the program a second argument.

Try It Out − getenv and putenv0

The first few lines after the declaration of main ensure that the program, environ.c, has been called
correctly:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
 char *var, *value;

 if(argc == 1 || argc > 3) {
 fprintf(stderr,"usage: environ var [value]\n");
 exit(1);
 }

1.

That done, we fetch the value of the variable from the environment, using getenv:

 var = argv[1];
 value = getenv(var);
 if(value)
 printf("Variable %s has value %s\n", var, value);
 else
 printf("Variable %s has no value\n", var);

2.

Next, we check whether the program was called with a second argument. If it was, we set the variable
to the value of that argument by constructing a string of the form name=value and then calling putenv:

 if(argc == 3) {
 char *string;
 value = argv[2];
 string = malloc(strlen(var)+strlen(value)+2);
 if(!string) {
 fprintf(stderr,"out of memory\n");
 exit(1);
 }
 strcpy(string,var);
 strcat(string,"=");
 strcat(string,value);
 printf("Calling putenv with: %s\n",string);
 if(putenv(string) != 0) {
 fprintf(stderr,"putenv failed\n");
 free(string);
 exit(1);
 }

3.

Finally, we discover the new value of the variable by calling getenv once again:

 value = getenv(var);

4.

Try It Out − getenv and putenv0

117

 if(value)
 printf("New value of %s is %s\n", var, value);
 else
 printf("New value of %s is null??\n", var);
 }
 exit(0);
 }

When we run this program, we can see and set environment variables:

$ environ HOME
Variable HOME has value /home/neil
$ environ FRED
Variable FRED has no value
$ environ FRED hello
Variable FRED has no value
Calling putenv with: FRED=hello
New value of FRED is hello
$ environ FRED
Variable FRED has no value

Notice that the environment is only local to the program. Changes that we make within the program are not
reflected outside it because variable values are not propagated from the child process (our program) to the
parent (the shell).

Use of Environment Variables

Programs often use environment variables to alter the way they work. Users can set the values of these
environment variables either in their default environment, via a .profile file read by their login shell, a
shell−specific startup (rc) file or by specifying variables on the shell command line. For example:

$./environ FRED
Variable FRED has no value
$ FRED=hello environ FRED
Variable FRED has value hello

The shell takes initial variable assignments as temporary changes to environment variables. In the second
example above, the program environ runs in an environment where the variable FRED has a value.

For instance, in a future version of our CD database application, we could change an environment variable,
say CDDB, to indicate the database to use. Each user could then specify his or her own default, or use a shell
command to set it on a run−by−run basis:

$ CDDB=mycds; export CDDB
$ cdapp

or

$ CDDB=mycds cdapp

Important Environment variables are a mixed blessing and you should use them with care. They are more
'hidden' to the user than command line options and, as such, can make debugging harder. In a
sense, environment variables are like global variables in that they may alter the behavior of a
program, giving unexpected results.

 Use of Environment Variables

118

The environ Variable

As we've seen, the program environment is made up of strings of the form name=value. This array of strings
is made available to programs directly via the environ variable which is declared as:

#include <stdlib.h>

extern char **environ;

Try It Out − environ

Here's a program, showenv.c, that uses the environ variable to print out the environment variables:

#include <stdlib.h>
#include <stdio.h>

extern char **environ;

int main()
{
 char **env = environ;

 while(*env) {
 printf("%s\n",*env);
 env++;
 }
 exit(0);
}

When we run this program on a Linux system we get the following output, which has been abbreviated a little:

$./showenv
HOSTNAME=tilde.provider.com
LOGNAME=neil
MAIL=/var/spool/mail/neil
TERM=console
HOSTTYPE=i386
PATH=/usr/local/bin:/bin:/usr/bin:
HOME=/usr/neil
LS_OPTIONS=8bitcolor=tty −F −T 0
SHELL=/bin/bash
PS1=\h:\w\$
PS2=>
OSTYPE=Linux

How It Works

This program iterates through the environ variable, a null−terminated array of strings, to print out the whole
environment.

Time and Date

Often it can be useful for a program to be able to determine the time and date. It may wish to log the time for
which it's run, or it may need to change the way it behaves at certain times. For example, a game might refuse
to run during working hours, or a backup program might want to wait until the early hours before starting an

 The environ Variable

119

automatic backup.

Note UNIX systems all use the same starting point for times and dates: midnight GMT on the 1st
January 1970. This is the 'start of the epoch'. All times in a UNIX system are measured as
seconds since then. This is similar to the way MS−DOS handles times, except that the MS−DOS
epoch started in 1980. Other systems use other epoch start times.

Times are handled using a defined type, a time_t. This is an integer type large enough to contain dates and
times in seconds. On Linux systems, it's a long and is defined, together with functions for manipulating time
values, in the header file time.h.

Important On UNIX and Linux systems using a 32−bit time_t type the time will rollover in the year 2038.
By that time we hope that systems have moved to using a time_t that is larger than 32−bits. More
information on this Y2K38 problem can be found at http://www.comlinks.com/mag/ddates.htm

#include <time.h>

time_t time(time_t *tloc);

You can find the low level time value by calling the time function, which returns the number of seconds since
the start of the epoch. It will also write the returned value to a location pointed to by tloc, if this isn't a null
pointer.

Try It Out − time

Here's a simple program, envtime.c to demonstrate the time function:

#include <time.h>
#include <stdio.h>
#include <unistd.h>
int main()
{
 int i;
 time_t the_time;

 for(i = 1; i <= 10; i++) {
 the_time = time((time_t *)0);
 printf("The time is %ld\n", the_time);
 sleep(2);
 }
 exit(0);
}

When we run this program, it prints the low−level time value every two seconds for 20 seconds.

$./envtime
The time is 928663786
The time is 928663788
The time is 928663790
The time is 928663792
The time is 928663794
The time is 928663796
The time is 928663798
The time is 928663800
The time is 928663802

Try It Out − time

120

The time is 928663804

How It Works

The program calls time with a null pointer argument, which returns the time and date as a number of seconds.
The program sleeps for two seconds and repeats the call to time for a total of ten times.

Using the time and date as a number of seconds since the start of 1970 can be useful for measuring how long
something takes to happen. We could consider simply subtracting the values we get from two calls to time.
However, in its deliberations the ISO/ANSI C standard committee didn't specify that the time_t type be used
to measure time in seconds, so they invented a function, difftime, that will calculate the difference in seconds
between two time_t values and return it as a double:

#include <time.h>

double difftime(time_t time1, time_t time2);

The difftime function calculates the difference between two time values and returns the value time1−time2 as
a floating point number. For UNIX, the return value from time is a number of seconds and can be
manipulated, but for the ultimate in portability you should use difftime.

To present the time and date in a more meaningful way (to humans) we need to convert the time value into a
recognizable time and date. There are standard functions to help with this.

The function gmtime breaks down a low−level time value into a structure containing more usual fields:

#include <time.h>

struct tm *gmtime(const time_t timeval);

The structure tm is defined to contain at least the following members:

tm MemberDescription

int tm_sec Seconds, 0−61.

int tm_min Minutes, 0−59.

int tm_hour Hours, 0−23.

int tm_mday Day in the month, 1−31.

int tm_mon Month in the year, 0−11. (January= 0)

int tm_year Years since 1900.

int tm_wday) Day in the week, 0−6. (Sunday = 0)

int tm_yday Day in the year, 0−365.

int tm_isdst Daylight savings in effect.
The range for tm_sec allows for the occasional leap second, or double leap second.

Try It Out − gmtime

Here's a program, gmtime.c, that prints out the current time and date using the tm structure and gmtime:

#include <time.h>
#include <stdio.h>

How It Works

121

int main()
{
 struct tm *tm_ptr;
 time_t the_time;

 (void) time(&the_time);
 tm_ptr = gmtime(&the_time);

 printf("Raw time is %ld\n", the_time);
 printf("gmtime gives:\n");
 printf("date: %02d/%02d/%02d\n",
 tm_ptr−>tm_year, tm_ptr−>tm_mon+1, tm_ptr−>tm_mday);
 printf("time: %02d:%02d:%02d\n",
 tm_ptr−>tm_hour, tm_ptr−>tm_min, tm_ptr−>tm_sec);
 exit(0);
}

When we run this program, we get a good approximation of the time and date:

$./gmtime; date
Raw time is 928663946
gmtime gives:
date: 99/06/06
time: 10:12:26
Sun Jun 6 11:12:26 BST 1999

How It Works

The program calls time to get the low−level time value and then calls gmtime to convert this into a structure
with useful time and date values. It prints these out using printf. Strictly speaking, we shouldn't print the raw
time value in this way, because it isn't guaranteed to be a long on all systems. We ran the date command
immediately after gmtime to compare its output.

However, we have a little problem here. If you're running this program in a time zone other than Greenwich
Mean Time, or if your local daylight savings time is in effect, you'll notice that the time (and possibly date) is
incorrect. This is because gmtime returns the time as GMT (now known as UTCCoordinated Universal Time).
UNIX does this so that all programs and systems across the world are synchronized. Files created at the same
moment in different time zones will appear to have the same creation time. To see the local time, we need to
use the function localtime instead.

#include <time.h>

struct tm *localtime(const time_t *timeval);

The localtime function is identical to gmtime, except that it returns a structure containing values adjusted for
local time zone and daylight savings. If you try the gmtime program again, but use localtime in place of
gmtime, you should see a correct time and date reported.

To convert a broken−down tm structure into a raw time_t value, we can use the function mktime:

#include <time.h>

time_t mktime(struct tm *timeptr);

How It Works

122

mktime will return −1 if the structure can't be represented as a time_t value.

For 'friendly', as opposed to machine, time and date output provided by the date program, we can use the
functions asctime and ctime:

#include <time.h>

char *asctime(const struct tm *timeptr);
char *ctime(const time_t *timeval);

The asctime function returns a string that represents the time and date given by the tm structure timeptr. The
string returned has a format similar to:

Sun Jun 6 12:30:34 1999\n\0

It's always a fixed format, 26 characters long. The function ctime is equivalent to calling:

asctime(localtime(timeval))

It takes a raw time value and converts it to more readable local time.

Try It Out − ctime

Let's see ctime in action, using the following code:

#include <time.h>
#include <stdio.h>

int main()
{
 time_t timeval;

 (void)time(&timeval);
 printf("The date is: %s", ctime(&timeval));
 exit(0);
}

Compile and run the surprisingly named ctime.c and you should see:

$./ctime
The date is: Sun Jun 6 12:50:27 1999

How It Works

The ctime.c program calls time to get the low level time value and lets ctime do all the hard work converting it
to a readable string, which it then prints.

To gain more control of the exact formatting of time and date strings, modern UNIX systems provide the
strftime function. This is rather like a sprintf for dates and times and works in a similar way:

#include <time.h>

size_t strftime(char *s, size_t maxsize, const char *format, struct tm *timeptr);

 Try It Out − ctime

123

The strftime function formats the time and date represented by the tm structure pointed to by timeptr and
places the result in the string s. This string is specified as being (at least) maxsize characters long. The format
string is used to control the characters written to the string. Like printf, it contains ordinary characters that will
be transferred to the string and conversion specifiers for formatting time and date elements. The conversion
specifiers include:

Conversion Specifier Description

%a Abbreviated weekday name.

%A Full weekday name.

%b Abbreviated month name.

%B Full month name.

%c Date and time.

%d Day of the month, 01−31.

%H Hour, 00−23.

%I Hour in 12 hour clock, 01−12.

%j Day of the year, 001−366.

%m Month of the year, 01−12.

%M Minutes, 00−59.

%p a.m. or p.m.

%S Seconds, 00−61.

%u Day in the week, 1−7. (1 = Monday)

%U Week in the year, 01−53. (Sunday is theFirst day of the week.)

%V Week in the year, 01−53. (Monday is the First day of the week.)

%w Day in the week, 0−6 (0 = Sunday).

%x Date in local format.

%X Time in local format.

%y Last two digits of the year number, 00−99.

%Y Year.

%Z Time zone name.

%% A % character.
So, the usual date as given by the date program corresponds to a strftime format string of:

"%a %b %d %H:%M:%S %Y"

To help with reading dates, we can use the strptime function, which takes a string representing a date and
time and creates a tm structure representing the same date and time:

#include <time.h>

char *strptime(const char *buf, const char *format, struct tm *timeptr);

The format string is constructed in exactly the same way as the format string for strftime. strptime acts in a
similar way to sscanf in that it scans a string, looking for identifiable fields and writes them into variables.
Here it's the members of a tm structure that are filled in according to the format string. However, the
conversion specifiers for strptime are a little more relaxed than those for strftime because strptime will allow
both abbreviated and full names for days and months. Either representation will match a %a specifier in

 Try It Out − ctime

124

strptime. Also, where strftime always uses leading zeros on numbers less than ten, strptime regards them as
optional.

strptime returns a pointer to the character following the last one consumed in the conversion process. If it
encounters characters that can't be converted, the conversion simply stops at that point. The calling program
needs to check that enough of the passed string has been consumed to ensure that meaningful values are
written to the tm structure.

Try It Out − strftime and strptime

Have a look at the selection of conversion specifiers used in the following program:

#include <time.h>
#include <stdio.h>

int main()
{
 struct tm *tm_ptr, timestruct;
 time_t the_time;
 char buf[256];
 char *result;

 (void) time(&the_time);
 tm_ptr = localtime(&the_time);
 strftime(buf, 256, "%A %d %B, %I:%S %p", tm_ptr);

 printf("strftime gives: %s\n", buf);

 strcpy(buf,"Mon 26 July 1999, 17:53 will do fine");

 printf("calling strptime with: %s\n", buf);
 tm_ptr = ×truct;

 result = strptime(buf,"%a %d %b %Y, %R", tm_ptr);
 printf("strptime consumed up to: %s\n", result);

 printf("strptime gives:\n");
 printf("date: %02d/%02d/%02d\n",
 tm_ptr−>tm_year, tm_ptr−>tm_mon+1, tm_ptr−>tm_mday);
 printf("time: %02d:%02d\n",
 tm_ptr−>tm_hour, tm_ptr−>tm_min);
 exit(0);
}

When we compile and run this program, strftime.c, we get:

$./strftime
strftime gives: Sunday 06 June, 11:55 AM
calling strptime with: Mon 26 July 1999, 17:53 will do fine
strptime consumed up to: will do fine
strptime gives:
date: 99/07/26
time: 17:53

 Try It Out − strftime and strptime

125

How It Works

The strftime program obtains the current local time by calling time and localtime. It then converts it to a
readable form by calling strftime with an appropriate formatting argument. To demonstrate the use of
strptime, the program sets up a string containing a date and time, then calls strptime to extract the raw time
and date values and prints them. The conversion specifier %R is a shortcut for %H:%M in strptime.

It's important to note that strptime needs an accurate format string to successfully scan a date. Typically, it
won't accurately scan dates read from users unless the format is very much restricted.

It is possible that you will find the compiler issuing a warning when you compile strftime.c. This is because
the GNU library does not by default declare strptime. You can work around this by explicitly requesting
X/Open standard features by adding the following line before including time.h.

#define _XOPEN_SOURCE

Temporary Files

Often, programs will need to make use of temporary storage in the form of files. These might hold
intermediate results of a computation, or might represent backup copies of files made before critical
operations. For example, a database application could use a temporary file when deleting records. The file
collects the database entries that need to be retained and then, at the end of the process, the temporary file
becomes the new database and the original is deleted.

This popular use of temporary files has a hidden disadvantage. You must take care to ensure that they choose
a unique file name to use for the temporary file. If this doesn't happen, because UNIX is a multitasking
system, another program could choose the same name and the two will interfere with each other.

A unique file name can be generated by the tmpnam function:

#include <stdio.h>

char *tmpnam(char *s);

The tmpnam function returns a valid file name that isn't the same as any existing file. If the string s isn't null,
the file name will also be written to it. Further calls to tmpnam will overwrite the static storage used for return
values, so it's essential to use a string parameter if tmpnam is to be called many times. The string is assumed
to be at least L_tmpnam characters long. tmpnam can be called up to TMP_MAX times in a single program
and it will generate a different file name each time.

If the temporary file is to be used immediately, you can name it and open it at the same time using the tmpfile
function. This is important, since another program could create a file with the same name as that returned by
tmpnam. The tmpfile function avoids this problem altogether:

#include <stdio.h>

FILE *tmpfile(void);

The tmpfile function returns a stream pointer that refers to a unique temporary file. The file is opened for
reading and writing (via fopen with w+) and it will be automatically deleted when all references to the file are
closed.

How It Works

126

tmpfile returns a null pointer and sets errno on error.

Try It Out − tmpnam and tmpfile

Let's see these two functions in action:

#include <stdio.h>

int main()
{
 char tmpname[L_tmpnam];
 char *filename;
 FILE *tmpfp;

 filename = tmpnam(tmpname);

 printf("Temporary file name is: %s\n", filename);
 tmpfp = tmpfile();
 if(tmpfp)
 printf("Opened a temporary file OK\n");
 else
 perror("tmpfile");
 exit(0);
}

When we compile and run this program, tmpnam.c, we can see the unique file name generated by tmpnam:

$./tmpnam
Temporary file name is: /tmp/filedm9aZK
Opened a temporary file OK

How It Works

The program calls tmpnam to generate a unique file name for a temporary file. If we wanted to use it, we
would have to open it quickly to minimize the risk that another program would open a file with the same
name. The tmpfile call creates and opens a temporary file at the same time, thus avoiding this risk.

Older versions of UNIX have another way to generate temporary file names using functions mktemp and
mkstemp. These are similar to tmpnam, except that you can specify a template for the temporary file name,
which gives you a little more control over their location and name:

#include <stdlib.h>

char *mktemp(char *template);
int mkstemp(char *template);

The mktemp function creates a unique file name from the given template. The template argument must be a
string with six trailing X characters. The mktemp function replaces these X characters with a unique
combination of valid file name characters. It returns a pointer to the generated string, or a null pointer if it
couldn't generate a unique name.

The mkstemp function is similar to tmpfile in that it creates and opens a temporary file. The file name is
generated in the same way as mktemp, but the returned result is an open, low−level, file descriptor. In general,
you should use tmpnam and tmpfile rather than mktemp and mkstemp.

 Try It Out − tmpnam and tmpfile

127

User Information

All UNIX programs, with the notable exception of init, are started by other programs or by users. We'll learn
more about how running programs, or processes, interact in Chapter 10. Users most often start programs from
a shell that responds to their commands. We've seen that a program can determine a great deal about its
environment by examining environment variables and reading the system clock. A program can also find out
information about the person using it.

When a user logs into a UNIX system, he or she has a user name and password. Once this has been validated,
the user is presented with a shell. Internally, the user also has a unique user identifier, known as a UID. Each
program that UNIX runs is run on behalf of a user and has an associated UID.

You can set up programs to run as if a different user had started them. When a program has its set UID
permission set it will run as if started by the owner of the executable file. When the su command is executed,
it runs as if it had been started by the root user. It then validates the user's access, changes the UID to that of
the target account and executes that account's login shell. This also allows a program to be run as if a different
user had started it and is often used by system administrators to perform maintenance tasks.

Since the UID is key to the user's identity, let's start with that.

The UID has its own type uid_t defined in sys/types.h. It's normally a small integer. Some are predefined by
the system, others are created by the system administrator when new users are made known to the system.
Normally, users usually have UID values larger than 100.

#include <sys/types.h>
#include <unistd.h>

uid_t getuid(void);
char *getlogin(void);

The getuid function returns the UID with which the program is associated. This is usually the UID of the user
who started the program.

The getlogin function returns the login name associated with the current user.

The system file, /etc/passwd, contains a database dealing with user accounts. It consists of lines, one per user,
that contain the user name, encrypted password, user identifier (UID), group identifier (GID), full name, home
directory and default shell. Here's an example line:

neil:zBqxfqedfpk:500:4:Neil Matthew:/home/neil:/bin/bash

If we write a program that determines the UID of the user who started it, we could extend it to look in the
password file to find out the user's login name and full name. We don't recommend this because modern
UNIX systems are moving away from using simple password files, in order to improve system security. Many
systems have the option to use 'shadow' password files that don't contain any encrypted password information
at all (this is often held in /etc/shadow, a file that ordinary users cannot read). For this reason a number of
functions have been defined to provide a standard and effective programming interface to this user
information:

#include <sys/types.h>
#include <pwd.h>

 User Information

128

struct passwd *getpwuid(uid_t uid);
struct passwd *getpwnam(const char *name);

The password database structure, passwd, defined in pwd.h includes the following members:

passwd Member Description

char *pw_name The user's login name.

uid_t pw_uid The UID number.

gid_t pw_gid The GID number.

char *pw_dir The user's home directory.

char *pw_shell The user's default shell.
Some UNIX systems may include a field for the user's full name, but this isn't standard: on some systems it's
pw_gecos and on others it's pw_comment. This means that we can't recommend its use.

The getpwuid and getpwnam functions both return a pointer to a passwd structure corresponding to a user.
The user is identified by UID for getpwuid and by login name for getpwnam. They both return a null pointer
and set errno on error.

Try It Out − User Information

Here's a program, user.c, that extracts some user information from the password database:

#include <sys/types.h>
#include <pwd.h>
#include <stdio.h>
#include <unistd.h>

int main()
{
 uid_t uid;
 gid_t gid;
 struct passwd *pw;

 uid = getuid();
 gid = getgid();

 printf("User is %s\n", getlogin());

 printf("User IDs: uid=%d, gid=%d\n", uid, gid);

 pw = getpwuid(uid);
 printf("UID passwd entry:\n name=%s, uid=%d, gid=%d, home=%s, shell=%s\n",
 pw−>pw_name, pw−>pw_uid, pw−>pw_gid, pw−>pw_dir, pw−>pw_shell);

 pw = getpwnam("root");
 printf("root passwd entry:\n");
 printf("name=%s, uid=%d, gid=%d, home=%s, shell=%s\n",
 pw−>pw_name, pw−>pw_uid, pw−>pw_gid, pw−>pw_dir, pw−>pw_shell);
 exit(0);
}

It gives the following output, which may differ in minor respects between versions of UNIX:

$./user
User is neil

Try It Out − User Information

129

User IDs: uid=500, gid=500
UID passwd entry:
 name=neil, uid=500, gid=500, home=/usr/neil, shell=/bin/bash
root passwd entry:
name=root, uid=0, gid=0, home=/root, shell=/bin/bash

How It Works

This program calls getuid to obtain the UID of the current user. This UID is used in getpwuid to obtain
detailed password file information. As an alternative, we show how the user name root can be given to
getpwnam to obtain user information.

Note If you have a copy of the Linux source code, you can see another example of using getuid in the id
command.

To scan all the password file information, we can use the getpwent function. This fetches successive file
entries:

#include <pwd.h>
#include <sys/types.h>

void endpwent(void);
struct passwd *getpwent(void);
void setpwent(void);

The getpwent function returns each user information entry in turn. When none remain, it returns a null
pointer. We can use the endpwent function to terminate processing once sufficient entries have been scanned.
The setpwent function resets the position in the password file to the start so that a new scan can be started
with the next call to getpwent. These functions operate in a similar way to the directory scanning functions
opendir, readdir and closedir that we met in Chapter 3.

Other User Information Functions

User and group identifiers (effective and actual) can be obtained by other, less commonly used functions:

#include <sys/types.h>
#include <unistd.h>

uid_t geteuid(void);
gid_t getgid(void);
gid_t getegid(void);
int setuid(uid_t uid);
int setgid(gid_t gid);

You should refer to the UNIX system manual pages for details on group identifiers and effective user
identifiers, although you'll probably find that you won't need to manipulate these at all.

Important Only the superuser may call setuid and
setgid.

How It Works

130

Host Information

Just as it can determine information about the user, a program can also establish some details about the
computer on which it's running. The uname(1) command provides such information. uname(2) also exists as a
system call to provide the same information within a C programcheck it out using man 2 uname.

Host information can be useful in a number of situations. We might wish to customize a program's behavior,
depending on the name of the machine it's running on in a network, say a student's machine or an
administrator's. For licensing purposes, we might wish to restrict a program to running on one machine only.
All this means that we need a way to establish which machine the program is running on.

If the UNIX system has the networking component installed, we can obtain its network name very easily with
the gethostname function:

#include <unistd.h>

int gethostname(char *name, size_t namelen);

The gethostname function writes the machine's network name into the string name. This string is assumed to
be at least namelen characters long. gethostname returns 0 if successful, −1 otherwise.

You can obtain more detailed information about the host computer from the uname system call:

#include <sys/utsname.h>

int uname(struct utsname *name);

The uname function writes host information into the structure pointed to by the name parameter. The utsname
structure, defined in sys/utsname.h, must contain at least these members:

utsname Member Description

char sysname[] The operating system name.

char nodename[] The host name.

char release[] The release level of the system.

char version[] The version number of the system.

char machine[] The hardware type.
uname returns a non−negative integer on success, −1 otherwise, with errno set to indicate any error.

Try It Out − Host Information

Here's a program, hostget.c, that extracts some host computer information:

#include <sys/utsname.h>
#include <unistd.h>
#include <stdio.h>

int main()
{
 char computer[256];
 struct utsname uts;

 if(gethostname(computer, 255) != 0 || uname(&uts) < 0) {

 Host Information

131

 fprintf(stderr, "Could not get host information\n");
 exit(1);
 }

 printf("Computer host name is %s\n", computer);
 printf("System is %s on %s hardware\n", uts.sysname, uts.machine);
 printf("Nodename is %s\n", uts.nodename);
 printf("Version is %s, %s\n", uts.release, uts.version);
 exit(0);
}

It gives the following Linux−specific output. If your machine is networked you may see an extended host
name that includes the network:

$./hostget
Computer host name is tilde
System is Linux on i686 hardware
Nodename is tilde
Version is 2.2.5−15, #2 Mon May 1016:39:40 GMT 1999

How It Works

This program calls gethostname to obtain the network name of the host computer. In the above examples it
gets the name tilde. More detailed information about this Intel Pentium−II based Linux computer is returned
by the call to uname. Note that the format of the strings returned by uname is implementation−dependent; in
the example the version string contains the date that the kernel was compiled.

Note For another example of the use of the uname(2) function, have a look at the Linux source code for the
uname(1) command.

Licensing

A unique identifier for each host computer may be available from the gethostid function:

#include <unistd.h>

long gethostid(void);

The gethostid function is intended to return a unique value for the host computer. License managers use this to
ensure that software programs can only run on machines that hold valid licenses. On Sun workstations, it
returns a number that is set in non−volatile memory when the computer is built and so is unique to the system
hardware.

Other systems, such as Linux, return a value based on the Internet address of the machine, which isn't secure
enough to be used for licensing.

Logging

Many applications need to record their activities. System programs will very often write messages to the
console, or a log file. These messages might indicate errors, warnings or more general information about the
state of the system. For example, the su program might record the fact that a user has tried and failed to gain
superuser privileges.

How It Works

132

Very often, these log messages are recorded in system files in a directory made available for that purpose.
This might be /usr/adm, or /var/log. On a typical Linux installation, the file /var/log/messages contains all
system messages, /var/log/maillog contains other log messages from the mail system and /var/log/debug may
contain debug messages. You can check your system's configuration in the file /etc/syslog.conf. Here are
some sample messages:

Nov 21 17:27:00 tilde kernel: Floppy drive(s): fd0 is 1.44M
Nov 21 17:27:00 tilde kernel: snd6 <SoundBlaster 16 4.11> at 0x220
Nov 21 17:27:00 tilde kernel: IP Protocols: ICMP, UDP, TCP
Nov 21 17:27:03 tilde sendmail[62]: starting daemon (8.6.12)
Nov 21 17:27:12 tilde login: ROOT LOGIN ON tty1

Here, we can see the sort of messages that are logged. The first few are reported by the Linux kernel itself, as
it boots and detects installed hardware. The mail agent, sendmail, reports that it's starting up. Finally, the login
program reports a superuser login.

Note You may require superuser privilege to view log messages.

Some UNIX systems don't provide a readable messages file in this way, but do provide the administrator with
tools to read a database of system events. Refer to your system documentation for details.

Even though the format and storage of system messages may vary, the method of producing the messages is
standard. The UNIX specification provides an interface for all programs to produce logging messages, using
the syslog function:

#include <syslog.h>

void syslog(int priority, const char *message, arguments...);

The syslog function sends a logging message to the logging facility. Each message has a priority argument
which is a bitwise OR of a severity level and a facility value. The severity level controls how the log message
is acted upon and the facility value records the originator of the message.

Facility values (from syslog.h) include LOG_USER, used to indicate that the message has come from a user
application, (the default) and LOG_LOCAL0, LOG_LOCAL1, up to LOG_LOCAL7, which can be assigned
meanings by the local administrator.

The severity levels in descending order of priority are:

Priority Level Description

LOG_EMERG An emergency situation.

LOG_ALERT High priority problem, such as database corruption.

LOG_CRIT Critical error, such as hardware failure.

LOG_ERR Errors.

LOG_WARNING Warning.

LOG_NOTICE Special conditions, requiring attention.

LOG_INFO Informational messages.

LOG_DEBUG Debug messages.
Depending on system configuration, LOG_EMERG messages might be broadcast to all users, LOG_ALERT
messages might be mailed to the administrator, LOG_DEBUG messages might be ignored and the others

How It Works

133

written to a messages file. We can write a program that uses the logging facility quite simply. All we need to
do is call syslog when we wish to create a log message.

The log message created by syslog consists of a message header and a message body. The header is created
from the facility indicator and the date and time. The message body is created from the message parameter to
syslog, which acts like a printf format string. Further arguments to syslog are used according to printf style
conversion specifiers in the message string. Additionally, the specifier %m may be used to insert the error
message string associated with the current value of the error variable, errno. This can be useful for logging
error messages.

Try It Out − syslog

In this program we try to open a non−existent file:

#include <syslog.h>
#include <stdio.h>

int main()
{
 FILE *f;

 f = fopen("not_here","r");
 if(!f)
 syslog(LOG_ERR|LOG_USER,"oops − %m\n");
 exit(0);
}

When we compile and run this program, syslog.c, we see no output, but the file /var/log/messages now
contains at the end the line:

Nov 21 17:56:00 tilde syslog: oops − No such file or directory

How It Works

In this program, we try to open a file that doesn't exist. When this fails, we call syslog to record the fact in the
system logs.

Notice that the log message doesn't indicate which program called the log facility, it just records the fact that
syslog was called with a message. The %m conversion specifier has been replaced by a description of the
error, in this case that the file couldn't be found. This is a little more useful than error 17!

Configuring Logs

Other functions used to alter the behavior of logging facilities are also defined in syslog.h. These are:

#include <syslog.h>

void closelog(void);
void openlog(const char *ident, int logopt, int facility);
int setlogmask(int maskpri);

We can alter the way that our log messages are presented by calling the openlog function. This allows us to
set up a string, ident, that will be prepended to our log messages. We can use this to indicate which program is

Try It Out − syslog

134

creating the message. The facility parameter records a default facility value to be used for future calls to
syslog. The default is LOG_USER. The logopt parameter configures the behavior of future calls to syslog. It's
a bitwise OR of zero or more of the following:

logopt Parameter Description

LOG_PID Includes the process identifier, a unique number allocated to each process by
the system, in the messages.

LOG_CONS Sends messages to the console if they can't be logged.

LOG_ODELAY Opens the log facility at first call to syslog.

LOG_NDELAY Opens the log facility immediately, rather than at first log.
The openlog function will allocate and open a file descriptor that will be used for writing to the logging
facility. You can close this by calling the closelog function. Note that you don't need to call openlog before
calling syslog, since syslog will open the logging facility itself, if required.

We can control the priority level of our log messages by setting a log mask using setlogmask. All future calls
to syslog with priority levels not set in the log mask will be rejected, so you could, for example, use this to
turn off LOG_DEBUG messages without having to alter the body of the program.

We can create the mask for log messages using LOG_MASK(priority) which creates a mask consisting of just
one priority level, or LOG_UPTO(priority) which creates a mask consisting of all priorities up to and
including the specified priority.

Try It Out − logmask

In this example we'll see logmask in action:

#include <syslog.h>
#include <stdio.h>
#include <unistd.h>

int main()
{
 int logmask;

 openlog("logmask", LOG_PID|LOG_CONS, LOG_USER);
 syslog(LOG_INFO,"informative message, pid = %d", getpid());
 syslog(LOG_DEBUG,"debug message, should appear");
 logmask = setlogmask(LOG_UPTO(LOG_NOTICE));
 syslog(LOG_DEBUG,"debug message, should not appear");
 exit(0);
}

This program, logmask.c, produces no output, but on a typical Linux system towards the end of
/var/log/messages we should see the line:

Nov 21 18:19:43 tilde logmask[195]: informative message, pid = 195

The file /var/log/debug should contain:

Nov 21 18:19:43 tilde logmask[195]: debug message, should appear

Try It Out − logmask

135

How It Works

The program initializes the logging facility with its name, logmask and requests that log messages contain the
process identifier. The informative message is logged to /var/log/messages and the debug message to
/var/log/debug. The second debug message doesn't appear because we call setlogmask to ignore all messages
with a priority below LOG_NOTICE. Note that this may not work on early Linux kernels.

If your installation does not have debug message logging enabled or it is configured differently, you may not
see the debug messages appear. To enable all debug messages add the following line to the end of
/etc/syslog.conf and reboot. (You could also just send a hangup signal to the syslogd process). However, be
sure to check your system documentation for the exact configuration details.

*.debug /var/log/debug

logmask.c uses the getpid function, which is defined along with the closely related getppid as follows:

#include <sys/types.h>
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

The functions return the process and parent process identifiers of the calling process. For more information on
PIDs, see Chapter 10.

Resources and Limits

Programs running on a UNIX system are subject to resource limitations. These might be physical limits
imposed by hardware (such as memory), limits imposed by system policies (for example, allowed CPU time)
or implementation limits (such as the size of an integer or the maximum number of characters allowed in a file
name). The UNIX specification defines some of these limits, which can be determined by an application. For
a further discussion of limits and the consequences of breaking them, refer to Chapter 7 on data management.

The header file limits.h defines many manifest constants that represent the constraints imposed by the
operating system. These include:

Limit Constant What they're for

NAME_MAX The maximum number of characters in a file name.

CHAR_BIT The number of bits in a char value.

CHAR_MAX The maximum char value.

INT_MAX The maximum int value.
There will be many others that may be of use to an application, so you should refer to your installation's
header files. Note that NAME_MAX is file system specific. For more portable code, you should use the
pathconf function. Refer to the man pages on pathconf for more information.

The header file sys/resource.h provides definitions for resource operations. These include functions for
determining and setting limits on a program's allowed size, execution priority and file resources:

#include <sys/resource.h>

int getpriority(int which, id_t who);

How It Works

136

int setpriority(int which, id_t who, int priority);
int getrlimit(int resource, struct rlimit *r_limit);
int setrlimit(int resource, const struct rlimit *r_limit);
int getrusage(int who, struct rusage *r_usage);

id_t is an integral type used for user and group identifiers. The rusage structure, defined in sys/resource.h, is
used to determine how much CPU time has been used by the current program. It must contain at least these
members:

rusage Member Description

struct timeval ru_utime The user time used.

struct timeval ru_stime The system time used.
The timeval structure is defined in sys/time.h and contains fields tv_sec and tv_usec representing seconds and
microseconds respectively.

CPU time consumed by a program is separated into user time (the time that the program itself has consumed
executing its own instructions) and system time (the CPU time consumed by the operating system on the
program's behalf, i.e. the time spent in system calls performing input and output or other system functions).

The getrusage function writes CPU time information to the rusage structure pointed to by the parameter
r_usage. The who parameter can be one of the following constants:

who Constant Description

RUSAGE_SELF Returns usage information about current program only.

RUSAGE_CHILDREN Includes usage information of child processes as well.
We'll meet child processes and task priorities in Chapter 10, but for completeness, we'll cover their
implications for system resources here. For now, it's enough to say that each program that's running has a
priority associated with it and that higher priority programs are allocated more of the available CPU time.
Ordinary users are only able to reduce the priorities of their programs, not increase them.

Applications can determine and alter their (and others') priority with the getpriority and setpriority functions.
The process to be examined or changed by the priority functions can be identified either by process identifier,
group identifier, or user. The which parameter specifies how the who parameter is to be treated:

which Parameter Description

PRIO_PROCESS who is a process identifier.

PRIO_PGRP who is a process group.

PRIO_USER who is a user identifier.
So, to determine the priority of the current process, we might call:

priority = getpriority(PRIO_PROCESS, getpid());

The setpriority function allows a new priority to be set, if possible.

The default priority is 0. Positive priorities are used for background tasks that run when no other higher
priority task is ready to run. Negative priorities cause a program to run more frequently, taking a larger share
of the available CPU time. The range of valid priorities is −20 to +20. This is often confusing since the higher
the numerical value, the lower the execution precedence.

How It Works

137

getpriority returns a valid priority if successful, and −1 with errno set on error. Because −1 is itself a valid
priority, errno should be set to zero before calling getpriority and checked that it's still zero on return.
setpriority returns 0 if successful, −1 otherwise.

Limits on system resources can be read and set by getrlimit and setrlimit. Both of these functions make use of
a general purpose structure, rlimit, to describe resource limits. It's defined in sys/resource.h and has the
following members:

rlimit Member Description

rlim_t rlim_cur The current, soft limit.

rlim_t rlim_max The hard limit.
The defined type rlim_t is an integral type used to describe resource levels. Typically, the soft limit is an
advisory limit that shouldn't be exceeded; doing so may cause library functions to return errors. The hard
limit, if exceeded, may cause the system to attempt to terminate the program, by sending a signal to it.
Examples would be the signal SIGXCPU on exceeding the CPU time limit and the signal SIGSEGV on
exceeding a data size limit. A program may set its own soft limits to any value less than the hard limit. It may
reduce its hard limit. Only a program running with superuser privileges may increase a hard limit.

There are a number of system resources that can be limited. These are specified by the resource parameter of
the rlimit functions and are defined in sys/resource.h as:

resource Parameter Description

RLIMIT_CORE The core dump file size limit, in bytes.

RLIMIT_CPU The CPU time limit, in seconds.

RLIMIT_DATA The data (malloc/sbrk) segment limit, in bytes.

RLIMIT_FSIZE The file size limit, in bytes.

RLIMIT_NOFILE The limit on the number of open files.

RLIMIT_STACK The limit on stack size, in bytes.

RLIMIT_AS The limit on address space (stack and data), in bytes.
Here's a program, limits.c, that simulates a typical application. It also sets and breaks a resource limit.

Try It Out − Resource Limits

Make the includes for all the functions we're going to be using in this program:

#include <sys/types.h>
#include <sys/resource.h>
#include <sys/time.h>
#include <unistd.h>
#include <stdio.h>
#include <math.h>

1.

The void function writes a string to a temporary file 10000 times and then performs some arithmetic
to generate load on the CPU:

void work()
{
 FILE *f;
 int i;
 double x = 4.5;

2.

 Try It Out − Resource Limits

138

 f = tmpfile();
 for(i = 0; i < 10000; i++) {
 fprintf(f,"Do some output\n");
 if(ferror(f)) {
 fprintf(stderr,"Error writing to temporary file\n");
 exit(1);
 }
 }
 for(i = 0; i < 1000000; i++)
 x = log(x*x + 3.21);
}

The main function calls work and then uses the getrusage function to discover how much CPU time it
has used. It displays this information on screen:

int main()
{
 struct rusage r_usage;
 struct rlimit r_limit;
 int priority;

 work();
 getrusage(RUSAGE_SELF, &r_usage);

 printf("CPU usage: User = %ld.%06ld, System = %ld.%06ld\n",
 r_usage.ru_utime.tv_sec, r_usage.ru_utime.tv_usec,
 r_usage.ru_stime.tv_sec, r_usage.ru_stime.tv_usec);

3.

Next, it calls getpriority and getrlimit to find out its current priority and file size limits respectively:

 priority = getpriority(PRIO_PROCESS, getpid());
 printf("Current priority = %d\n", priority);

 getrlimit(RLIMIT_FSIZE, &r_limit);
 printf("Current FSIZE limit: soft = %ld, hard = %ld\n",
 r_limit.rlim_cur, r_limit.rlim_max);

4.

Finally, we set a file size limit using setrlimit and call work again, which fails because it attempts to
create too large a file:

 r_limit.rlim_cur = 2048;
 r_limit.rlim_max = 4096;
 printf("Setting a 2K file size limit\n");
 setrlimit(RLIMIT_FSIZE, &r_limit);

 work();
 exit(0);
}

When we run this program, we can see how much CPU resource is being consumed and the default
priority at which the program is running. Once a file size limit has been set, the program can't write
more than 2048 bytes to a temporary file.

$ cc −o limits limits.c −lm
$./limits
CPU usage: User = 1.460000, System = 1.040000
Current priority = 0
Current FSIZE limit: soft = 2147483647, hard = 2147483647
Setting a 2K file size limit
File size limit exceeded

5.

 Try It Out − Resource Limits

139

We can change the program priority by starting it with the nice command. Here, we see the priority
changes to +10 and as a result it takes longer to execute the program:

$ nice limits
CPU usage: User = 1.310000, System = 0.840000
Current priority = 10
Current FSIZE limit: soft = 2147483647, hard = 2147483647
Setting a 2K file size limit
File size limit exceeded

How It Works

The limits program calls a function, work to simulate the actions of a typical program. It performs some
calculations and produces some output, in this case about 150K to a temporary file. It calls the resource
functions to discover its priority and file size limits. In this case the file size limits are set to maximum values,
allowing us to create a 2GB file, disk space permitting. The program then sets its file size limit to just 2K and
tries again to perform some work. This time, the work function fails as it can't create such a large temporary
file.

Note Limits may also be placed on a program running under a particular shell with the bash ulimit command.

In this example the error message 'Error writing to temporary file' may not be printed as we might expect.
This is because some systems (such as Linux 2.2) terminate our program when the resource limit is exceeded.
It does this by sending a signal, SIGXFSZ. We will learn more about signals and how to use them in Chapter
10. Other POSIX compliant systems may simply cause the function that exceeds the limit to return an error.

Summary

In this chapter, we've looked at the UNIX environment and examined the conditions under which programs
run. We've covered command line arguments and environment variables, both of which can be used to alter a
program's default behavior and provide useful program options.

We've seen how a program can make use of library functions to manipulate date and time values, obtain
information about itself and the user and the computer on which it's running.

Since UNIX programs typically have to share precious resources, we've also looked at how those resources
can be determined and managed.

How It Works

140

Chapter 5: Terminals

Overview

Let's consider what improvements we might like to make to our basic application from Chapter 2. Perhaps the
most obvious failing is the user interface. It's functional, but not very elegant.

In this chapter, we are going to look at how to take more control of the user's terminal, i.e. both keyboard
input and screen output. More than this, though, we'll learn how we can 'guarantee' that a variety of user input
to the terminal from which the program is run is fed back to the program and that the program's output goes to
the right place on the screen. Along the way, we'll lay bare a little more of the thinking of the early UNIX
meisters.

Though the re−implemented CD database application won't see the light of day until the end of the next
chapter, we'll do much of the groundwork for that chapter here. The next chapter is on curses, not some
ancient malediction, but a library of functions which provide a higher level of code to control the terminal
screen display. You may want to treat this chapter as a build−up to the next, introducing you to some
philosophy of UNIX and the concept of terminal input and output. Or the low−level access presented here
might be just what you're looking for.

In this chapter, we'll learn about:

Reading and writing to the terminal•
Terminal drivers and the General Terminal Interface•
termios•
Terminal output and terminfo•
Detecting keystrokes•

Reading from and Writing to the Terminal

In Chapter 3, we learned that when a program is invoked from the command prompt, the shell arranges for
the standard input and output streams to be connected to our program. We should be able to interact with the
user simply by using the getchar and printf routines to read and write these default streams.

Let's try and rewrite our menu routines in C, using just those two routines, calling it menu1.c.

Try It Out − Menu Routines in C

Start with the following lines, which define the array to be used as a menu and prototype the
getchoice function:

#include <stdio.h>

char *menu[] = {
 "a − add new record",
 "d − delete record",
 "q − quit",
 NULL,
};

int getchoice(char *greet, char *choices[]);

1.

141

The main function calls getchoice with the sample menu, menu:

int main()
{
 int choice = 0;

 do
 {
 choice = getchoice("Please select an action", menu);
 printf("You have chosen: %c\n", choice);
 } while(choice != 'q');
 exit(0);
}

2.

Now for the important code: the function that both prints the menu and reads the user's input:

int getchoice(char *greet, char *choices[])
{
 int chosen = 0;
 int selected;
 char **option;

 do {
 printf("Choice: %s\n",greet);
 option = choices;
 while(*option) {
 printf("%s\n",*option);
 option++;
 }
 selected = getchar();
 option = choices;
 while(*option) {
 if(selected == *option[0]) {
 chosen = 1;
 break;
 }
 option++;
 }
 if(!chosen) {
 printf("Incorrect choice, select again\n");
 }
 } while(!chosen);
 return selected;
}

3.

How It Works

getchoice prints the program introduction, greet, and the sample menu, choices, and asks the user to choose
the initial character. The program then loops until getchar returns a character that matches the first letter of
one of the option array's entries.

When we compile and run this program, we discover that it doesn't behave as we expected. Here's some
dialogue to demonstrate the problem:

$ menu1
Choice: Please select an action
a − add new record
d − delete record
q − quit

How It Works

142

a
You have chosen: a
Choice: Please select an action
a − add new record
d − delete record
q − quit
Incorrect choice, select again
Choice: Please select an action
a − add new record
d − delete record
q − quit
q
You have chosen: q
$

Here the user had to enter a/Return/q/Return to make selections. There seem to be at least two problems. The
most serious is that we are getting Incorrect choice after every correct choice. Plus, we still have to press
Return before our program reads our input.

Why It Doesn't Quite Work

The two problems are closely related. By default, terminal input is not made available to a program until the
user presses Return. In most cases this is a benefit, since it allows the user to correct typing mistakes using
Backspace or Delete. Only when they're happy with what they see on the screen do they press Return to make
the input available to the program.

This behavior is called canonical, or standard, mode. All the input is processed in terms of lines. Until a line
of input is complete (usually when the user presses Return) the terminal interface manages all the key presses,
including Backspace, and no characters may be read by the application.

The opposite of this is non−canonical mode, where the application has much greater control over the
processing of input characters. We'll come back to these two modes again a little later on.

Amongst other things, the UNIX terminal handler likes translating interrupt characters to signals and can
automatically perform Backspace and Delete processing for you, so you don't have to re−implement it in each
program you write. We'll find out more about signals in Chapter 10.

So, what's happening in our program? Well, UNIX is saving the input until the user presses Return, then
passing both the choice character and the subsequent Return to the program. So, each time you enter a menu
choice, the program calls getchar, processes the character, then calls getchar again, which immediately returns
with the Return character.

The character the program actually sees isn't an ASCII carriage return, CR (decimal 13, hex 0D), but a line
feed, LF (decimal 10, hex 0A). This is because, internally, UNIX always uses a line feed to end lines of text,
i.e. UNIX uses a line feed alone to mean a newline, where other systems, such as DOS, use a carriage return
and a line feed together as a pair. If the input or output device also sends or requires a carriage return, the
UNIX terminal processing takes care of it. This might seem a little strange if you're used to DOS or other
environments, but one of the very considerable benefits is that there is no real difference between text and
binary files on UNIX. Only when you input or output to a terminal or some printers and plotters are carriage
returns processed.

We can correct the major deficiency in our menu routine simply by ignoring the additional line feed character
with some code such as this:

Why It Doesn't Quite Work

143

 do {
 selected = getchar();
 } while(selected == '\n');

This solves the immediate problem. We'll return to the second problem of needing to press Return, and a more
elegant solution to the line feed handling later.

Handling Redirected Output

It's very common for UNIX programs, even interactive ones, to have their input or output redirected, either to
files or to other programs. Let's see how our program behaves when we redirect its output to a file.

$ menu1 > file
a
q
$

We could regard this as successful, since the output has been redirected to a file rather than to the terminal.
However, there are cases where we want to prevent this from happening, or where we want to separate
prompts that we want the user to see, from other output that can be safely redirected.

We can tell whether the standard output has been redirected by finding out if the low−level file descriptor is
associated with a terminal. The isatty system call does this. We simply pass it a valid file descriptor and it
tests to see if that is currently connected to a terminal.

#include <unistd.h>

int isatty(int fd);

The isatty system call returns 1 if the open file descriptor, fd, is connected to a terminal and 0 otherwise.

In our program we are using file streams, but isatty operates only on file descriptors. To provide the necessary
conversion we need to combine the isatty call with the fileno routine that we met in Chapter 3.

What are we going to do if stdout has been redirected? Just quitting isn't good enough because the user has no
way of knowing why the program failed to run. Printing a message on stdout won't help either, since it must
have been redirected away from the terminal. One solution is to write to stderr, which isn't redirected by the
shell > file command.

Try It Out − Checking for Output Redirection

Using the program menu1.c you created in the last section, make a new include, change the main
function to the following and call the new file menu2.c.

#include <unistd.h>
...
int main()
{
 int choice = 0;

 if(!isatty(fileno(stdout))) {
 fprintf(stderr,"You are not a terminal!\n");
 exit(1);
 }

4.

 Handling Redirected Output

144

 do {
 choice = getchoice("Please select an action", menu);
 printf("You have chosen: %c\n", choice);
 } while(choice != 'q');
 exit(0);
}

Now look at the following sample output:

$ menu2
Choice: Please select an action
a − add new record
d − delete record
q − quit
q
You have chosen: q
$ menu2 > file
You are not a terminal!
$

5.

How It Works

The new section of code uses the isatty function to test whether the standard output is connected to a terminal
and halts execution if it isn't. This is the same test the shell uses to decide whether to offer prompts. It's
possible, and quite common, to redirect both stdout and stderr away from the terminal. We can direct the error
stream to a different file like this:

$ menu2 >file 2>file.error
$

Or combine the two output streams into a single file like this:

$ menu2 >file 2>&1
$

(If you're not familiar with output redirection, take another look at Chapter 2 where we explain this syntax in
more detail.) In this case you'll need to send a message to the console.

Talking to the Terminal

If we need to prevent the parts of our program that interact with the user being redirected, but still allow it to
happen to other input or output, we need to separate the interaction from stdout and stderr. We can do this by
reading and writing directly to the terminal. Since UNIX is inherently a multiuser system, usually with many
terminals either directly connected or connected across a network, how can we discover the correct terminal to
use?

Fortunately, UNIX makes things easy for us by providing a special device, /dev/tty, which is always the
current terminal, or login session. Since UNIX treats everything as a file, we can use normal file operations to
read and write to /dev/tty.

Let's modify our choice program so that we can pass parameters to the getchoice routine, to provide better
control over the output. We're up to menu3.c.

How It Works

145

Try It Out − Using /dev/tty

Load up menu2.c and change the code to this, so that input and output come from and are directed to
/dev/tty:

#include <stdio.h>
#include <unistd.h>

char *menu[] = {
 "a − add new record",
 "d − delete record",
 "q − quit",
 NULL,
};

int getchoice(char *greet, char *choices[], FILE *in, FILE *out);

int main()
{
 int choice = 0;
 FILE *input;
 FILE *output;

 if(!isatty(fileno(stdout))) {
 fprintf(stderr,"You are not a terminal, OK.\n");
 }

 input = fopen("/dev/tty", "r");
 output = fopen("/dev/tty", "w");
 if(!input || !output) {
 fprintf(stderr,"Unable to open /dev/tty\n");
 exit(1);
 }
 do {
 choice = getchoice("Please select an action", menu, input, output);
 printf("You have chosen: %c\n", choice);
 } while(choice != 'q');
 exit(0);
}

int getchoice(char *greet, char *choices[], FILE *in, FILE *out)
{
 int chosen = 0;
 int selected;
 char **option;

 do {
 fprintf(out,"Choice: %s\n",greet);
 option = choices;
 while(*option) {
 fprintf(out,"%s\n",*option);
 option++;
 }
 do {
 selected = fgetc(in);
 } while(selected == '\n');
 option = choices;
 while(*option) {
 if(selected == *option[0]) {
 chosen = 1;

6.

Try It Out − Using /dev/tty

146

 break;
 }
 option++;
 }
 if(!chosen) {
 fprintf(out,"Incorrect choice, select again\n");
 }
 } while(!chosen);
 return selected;
}

Now when we run the program with the output redirected, we can still see the prompts and the normal
program output is separated:

$ menu3 > file
You are not a terminal, OK.
Choice: Please select an action
a − add new record
d − delete record
q − quit
d
Choice: Please select an action
a − add new record
d − delete record
q − quit
q
$ cat file
You have chosen: d
You have chosen: q

The Terminal Driver and the General Terminal Interface

Sometimes, a program needs much finer control over the terminal than can be achieved using simple file
operations. UNIX provides a set of interfaces that allow us to control the behavior of the terminal driver, to
give us much greater control of the processing of terminal input and output.

Overview

As the diagram shows, we can control the terminal through a set of function calls (the General Terminal
Interface, or GTI) separate from those used for reading and writing. This keeps the data (read/write) interface
very clean, while still allowing detailed control over the terminal behavior. That's not to say that the terminal
I/O interface is clean−it's got to deal with a wide variety of different hardware.

 The Terminal Driver and the General Terminal Interface

147

In UNIX terminology, the control interface sets a 'line discipline'. It allows a program considerable flexibility
in specifying the behavior of the terminal driver.

The main features that we can control are:

Line editing Whether to allow Backspace for editing.

Buffering Whether to read characters immediately, or read them after a configurable delay.

Echo Allows us to control echoing, such as when reading passwords.

CR/LF Mapping for input and output, what happens when you print a \n.

Line speeds Little used on a PC console, but very important for modems and terminals on serial
lines.

Hardware Model

Before we look at the General Terminal Interface in detail, it's very important that we understand the
hardware model that it's intended to drive.

The conceptual arrangement (and for some UNIX sites it will physically be like this) is to have a UNIX
machine connected via a serial port to a modem and then via a telephone line and another modem to a remote
terminal. In fact, this is just the kind of setup used by some small Internet service providers. It's a distant
relative of the client/server paradigm, used when the program ran on a mainframe and users worked at dumb
terminals.

 Hardware Model

148

If you're working on a PC running Linux, this may seem an overly complex model. However, as both of the
authors have modems, we can, if we choose, use a terminal emulation program like minicom to run a remote
logon session on each other's machines just like this, using a pair of modems and a telephone line.

The advantage of using such a hardware model is that most 'real world' situations will form a subset of this,
the most complex case. Supporting them will be much easier than if the model had omitted such functionality.

The termios Structure

termios is the standard interface specified by POSIX and is similar to the System V interface termio. The
terminal interface is controlled by setting values in a structure of type termios, and by using a small set of
function calls. Both are defined in the header file termios.h.

Important Programs that use the function calls defined in termios.h will need to be linked with an
appropriate function library. This will normally be the curses library, so when compiling the
examples in this chapter, you'll need to add −lcurses to the end of the compiler command line.
On Linux systems, these become ncurses and −lncurses, respectively.

The values that can be manipulated to affect the terminal are grouped into various modes:

Input•
Output•
Control•
Local•
Special control characters•

A minimum termios structure is typically declared like this (although the X/Open specification allows
additional fields to be included):

#include <termios.h>

struct termios {
 tcflag_t c_iflag;
 tcflag_t c_oflag;

 The termios Structure

149

 tcflag_t c_cflag;
 tcflag_t c_lflag;
 cc_t c_cc[NCCS];
};

The member names correspond with the five parameter types listed above.

We can initialize a termios structure for the terminal by calling the function tcgetattr, which has the
prototype:

#include <termios.h>

int tcgetattr(int fd, struct termios *termios_p);

This call writes the current values of the terminal interface variables into the structure pointed to by
termios_p. If these values are then altered, we can reconfigure the terminal interface with the tcsetattr
function:

#include <termios.h>

int tcsetattr(int fd, int actions, const struct termios *termios_p);

The actions field for tcsetattr controls how any changes are applied. The three possibilities are:

TCSANOW Change values immediately.

TCSADRAIN Change values when current output is complete.

TCSAFLUSH Change values when current output is complete, but discard any input currently
available and not yet returned in a read call.

Important Note that it's very important for programs to restore terminal settings to the values they had
before the program started. It's always the responsibility of a program to initially save and restore
these settings when it finishes.

We'll now look more closely at the modes and related function calls. Some of the detail of the modes is rather
specialized and rarely used, so we'll only cover the main features here. If you need to know more, you should
consult your local man pages or a copy of the POSIX or X/Open specification.

The most important mode to take in on your first read is the local mode. The canonical and non−canonical
modes are the solution to the second of our problems in the first application. We can instruct the program to
wait for a line of input or pounce on input as soon as it is typed.

Input Modes

The input modes control how input (characters received by the terminal driver at a serial port or keyboard) is
processed before being passed on to the program. We control them by setting flags in the c_iflag member of
the termios structure. All the flags are defined as macros and can be combined with a bitwise OR. This is the
case for all the terminal modes.

The macros that can be used for c_iflag are:

BRKINT Generate an interrupt when a break condition is detected on the line.•
IGNBRK Ignore break conditions on the line.•
ICRNL Convert a received carriage return to a newline.•
IGNCR Ignore received carriage returns.•

 Input Modes

150

INLCR Convert received newlines to carriage returns.•
IGNPAR Ignore characters with parity errors.•
INPCK Perform parity checking on received characters.•
PARMRK Mark parity errors.•
ISTRIP Strip (set to seven bits) all incoming characters.•
IXOFF Enable software flow control on input.•
IXON Enable software flow control on output.

Important If neither BRKINT nor IGNBRK are set, a break condition on the line is read as a
NULL (0x00) character.

•

You won't very often need to change the input modes, as the default values are usually the most suitable, so
we won't discuss them further here.

Output Modes

These modes control how output characters are processed, i.e. how characters sent from a program are
processed before being transmitted to the serial port or screen. As you might expect, many of these are
counterparts of the input modes. Several additional flags exist, which are mainly concerned with allowing for
slow terminals that require time to process characters such as carriage returns. Almost all of these are either
redundant (as terminals get faster) or better handled using the terminfo database of terminal capabilities,
which we'll use later in this chapter.

We control output modes by setting flags in the c_oflag member of the termios structure. The macros that we
can use in c_oflag are:

OPOST Turn on output processing.•
ONLCR Convert any output newline to a carriage return/line feed pair.•
OCRNL Convert any output carriage return to a newline.•
ONOCR No carriage return output in column 0.•
ONLRET A newline also does a carriage return.•
OFIL Send fill characters to provide delays.•
OFDEL Use DEL as a fill character, rather then NULL.•
NLDLY Newline delay selection.•
CRDLY Carriage return delay selection.•
TABDLY Tab delay selection.•
BSDLY Backspace delay selection.•
VTDLY Vertical tab delay selection.•
FFDLY Form feed delay selection.

Important If OPOST is not set, all the other flags are
ignored.

•

The output modes are also not commonly used, so we won't consider them further here.

 Output Modes

151

Control Modes

These modes control the hardware characteristics of the terminal. We specify control modes by setting flags
in the c_cflag member of the termios structure, which has the following macros:

CLOCAL Ignore any modem status lines.•
CREAD Enable the receipt of characters.•
CS5 Use five bits in sent or received characters.•
CS6 Use six bits in sent or received characters.•
CS7 Use seven bits in sent or received characters.•
CS8 Use eight bits in sent or received characters.•
CSTOPB Use two stop bits per character, rather than one.•
HUPCL Hang up modem on close.•
PARENB Enable parity generation and detection.•
PARODD Use odd parity rather than even parity.

Important If HUPCL is set, when the terminal driver detects that the last file descriptor referring to
the terminal has been closed it will set the modem control lines to 'hang−up' the line.

•

The control modes are mainly used when the serial line is connected to a modem, although they may be used
when talking to a terminal. Normally, it's easier to change your terminal's configuration than to change the
default line behavior by using the control modes of termios.

Local Modes

These modes control various characteristics of the terminal. We specify local modes by setting flags in the
c_lflag member of the termios structure, with the macros:

ECHO Enable local echoing of input characters.•
ECHOE Perform a Backspace, Space, Backspace combination on receiving ERASE.•
ECHOK Perform erase line on the KILL character.•
ECHONL Echo newline characters.•
ICANON Enable canonical input processing (see below).•
IEXTEN Enable implementation specific functions.•
ISIG Enable signals.•
NOFLSH Disable flush on queue.•
TOSTOP Send background processes a signal on write attempts.•

The two most important flags here are ECHO, which allows you to suppress the echoing of typed characters,
and the ICANON flag which switches the terminal between two very distinct modes of processing received
characters. If the ICANON flag is set, then the line is said to be in canonical mode; if not, the line is in
non−canonical mode.

We'll explain canonical mode and non−canonical mode in greater detail once we've met the special control
characters that are used in both these modes.

 Control Modes

152

Special Control Characters

These are a collection of characters, like Ctrl−C, that are acted upon in special ways when the user types
them. The c_cc array member of the termios structure contains the characters mapped to each of the supported
functions. The position of each character (its index into the array) is defined by a macro, but there's no
limitation that they must be control characters.

The c_cc array is used in two very different ways, depending on whether or not the terminal is set to
canonical mode (i.e. the setting of the ICANON flag in the c_lflag member of termios).

It's important to realize that there is some overlap in the way the array index values are used for the two
different modes. Because of this, you should never mix values from these two modes.

For canonical mode, the array indices are:

VEOF EOF character•
VEOL EOL character•
VERASE ERASE character•
VINTR INTR character•
VKILL KILL character•
VQUIT QUIT character•
VSUSP SUSP character•
VSTART START character•
VSTOP STOP character•

For non−canonical mode, the array indices are:

VINTR INTR character•
VMIN MIN value•
VQUIT QUIT character•
VSUSP SUSP character•
VTIME TIME value•
VSTART START character•
VSTOP STOP character•

Since the special characters and non−canonical MIN and TIME values are so important for more advanced
input character processing, we'll explain them in some detail.

Characters

Character Description

INTR This character will cause the terminal driver to send a SIGINT signal to processes connected
to the terminal. We'll meet signals in more detail in Chapter 10.

QUIT This character will cause the terminal driver to send a SIGQUIT signal to processes
connected to the terminal.

ERASE This character will cause the terminal driver to delete the last character on the line.

KILL This character will cause the terminal driver to delete the entire line.

EOF This character will cause the terminal driver to pass all characters on the line to the
application reading input. If the line is empty, a read call will return zero characters, as

 Special Control Characters

153

though a read had been attempted at the end of a file.

EOL This character acts as a line terminator, in addition to the more usual newline character.

SUSP This character will cause the terminal driver to send a SIGSUSP signal to processes
connected to the terminal. If your UNIX supports job control, the current application will be
suspended.

STOP This character acts to 'flow off', i.e. prevent further output to the terminal. It's used to
support XON/XOFF flow control and is usually set to the ASCII XOFF character, Ctrl−S.

START This character restarts output after a STOP character, often the ASCII XON character.
The TIME and MIN Values

The values of TIME and MIN are used only in non−canonical mode and act together to control the reading of
input. Together, they control what happens when a program attempts to read a file descriptor associated with a
terminal.

There are four cases:

MIN = 0 and TIME = 0

In this case, a read will always return immediately. If some characters are available they will be returned; if
none are available, read will return zero and no characters will have been read.

MIN = 0 and TIME > 0

In this case, the read will return when any character is available to be read, or when TIME tenths of a second
have elapsed. If no character was read because the timer expired, read will return zero. Otherwise, it will
return the number of characters read.

MIN > 0 and TIME = 0

In this case, the read will wait until MIN characters can be read and then return that number of characters.
Zero is returned on end of file.

MIN > 0 and TIME > 0

This is the most complex case. When read is called, it waits for a character to be received. When the first
character and every subsequent time a character is received, an inter−character timer is started (or restarted if
it was already running). The read will return when either MIN characters can be read or the inter−character
time of TIME tenths of a second expires. This can be useful for telling the difference between a single press of
the Escape key and the start of a function key escape sequence. Be aware, though, that network
communications or high processor loads neatly erase such fine timing information.

By setting non−canonical mode and using the MIN and TIME values, programs can perform
character−by−character processing of input.

Accessing Terminal Modes from the Shell

If you want to see the termios settings that are currently being used while you're using the shell, you can get a
list using the command:

$ stty −a

Special Control Characters

154

On our Linux systems, which have some extensions to the standard termios, the output is:

speed 38400 baud; rows 25; columns 80; line = 0;
intr = ^C; quit = ^\; erase = ^?; kill = ^U; eof = ^D; eol = <undef>;
eol2 = <undef>; start = ^Q; stop = ^S; susp = ^Z; rprnt = ^R; werase = ^W;
lnext = ^V; flush = ^O; min = 1; time = 0;
−parenb −parodd cs8 hupcl −cstopb cread −clocal −crtscts
−ignbrk −brkint −ignpar −parmrk −inpck −istrip −inlcr −igncr icrnl ixon ixoff
−iuclc −ixany −imaxbel
opost −olcuc −ocrnl onlcr −onocr −onlret −ofill −ofdel nl0 cr0 tab0 bs0 vt0 ff0
isig icanon −iexten echo echoe echok −echonl −noflsh −xcase −tostop −echoprt
−echoctl echoke

Amongst other things, we can see that the EOF character is Ctrl−D and that echoing is enabled. When you're
experimenting with terminal control, it's very easy to get the terminal left in a non−standard state, which
makes using it very difficult. There are several ways out of this difficulty.

If your version of stty supports it, you can use the command:

$ stty sane

If you have lost the mapping of the carriage return key to the newline character (which terminates the line),
you may need to enter stty sane, but rather than press Return, enter Ctrl−J (which is the newline character).

The second method is to use the stty −g command to write the current stty setting in a form ready to re−read.
On the command line, you can use:

$ stty −g > save_stty
..
<experiment with settings>
..
$ stty $(cat save_stty)

You may still need to use Ctrl−J rather than Return for the final stty command. You can use the same
technique in a shell script:

save_stty="$(stty −g)"
<alter stty settings>
stty $save_stty

If you're really stuck, the third method is to go to a different terminal, use the ps command to find the shell
you have made unusable and then use kill HUP <process id> to force the shell to terminate. Since stty
parameters are always reset before a logon prompt is issued, you should be able to log in normally.

Setting Terminal Modes from the Command Prompt

We can also use the stty command to set the terminal modes directly from the command prompt.

To set a mode in which our shell script could perform single character reads, we need to turn off canonical
mode, set MIN to 1 and TIME to 0. The command is:

$ stty −icanon min 1 time 0

Special Control Characters

155

Now that the terminal is set to read characters immediately you can try to run our first program, menu1, again.
You should find it works as originally intended.

We could also improve our attempt to check for a password (Chapter 2) by turning echoing off before we
prompt for the password. The command to do this is:

$ stty −echo

Remember to use stty echo to turn echoing back on after you try this!

Terminal Speed

The final function served by the termios structure is manipulating the line speed. No members are defined for
terminal speed; instead it's set by function calls. Input and output speeds are handled separately.

The four call prototypes are:

#include <termios.h>

speed_t cfgetispeed(const struct termios *);
speed_t cfgetospeed(const struct termios *);
int cfsetispeed(struct termios *, speed_t speed);
int cfsetospeed(struct termios *, speed_t speed);

Notice that these act on a termios structure, not directly on a port. This means that, to set a new speed, you
must read the current settings with tcgetattr, set the speed using one of the above calls, then write the termios
structure back using tcsetattr. Only after the call to tcsetattr will the line speed be changed.

Various values are allowed for speed in the function calls above, the most important are:

B0 Hang up the terminal•
B1200 1200 baud•
B2400 2400 baud•
B9600 9600 baud•
B19200 19200 baud•
B38400 38400 baud•

There are no speeds greater than 38400 defined by the standard and no standard method of supporting serial
ports at speeds greater than this.

Important Some systems, including Linux define B57600, B115200 and B230400 for selecting faster
speeds. If you're using an earlier version of Linux and these constants are unavailable, you can
use the command setserial to obtain non−standard speeds of 57600 and 115200. In this case,
these speeds will be used when B38400 is selected. Both of these methods are non−portable, so
be careful when you're using them.

Additional Functions

There are a small number of additional functions for the control of terminals. These work directly on file
descriptors, without needing to get and set termios structures. Their definitions are:

#include <termios.h>

 Terminal Speed

156

int tcdrain(int fd);
int tcflow(int fd, int flowtype);
int tcflush(int fd, int in_out_selector);

The functions have the following purposes:

tcdrain causes the calling program to wait until all queued output has been sent.•
tcflow is used to suspend or restart output.•
tcflush can be used to flush input, output or both.•

Now that we've covered the rather large subject of the termios structure, let's look at a few practical
examples. Possibly the simplest is the disabling of echo to read a password. We do this by turning off the
ECHO flag.

Try It Out − A Password Program with termios

Our password program, password.c, begins with the following definitions:

#include <termios.h>
#include <stdio.h>

#define PASSWORD_LEN 8

int main()
{
 struct termios initialrsettings, newrsettings;
 char password[PASSWORD_LEN + 1];

1.

Next, add in a line to get the current settings from the standard input and copy them into the termios
structure that we created above.

 tcgetattr(fileno(stdin), &initialrsettings);

2.

Make a copy of the original settings to replace them at the end. Turn off the ECHO flag on the
newrsettings and ask the user for their password:

 newrsettings = initialrsettings;
 newrsettings.c_lflag &= ~ECHO;

 printf("Enter password: ");

3.

Next, set the terminal attributes to newrsettings and read in the password. Lastly, reset the terminal
attributes to their original setting and print the password to render all the previous effort useless.

 if(tcsetattr(fileno(stdin), TCSAFLUSH, &newrsettings) != 0) {
 fprintf(stderr,"Could not set attributes\n");
 }
 else {
 fgets(password, PASSWORD_LEN, stdin);
 tcsetattr(fileno(stdin), TCSANOW, &initialrsettings);
 fprintf(stdout, "\nYou entered %s\n", password);
 }
 exit(0);
}

4.

Try It Out − A Password Program with termios

157

How It Works

$ password
Enter password:
You entered hello

$

In this example, the word hello is typed but not echoed at the Enter password: prompt. No output is produced
until the user presses Return.

We're careful only to change the flags we need to change, using the construct X &= ~FLAG (which clears the
bit defined by FLAG in the variable X). If needed, we could use X |= FLAG to set a single bit defined by
FLAG, although this wasn't necessary in the above example.

When we're setting the attributes, we use TCSAFLUSH to discard any type ahead. This is a good way of
encouraging users not to start typing their password until echo has been turned off. We also restore the
previous setting before our program terminates.

Another common use of the termios structure is to put the terminal into a state where we can read each
character as it is typed. We do this by turning off canonical mode and using the MIN and TIME settings.

Try It Out − Reading Each Character

Using our new knowledge, we can make changes to our menu program. The following code bears
much resemblance to password.c, but needs to be inserted into menu3.c to make our new program,
menu4.c. For a start, we must include a new header file at the top of the program:

#include <stdio.h>
#include <unistd.h>
#include <termios.h>

1.

Then we need to declare a couple of new variables in the main function:

 int choice = 0;
 FILE *input;
 FILE *output;
 struct termios initial_settings, new_settings;

2.

We need to change the terminal's characteristics before we call the getchoice function, so that's where
we place these lines:

 fprintf(stderr, "Unable to open /dev/tty\n");
 exit(1);
 }
 tcgetattr(fileno(input),&initial_settings);
 new_settings = initial_settings;
 new_settings.c_lflag &= ~ICANON;
 new_settings.c_lflag &= ~ECHO;
 new_settings.c_cc[VMIN] = 1;
 new_settings.c_cc[VTIME] = 0;
 if(tcsetattr(fileno(input), TCSANOW, &new_settings) != 0) {
 fprintf(stderr,"could not set attributes\n");
 }

3.

We should also return the settings to their original values before exiting:

 do {

4.

How It Works

158

 choice = getchoice("Please select an action", menu, input, output);
 printf("You have chosen: %c\n", choice);
 } while (choice != 'q');
 tcsetattr(fileno(input),TCSANOW,&initial_settings);
 exit(0);
}
Note that we need to check against carriage returns \r now that we're in non−canonical mode, because the default mapping of CR to LF is no longer being performed.
 do {
 selected = fgetc(in);
 } while (selected == '\n' || selected == '\r');

Unfortunately, if the user now types Ctrl−C at our program, it will terminate. We can disable
processing of these special characters by clearing the ISIG flag in the local modes. Add the following
line to main.

 new_settings.c_lflag &= ~ISIG;

5.

How It Works

If we put these changes into our menu program, we now get an immediate response and the character we type
isn't echoed:

$ menu4
Choice: Please select an action
a − add new record
d − delete record
q − quit
You have chosen: a
Choice: Please select an action
a − add new record
d − delete record
q − quit
You have chosen: q
$

If we type Ctrl−C, it's passed directly to the program and treated as an incorrect choice.

Terminal Output

Using the termios structure, we have control over keyboard input, but it would be good to have the same level
of control over the way a program's output is presented on the screen. We used printf at the start of the chapter
to output characters to the screen, but with no way of placing the output at a particular position on the screen.

Terminal Type

Many UNIX systems are used with terminals, although in many cases today the 'terminal' may actually be a
PC running a terminal program. Historically, there have been a very large number of terminals from different
manufacturers. Although they nearly all use escape sequences (a string of characters starting with the escape
character) to provide control over the position of the cursor and other attributes, such as bold and blinking,
they are generally not very well standardized in the way they do this. Some older terminals also have different
scrolling capabilities, may or may not erase when backspace is sent, and so on.

Important There is an ANSI standard set of escape sequences (mostly based on the sequences used in the
Digital Equipment Corporation VT series terminals, but not identical). Many PC terminal

How It Works

159

programs provide an emulation of a standard terminal, often VT100, VT220 or ANSI, and
sometimes others as well.

This variety of terminals would be a major problem for programmers wishing to write software that controls
the screen and runs on many terminal types. For example, an ANSI terminal uses the sequence Escape−[−A
to move the cursor up one line. An ADM−3a terminal (very common some years ago), uses the single control
character Ctrl−K.

Writing a program that can deal with the many different types of terminal that might be connected to a UNIX
system would seem to be an extremely daunting task. The program would need different source code for each
type of terminal.

Not surprisingly, there is a solution in a package known as terminfo. Instead of each program having to cater
for every sort of terminal, the program looks up a database of terminal types to get the correct information. In
most modern UNIX systems this has been integrated with another package called curses, which we will meet
in the next chapter.

On Linux, we'll use the implementation of curses known as ncurses, and include ncurses.h to provide
prototypes for our terminfo functions. The terminfo functions themselves are declared in their own header file,
term.h. Or at least, that used to be the case. With newer Linux versions, there's a blurring of the line between
terminfo and ncurses, to the point where many programs requiring terminfo functions must also include the
ncurses header file.

Identify Your Terminal Type

The UNIX environment contains a variable, TERM, that is set to the type of terminal being used. It's usually
set automatically by the system at logon time. The system administrator may set a default terminal type for
each of the directly connected terminals and may arrange for remote, networked users to be prompted for a
terminal type. The value of TERM can be negotiated via telnet and is passed by rlogin.

A user can query the shell to discover the system's idea of the terminal he or she is using.

$ echo $TERM
xterm
$

In this case, the shell is being run from a program called xterm, a terminal emulator for the X Window
system.

The terminfo package contains a database of capabilities and escape sequences for a large number of
terminals and provides a uniform programming interface for using them. A single program can then be written
that will take advantage of future terminals as the database is extended, rather than each application having to
provide support for the many different terminals.

The terminfo capabilities are described by attributes. These are stored in a set of compiled terminfo files,
conventionally found in /usr/lib/terminfo or /usr/share/terminfo. For each terminal (and many printers, which
can also be specified in terminfo) there's a file that defines its capabilities and how its features can be
accessed. To avoid creating a very large directory, the actual files are stored in subdirectories, where the
subdirectory name is simply the first letter of the terminal type. Thus, the VT100 definition is found in
...terminfo/v/vt100.

 Identify Your Terminal Type

160

terminfo files are written one per terminal type in a source format that is (just about!) readable, then compiled
using the tic command into a more compact and efficient format for use by application programs. Curiously,
the X/Open specification refers to source and compiled format definitions, but fails to mention the tic
command for actually getting from source to compiled formats. You can use the infocmp program to print a
readable version of a compiled terminfo entry.

Here's an example terminfo file for the VT100 terminal:

$ infocmp vt100
vt100|vt100−am|dec vt100 (w/advanced video),
 am, mir, msgr, xenl, xon,
 cols#80, it#8, lines#24, vt#3,
 acsc=``aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
 bel=^G, blink=\E[5m$<2>, bold=\E[1m$<2>,
 clear=\E[H\E[J$<50>, cr=\r, csr=\E[%i%p1%d;%p2%dr,
 cub=\E[%p1%dD, cub1=\b, cud=\E[%p1%dB, cud1=\n,
 cuf=\E[%p1%dC, cuf1=\E[C$<2>,
 cup=\E[%i%p1%d;%p2%dH$<5>, cuu=\E[%p1%dA,
 cuu1=\E[A$<2>, ed=\E[J$<50>, el=\E[K$<3>,
 el1=\E[1K$<3>, enacs=\E(B\E)0, home=\E[H, ht=\t,
 hts=\EH, ind=\n, ka1=\EOq, ka3=\EOs, kb2=\EOr, kbs=\b,
 kc1=\EOp, kc3=\EOn, kcub1=\EOD, kcud1=\EOB,
 kcuf1=\EOC, kcuu1=\EOA, kent=\EOM, kf0=\EOy, kf1=\EOP,
 kf10=\EOx, kf2=\EOQ, kf3=\EOR, kf4=\EOS, kf5=\EOt,
 kf6=\EOu, kf7=\EOv, kf8=\EOl, kf9=\EOw, rc=\E8,
 rev=\E[7m$<2>, ri=\EM$<5>, rmacs=^O, rmkx=\E[?1l\E>,
 rmso=\E[m$<2>, rmul=\E[m$<2>,
 rs2=\E>\E[?3l\E[?4l\E[?5l\E[?7h\E[?8h, sc=\E7,
 sgr=\E[0%?%p1%p6%|%t;1%;%?%p2%t;4%;%?%p1%p3%|%t;7%;%?%p4%t;5%;m%?%p9%t^N%e^O%;,
 sgr0=\E[m^O$<2>, smacs=^N, smkx=\E[?1h\E=,
 smso=\E[1;7m$<2>, smul=\E[4m$<2>, tbc=\E[3g,

Each terminfo definition consists of three types of entry. Each entry is called a capname and defines a
terminal capability.

Boolean capabilities simply indicate whether a terminal supports a particular feature. For example, the
Boolean capability xon is present if the terminal supports XON/XOFF flow control, cub1 is present if a
'cursor left' command given while the cursor is in column 0 will put the cursor in the right−most column.

Numeric capabilities define sizes, such as lines, the number of lines on the screen and cols, the number of
columns on the screen. The actual number is separated from the capability name by a # character. To define a
terminal as having 80 columns and 24 lines, we would write cols#80, lines#24.

String capabilities are slightly more complex. They are used for two distinct types of capability: defining
output strings needed to access terminal features and defining the input strings that will be received when the
user presses certain keys, normally function keys or special keys on the numeric keypad. Some string
capabilities are quite simple, such as el, which is "erase to end of line". On a VT100 terminal, the escape
sequence needed to do this is Esc−[−K. This is written el=\E[K in terminfo source format.

Special keys are defined in a similar way. For example, function key f1 on a VT100 sends the sequence
Esc−O−P. This is defined as kf1=\EOP.

Things get slightly more complicated where the escape sequence needs some parameters. Most terminals can
move the cursor to a specified row and column location. It's clearly impractical to have a different capability
for each possible cursor location, so a generic capability string is used, with parameters defining the values to

 Identify Your Terminal Type

161

be inserted when the stings are used. For example, a VT100 terminal uses the sequence
Esc−[−<row>−;−<col>−H to move the cursor to a specified location. In terminfo source format, this is
written with the rather intimidating cup=\E[%i%p1%d;%p2%dH$<5>.

This means:

\E Send Escape.•
[Send the [character.•
%i Increment the arguments.•
%p1 Put the first argument on the stack.•
%d Output the number on the stack as a decimal number.•
; Send the ; character.•
%p2 Put the second argument on the stack.•
%d Output the number on the stack as a decimal number.•
H Send the H character.•

This seems rather more complex than it might be, but allows for the parameters to be in a fixed order,
independent of which order the terminal expects them to appear in the final escape sequence. The %i to
increment the arguments is required because standard cursor addressing is specified as starting from (0,0) at
the top left of the screen, but the VT100 addresses this location as (1,1). The final $<5> indicates that a delay
equivalent to five character output times is required to allow the terminal to process the cursor movement.

Important We could define many, many capabilities, but, fortunately most UNIX systems come
with most terminals predefined. If you need to add a new terminal, you'll find the
complete capability list in the manual under terminfo. A good starting point is
usually to locate a terminal that is similar to your new terminal and define the new
terminal as a variation on the existing terminal, or work through the capabilities one
at a time, updating them where required.

The standard reference outside the man pages is the O'Reilly title Termcap and
Terminfo, ISBN 0−937175−22−6.

Using terminfo Capabilities

Now that we know how to define terminal capabilities, we need to learn how to access them. When we're
using terminfo, the first thing we need to do is to set up the terminal type by calling setupterm. This will
initialize a TERMINAL structure for the current terminal type. We'll then be able to ask for capabilities for
the terminal and use its facilities. We do this with the setupterm call like this:

#include <term.h>

int setupterm(char *term, int fd, int *errret);

The setupterm library function sets the current terminal type to that specified by the parameter term. If term is
a null pointer, the TERM environment variable will be used. An open file descriptor to be used for writing to
the terminal must be passed as fd. The function outcome is stored in the integer variable pointed to by errret, if
this isn't a null pointer. The value written will be:

−1 No terminfo database.•
0 No matching entry in terminfo database.•
1 Success.•

 Using terminfo Capabilities

162

The setupterm function returns the constant OK if it succeeds and ERR if it fails. If errret is set to a null
pointer setupterm will print a diagnostic message and exit the program if it fails, as in this example:

#include <stdio.h>
#include <term.h>
#include <ncurses.h>

int main()
{
 setupterm("unlisted",fileno(stdout),(int *)0);
 printf("Done.\n");
 exit(0);
}

The output from running this program on your system may not be exactly that given here, but the meaning
should be clear enough. Done. isn't printed, since setupterm caused the program to exit when it failed.

$ cc −o badterm badterm.c −I/usr/include/ncurses −lncurses
$ badterm
'unlisted': unknown terminal type.
$

Notice the compilation line in the example: on this Linux system, the ncurses header file is in the directory
/usr/include/ncurses, so we have to specifically instruct the compiler to look there with the −I option. Some
Linux systems have arranged for the ncurses library to be available in the standard locations. On these systems
we can simply include curses.h, and specify −lcurses for the library.

For our menu choice function, we would like to be able to clear the screen, move the cursor around the screen
and write at different locations on the screen. Once we've called setupterm, we can access the terminfo
capabilities with three function calls, one for each of the capability types:

#include <term.h>

int tigetflag(char *capname);
int tigetnum(char *capname);
char *tigetstr(char *capname);

The functions tigetflag, tigetnum and tigetstr return the value of Boolean, numeric and string terminfo
capabilities, respectively. On failure (for example if the capability isn't present), tigetflag returns −1, tigetnum
returns −2 and tigetstr returns (char *)−1.

Let's use the terminfo database to find out the size of the terminal by retrieving the cols and lines capabilities
with this program, sizeterm.c:

#include <stdio.h>
#include <term.h>
#include <ncurses.h>

int main()
{
 int nrows, ncolumns;

 setupterm(NULL, fileno(stdout), (int *)0);
 nrows = tigetnum("lines");
 ncolumns = tigetnum("cols");
 printf("This terminal has %d columns and %d rows\n", ncolumns, nrows);

 Using terminfo Capabilities

163

 exit(0);
}
$ echo $TERM
vt100
$ sizeterm
This terminal has 80 columns and 24 rows
$

If we run the program inside a window on a workstation, we'll get answers that reflect the current window's
size:

$ echo $TERM
xterm
$ sizeterm
This terminal has 88 columns and 40 rows
$

If we use tigetstr to retrieve the cursor motion capability (cup) of the xterm terminal type we get a
parameterized answer: \E[%p1%d;%p2%dH.

This capability requires two parameters: a row and column to move the cursor to. Both coordinates are
measured starting at zero from the top left corner of the screen.

We can substitute the parameters in a capability with actual values using the tparm function. Up to nine
parameters can be substituted and a usable escape sequence is returned.

#include <term.h>

char *tparm(char *cap, long p1, long p2, ..., long p9);

Outputting Control Strings to the Terminal

Once we've constructed the terminal escape sequence with tparm, we must send it to the terminal. To process
this properly, you shouldn't send the string to the terminal with printf. Instead, use one of the special functions
provided that correctly process any required delays while the terminal completes an operation. These
functions are:

#include <term.h>

int putp(char *const str);
int tputs(char *const str, int affcnt, int (*putfunc)(int));

On success, putp returns OK; on failure ERR. The putp function takes the terminal control string and sends it
to stdout.

So, to move to row 5, column 30 of the screen, we can use a block of code like this:

 char *cursor;
 char *esc_sequence;
 cursor = tigetstr("cup");
 esc_sequence = tparm(cursor,5,30);
 putp(esc_sequence);

The tputs function is provided for those situations when the terminal isn't accessed via stdout and allows you
to specify the function to be used for outputting the characters. It returns the result of the user specified

Using terminfo Capabilities

164

function putfunc. The affcnt parameter is intended to indicate the number of lines affected by the change. It's
normally set to 1. The function used to output the string must have the same parameters and return type as the
putchar function. Indeed, putp(string) is equivalent to the call tputs(string, 1, putchar). We'll see tputs used
with a user specified output function later.

Be aware that some older Linux distributions define the final parameter of the tputs function as int
(*putfunc)(char), which would oblige us to alter the definition of the char_to_terminal function in our next
Try It Out.

Important If you consult the manual pages for information on tparm and terminal capabilities, you may
come across the tgoto function. The reason we haven't used this function, when it apparently
offers an easier solution to moving the cursor, is that the X/Open specification (Single UNIX
Specification Version 2) does not include them as of the 1997 edition. We therefore recommend
that you don't use any of these functions in new programs.

We're almost ready to add screen handling to our menu choice function. The only thing left to do is to clear
the screen, simply using clear. Some terminals don't support the clear capability which leaves the cursor at the
top left corner of the screen. In this case we can position the cursor at the top left corner and use the 'delete to
end of display' command, ed.

Putting all this information together, we'll write the final version of our sample menu program, screenmenu.c,
where we 'paint' the options on the screen for the user to pick a valid one.

Try It Out − Total Terminal Control

We can rewrite the getchoice function from menu4.c to give us total terminal control. In this listing, the main
function has been omitted because it isn't changed. Other differences from menu4.c are highlighted.

#include <stdio.h>
#include <unistd.h>
#include <termios.h>
#include <term.h>
#include <curses.h>

static FILE *output_stream = (FILE *)0;

char *menu[] = {
 "a − add new record",
 "d − delete record",
 "q − quit",
 NULL,
};

int getchoice(char *greet, char *choices[], FILE *in, FILE *out);
int char_to_terminal(int char_to_write);

int main()
{
...
}

int getchoice(char *greet, char *choices[], FILE *in, FILE *out)
{
 int chosen = 0;
 int selected;
 int screenrow, screencol = 10;

Using terminfo Capabilities

165

 char **option;
 char *cursor, *clear;

 output_stream = out;

 setupterm(NULL,fileno(out), (int *)0);
 cursor = tigetstr("cup");
 clear = tigetstr("clear");

 screenrow = 4;
 tputs(clear, 1, (int *) char_to_terminal);
 tputs(tparm(cursor, screenrow, screencol), 1, char_to_terminal);
 fprintf(out, "Choice: %s", greet);
 screenrow += 2;
 option = choices;
 while(*option) {
 tputs(tparm(cursor, screenrow, screencol), 1, char_to_terminal);
 fprintf(out,"%s", *option);
 screenrow++;
 option++;
 }

 do {
 selected = fgetc(in);
 option = choices;
 while(*option) {
 if(selected == *option[0]) {
 chosen = 1;
 break;
 }
 option++;
 }
 if(!chosen) {
 tputs(tparm(cursor, screenrow, screencol), 1, char_to_terminal);
 fprintf(out,"Incorrect choice, select again\n");
 }
 } while(!chosen);
 tputs(clear, 1, char_to_terminal);
 return selected;
}

int char_to_terminal(int char_to_write)
{
 if (output_stream) putc(char_to_write, output_stream);
 return 0;
}

How It Works

The rewritten getchoice function implements the same menu as in previous examples, but the output routines
are modified to make use of the terminfo capabilities. If you want to see the You have chosen: message for
more than a moment before the screen is cleared ready for the next selection, add a call to sleep in the main
function:

do {
 choice = getchoice("Please select an action", menu, input, output);
 printf("\nYou have chosen: %c\n", choice);
 sleep(1);
 } while (choice != 'q');

Using terminfo Capabilities

166

The last function in this program, char_to_terminal, includes a call to the putc function, which we mentioned
in Chapter 3.

To round off this chapter, we'll look at a quick example of how to detect keystrokes.

Detecting Keystrokes

People who have programmed MS−DOS often look for the UNIX equivalent of the kbhit function, which
detects whether a key has been pressed without actually reading it. Unfortunately, they fail to find it, since
there's no direct equivalent. UNIX programmers don't notice the omission, because UNIX is normally
programmed in such a way that programs should rarely, if ever, busy−wait on an event. Since this is the
normal use for kbhit, it's rarely missed on UNIX.

However, when you're porting programs from MS−DOS, it's often convenient to emulate kbhit, which you
can do using the non−canonical input mode.

Try It Out − Your Very Own kbhit

We begin with the standard headings and declare a couple of structures for the terminal settings.
peek_character is used in the test of whether or not a key has been pressed. Then we prototype the
functions we'll be using later.

#include <stdio.h>
#include <termios.h>
#include <term.h>
#include <curses.h>
#include <unistd.h>
static struct termios initial_settings, new_settings;
static int peek_character = −1;
void init_keyboard();
void close_keyboard();
int kbhit();
int readch();

1.

The main function calls init_keyboard to configure the terminal, then just loops once a second,
calling kbhit each time it does so. If the key hit is q, close_keyboard returns the behavior to normal
and the program exits.

int main()
{
 int ch = 0;

 init_keyboard();
 while(ch != 'q') {
 printf("looping\n");
 sleep(1);
 if(kbhit()) {
 ch = readch();
 printf("you hit %c\n",ch);
 }
 }
 close_keyboard();
 exit(0);
}

2.

init_keyboard and close_keyboard configure the terminal at the start and end of the program.3.

 Detecting Keystrokes

167

void init_keyboard()
{
 tcgetattr(0,&initial_settings);
 new_settings = initial_settings;
 new_settings.c_lflag &= ~ICANON;
 new_settings.c_lflag &= ~ECHO;
 new_settings.c_lflag &= ~ISIG;
 new_settings.c_cc[VMIN] = 1;
 new_settings.c_cc[VTIME] = 0;
 tcsetattr(0, TCSANOW, &new_settings);
}

void close_keyboard()
{
 tcsetattr(0, TCSANOW, &initial_settings);
}

Now for the function that checks for the keyboard hit:

int kbhit()
{
 char ch;
 int nread;

 if(peek_character != −1)
 return 1;
 new_settings.c_cc[VMIN]=0;
 tcsetattr(0, TCSANOW, &new_settings);
 nread = read(0,&ch,1);
 new_settings.c_cc[VMIN]=1;
 tcsetattr(0, TCSANOW, &new_settings);

 if(nread == 1) {
 peek_character = ch;
 return 1;
 }
 return 0;
}

4.

The character pressed is read by the next function, readch, which then resets peek_character to −1 for
the next loop.

int readch()
{
 char ch;

 if(peek_character != −1) {
 ch = peek_character;
 peek_character = −1;
 return ch;
 }
 read(0,&ch,1);
 return ch;
}

When we run the program, we get:

$ kbhit
looping
looping
looping
you hit h

5.

 Detecting Keystrokes

168

looping
looping
looping
you hit d
looping
you hit q
$

How It Works

The terminal is configured in init_keyboard to read one character before returning (MIN=1, TIME=0). kbhit
changes this behavior to check for input and return immediately (MIN=0, TIME=0) and then restores the
original settings before exiting.

Notice that we have to read the character that has been pressed, but store it locally ready for returning when
it's required.

Pseudo Terminals

Many UNIX systems, and LINUX too, have a feature called pseudo−terminals. These are devices that behave
much like the terminals we have been using in this chapter, except that they have no associated hardware.
They can be used to provide a terminal−like interface to other programs.

For example, using pseudo−terminals it is possible to make two chess programs play each other, despite the
fact that the programs themselves were designed to interact with a human player at a terminal. A application,
acting as an intermediary passes one program's moves to the other and vice versa. It uses pseudo−terminals to
fool the programs into behaving normally without a terminal being present.

Pseudo−terminals were at one time implemented in a system−specific manner, if at all. They have now been
incorporated into the Single UNIX Specification as UNIX98 Pseudo−Terminals or PTYs.

Summary

In this chapter we've learned about three different aspects of controlling the terminal. In the first part of the
chapter, we learned about detecting redirection and how to talk directly to a terminal even when the standard
file descriptors have been redirected.

We then learned about the General Terminal Interface and the termios structure that provides detailed control
over UNIX terminal handling.

Finally, we learned how to use the terminfo database and related functions to manage screen output in a
terminal independent fashion.

How It Works

169

Chapter 6: Curses

Overview

In the last chapter, we saw how to obtain much finer control over the input of characters and how to provide
character output in a terminal−independent way. The problem with using the general terminal interface (GTI,
or termios) and manipulating escape sequences with tparm and its related functions is that it requires a lot of
lower−level code. For many programs a higher−level interface would be more desirable. We would like to be
able to simply draw on the screen and use a library of functions to take care of terminal dependencies
automatically.

In this chapter, we'll learn about just such a library, the curses library. curses is important standard as a
halfway house between simple 'line−based' programs and the fully graphical (and generally much harder to
program) X Window system programs. Linux does have the svgalib, but that is not a standard UNIX library.
The curses library is used in many full screen applications as a reasonably easy, and terminal−independent
way to write full−screen, albeit character−based, programs. It's generally much easier to write such programs
with curses than to use escape sequences directly. curses can also manage the keyboard, providing an easy to
use, non−blocking character input mode. It's used by the people's pet−hate text editor, vi. We'll cover:

Using the curses library•
The concepts of curses•
Basic input and output control•
Multiple windows•
Keypad•
Color•

We will finish by re−implementing the CD Collection program in C, summarizing what we've learned in these
last few chapters.

Compiling with curses

Since curses is a library, to use it we must include a header file, functions and macros from an appropriate
system library. But before that, some history. There have been several different implementations of curses.
The original version appeared in BSD UNIX and was then incorporated into the System V flavors of UNIX.
As we developed the examples for this chapter, we used ncurses, a freeware emulation of System V Release
4.0 curses that was developed under Linux. This implementation is highly portable to other UNIX versions.
There are even versions of curses for MS−DOS and MS−Windows. If you find that the curses library bundled
with your flavor of UNIX doesn't support some features, we suggest you try and obtain a copy of ncurses as
an alternative.

Important The X/Open specification defines two levels of curses: base and extended. The version of
ncurses current when this book was written doesn't yet implement all of the extended features,
though it does implement the 'useful' ones, such as multiple windows and color support. Few
curses programs will need the extended facilities that are not implemented in ncurses.

Extended curses contains a motley crew of additional routines, including a range of functions for
handling multicolumn characters and color manipulation routines.

170

When you're compiling curses programs, you must include the header file curses.h, and link against the curses
library with −lcurses. Depending on your system setup, this may already be ncurses. You can check how your
curses is setup, by doing a ls −l /usr/include/*curses.h to look at the header files, and ls −l /usr/lib/*curses* to
check the library files. If you find that the curses files are links to ncurses files, then (using gcc) you should be
able to compile the files in this chapter using a command such as:

$ gcc program.c −o program −lcurses

If, however, your curses setup is not automatically using ncurses, you may have to explicitly force the use of
ncurses by using a compile command such as this.

$ gcc −I/usr/include/ncurses program.c −o program −lncurses

where the −I option specifies the directory in which to search for the header file. The makefile in the
downloadable code assumes your setup uses ncurses by default, so you will have to change it, or compile by
hand if this is not the case on your system.

If you're unsure how curses is set up on your system, refer to the manual pages for ncurses.

Concepts

The curses routines work on screens, windows and subwindows. A screen is the device (usually a terminal
screen) to which we are writing. It occupies all the available display on that device. Of course, if it's a terminal
window inside an X Window, the screen is simply all the character positions available inside the terminal
window. There is always at least one curses window, stdscr, which is the same size as the physical screen.
You can create additional windows that are smaller than the screen. Windows can overlap each other and can
have many subwindows, but each subwindow must always be contained inside its parent window.

The curses library maintains two data structures that act like a map of the terminal screen, stdscr and curscr.

stdscr, the more important, is a structure updated when curses functions produce output. The stdscr data
structure is the 'standard screen'. It acts in much the same way as stdout, the standard output, does for the stdio
library. It's the default output window in curses programs. This output doesn't appear on the screen until the
program calls refresh, when the curses library compares the contents of stdscr (what the screen should look
like) with the second structure curscr (what the screen currently looks like). curses then uses the differences
between these two structures to update the screen.

Some curses programs need to know that curses maintains a stdscr structure, as it's required as a parameter to
a few curses functions. However, the actual stdscr structure is implementation−dependent and should never be
accessed directly. curses programs shouldn't need to use curscr.

Thus, the process for the output of characters in a curses program is:

Use curses functions to update a logical screen.•
Ask curses to update the physical screen with refresh.•

The advantage of a two−level approach is that curses screen updates are very efficient and, although this isn't
so important on a console screen, it makes a considerable difference if you're running your program over a
slow serial or modem link.

 Concepts

171

A curses program will make many calls to logical screen output functions, possibly moving the cursor all over
the screen to get to the right position for writing text and drawing lines and boxes. At some stage, the user will
need to see all of this output. When this happens, typically during a call to refresh, curses will calculate the
optimum way of making the physical screen correspond to the logical screen. By using appropriate terminal
capabilities and by optimizing cursor motions, curses will often be able to update the screen with far fewer
characters being output than if all the screen writes had happened immediately. The curses library takes its
name from this cursor optimization feature. Although the number of characters output is not as important as it
was in the days of dumb terminals and low speed modems, the curses library survives as a useful addition to
the programmer's toolkit.

The layout of the logical screen is a character array, arranged by lines and columns with the screen position
(0,0) at the top left−hand corner.

All the curses functions use coordinates with the y value (lines) before the x (columns) value. Each position
holds not only the character for that screen location, but also its attributes. The attributes that can be displayed
depend on the physical terminal's capabilities, but usually at least bold and underline are available.

Because the curses library needs to create and destroy some temporary data structures, all curses programs
must initialize the library before use and then allow curses to restore settings after use. This is done with a pair
of function calls, initscr and endwin.

Let's write a very simple curses program, screen1.c, to show these and other basic function calls in action.
We'll then describe the function prototypes.

Try It Out − A Simple curses Program

We add in the curses.h header file and in the main function we make calls to initialize and reset the
curses library.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main() {
 initscr();

...

1.

Try It Out − A Simple curses Program

172

 endwin();
 exit(EXIT_SUCCESS);
}

In between, we move the cursor to the point (5,15) on the logical screen, print "Hello World" and
refresh the actual screen. Lastly, we use the call sleep(2) to suspend the program for two seconds, so
we can see the output before the program ends.

 move(5, 15);
 printw("%s", "Hello World");
 refresh();

 sleep(2);

2.

While the program is running, we see "Hello World" in the top left quadrant of an otherwise blank screen.

Initialization and Termination

As we've already seen, all curses programs must start with initscr and end with endwin. Here are their header
file definitions.

#include <curses.h>

WINDOW *initscr(void);
int endwin(void);

The initscr function should only be called once in each program. The initscr function returns a pointer to the
stdscr structure if it succeeds. If it fails, it simply prints a diagnostic error message and causes the program to
exit.

The endwin function returns OK on success and ERR on failure. You can call endwin to leave curses and then
later resume curses operation by calling clearok(stdscr, 1) and refresh. This effectively makes curses forget
what the physical screen looks like and forces it to perform a complete redisplay.

The WINDOW structure is simply the structure that curses uses to store the intended screen display. This
structure is opaque, i.e. curses doesn't give access to its internals.

Output to the Screen

There are several basic functions provided for updating the screen. These are:

#include <curses.h>

 Initialization and Termination

173

int addch(const chtype char_to_add);
int addchstr(chtype *const string_to_add);
int printw(char *format, ...);
int refresh(void);
int box(WINDOW *win_ptr, chtype vertical_char, chtype horizontal_char);
int insch(chtype char_to_insert);
int insertln(void);
int delch(void);
int deleteln(void);
int beep(void);
int flash(void);

curses has its own character type, chtype, which may have more bits than a standard char. For the Linux
version of ncurses, chtype is actually an unsigned long.

The add... functions add the character or string specified at the current location. The printw function formats a
string in the same way as printf and adds it to the current location. The refresh function causes the physical
screen to be updated, returning OK on success and ERR if an error occurred. The box function allows you to
draw a box around a window. In standard curses, you may only use 'normal' characters for the vertical and
horizontal line characters.

Important In extended curses, though, you can use the two defines ACS_VLINE and
ACS_HLINE for a better looking box. For this, your terminal needs to support line
drawing characters, though that's pretty much standard now.

The insch function inserts a character, moving existing characters right, though what will happen at the end of
a line isn't specified and will depend on the terminal you're using. insertln inserts a blank line, moving existing
lines down by one. The two delete functions are analogous to the two insert functions.

To make a sound, you can call beep. A very small number of terminals are unable to make any sound, so some
curses setups will cause the screen to flash when beep is called. If you work in a busy office, where beeps can
come from any number of machines, you might find you prefer this yourself. As you might expect, flash
causes the screen to flash, but if this isn't possible, it tries to make a sound on the terminal.

Reading from the Screen

We can read characters from the screen, although this facility isn't commonly used. It's done with the
following functions.

#include <curses.h>

chtype inch(void);
int instr(char *string);
int innstr(char *string, int number_of_characters);

The inch function should always be available, but the instr and innstr functions are not always supported. The
inch function returns a character and its attribute information from the current screen location of the cursor.
Notice that inch doesn't return a character, but a chtype, whilst instr and innstr write to arrays of chars.

 Reading from the Screen

174

Clearing the Screen

There are four principal ways of clearing an area of the screen. These are:

#include <curses.h>

int erase(void);
int clear(void);
int clrtobot(void);
int clrtoeol(void);

The erase function writes blanks to every screen location. The clear function, like erase, clears the screen, but
enforces a screen redisplay by also calling clearok. clearok enforces a clear screen sequence and redisplay
when the next refresh is called.

The clear function usually uses a terminal command that erases the entire screen, rather than simply
attempting to erase any currently non−blank screen locations. This makes the clear function a reliable way of
completely erasing the screen. The combination of clear followed by refresh can provide a useful redraw
command.

clrtobot clears the screen from the cursor position onwards and clrtoeol clears the line from the cursor to the
end of the line.

Moving the Cursor

A single function is provided for moving the cursor, with an additional command for controlling where curses
leaves the cursor after screen updates:

#include <curses.h>

int move(int new_y, int new_x);
int leaveok(WINDOW *window_ptr, bool leave_flag);

The move function simply moves the logical cursor position to the specified location. Remember that the
screen coordinates are specified with (0,0) as the top left−hand corner of the screen. In most versions of
curses, the two extern integers LINES and COLUMNS contain the physical screen size and can be used to
determine the maximum allowed values for new_y and new_x. Calling move won't, in itself, cause the
physical cursor to move. It only changes the location on the logical screen at which the next output will
appear. If you want the screen cursor to move immediately after calling move, follow it with a call to refresh.

The leaveok function sets a flag which controls where curses leaves the physical cursor after a screen update.
By default, the flag is false and, after a refresh, the hardware cursor will be left in the same position on the
screen as the logical cursor. If the flag is set to true, the hardware cursor may be left randomly, anywhere on
the screen. Generally the default option is preferred.

Character Attributes

Each curses character can have certain attributes, which control how it's displayed on the screen, assuming
that the display hardware can support the requested attribute. The defined attributes are A_BLINK, A_BOLD,
A_DIM, A_REVERSE, A_STANDOUT and A_UNDERLINE. You can use these functions to set attributes
singly or collectively.

 Clearing the Screen

175

#include <curses.h>

int attron(chtype attribute);
int attroff(chtype attribute);
int attrset(chtype attribute);
int standout(void);
int standend(void);

The attrset function sets the curses attributes, attron and attroff turn on and off specified attributes without
disturbing others, while standout and standend provide a more generic emphasized, or 'stand out' mode. This
is commonly mapped to reverse video on most terminals.

Now that we know more about managing the screen, we can try out a more complex example, moveadd.c. For
the purposes of this example, we'll include several calls to refresh and sleep, to enable you to see what the
screen looks like as each stage. Normally, curses programs would refresh the screen as little as possible,
because it's not a very efficient operation. The code is slightly contrived for the purposes of illustration.

Try It Out − Moving, Inserting and Attributes

We include some header files, define some character arrays and a pointer to those arrays and then
initialize the curses structures.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main()
{
 const char witch_one[] = " First Witch ";
 const char witch_two[] = " Second Witch ";
 const char *scan_ptr;

 initscr();

1.

Now for the three initial sets of text that appear at intervals on the screen. Note the on and off flagging
of text attributes.

 move(5, 15);
 attron(A_BOLD);
 printw("%s", "Macbeth");
 attroff(A_BOLD);
 refresh();
 sleep(1);

 move(8, 15);
 attron(A_DIM);
 printw("%s", "Thunder and Lightning");
 attroff(A_DIM);
 refresh();
 sleep(1);

 move(10, 10);
 printw("%s", "When shall we three meet again");
 move(11, 23);
 printw("%s", "In thunder, lightning, or in rain ?");
 move(13, 10);
 printw("%s", "When the hurlyburly's done,");
 move(14,23);

2.

Try It Out − Moving, Inserting and Attributes

176

 printw("%s", "When the battle's lost and won.");
 refresh();
 sleep(1);

Lastly, the actors are identified and their names are inserted a character at the time. We also add the
reset function at the end of the main function.

 attron(A_DIM);
 scan_ptr = witch_one + strlen(witch_one);
 while(scan_ptr != witch_one) {
 move(10,10);
 insch(*scan_ptr−−);
 }

 scan_ptr = witch_two + strlen(witch_two);
 while (scan_ptr != witch_two) {
 move(13, 10);
 insch(*scan_ptr−−);
 }
 attroff(A_DIM);

 refresh();
 sleep(1);

 endwin();
 exit(EXIT_SUCCESS);
}

3.

When we run this program, the final screen looks like this:

The Keyboard

As well as providing an easier interface to controlling the screen, curses also provides an easier method for
controlling the keyboard.

Keyboard Modes

The keyboard reading routines are controlled by modes. The functions that set the modes are:

#include <curses.h>

int echo(void);
int noecho(void);
int cbreak(void);
int nocbreak(void);
int raw(void);
int noraw(void);

 The Keyboard

177

The two echo functions simply turn the echoing of typed characters on and off. The remaining four function
calls control how characters typed on the terminal are made available to the curses program.

To explain cbreak, we need to understand the default input mode. When a curses program starts by calling
initscr, the input mode is set to what is termed cooked mode. This means that all processing is done on a
line−by−line basis, i.e. input is only available after the user has pressed Return. Keyboard special characters
are enabled, so typing the appropriate key sequences can generate a signal in the program Flow control is also
enabled. By calling cbreak, a program may set the input mode to cbreak mode where characters are available
to the program immediately they are typed. As in cooked mode, keyboard special characters are enabled , but
simple keys, like backspace, are passed directly to the program to be processed, so if you want the backspace
key to function as expected, you have to program it yourself.

A call to raw turns off special character processing, so it becomes impossible to generate signals or flow
control by typing special character sequences. Calling nocbreak sets the input mode back to Cooked mode, but
leaves special character processing unchanged; calling noraw restores both Cooked mode and special
character handling.

Keyboard Input

Reading the keyboard is very simple. The principal functions are:

#include <curses.h>

int getch(void);
int getstr(char *string);
int getnstr(char *string, int number_of_characters);
int scanw(char *format, ...);

These act in a very similar way to their non−curses equivalents getchar, gets and scanf. Note that getstr
provides no way of limiting the string length returned, so you should use it only with great caution. If your
version of curses supports getnstr, which allows you to limit the number of characters read, you should use it
in preference to getstr. This is very similar to the behavior of gets and fgets that we met in Chapter 3.

Here's a short example program, ipmode.c, to show how to handle the keyboard.

Try It Out− Keyboard Modes and Input

First, we set up the program and the initial curses calls.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>
#include <string.h>

#define PW_LEN 25
#define NAME_LEN 256

int main() {
 char name[NAME_LEN];
 char password[PW_LEN];
 char *real_password = "xyzzy";
 int i = 0;

 initscr();

1.

 Keyboard Input

178

 move(5, 10);
 printw("%s", "Please login:");

 move(7, 10);
 printw("%s", "User name: ");
 getstr(name);

 move(9, 10);
 printw("%s", "Password: ");
 refresh();

When the user enters their password, we need to stop the password being echoed to the screen. Then
we check the password against xyzzy.

 cbreak();
 noecho();

 memset(password, '\0', sizeof(password));
 while (i < PW_LEN) {
 password[i] = getch();
 move(9, 20 + i);
 addch('*');
 refresh();
 if (password[i] == '\n') break;
 if (strcmp(password, real_password) == 0) break;
 i++;
 }

2.

Finally, we re−enable the keyboard echo and print out success or failure.

 echo();
 nocbreak();

 move(11, 10);
 if (strcmp(password, real_password) == 0) printw("%s", "Correct");
 else printw("%s", "Wrong");
 refresh();

 endwin();
 exit(EXIT_SUCCESS);
}

3.

Try it and see.

How It Works

Having stopped the echoing of keyboard input and set the input mode to Cbreak, we set up a region of
memory ready for the password. Each character of the password entered is processed immediately and a * is
shown at the next position on the screen. We need to refresh the screen each time. Then we compare the two
strings, entered and real passwords, using strcmp.

Important If you're using a very old version of the curses library, you may need to make some minor
changes to the program to get the screen refreshes correct. In particular, a refresh call may need
to be added before the getstr call. In modern curses, getstr is defined as calling getch, which
refreshes the screen automatically.

How It Works

179

Windows

Until now, we have used the terminal as a full screen output medium. This is often sufficient for small and
simple programs, but the curses library goes a long way beyond that. We can display multiple windows of
different sizes concurrently on the physical screen. Many of the functions in this section are only supported by
what X/Open terms extended curses. However, since they are supported by ncurses, there should be little
problem in them being made available on most platforms. We're now going to move on and learn how to use
multiple windows. We're also going to see how the commands we have used so far are generalized to the
multiple window scenario.

The WINDOW Structure

Although we have mentioned stdscr, the standard screen, we have so far had little need to use it, since almost
all of the functions that we've met so far assume that they're working on stdscr and it does not need to be
passed as a parameter.

The stdscr is just a special case of the WINDOW structure, like stdout is a special case of a file stream. The
WINDOW structure is normally declared in curses.h and while it can be instructive to examine it, programs
should never access it directly, since the structure can and does change between implementations.

We can create and destroy windows using the newwin and delwin calls:

#include <curses.h>

WINDOW *newwin(int num_of_lines, int num_of_cols, int start_y, int start_x);
int delwin(WINDOW *window_to_delete);

The newwin function creates a new window, with a screen location of (start_y,start_x) and with the specified
number of lines and columns. It returns a pointer to the new window, or null if the creation failed. If you want
the new window to have its bottom right−hand corner in the bottom right−hand corner of the screen, you can
give the number of lines or columns as zero. All windows must fit within the current screen, so newwin will
fail if any part of the new window would fall outside the screen area. The new window created by newwin is
completely independent of all existing windows. By default, it will be placed on top of any existing windows,
hiding (but not changing) their contents.

The delwin function deletes a window previously created by newwin. Since memory has probably been
allocated when newwin was called, you should always delete windows when they are no longer required.
Take care never to try and delete curses' own windows, stdscr and curscr!

Having created a new window, how do we write to it? The answer is that almost all the functions that we've
seen so far have generalized versions that operate on specified windows, and, for convenience, these also
include cursor motion.

Generalized Functions

We've already used the addch and printw functions for adding characters to the screen. Along with many other
functions, these can be prefixed, either with a w for window, mv for move, or mvw for move and window. If
you look in the curses header file for most implementations of curses, you'll find that many of the functions
we've used so far are simply macros (#defines) that call these more general functions.

 Windows

180

When the w prefix is added, an additional WINDOW pointer must be prepended to the argument list. When
the mv prefix is added, two additional parameters, a y and an x location, must be prepended. These specify the
location where the operation will be performed. The y and x are relative to the window rather than the
screen,(0,0) being the top left of the window.

When the mvw prefix is added, three additional parameters, a WINDOW pointer, as well as y and x values,
must be passed. Confusingly, the WINDOW pointer always comes before the screen coordinates, even though
the prefix might suggest the y and x come first.

As an example, here is the full set of prototypes for just the addch and printw sets of functions.

#include <curses.h>

int addch(const chtype char);
int waddch(WINDOW *window_pointer, const chtype char)
int mvaddch(int y, int x, const chtype char);
int mvwaddch(WINDOW *window_pointer, int y, int x, const chtype char);
int printw(char *format, ...);
int wprintw(WINDOW *window_pointer, char *format, ...);
int mvprintw(int y, int x, char *format, ...);
int mvwprintw(WINDOW *window_pointer, int y, int x, char *format, ...);

Many other functions, such as inch, also have move and window variants available.

Moving and Updating a Window

These commands allow us to move and redraw windows.

#include <curses.h>

int mvwin(WINDOW *window_to_move, int new_y, int new_x);
int wrefresh(WINDOW *window_ptr);
int wclear(WINDOW *window_ptr);
int werase(WINDOW *window_ptr);
int touchwin(WINDOW *window_ptr);
int scrollok(WINDOW *window_ptr, bool scroll_flag);
int scroll(WINDOW *window_ptr);

The mvwin function moves a window on the screen. Since all parts of a window must fit within the screen
area, mvwin will fail if you attempt to move a window so that any part of it falls outside the screen area.

The wrefresh, wclear and werase functions are simply generalizations of the functions we met earlier; they
just take a WINDOW pointer so that they can refer to a specific window, rather than stdscr.

The touchwin function is rather special. It informs the curses library that the contents of the window pointed
to by its parameter have been changed. This means that curses will always redraw that window next time
wrefresh is called, even if you haven't actually changed the contents of the window. This function is often
useful for arranging which window to display when you have several overlapping windows stacked on the
screen.

The two scroll functions control scrolling of a window. The scrollok function, when passed a Boolean true
(usually non−zero) allows a window to scroll. By default, windows can't scroll. The scroll function simply
scrolls the window up one line. Some curses implementations also have a wsctl function which additionally
takes a number of lines to scroll, which may be a negative number. We'll return to scrolling a little later in the

 Moving and Updating a Window

181

chapter.

Now that we know how to manage more than a single window, let's put these new functions to work in a
program, multiw1.c. For the sake of brevity, error checking is omitted.

Try It Out − Multiple Windows

As usual let's get our definitions sorted first:

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main()
{
 WINDOW *new_window_ptr;
 WINDOW *popup_window_ptr;
 int x_loop;
 int y_loop;
 char a_letter = 'a';

 initscr();

1.

Then we fill the base window with characters, refreshing the actual screen once the logical screen has
been filled.

move(5, 5);
 printw("%s", "Testing multiple windows");
 refresh();

 for (y_loop = 0; y_loop < LINES − 1; y_loop++) {
 for (x_loop = 0; x_loop < COLS − 1; x_loop++) {
 mvwaddch(stdscr, y_loop, x_loop, a_letter);
 a_letter++;
 if (a_letter > 'z') a_letter = 'a';
 }
 }

 /* Update the screen */
 refresh();
 sleep(2);

2.

Now we create a new 10x20 window and add some text to it before drawing it on the screen.

 new_window_ptr = newwin(10, 20, 5, 5);
 mvwprintw(new_window_ptr, 2, 2, "%s", "Hello World");
 mvwprintw(new_window_ptr, 5, 2, "%s",
 "Notice how very long lines wrap inside the window");
 wrefresh(new_window_ptr);
 sleep(2);

3.

We now change the contents of the background window and, when we refresh the screen, the window
pointed to by new_window_ptr is obscured.

 a_letter = '0';
 for (y_loop = 0; y_loop < LINES −1; y_loop++) {
 for (x_loop = 0; x_loop < COLS − 1; x_loop++) {
 mvwaddch(stdscr, y_loop, x_loop, a_letter);
 a_letter++;
 if (a_letter > '9')

4.

Try It Out − Multiple Windows

182

 a_letter = '0';
 }
 }

 refresh();
 sleep(2);

If we make a call to refresh the new window, nothing will change, because we haven't changed the
new window.

 wrefresh(new_window_ptr);
 sleep(2);

5.

But if we touch the window first and trick curses into thinking that the window has been changed, the
next call to wrefresh will bring the new window to the front again.

 touchwin(new_window_ptr);
 wrefresh(new_window_ptr);
 sleep(2);

6.

Next, we add another overlapping window with a box around it.

 popup_window_ptr = newwin(10, 20, 8, 8);
 box(popup_window_ptr, '|', '−');
 mvwprintw(popup_window_ptr, 5, 2, "%s", "Pop Up Window!");
 wrefresh(popup_window_ptr);
 sleep(2);

7.

Then we fiddle with the new and pop−up windows before clearing and deleting them.

 touchwin(new_window_ptr);
 wrefresh(new_window_ptr);
 sleep(2);
 wclear(new_window_ptr);
 wrefresh(new_window_ptr);
 sleep(2);
 delwin(new_window_ptr);
 touchwin(popup_window_ptr);
 wrefresh(popup_window_ptr);
 sleep(2);
 delwin(popup_window_ptr);
 touchwin(stdscr);
 refresh();
 sleep(2);
 endwin();
 exit(EXIT_SUCCESS);
}

8.

Unfortunately, it's not practical to show you this running in the book, but here is a screen shot after the first
popup window has been drawn.

Try It Out − Multiple Windows

183

After the background has been changed, and a popup window has been drawn, we see this.

As you can see from the example code, you need to be quite careful about refreshing windows to ensure that
they appear on the screen in the correct order. If you ask curses to refresh a window, it doesn't store any
information about the hierarchy of windows. To ensure that curses draws the windows in the correct order,
you must refresh them in the correct order. One way of doing this is to store all the pointers to your windows
in an array or list, which you maintain in the order they should appear on the screen.

Optimizing Screen Refreshes

As we saw in the example above, refreshing multiple windows can be a little tricky, but not overly onerous.
However, a potentially more serious problem arises when the terminal to be updated is on a slow link, perhaps
over a modem.

In this case, it's important to minimize the number of characters drawn on the screen, since, on slow links,
screen draws can be uncomfortably slow. curses provides a special way of doing this, with a pair of functions:
wnoutrefresh and doupdate.

#include <curses.h>

int wnoutrefresh(WINDOW *window_ptr);
int doupdate(void);

The wnoutrefresh function determines which characters would need sending to the screen, but doesn't actually
send them. The doupdate function actually sends the changes to the terminal. If you simply call wnoutrefresh,
followed immediately by doupdate, the effect is the same as calling wrefresh. However, if you wish to redraw

 Optimizing Screen Refreshes

184

a stack of windows, you can call wnoutrefresh on each window (in the correct order, of course) and then call
doupdate only after the last wnoutrefresh. This allows curses to perform its screen update calculations on each
window in turn and only then output the updated screen. This almost always allows curses to minimize the
number of characters that needs to be sent.

Subwindows

Now that we've looked at multiple windows, we can look at a special case of multiple windows, called
subwindows. We create and destroy subwindows with the calls:

#include <curses.h>

WINDOW *subwin(WINDOW *parent, int num_of_lines, int num_of_cols,
 int start_y, int start_x);
int delwin(WINDOW *window_to_delete);

The function subwin has almost the same parameter list as newwin and subwindows are deleted in just the
same way as other windows, with a delwin call. Just like new windows, we can use the range of mvw
functions to write to subwindows. Indeed, most of the time, subwindows behave in a very similar fashion to
new windows, with one very important exception:

Subwindows don't themselves store a separate set of screen characters; they share the same character storage
space as the parent window specified when the subwindow is created. This means that any changes made in a
subwindow are also made in the underlying parent window, so when a subwindow is deleted the screen
doesn't change.

At first sight, subwindows seem a pointless exercise. Why not just make the changes to the parent window?
The main use for subwindows is to provide a clean way of scrolling parts of another window. The need to
scroll a small subsection of the screen is surprisingly common when writing a curses program. By making this
a subwindow and then scrolling, the subwindow, we achieve the desired result.

Important One restriction imposed by using subwindows is that the application should call touchwin on the
parent window before refreshing the screen.

Try It Out − Subwindows

First, the initial code section. The base window display is initialized with some text.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

#define NUM_NAMES 14

int main()
{
 WINDOW *sub_window_ptr;
 int x_loop;
 int y_loop;
 int counter;
 char a_letter = 'A';

 char *names[NUM_NAMES] = {"David Hudson,", "Andrew Crolla,", "James Jones,",
 "Ciara Loughran,", "Peter Bradley,", "Nancy Innocenzi,",

1.

 Subwindows

185

 "Charles Cooper,", "Rucha Nanavati,", "Bob Vyas,",
 "Abdul Hussain,", "Anne Pawson,", "Alex Hopper,",
 "Russell Thomas,", "Nazir Makandra,"};

 initscr();

for (y_loop = 0; y_loop < LINES − 1; y_loop++) {
 for (x_loop = 0; x_loop < COLS − 1; x_loop++) {
 mvwaddch(stdscr, y_loop, x_loop, a_letter);
 a_letter++;
 if (a_letter > 'Z') a_letter = 'A';
 }
 }

We now create the new scrolling subwindow and, as advised, we must 'touch' the parent window
before refreshing the screen.

 sub_window_ptr = subwin(stdscr, 10, 20, 10, 10);
 scrollok(sub_window_ptr, 1);
 touchwin(stdscr);
 refresh();
 sleep(1);

2.

Then we erase the contents of the subwindow, print text to it and refresh it. The scrolling text is
achieved by a loop.

 werase(sub_window_ptr);
 mvwprintw(sub_window_ptr, 2, 0, "%s",
 "This window will now scroll as names are added ");
 wrefresh(sub_window_ptr);
 sleep(1);

 for (counter = 0; counter < NUM_NAMES; counter++) {
 wprintw(sub_window_ptr, "%s ", names[counter]);
 wrefresh(sub_window_ptr);
 sleep(1);
 }

3.

Having finished this loop, we delete the subwindow. Then we refresh the base screen.

 delwin(sub_window_ptr);
 touchwin(stdscr);
 refresh();
 sleep(1);
 endwin();
 exit(EXIT_SUCCESS);
}

4.

Towards the end of the program, we see the output:

 Subwindows

186

How It Works

After arranging for the sub_window_ptr to point to the result of the subwin call, we make the subwindow
scrollable. Even after the subwindow has been deleted and the base window (strdcr) refreshed, the text on the
screen remains the same. This is because the subwindow was actually updating the character data for stdscr.

The Keypad

We've already seen some of the facilities that curses provides for handling the keyboard. Many keyboards
have, at the very least, cursor keys and function keys. Many also have a keypad and other keys, such as Insert
and Home.

Decoding these keys is a difficult problem on most terminals, since they normally send a string of characters,
starting with the escape character. Not only does the application have the problem of distinguishing between a
single press of the Escape key and a string of characters caused by pressing a function key, but it must also
cope with different terminals using different sequences for the same logical key.

Fortunately, curses provides an elegant facility for managing function keys. For each terminal, the sequence
sent by each of its function keys is stored, normally in a terminfo structure, and the include file curses.h has a
set of defines prefixed by KEY_ that define the logical keys.

The translation between the sequences and logical keys is disabled when curses starts and has to be turned on
by the keypad function. If the call succeeds, it returns OK, otherwise ERR.

#include <curses.h>

int keypad(WINDOW *window_ptr, bool keypad_on);

Once keypad mode has been enabled by calling keypad with keypad_on set to true, curses takes over the
processing of key sequences, so that reading the keyboard may now not only return the key that was pressed,
but also one of the KEY_ defines for logical keys.

There are three slight restrictions when using Keypad mode.

The first problem is that the recognition of escape sequences is timing−dependent and many network
protocols will group characters into packets (leading to improper recognition of escape sequences), or separate
them (leading to function key sequences being recognized as Escape and individual characters). This behavior
is worst over WANs and other busy links. The only workaround is to try to program terminals to send single,
unique characters for each function key that you want to use, although this limits the number of control

How It Works

187

characters.

Secondly, in order for curses to separate a press of the Escape key from a keyboard sequence starting with
Escape, it must wait for a brief period of time. Sometimes, a very slight delay on processing of the Escape key
can be noticed once Keypad mode has been enabled.

The third restriction is that curses can't process non−unique escape sequences. If your terminal has two
different keys that can send the same sequence, curses will simply not process that sequence, since it can't tell
which logical key it should return.

Important In our opinion, having escape sequences for some keys and also putting an Escape key on the
keyboard (heavily used for cancels) was a most unfortunate design decision, but one that we
must accept and manage as best we can.

Here's a short program, keypad.c, showing how the keypad mode can be used. When you run this program, try
pressing Escape and notice the slight delay while the program waits to see if the Escape is simply the start of
an escape sequence, or a single key press.

Try It Out − Using the Keypad

Having initialized the program and the curses library, we set the keypad mode TRUE.

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

#define LOCAL_ESCAPE_KEY 27

int main()
{
 int key;

 initscr();
 crmode();
 keypad(stdscr, TRUE);

1.

Next, we must turn echo off to prevent the cursor being moved when some cursor keys are pressed.
The screen is cleared and some text displayed. The program waits for each key stroke and, unless it's
q, or produces an error, the key is printed. If the key strokes match one of the terminal's keypad
sequences, that is printed instead.

 noecho();
 clear();
 mvprintw(5, 5, "Key pad demonstration. Press 'q' to quit");
 move(7, 5);
 refresh();
 key = getch();

 while(key != ERR && key != 'q') {
 move(7, 5);
 clrtoeol();

 if ((key >= 'A' && key <= 'Z') ||
 (key >= 'a' && key <= 'z')) {
 printw("Key was %c", (char)key);
 }

2.

 Try It Out − Using the Keypad

188

 else {
 switch(key) {
 case LOCAL_ESCAPE_KEY: printw("%s", "Escape key"); break;
 case KEY_END: printw("%s", "END key"); break;
 case KEY_BEG: printw("%s", "BEGINNING key"); break;
 case KEY_RIGHT: printw("%s", "RIGHT key"); break;
 case KEY_LEFT: printw("%s", "LEFT key"); break;
 case KEY_UP: printw("%s", "UP key"); break;
 case KEY_DOWN: printw("%s", "DOWN key"); break;
 default: printw("Unmatched − %d", key); break;
 } /* switch */
 } /* else */

 refresh();
 key = getch();
 } /* while */

 endwin();
 exit(EXIT_SUCCESS);
}

Color

Originally, very few 'dumb' terminals supported color, so most early versions of curses had no support for it.
Now, color is fairly standard and is supported in ncurses and most other modern curses implementations.

Each character cell on the screen can be written in one of a number of different colors, against one of a
number of different colored backgrounds. For example, we can write text in green on a red background.

Color support in curses is slightly unusual in that the color for a character isn't defined independently of its
background. We must define the foreground and background colors of a character as a pair, called, not
surprisingly, a color pair.

Before you can use color capability in curses, you must check that the current terminal supports color and then
initialize the curses color routines. For this, you use a pair of routines, has_colors and start_color.

#include <curses.h>

bool has_colors(void);
int start_color(void);

The has_colors routine returns true if color is supported. You should then call start_color, which returns OK if
color has been initialized successfully. Once start_color has been called and the colors initialized, the variable
COLOR_PAIRS is set to the maximum number of color pairs that the terminal can support. A limit of 64
color pairs is common. The variable COLORS defines the maximum number of colors available, which is
often as few as eight.

Before you can use colors as attributes, you must initialize the color pairs that you wish to use. You do this
with the init_pair function. Color attributes are accessed with the COLOR_PAIR function.

#include <curses.h>

int init_pair(short pair_number, short foreground, short background);
int COLOR_PAIR(int pair_number);
int pair_content(short pair_number, short *foreground, short *background);

 Color

189

curses.h usually defines some basic colors, starting with COLOR_. An additional function, pair_content,
allows previously defined color pair information to be retrieved.

To define color pair number 1 to be red on green, we would use:

init_pair(1, COLOR_RED, COLOR_GREEN);

We can then access this color pair as an attribute, using COLOR_PAIR like this:

wattron(window_ptr, COLOR_PAIR(1));

This would set future additions to the screen to be red on a green background.

Since a COLOR_PAIR is an attribute, we can combine it with other attributes. On a PC, we can often access
screen high intensity colors by combining the COLOR_PAIR attribute with the additional attribute A_BOLD,
by using a bitwise OR of the attributes:

wattron(window_ptr, COLOR_PAIR(1) | A_BOLD);

Let's check these functions in an example, color.c.

Try It Out − Colors

First off, we check whether the program's display terminal supports color. If it does, we start the color
display.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <curses.h>

int main()
{
 int i;

 initscr();

 if (!has_colors()) {
 endwin();
 fprintf(stderr, "Error − no color support on this terminal\n");
 exit(1);
 }

 if (start_color() != OK) {
 endwin();
 fprintf(stderr, "Error − could not initialize colors\n");
 exit(2);
 }

1.

We can now print out the allowed number of colors and color pairs. We create seven color pairs and
display them one at a time.

 clear();
 mvprintw(5, 5, "There are %d COLORS, and %d COLOR_PAIRS available",
 COLORS, COLOR_PAIRS);
 refresh();

2.

 Try It Out − Colors

190

 init_pair(1, COLOR_RED, COLOR_BLACK);
 init_pair(2, COLOR_RED, COLOR_GREEN);
 init_pair(3, COLOR_GREEN, COLOR_RED);
 init_pair(4, COLOR_YELLOW, COLOR_BLUE);
 init_pair(5, COLOR_BLACK, COLOR_WHITE);
 init_pair(6, COLOR_MAGENTA, COLOR_BLUE);
 init_pair(7, COLOR_CYAN, COLOR_WHITE);

 for (i = 1; i <= 7; i++) {
 attroff(A_BOLD);
 attrset(COLOR_PAIR(i));
 mvprintw(5 + i, 5, "Color pair %d", i);
 attrset(COLOR_PAIR(i) | A_BOLD);
 mvprintw(5 + i, 25, "Bold color pair %d", i);
 refresh();
 sleep(1);
 }

 endwin();
 exit(EXIT_SUCCESS);
}

This example gives the following output:

Redefining Colors

A few terminals allow only a limited number of colors on the screen at any one time, but allow us to redefine
the colors available. curses supports this facility with the init_color function.

#include <curses.h>

int init_color(short color_number, short red, short green, short blue);

This allows an existing color (in the range 0 to COLORS) to be redefined with new intensity values, in the
range 0 to 1000. This is much like defining color values for a VGA palette for a PC screen.

Pads

When you're writing more advanced curses programs, it's sometimes easier to build a logical screen and then
output all or part of it to the physical screen later. Occasionally, it's also better to have a logical screen that is
actually bigger than the physical screen and only display part of the logical screen at any one time.

It's not easy for us to do this with the curses functions that we've met so far, since all windows must be no

 Redefining Colors

191

larger than the physical screen. curses does provide a special data structure, a pad, for manipulating logical
screen information that doesn't fit within a normal window.

A pad structure is very similar to a WINDOW structure and all the curses routines that write to windows can
also be used on pads. However, pads do have their own routines for creation and refreshing.

We create pads in much the same way that we create normal windows:

#include <curses.h>

WINDOW *newpad(int number_of_lines, int number_of_columns);

Note that the return value is a pointer to a WINDOW structure, the same as newwin. Pads are deleted with
delwin, just like windows.

Pads do have different routines for refreshing. Since a pad isn't confined to a particular screen location, we
must specify the region of the pad we wish to put on the screen and also the location it should occupy on the
screen. We do this with the prefresh function:

#include <curses.h>

int prefresh(WINDOW *pad_ptr, int pad_row, int pad_column,
 int screen_row_min, int screen_col_min,
 int screen_row_max, int screen_col_max);

This causes an area of the pad, starting at (pad_row, pad_column) to be written to the screen in the region
defined by (screen_row_min, screen_col_min) to (screen_row_max, screen_col_max).

An additional routine, pnoutrefresh, is also provided. It acts in the same way as wnoutrefresh, for more
efficient screen updates.

Let's check these out with a quick program, pad.c.

Try It Out − Using a Pad

At the start of this program, we initialize the pad structure and then create a pad, which returns a
pointer to that pad. We add characters to fill the pad structure (which is 50 characters wider and
longer than the terminal display.)

#include <unistd.h>
#include <stdlib.h>
#include <curses.h>

int main()
{
 WINDOW *pad_ptr;
 int x, y;
 int pad_lines;
 int pad_cols;
 char disp_char;

 initscr();
 pad_lines = LINES + 50;
 pad_cols = COLS + 50;
 pad_ptr = newpad(pad_lines, pad_cols);

1.

Try It Out − Using a Pad

192

 disp_char = 'a';

 for (x = 0; x < pad_lines; x++) {
 for (y = 0; y < pad_cols; y++) {
 mvwaddch(pad_ptr, x, y, disp_char);
 if (disp_char == 'z') disp_char = 'a';
 else disp_char++;
 }
 }

We can now draw different areas of the pad on the screen at different locations before quitting.

 prefresh(pad_ptr, 5, 7, 2, 2, 9, 9);
 sleep(1);
 prefresh(pad_ptr, LINES + 5, COLS + 7, 5, 5, 21, 19);
 sleep(1);
 delwin(pad_ptr);
 endwin();
 exit(EXIT_SUCCESS);
}

2.

Running the program, you should see something like this:

The CD Collection Application

Now that we've learned about the facilities that curses has to offer, we can develop our sample application.
Here's a version written in C using the curses library. It offers some advantages in that the information is more
clearly displayed on the screen and a scrolling window is used for track listings.

The whole application is eight pages long, so we've split it up into sections and functions within each section.
You can get the full source code from the Wrox web site and, as with all the programs in this book, it's under

 The CD Collection Application

193

the Gnu Public License. (See Appendix B.)

Important We've written this version of the CD database application using the information presented in
Chapters 5 and 6. It's derived from the shell script presented in Chapter 2. It hasn't been
redesigned for the C implementation, so you can still see many features of the shell original in
this version.

There are some problems with this implementation that we will resolve in later revisions. For
example, it doesn't deal with commas in titles and it has a practical limit on tracks per CD to
keep them on screen.

Looking at the code, there are several distinct sections, and these form the "Try It Out" headings. The code
conventions used here are slightly different from most of the rest of the book, here code foreground is only
used to show where other application functions are called.

Try It Out − A New CD Collection Application

First, we include all those header files and then some global constants.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <curses.h>

#define MAX_STRING 80 /* Longest allowed response */
#define MAX_ENTRY 1024 /* Longest allowed database entry */

#define MESSAGE_LINE 6 /* Misc. messages on this line */
#define ERROR_LINE 22 /* Line to use for errors */
#define Q_LINE 20 /* Line for questions */
#define PROMPT_LINE 18 /* Line for prompting on */

1.

Next, we need some global variables. The variable current_cd is used to store the current CD title
with which we are working. It's initialized so that the first character is null to indicate 'no CD
selected'. The \0 is strictly unnecessary, but it ensures the variable is initialized, which is generally a
'good thing'. The variable current_cat will be used to record the catalog number of the current CD.

static char current_cd[MAX_STRING] = "\0";
static char current_cat[MAX_STRING];

2.

Some file names are now declared. These files are fixed in this version to keep things simple, as is the
temporary file name. This could cause a problem if the program is run by two users in the same
directory.

Important A better way to obtain database file names would be either by program arguments or
from environment variables. We also need an improved method of generating a unique
temporary file name, for which we could use the POSIX tmpnam function. We'll address
many of these issues in later versions.

const char *title_file = "title.cdb";
const char *tracks_file = "tracks.cdb";
const char *temp_file = "cdb.tmp";

3.

Now, finally, we get onto the function prototypes.4.

Try It Out − A New CD Collection Application

194

void clear_all_screen(void);
void get_return(void);
int get_confirm(void);
int getchoice(char *greet, char *choices[]);
void draw_menu(char *options[], int highlight,
 int start_row, int start_col);
void insert_title(char *cdtitle);
void get_string(char *string);
void add_record(void);
void count_cds(void);
void find_cd(void);
void list_tracks(void);
void remove_tracks(void);
void remove_cd(void);
void update_cd(void);

Before we look at their implementation, we need some structures (actually an array of menu options)
for the menus. The first character is the character to return when the choice is selected; the remaining
text is to be displayed. The extended menu is displayed when a CD is currently selected.

char *main_menu[] =
{
 "add new CD",
 "find CD",
 "count CDs and tracks in the catalog",
 "quit",
 0,
};

char *extended_menu[] =
{
 "add new CD",
 "find CD",
 "count CDs and tracks in the catalog",
 "list tracks on current CD",
 "remove current CD",
 "update track information",
 "quit",
 0,
};

5.

That's the initialization done with. Now we move onto the program functions, but first, I reckon we need to
summarize the inter−relations of these functions, all sixteen of them. They split into functions to:

Draw the menu1.
Add CDs to the database2.
Retrieve and display CD data3.

Try It Out − A New CD Collection Application

195

Try It Out − Looking at main

main allows us to make selections from the menu until we select quit.

int main()
{
 int choice;
 initscr();
 do {
 choice = getchoice("Options:",
 current_cd[0] ? extended_menu : main_menu);
 switch (choice) {
 case 'q':
 break;
 case 'a':
 add_record();
 break;
 case 'c':
 count_cds();
 break;
 case 'f':
 find_cd();
 break;
 case 'l':
 list_tracks();
 break;
 case 'r':
 remove_cd();
 break;
 case 'u':
 update_cd();
 break;
 }
 } while (choice != 'q');
 endwin();
 exit(EXIT_SUCCESS);
}

Let's now look at the detail of the functions associated with the three program subsections. First, we look at
the three functions that relate to the program's user interface.

Try It Out − The Menu

The getchoice function called by main is the principal function in this section. getchoice is passed
greet, an introduction, and choices, which points either to the main or the extended menu (depending
on whether or not a CD has been selected). You can see this in the main function above.

int getchoice(char *greet, char *choices[])
{
 static int selected_row = 0;
 int max_row = 0;
 int start_screenrow = MESSAGE_LINE, start_screencol = 10;
 char **option;
 int selected;
 int key = 0;

 option = choices;
 while (*option) {

1.

Try It Out − Looking at main

196

 max_row++;
 option++;
 }
 /* protect against menu getting shorter when CD deleted */
 if (selected_row >= max_row)
 selected_row = 0;

 clear_all_screen();
 mvprintw(start_screenrow − 2, start_screencol, greet);

 keypad(stdscr, TRUE);
 cbreak();
 noecho();

 key = 0;
 while (key != 'q' && key != KEY_ENTER && key != '\n') {
 if (key == KEY_UP) {
 if (selected_row == 0)
 selected_row = max_row − 1;
 else
 selected_row−−;
 }
 if (key == KEY_DOWN) {
 if (selected_row == (max_row − 1))
 selected_row = 0;
 else
 selected_row++;
 }
 selected = *choices[selected_row];
 draw_menu(choices, selected_row, start_screenrow,
 start_screencol);
 key = getch();
 }

 keypad(stdscr, FALSE);
 nocbreak();
 echo();

 if (key == 'q')
 selected = 'q';

 return (selected);
}

Note how there are two more local functions called from within getchoice: clear_all_screen and
draw_menu. We'll look at draw_menu first:

void draw_menu(char *options[], int current_highlight,
 int start_row, int start_col)
{
 int current_row = 0;
 char **option_ptr;
 char *txt_ptr;

 option_ptr = options;
 while (*option_ptr) {
 if (current_row == current_highlight) {
 mvaddch(start_row + current_row, start_col − 3, ACS_BULLET);
 mvaddch(start_row + current_row, start_col + 40, ACS_BULLET);
 } else {
 mvaddch(start_row + current_row, start_col − 3, ' ');
 mvaddch(start_row + current_row, start_col + 40, ' ');

2.

Try It Out − Looking at main

197

 }

 txt_ptr = options[current_row];
 txt_ptr++;
 }

 mvprintw(start_row + current_row + 3, start_col,
 "Move highlight then press Return ");
 refresh();
}

clear_all_screen, which, surprisingly enough, clears the screen and rewrites the title. If a CD is
selected, its information is displayed.

void clear_all_screen()
{
 clear();
 mvprintw(2, 20, "%s", "CD Database Application");
 if (current_cd[0]) {
 mvprintw(ERROR_LINE, 0, "Current CD: %s: %s\n",
 current_cat, current_cd);
 }
 refresh();
}

3.

Now we look at the functions which add to or update the CD database. The functions called from main are
add_record, update_cd and remove_cd. This function makes several calls to functions that will be defined in
the next few sections.

Try It Out − Database File Manipulation

First, how do we add a new CD record to the database?

void add_record()
{
 char catalog_number[MAX_STRING];
 char cd_title[MAX_STRING];
 char cd_type[MAX_STRING];
 char cd_artist[MAX_STRING];
 char cd_entry[MAX_STRING];

 int screenrow = MESSAGE_LINE;
 int screencol = 10;

 clear_all_screen();
 mvprintw(screenrow, screencol, "Enter new CD details");
 screenrow += 2;

 mvprintw(screenrow, screencol, "Catalog Number: ");
 get_string(catalog_number);
 screenrow++;

 mvprintw(screenrow, screencol, " CD Title: ");
 get_string(cd_title);
 screenrow++;

 mvprintw(screenrow, screencol, " CD Type: ");
 get_string(cd_type);
 screenrow++;

1.

 Try It Out − Database File Manipulation

198

 mvprintw(screenrow, screencol, " Artist: ");
 get_string(cd_artist);
 screenrow++;

 mvprintw(PROMPT_LINE−2, 5, "About to add this new entry:");
 sprintf(cd_entry, "%s,%s,%s,%s",
 catalog_number, cd_title, cd_type, cd_artist);
 mvprintw(PROMPT_LINE, 5, "%s", cd_entry);
 refresh();
 move(PROMPT_LINE, 0);
 if (get_confirm()) {
 insert_title(cd_entry);
 strcpy(current_cd, cd_title);
 strcpy(current_cat, catalog_number);
 }
}

get_string prompts for and reads in a string at the current screen position. It also deletes any trailing
newline.

void get_string(char *string)
{
 int len;

 wgetnstr(stdscr, string, MAX_STRING);
 len = strlen(string);
 if (len > 0 && string[len − 1] == '\n')
 string[len − 1] = '\0';
}

2.

get_confirm prompts and reads user confirmation. It reads the user's input string and checks the first
character for Y or y. If it finds any other character, it gives no confirmation.

int get_confirm()
{
 int confirmed = 0;
 char first_char;

 mvprintw(Q_LINE, 5, "Are you sure? ");
 clrtoeol();
 refresh();

 cbreak();
 first_char = getch();
 if (first_char == 'Y' || first_char == 'y') {
 confirmed = 1;
 }
 nocbreak();

 if (!confirmed) {
 mvprintw(Q_LINE, 1, " Cancelled");
 clrtoeol();
 refresh();
 sleep(1);
 }
 return confirmed;
}

3.

Lastly, we look at insert_title. This adds a title to the CD database by appending the title string to the
end of the titles file.

4.

 Try It Out − Database File Manipulation

199

void insert_title(char *cdtitle)
{
 FILE *fp = fopen(title_file, "a");
 if (!fp) {
 mvprintw(ERROR_LINE, 0, "cannot open CD titles database");
 } else {
 fprintf(fp, "%s\n", cdtitle);
 fclose(fp);
 }
}

On to the other file manipulation functions called by main. We start with update_cd. This function
uses a scrolling, boxed subwindow and needs some constants, which we define globally, because they
will be needed later for the list_tracks function. These are:

#define BOXED_LINES 11
#define BOXED_ROWS 60
#define BOX_LINE_POS 8
#define BOX_ROW_POS 2

update_cd allows the user to re−enter the tracks for the current CD. Having deleted the previous
tracks record, it prompts for new information.

void update_cd()
{
 FILE *tracks_fp;
 char track_name[MAX_STRING];
 int len;
 int track = 1;
 int screen_line = 1;
 WINDOW *box_window_ptr;
 WINDOW *sub_window_ptr;

 clear_all_screen();
 mvprintw(PROMPT_LINE, 0, "Re−entering tracks for CD. ");
 if (!get_confirm())
 return;
 move(PROMPT_LINE, 0);
 clrtoeol();

 remove_tracks();

 mvprintw(MESSAGE_LINE, 0, "Enter a blank line to finish");

 tracks_fp = fopen(tracks_file, "a");

The listing continues in just a moment. We're making this brief intermission to highlight how we enter
the information in a scrolling, boxed window. The trick is to set up a subwindow, draw a box around
the edge, then add a new, scrolling, subwindow just inside the boxed subwindow.

 box_window_ptr = subwin(stdscr, BOXED_LINES + 2, BOXED_ROWS + 2,
 BOX_LINE_POS − 1, BOX_ROW_POS − 1);
 if (!box_window_ptr)
 return;
 box(box_window_ptr, ACS_VLINE, ACS_HLINE);

 sub_window_ptr = subwin(stdscr, BOXED_LINES, BOXED_ROWS,
 BOX_LINE_POS, BOX_ROW_POS);
 if (!sub_window_ptr)
 return;

5.

 Try It Out − Database File Manipulation

200

 scrollok(sub_window_ptr, TRUE);
 werase(sub_window_ptr);
 touchwin(stdscr);

 do {
 mvwprintw(sub_window_ptr, screen_line++, BOX_ROW_POS + 2,
 "Track %d: ", track);
 clrtoeol();
 refresh();
 wgetnstr(sub_window_ptr, track_name, MAX_STRING);
 len = strlen(track_name);
 if (len > 0 && track_name[len − 1] == '\n')
 track_name[len − 1] = '\0';
 if (*track_name)
 fprintf(tracks_fp, "%s,%d,%s\n",
 current_cat, track, track_name);
 track++;
 if (screen_line > BOXED_LINES − 1) {
 /* time to start scrolling */
 scroll(sub_window_ptr);
 screen_line−−;
 }
 } while (*track_name);
 delwin(sub_window_ptr);

 fclose(tracks_fp);
}

The last function called from main is remove_cd.

void remove_cd()
{
 FILE *titles_fp, *temp_fp;
 char entry[MAX_ENTRY];
 int cat_length;

 if (current_cd[0] == '\0')
 return;

 clear_all_screen();
 mvprintw(PROMPT_LINE, 0, "About to remove CD %s: %s. ",
 current_cat, current_cd);
 if (!get_confirm())
 return;

 cat_length = strlen(current_cat);

 /* Copy the titles file to a temporary, ignoring this CD */
 titles_fp = fopen(title_file, "r");
 temp_fp = fopen(temp_file, "w");

 while (fgets(entry, MAX_ENTRY, titles_fp)) {
 /* Compare catalog number and copy entry if no match */
 if (strncmp(current_cat, entry, cat_length) != 0)
 fputs(entry, temp_fp);
 }
 fclose(titles_fp);
 fclose(temp_fp);

 /* Delete the titles file, and rename the temporary file */
 unlink(title_file);
 rename(temp_file, title_file);

6.

 Try It Out − Database File Manipulation

201

 /* Now do the same for the tracks file */
 remove_tracks();

 /* Reset current CD to 'None' */
 current_cd[0] = '\0';
}

We now need only list remove_tracks, the function which deletes the tracks from the current CD. It's
called by both update_cd and remove_cd.

void remove_tracks()
{
 FILE *tracks_fp, *temp_fp;
 char entry[MAX_ENTRY];
 int cat_length;

 if (current_cd[0] == '\0')
 return;

 cat_length = strlen(current_cat);

 tracks_fp = fopen(tracks_file, "r");
if (!tracks_fp)
 return;
 temp_fp = fopen(temp_file, "w");

 while (fgets(entry, MAX_ENTRY, tracks_fp)) {
 /* Compare catalog number and copy entry if no match */
 if (strncmp(current_cat, entry, cat_length) != 0)
 fputs(entry, temp_fp);
 }
 fclose(tracks_fp);
 fclose(temp_fp);

 /* Delete the tracks file, and rename the temporary file */
 unlink(tracks_file);
 rename(temp_file, tracks_file);
}

7.

Try It Out − Querying the CD Database

Essential to all acquisitive hobbies is a knowledge of how many of whatever you collect you own.
The next function performs this function admirably; it scans the database, counting titles and tracks.

void count_cds()
{
 FILE *titles_fp, *tracks_fp;
 char entry[MAX_ENTRY];
 int titles = 0;
 int tracks = 0;

 titles_fp = fopen(title_file, "r");
 if (titles_fp) {
 while (fgets(entry, MAX_ENTRY, titles_fp))
 titles++;
 fclose(titles_fp);
 }
 tracks_fp = fopen(tracks_file, "r");
 if (tracks_fp) {

1.

Try It Out − Querying the CD Database

202

 while (fgets(entry, MAX_ENTRY, tracks_fp))
 tracks++;
 fclose(tracks_fp);
 }
 mvprintw(ERROR_LINE, 0,
 "Database contains %d titles, with a total of %d tracks.",
 titles, tracks);
 get_return();
}

You've lost the sleeve notes from your favorite CD, but don't worry! Having carefully typed the
details across, you can now find the track listing using find_cd. It prompts for a substring to match in
the database and sets the global variable current_cd to the CD title found.

void find_cd()
{
 char match[MAX_STRING], entry[MAX_ENTRY];
 FILE *titles_fp;
 int count = 0;
 char *found, *title, *catalog;

 mvprintw(Q_LINE, 0, "Enter a string to search for in CD titles: ");
 get_string(match);

 titles_fp = fopen(title_file, "r");
 if (titles_fp) {
 while (fgets(entry, MAX_ENTRY, titles_fp)) {

 /* Skip past catalog number */
 catalog = entry;
 if ((found == strstr(catalog, ","))) {
 *found = '\0';
 title = found + 1;

 /* Zap the next comma in the entry to reduce it to
 title only */
 if ((found == strstr(title, ","))) {
 *found = '\0';

 /* Now see if the match substring is present */
 if ((found == strstr(title, match))) {
 count++;
 strcpy(current_cd, title);
 strcpy(current_cat, catalog);
 }
 }
 }
 }
 fclose(titles_fp);
 }
 if (count != 1) {
 if (count == 0) {
 mvprintw(ERROR_LINE, 0, "Sorry, no matching CD found. ");
 }
 if (count > 1) {
 mvprintw(ERROR_LINE, 0,
 "Sorry, match is ambiguous: %d CDs found. ", count);
 }
 current_cd[0] = '\0';
 get_return();
 }

2.

Try It Out − Querying the CD Database

203

}

Though catalog points at a larger array than current_cat and could conceivably overwrite memory, the
check in fgets prevents this.
Lastly, we need to be able to list the selected CD's tracks on the screen. We make use of the #defines
for the subwindows used in update_cd in the last section.

void list_tracks()
{
 FILE *tracks_fp;
 char entry[MAX_ENTRY];
 int cat_length;
 int lines_op = 0;
 WINDOW *track_pad_ptr;
 int tracks = 0;
 int key;
 int first_line = 0;

 if (current_cd[0] == '\0') {
 mvprintw(ERROR_LINE, 0, "You must select a CD first. ");
 get_return();
 return;
 }
 clear_all_screen();
 cat_length = strlen(current_cat);

 /* First count the number of tracks for the current CD */
 tracks_fp = fopen(tracks_file, "r");
 if (!tracks_fp)
 return;
 while (fgets(entry, MAX_ENTRY, tracks_fp)) {
 if (strncmp(current_cat, entry, cat_length) == 0)
 tracks++;
 }
 fclose(tracks_fp);

 /* Make a new pad, ensure that even if there is only a single
 track the PAD is large enough so the later prefresh() is always
 valid.
 */
 track_pad_ptr = newpad(tracks + 1 + BOXED_LINES, BOXED_ROWS + 1);
 if (!track_pad_ptr)
 return;

 tracks_fp = fopen(tracks_file, "r");
 if (!tracks_fp)
 return;

 mvprintw(4, 0, "CD Track Listing\n");

 /* write the track information into the pad */
 while (fgets(entry, MAX_ENTRY, tracks_fp)) {
 /* Compare catalog number and output rest of entry */
 if (strncmp(current_cat, entry, cat_length) == 0) {
 mvwprintw(track_pad_ptr, lines_op++, 0, "%s",
 entry + cat_length + 1);
 }
 }
 fclose(tracks_fp);

3.

Try It Out − Querying the CD Database

204

 if (lines_op > BOXED_LINES) {
 mvprintw(MESSAGE_LINE, 0,
 "Cursor keys to scroll, RETURN or q to exit");
 } else {
 mvprintw(MESSAGE_LINE, 0, "RETURN or q to exit");
 }
 wrefresh(stdscr);
 keypad(stdscr, TRUE);
 cbreak();
 noecho();
 key = 0;
 while (key != 'q' && key != KEY_ENTER && key != '\n') {
 if (key == KEY_UP) {
 if (first_line > 0)
 first_line−−;
 }
 if (key == KEY_DOWN) {
 if (first_line + BOXED_LINES + 1 < tracks)
 first_line++;
 }
 /* now draw the appropriate part of the pad on the screen */
 prefresh(track_pad_ptr, first_line, 0,
 BOX_LINE_POS, BOX_ROW_POS,
 BOX_LINE_POS + BOXED_LINES, BOX_ROW_POS + BOXED_ROWS);
 key = getch();
 }

 delwin(track_pad_ptr);
 keypad(stdscr, FALSE);
 nocbreak();
 echo();
}

The last two functions call get_return, which prompts for and reads a carriage return, ignoring other
characters:

void get_return()
{
 int ch;
 mvprintw(23, 0, "%s", " Press return ");
 refresh();
 while ((ch = getchar()) != '\n' && ch != EOF);
}

4.

If you run this program, you should see something like:

Try It Out − Querying the CD Database

205

Summary

In this chapter we have explored the curses library. curses provides a good way for text−based programs to
control the screen and read the keyboard. Although the curses library doesn't offer as much control as the
general terminal interface (GTI) and direct terminfo access, it's considerably easier to use. If you're writing a
full screen, text−based application, you should consider using the curses library to manage the screen and
keyboard for you.

 Summary

206

Chapter 7: Data Management

Overview

In Chapter 3, we learned about files and in Chapter 4 we touched on the subject of resource limits. In this
chapter, we're going to look initially at ways of managing your resource allocation, then of dealing with files
that are accessed by many users more or less simultaneously and lastly at one tool provided in most UNIX
systems for overcoming the limitations of data files.

We can summarize these topics as three ways of managing data:

Dynamic memory management: what to do and what UNIX won't let you do.•
File locking: cooperative locking, locking regions of shared files and avoiding deadlocks.•
The dbm database: a database library featured in UNIX.•

Managing Memory

On all computer systems memory is a scarce resource. No matter how much memory is available, it never
seems to be enough. It wasn't so long ago that being able to address even a single megabyte of memory was
considered more than anyone would ever need, but now sixty four times that is considered a bare minimum
for a single−user personal computer, and many systems have much more.

From the earliest versions of the operating system, UNIX has had a very clean approach to managing
memory. UNIX applications are never permitted to access physical memory directly. It might appear so to the
application, but what the application is seeing is a carefully controlled illusion.

UNIX has always provided processes with a flat, unsegmented memory model−each process 'sees' its own
memory area. Almost all versions of UNIX also provide memory protection, which guarantees that incorrect
(or malicious) programs don't overwrite the memory of other processes or the operating system. In general,
the memory allocated to one process can be neither read nor written to by any other process. Almost all
versions of UNIX use hardware facilities to enforce this private use of memory.

Simple Memory Allocation

We allocate memory using the malloc call in the standard C library.

#include <stdlib.h>

void *malloc(size_t size);

Notice that the X/Open specification differs from some UNIX implementations by not requiring a special
malloc.h include file. Note also that the size parameter that specifies the number of bytes to allocate isn't a
simple int, although it's usually an unsigned integer type.

We can allocate a great deal of memory on most UNIX systems. Let's try.

207

Try It Out − Simple Memory Allocation

Type in the following program, memory1.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define A_MEGABYTE (1024 * 1024)

int main()
{
 char *some_memory;
 int megabyte = A_MEGABYTE;
 int exit_code = EXIT_FAILURE;

 some_memory = (char *)malloc(megabyte);
 if (some_memory != NULL) {
 sprintf(some_memory, "Hello World\n");
 printf("%s", some_memory);
 exit_code = EXIT_SUCCESS;
 }
 exit(exit_code);
}

When we run this program, it outputs:

$ memory1
Hello World

How It Works

This program asks the malloc library to give it a pointer to a megabyte of memory. We check to ensure that
malloc was successful and then use some of the memory to show that it exists. When you run the program,
you should see Hello World printed out, showing that malloc did indeed return the megabyte of usable
memory. We don't check that all of the megabyte is present; we have to put some trust in the malloc code!

Notice that since malloc returns a void * pointer, we cast the result to the char * that we need. The malloc
function is guaranteed to return memory that is aligned so that it can be cast to a pointer of any type.

The simple reason is that most current Linux and UNIX systems use 32−bit integers and use 32−bit pointers
for pointing to memory, which allows you to specify up to 4 gigabytes. This ability to address directly with a
32−bit pointer without needing segment registers or other tricks is termed a flat 32−bit memory model. This
model is also used in Windows NT/2000 and Windows 9x for 32−bit applications. There are a few flavors of
UNIX that are restricted to 16−bit, but they are very few and far between. You shouldn't rely on integers being
32−bit, however, as there are also an increasing number of 64−bit versions of Linux and UNIX in use.

Allocating Lots of Memory

Now that we've seen UNIX exceed the limitations of the DOS memory model, let's give it a more difficult
problem. The next program will ask to allocate rather more memory than is physically present in the machine,
so we might expect malloc to start failing somewhere a little short of the actual amount of memory present,
since the kernel and all the other running processes will be using some memory.

Try It Out − Simple Memory Allocation

208

Try It Out − Asking for all Physical Memory

With memory2.c, we're going to ask for all the machine's memory:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define A_MEGABYTE (1024 * 1024)

int main()
{
 char *some_memory;
 size_t size_to_allocate = A_MEGABYTE;
 int megs_obtained = 0;

 while (megs_obtained < 512) {
 some_memory = (char *)malloc(size_to_allocate);
 if (some_memory != NULL) {
 megs_obtained++;
 sprintf(some_memory, "Hello World");
 printf("%s − now allocated %d Megabytes\n", some_memory, megs_obtained);
 }
 else {
 exit(EXIT_FAILURE);
 }
 }
 exit(EXIT_SUCCESS);
}

The output, somewhat abbreviated, is:

$ memory2
Hello World − now allocated 1 Megabytes
Hello World − now allocated 2 Megabytes
...
Hello World − now allocated 511 Megabytes
Hello World − now allocated 512 Megabytes

How It Works

The program is very similar to the previous example. It simply loops, asking for more and more memory. The
surprise is that it works at all, because we appear to have created a program that uses every single byte of
physical memory on the authors machine. Notice that we use the size_t type for our call to malloc. This is
actually an unsigned int in the current Linux implementation.

The other interesting feature, is that, at least on this machine, it ran the program in the blink of an eye. So, not
only have we apparently used up all the memory, but we've done it very quickly indeed.

Let's investigate further and see just how much memory we can allocate on this machine with memory3.c.
Since it's now clear that UNIX can do some very clever things with requests for memory, we'll allocate
memory just 1k at a time and write to each block that we obtain.

 Try It Out − Asking for all Physical Memory

209

Try It Out − Available Memory

This is memory3.c. By its very nature, it's extremely system−unfriendly and could affect a multi−user
machine quite seriously. If you're at all concerned about the risk it's better not to run it at all; it won't harm
your understanding if you don't.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#define ONE_K (1024)

int main()
{
 char *some_memory;
 int size_to_allocate = ONE_K;
 int megs_obtained = 0;
 int ks_obtained = 0;

 while (1) {
 for (ks_obtained = 0; ks_obtained < 1024; ks_obtained++) {
 some_memory = (char *)malloc(size_to_allocate);
 if (some_memory == NULL) exit(EXIT_FAILURE);
 sprintf(some_memory, "Hello World");
 }
 megs_obtained++;
 printf("Now allocated %d Megabytes\n", megs_obtained);
 }
 exit(EXIT_SUCCESS);
}

This time, the output, again abbreviated, is,

$ memory3
Now allocated 1 Megabytes
...
Now allocated 153 Megabytes
Now allocated 154 Megabytes

and then the program ends. It also takes quite a few seconds to run and visibly slows down around the same
number as the physical memory in the machine. However the program has allocated rather more memory than
the author physically has in his machine at the time of writing.

How It Works

The memory that the application is being allocated is managed by the UNIX kernel. Each time the program
asks for memory or tries to read or write to memory that it has allocated, the UNIX kernel takes charge to
decide how to handle the request.

Initially, the kernel was simply able to use free physical memory to satisfy the application's request for
memory, but once physical memory was full, it started using what's called swap space. On most versions of
UNIX, this is a separate disk area. If you're familiar with MS Windows, the UNIX swap space acts a little like
the MS Windows swap file. However, unlike MS Windows, there's no local heap, global heap or any
discardable memory segments to worry about−the UNIX kernel does all the management for you.

Try It Out − Available Memory

210

The kernel moves data and program code between physical memory and the swap space, so that each time you
read or write memory, the data always appears to have been in physical memory, wherever it was actually
located before you attempted to access it.

In more technical terms, UNIX implements a demand paged virtual memory system. All memory seen by user
programs is virtual, i.e. it doesn't actually exist at the physical address the program uses. UNIX divides all
memory into pages, commonly 4096 bytes per page. When a program tries to access memory, a virtual to
physical translation is made, although how this is implemented and the time it takes depend on the particular
hardware you're using. When the access is to memory that isn't physically resident, there is a page fault and
control is passed to the UNIX kernel.

UNIX checks the address being accessed and, if it's a legal address for that program, determines which page
of physical memory to make available. It then either allocates it, if it had never been written before, or, if it
was stored on the disk in the swap space, reads the memory page containing the data into physical memory
(possibly moving an existing page out to disk). Then, after mapping the virtual memory address to match the
physical address, it allows the user program to continue. UNIX applications don't need to worry about this
activity because the implementation is all hidden in the UNIX kernel.

Eventually, when the application exhausts both the physical memory and the swap space, or when the
maximum stack size is exceeded, the UNIX kernel finally refuses the request for further memory.

So, what does this mean to the application programmer? Basically, it's all good news. UNIX is very good at
managing memory and will allow application programs to use very large amounts of memory and even very
large single blocks of memory. However, you must remember that allocating two blocks of memory won't
result in a single continuously addressable block of memory. What you get is what you ask for: two separate
blocks of memory.

So does this apparently limitless supply of memory mean that there's no point in checking the return from
malloc? Definitely not. One of the most common problems in C programs using dynamically allocated
memory is to write beyond the end of an allocated block. When this happens, the program may not terminate
immediately, but you have probably overwritten some data used internally by the malloc library routines.

Usually, the result is that future calls to malloc may fail, not because there's no memory to allocate, but
because the memory structures have been corrupted. These problems can be quite difficult to track down and,
in programs, the sooner the error is detected, the better the chances of tracking down the cause. In Chapter 9
on debugging and optimizing, we'll meet some tools that can help you track down memory problems.

Abusing Memory

Suppose we try and do 'bad' things with memory. Let's allocate some memory and then attempt to write past
the end, in memory4.c.

Try It Out − Abuse Your Memory

#include <stdlib.h>

#define ONE_K (1024)

int main()
{
 char *some_memory;

 Abusing Memory

211

 char *scan_ptr;

 some_memory = (char *)malloc(ONE_K);
 if (some_memory == NULL) exit(EXIT_FAILURE);

 scan_ptr = some_memory;
 while(1) {
 *scan_ptr = '\0';
 scan_ptr++;
 }
 exit(EXIT_SUCCESS);
}

The output is simply:

$ memory4
Segmentation fault (core dumped)

How It Works

The UNIX memory management system has protected the rest of the system from this abuse of memory. To
ensure that one badly behaved program (this one) can't damage any other programs, UNIX has terminated it.

Each running program on a UNIX system sees its own memory map, which is different from every other
program's. Only the operating system knows how physical memory is arranged and not only manages it for
user programs, but also protects user programs from each other.

The Null Pointer

Unlike MS−DOS, modern UNIX systems are very protective about writing or reading from a null pointer,
although the actual behavior is implementation−specific.

Try It Out − Accessing a Null Pointer

Let's find out what happens when we access a null pointer in memory5a.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{
 char *some_memory = (char *)0;

 printf("A read from null %s\n", some_memory);
 sprintf(some_memory, "A write to null\n");
 exit(EXIT_SUCCESS);
}

The output is:

$ memory5a
A read from null (null)
Segmentation fault(core dumped)

How It Works

212

How It Works

The first printf attempts to print out a string obtained from a null pointer, then the sprintf attempts to write to a
null pointer. In this case, Linux (in the guise of the GNU 'C' library) has been forgiving about the read and has
simply given us a 'magic' string containing the characters (n u l l) \0. It hasn't been so forgiving about the
write and has terminated the program. This can sometimes be helpful in tracking down program bugs.

If we try this again, but this time don't use the GNU 'C' library, we discover that reading from location zero is
not permitted:

This is memory5b.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{
 char z = *(const char *)0;
 printf("I read from location zero\n");

 exit(EXIT_SUCCESS);
}

The output is:

$ memory5b
Segmentation fault(core dumped)

How It Works

This time we attempt to read directly from location zero. There is no GNU libc library between us and the
kernel this time, and our program is terminated. You should note that some versions of UNIX do permit
reading from location zero, but Linux doesn't.

Freeing Memory

Up to now, we've been simply allocating memory and then hoping that when the program ends, the memory
we've used hasn't been lost. Fortunately, the UNIX memory management system is quite capable of ensuring
that memory is returned to the system when a program ends. However, most programs don't simply want to
allocate some memory, use it for a short period, then exit. A much more common use is dynamically using
memory as required.

Programs that use memory on a dynamic basis should always release unused memory back to the malloc
memory manager using the free call. This allows separate blocks to be remerged and allows the malloc library
to look after memory, rather than the application managing it. If a running program (process) uses and then
frees memory, that free memory remains allocated to the process. However, if it's not being used, the UNIX
memory manager will be able to page it out from physical memory to swap space, where it has little impact on
the use of resources.

#include <stdlib.h>

void free(void *ptr_to memory);

How It Works

213

A call to free should only be made with a pointer to memory allocated by a call to malloc, calloc or realloc.
We'll meet calloc and realloc very shortly.

Try It Out − Freeing Memory

This program's called memory6.c:

#include <stdlib.h>

#define ONE_K (1024)

int main()
{
 char *some_memory;
 int exit_code = EXIT_FAILURE;

 some_memory = (char *)malloc(ONE_K);
 if (some_memory != NULL) {
 free(some_memory);
 exit_code = EXIT_SUCCESS;
 }
 exit(exit_code);
}

How It Works

This program simply shows how to call free with a pointer to some previously allocated memory.

Important Remember that once you've called free on a block of memory, it no longer belongs to the
process. It's not being managed by the malloc library. Never try to read or write memory after
calling free on it.

Other Memory Allocation Functions

There are two other memory allocation functions that are not used as often as malloc and free. These are
calloc and realloc. The prototypes are:

#include <stdlib.h>

void *calloc(size_t number_of_elements, size_t element_size);
void *realloc(void *existing_memory, size_t new_size);

Although calloc allocates memory that can be freed with free, it has rather different parameters. It allocates
memory for an array of structures and requires the number of elements and the size of each element as its
parameters. The allocated memory is filled with zeros and if calloc is successful, a pointer to the first element
is returned. Like malloc, subsequent calls are not guaranteed to return contiguous space, so you can't enlarge
an array created by calloc by simply calling calloc again and expecting the second call to return memory
appended to that returned by the first call.

The realloc function changes the size of a block of memory that has been previously allocated. It's passed a
pointer to some memory previously allocated by malloc, calloc or realloc and resizes it up or down as
requested. The realloc function may have to move data about to achieve this, so it's important to ensure that
once memory has been realloced, you always use the new pointer and never try to access the memory using

Try It Out − Freeing Memory

214

pointers set up before realloc was called.

Another problem to watch out for is that realloc returns a null pointer if it was unable to resize the memory.
This means that, in some applications, you should avoid writing code like this:

my_ptr = malloc(BLOCK_SIZE);
....
my_ptr = realloc(my_ptr, BLOCK_SIZE * 10);

If realloc fails, it will return a null pointer, my_ptr will point to null and the original memory allocated with
malloc can no longer be accessed via my_ptr. It may, therefore, be to your advantage to request the new
memory first with malloc and then copy data from the old block to the new block using memcpy before
freeing the old block. On error, this would allow the application to retain access to the data stored in the
original block of memory, perhaps while arranging a clean termination of the program.

File Locking

File locking is a very important part of multiuser, multitasking operating systems. Programs frequently need
to share data, usually through files, and it's very important that those programs have some way of establishing
control of a file. The file can then be updated in a safe fashion, or a second program can stop itself from trying
to read a file that is in a transient state whilst another program is writing to it.

UNIX has several features that we can use for file locking. The simplest method is a technique to create lock
files in an atomic way, so that nothing else can happen while the lock is being created. This gives a program a
method of creating files that are guaranteed to be unique and could not have been simultaneously created by a
different program.

The second method is more advanced and allows programs to lock parts of a file for exclusive access. In
X/Open compliant versions of UNIX, there are two different ways of achieving this second form of locking.
We'll look at only one in detail, since the second is very similar−it just has a slightly different programming
interface.

Creating Lock Files

Many applications just need to be able to create a lock file for a resource. Other programs can then check the
file to see whether they are permitted to access the resource.

Usually, these lock files are in a special place with a name that relates to the resource being controlled. For
example, when a modem is in use, Linux creates a lock file in the /usr/spool/uucp directory. On many UNIX
systems, this directory is used to indicate the availability of serial ports:

$ ls /usr/spool/uucp
LCK..ttyS1

Remember that lock files act only as indicators; programs need to cooperate to use them. They are termed
advisory, as opposed to mandatory, locks.

To create a file to use as a lock indicator, we use the open system call defined in fcntl.h (which we met in
Chapter 3) with the O_CREAT and O_EXCL flags set. This allows us to both check that the file doesn't
already exist and then create it in a single, atomic, operation.

 File Locking

215

Try It Out − Creating a Lock File

Let's see this in action with lock1.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

int main()
{
 int file_desc;
 int save_errno;

 file_desc = open("/tmp/LCK.test", O_RDWR | O_CREAT | O_EXCL, 0444);
 if (file_desc == −1) {
 save_errno = errno;
 printf("Open failed with error %d\n", save_errno);
 }
 else {
 printf("Open succeeded\n");
 }
 exit(EXIT_SUCCESS);
}

The first time we run the program, the output is,

$ lock1
Open succeeded

but the next time we try, we get:

$ lock1
Open failed with error 17

How It Works

The program calls open to create a file called /tmp/LCK.test, using the O_CREAT and O_EXCL flags. The
first time we run the program, the file didn't exist, so the open call was successful. Subsequent invocations of
the program fail, because the file already exists. To get the program to succeed again we'll have to remove the
lock file.

On Linux systems at least, error 17 refers to EEXIST, an error that is used to indicate that a file already
exists. Error numbers are defined in the header file errno.h or files included by it. In this case, the definition
reads:

#define EEXIST 17 /* File exists */

This is an appropriate error for an open(O_CREAT | O_EXCL) failure.

If a program simply needs a resource exclusively for a short period of its execution, often termed a critical
section, it should create the lock file before entering the critical section and use unlink to delete it afterwards,
when it exits the critical section.

Try It Out − Creating a Lock File

216

We can demonstrate how programs can cooperate with this locking mechanism by writing a sample program
and running two copies of it at the same time. We're going to use the getpid call that we saw in Chapter 4,
which returns the process identifier, a unique number for each currently executing program.

Try It Out − Cooperative Lock Files

Here's the source of our test program, lock2.c:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <errno.h>

const char *lock_file = "/tmp/LCK.test2";

int main()
{
 int file_desc;
 int tries = 10;

 while (tries−−) {
 file_desc = open(lock_file, O_RDWR | O_CREAT | O_EXCL, 0444);
 if (file_desc == −1) {
 printf("%d − Lock already present\n", getpid());
 sleep(3);
 }
 else {

1.

The critical section starts here...

 printf("%d − I have exclusive access\n", getpid());
 sleep(1);
 (void)close(file_desc);
 (void)unlink(lock_file);

2.

...and ends here:

 sleep(2);
 }
 }
 exit(EXIT_SUCCESS);
}

3.

To run it, we should first ensure that the lock file doesn't exist, with,

$ rm −f /tmp/LCK.test2

4.

then run two copies of the program, by using the command:

$ lock2 & lock2

5.

This is the output that we get:

1284 − I have exclusive access
1283 − Lock already present
1283 − I have exclusive access
1284 − Lock already present
1284 − I have exclusive access
1283 − Lock already present
1283 − I have exclusive access
1284 − Lock already present

6.

 Try It Out − Cooperative Lock Files

217

1284 − I have exclusive access
1283 − Lock already present
1283 − I have exclusive access
1284 − Lock already present
1284 − I have exclusive access
1283 − Lock already present
1283 − I have exclusive access
1284 − Lock already present
1284 − I have exclusive access
1283 − Lock already present
1283 − I have exclusive access
1284 − Lock already present

This shows how the two invocations of the same program are cooperating. If you try this, you'll very likely
see different process identifiers in the output, but the program behavior will be the same.

How It Works

For the purposes of demonstration, we make the program loop ten times, using the while loop. The program
then tries to access the critical resource by creating a unique lock file, /tmp/LCK.test2. If this fails because the
file already exists, the program waits for a short time and tries again. If it succeeds, it can then have access to
the resource and, in the part marked 'critical section', can carry out whatever processing is required with
exclusive access.

Since this is just a demonstration, we only wait for a short period. When the program has finished with the
resource, it releases the lock by deleting the lock file. It can then carry out some other processing (just the
sleep function in this case) before trying to re−acquire the lock. The lock file acts as a binary semaphore,
giving each program a yes or no answer to the question, "Can I use the resource?". We will learn more about
semaphores in chapters 12 and 13.

It's important to realize this is a cooperative arrangement and that we must write the programs correctly for
this to work. A program failing to create the lock file can't simply delete the file and try again. It might then
be able to create the lock file, but the other program that created the lock file has no way of knowing that it no
longer has exclusive access to the resource.

Locking Regions

Creating lock files is fine for controlling exclusive access to resources such as serial ports, but isn't so good
for access to large shared files. Suppose there exists a large file which is written by one program, but updated
by many different programs simultaneously. This might occur if a program is logging some data that is
obtained continuously over a long period and is being processed by several other programs. The processing
programs can't wait for the logging program to finish−it runs continuously−so they need some way of
cooperating to provide simultaneous access to the same file.

We can do this by locking regions of the file, so that a particular section of the file is locked, but other
programs may access other parts of the file. UNIX has (at least) two ways to do this: using the fcntl system
call or the lockf call. We'll look primarily at the fcntl interface, since that is probably the most common. lockf
is reasonably similar.

We met the fcntl call in Chapter 3. Its definition is:

#include <fcntl.h>

How It Works

218

int fcntl(int fildes, int command, ...);

fcntl operates on open file descriptors and, depending on the command parameter, can perform different tasks.
The three that we're interested in for file locking are:

F_GETLK•
F_SETLK•
F_SETLKW•

When we use these, the third argument must be a pointer to a struct flock, so the prototype is effectively:

int fcntl(int fildes, int command, struct flock *flock_structure);

The flock (file lock) structure is implementation−dependent, but will contain at least the following members:

short l_type;•
short l_whence;•
off_t l_start;•
off_t l_len;•
pid_t l_pid;•

The l_type member takes one of several values, also defined in fcntl.h These are:

Value Description

F_RDLCK A shared (or 'read') lock. Many different processes can have a shared lock on the
same (or overlapping) regions of the file. If any process has a shared lock then, no
process will be able to get an exclusive lock on that region. In order to obtain a
shared lock, the file must have been opened with read or read/write access

F_UNLCK Unlock. Used for clearing locks

F_WRLCK An exclusive (or 'write') lock. Only a single process may have an exclusive lock on
any particular region of a file. Once a process has such a lock, no other process will
be able to get any sort of lock on the region. To obtain an exclusive lock, the file
must have been opened with write or read/write access

The l_whence, l_start and l_len members define a region, a contiguous set of bytes, in a file. The l_whence
must be one of SEEK_SET, SEEK_CUR, SEEK_END (from unistd.h), which correspond to the start, current
position and end of a file, respectively. It defines the offset to which l_start, the first byte in the region, is
relative. Normally, this would be SEEK_SET, so l_start is counted from the beginning of the file. The l_len
parameter defines the number of bytes in the region.

The l_pid parameter is used for reporting the process holding a lock; see the F_GETLK description below.

Each byte in a file can have only a single type of lock on it at any one time and may be locked for shared
access, locked for exclusive access or unlocked.

There are quite a few combinations of commands and options to the fcntl call, so let's look at each of them in
turn.

How It Works

219

The F_GETLK Command

The first command is F_GETLK. This gets locking information about the file that fildes (the first parameter)
has open. It doesn't attempt to lock the file. The calling process passes information about the type of lock it
might wish to create and fcntl used with the F_GETLK command returns any information that would prevent
the lock occurring.

The values used in the flock structure are:

Value Description

l_type Either F_RDLCK for a shared (read−only) lock or F_WRLCK for an exclusive
(write) lock

l_whence One of SEEK_SET, SEEK_CUR, SEEK_END LCK

l_start The start byte of the file region of interest

l_len The number of bytes in the file region of interest

l_pid The identifier of the process with the lock
A process may use the F_GETLK call to determine the current state of locks on a region of a file. It should set
up the flock structure to indicate the type of lock it may require and define the region it's interested in. The
fcntl call returns a value other than −1 if it's successful. If the file already has locks that would prevent a lock
request succeeding, it overwrites the flock structure with the relevant information. If the lock would succeed,
the flock structure is unchanged. If the F_GETLK call is unable to obtain the information it returns −1 to
indicate failure.

If the F_GETLK call is successful (i.e. it returns a value other than −1), the calling application must check the
contents of the flock structure to determine whether it was modified. Since the l_pid value is set to the locking
process (if one was found), this is a convenient field to check to determine if the flock structure has been
changed.

The F_SETLK Command

This command attempts to lock or unlock part of the file referenced by fildes. The values used in the flock
structure (and different from those used by F_GETLK) are:

Value Description

l_type Either F_RDLCK for a read−only or shared lock; F_WRLCK for an l_type. Either
F_RDLCK for a read only, or shared, lock; F_WRLCK for an exclusive, or
write,exclusive or write lock; and F_UNLCK to unlock a region

l_pid Unused
If the lock is successful, fcntl returns a value other than −1; on failure −1 is returned. The function will always
return immediately.

The F_SETLKW Command

This is the same as the F_SETLK command above, except that if it can't obtain the lock, the call will wait
until it can. Once this call has started waiting, it will only return when the lock can be obtained or a signal
occurs. We'll meet signals in Chapter 10.

All locks held by a program on a file are automatically cleared when the relevant file descriptor is closed. This
will also happen automatically when the program finishes.

Locking Regions

220

Use of read and write with Locking

When you're using locking on regions of a file, it's very important to use the lower level read and write calls
to access the data in the file, rather than the higher level fread and fwrite. This is because fread and fwrite
perform buffering of data read or written inside the library, so executing an fread call to read the first 100
bytes of a file may (in fact, almost certainly will) read more than 100 bytes and buffer the additional data
inside the library. If the program then uses fread to read the next 100 bytes, it will actually read data already
buffered inside the library and not cause a low level read to pull more data from the file.

To see why this is a problem, consider two programs that wish to update the same file. Let's suppose the file
consists of 200 bytes of data, all zeros. The first program starts first and obtains a write lock on the first 100
bytes of the file. It then uses fread to read in those 100 bytes. However, as we saw in Chapter 3, fread will
read ahead by up to BUFSIZ bytes at a time, so it actually reads the entire file into memory, but only passes
the first 100 bytes back to the program.

The second program then starts. It obtains a write lock on the second 100 bytes of the program. This is
successful, since the first program only locked the first 100 bytes. The second program writes twos to bytes
100 to 199, closes the file, unlocks it and exits. The first program then locks the second 100 bytes of the file
and calls fread to read them in. Because that data was buffered, what the program actually sees is 100 bytes of
zeros, not the 100 twos that actually exist in the file. This problem doesn't occur when we're using read and
write.

That may seem a complex description of file locking, but it's actually more difficult to describe than it is to
use. Let's look at an example of how file locking works, lock3.c.

To try out locking, we need two programs, one to do the locking and one to test. The first program does the
locking.

Try It Out − Locking a File with fcntl

Start with the includes and variable declarations:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>

const char *test_file = "/tmp/test_lock";

int main()
{
 int file_desc;
 int byte_count;
 char *byte_to_write = "A";
 struct flock region_1;
 struct flock region_2;
 int res;

1.

Open a file descriptor:

 file_desc = open(test_file, O_RDWR | O_CREAT, 0666);
 if (!file_desc) {
 fprintf(stderr, "Unable to open %s for read/write\n", test_file);
 exit(EXIT_FAILURE);
 }

2.

 Use of read and write with Locking

221

Put some data in the file:

 for(byte_count = 0; byte_count < 100; byte_count++) {
 (void)write(file_desc, byte_to_write, 1);
 }

3.

Set up region 1 with a shared lock, from bytes 10 to 30:

 region_1.l_type = F_RDLCK;
 region_1.l_whence = SEEK_SET;
 region_1.l_start = 10;
 region_1.l_len = 20;

4.

Set up region 2 with an exclusive lock, from bytes 40 to 50:

 region_2.l_type = F_WRLCK;
 region_2.l_whence = SEEK_SET;
 region_2.l_start = 40;
 region_2.l_len = 10;

5.

Now lock the file...

 printf("Process %d locking file\n", getpid());
 res = fcntl(file_desc, F_SETLK, ®ion_1);
 if (res == −1) fprintf(stderr, "Failed to lock region 1\n");
 res = fcntl(file_desc, F_SETLK, ®ion_2);
 if (res == −1) fprintf(stderr, "Failed to lock region 2\n");

6.

...and wait for a while.

 sleep(60);

 printf("Process %d closing file\n", getpid());
 close(file_desc);
 exit(EXIT_SUCCESS);
}

7.

How It Works

First, the program creates a file, opens it for both reading and writing, then fills the file with data. It then sets
up two regions, the first from bytes 10 to 30, for a shared (read) lock, the second from bytes 40 to 50 for an
exclusive (write) lock. It then calls fcntl to lock the two regions and waits for a minute before closing the file
and exiting.

When the program starts to wait, this is the situation with locks:

How It Works

222

On its own, this program isn't very useful. We need a second program to test the locks, lock4.c.

Try It Out − Testing Locks on a File

Let's write a program that tests the different sorts of lock that we could need on different regions of a file.

As usual, begin with the includes and declarations:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>

const char *test_file = "/tmp/test_lock";
#define SIZE_TO_TRY 5

void show_lock_info(struct flock *to_show);

int main()
{
 int file_desc;
 int res;
 struct flock region_to_test;
 int start_byte;

1.

Open a file descriptor:

 file_desc = open(test_file, O_RDWR | O_CREAT, 0666);
 if (!file_desc) {
 fprintf(stderr, "Unable to open %s for read/write", test_file);
 exit(EXIT_FAILURE);
 }

 for (start_byte = 0; start_byte < 99; start_byte += SIZE_TO_TRY) {

2.

Set up the region we wish to test:

 region_to_test.l_type = F_WRLCK;
 region_to_test.l_whence = SEEK_SET;
 region_to_test.l_start = start_byte;
 region_to_test.l_len = SIZE_TO_TRY;
 region_to_test.l_pid = −1;

 printf("Testing F_WRLCK on region from %d to %d\n",
 start_byte, start_byte + SIZE_TO_TRY);

3.

Now test the lock on the file:4.

Try It Out − Testing Locks on a File

223

 res = fcntl(file_desc, F_GETLK, ®ion_to_test);
 if (res == −1) {
 fprintf(stderr, "F_GETLK failed\n");
 exit(EXIT_FAILURE);
 }
 if (region_to_test.l_pid != −1) {
 printf("Lock would fail. F_GETLK returned:\n");
 show_lock_info(®ion_to_test);
 }
 else {
 printf("F_WRLCK − Lock would succeed\n");
 }

Now repeat the test with a shared (read) lock. Set up the region we wish to test again:

 region_to_test.l_type = F_RDLCK;
 region_to_test.l_whence = SEEK_SET;
 region_to_test.l_start = start_byte;
 region_to_test.l_len = SIZE_TO_TRY;
 region_to_test.l_pid = −1;

 printf("Testing F_RDLCK on region from %d to %d\n",
 start_byte, start_byte + SIZE_TO_TRY);

5.

Test the lock on the file again:

 res = fcntl(file_desc, F_GETLK, ®ion_to_test);
 if (res == −1) {
 fprintf(stderr, "F_GETLK failed\n");
 exit(EXIT_FAILURE);
 }
 if (region_to_test.l_pid != −1) {
 printf("Lock would fail. F_GETLK returned:\n");
 show_lock_info(®ion_to_test);
 }
 else {
 printf("F_RDLCK − Lock would succeed\n");
 }
 }
 close(file_desc);
 exit(EXIT_SUCCESS);
}

void show_lock_info(struct flock *to_show) {
 printf("\tl_type %d, ", to_show−>l_type);
 printf("l_whence %d, ", to_show−>l_whence);
 printf("l_start %d, ", (int)to_show−>l_start);
 printf("l_len %d, ", (int)to_show−>l_len);
 printf("l_pid %d\n", to_show−>l_pid);
}

6.

To test out locking, we first need to run the lock3 program, then run the lock4 program to test the locked file.
We do this by executing the lock3 program in the background, with the command:

$ lock3 &
$ process 1534 locking file

The command prompt returns, since lock3 is running in the background and we then immediately run the
lock4 program with the command:

$ lock4

Try It Out − Testing Locks on a File

224

The output we get, with some omissions for brevity, is:

Testing F_WRLOCK on region from 0 to 5
F_WRLCK − Lock would succeed
Testing F_RDLOCK on region from 0 to 5
F_RDLCK − Lock would succeed
...
Testing F_WRLOCK on region from 10 to 15
Lock would fail. F_GETLK returned:
l_type 0, l_whence 0, l_start 10, l_len 20, l_pid 1534
Testing F_RDLOCK on region from 10 to 15
F_RDLCK − Lock would succeed
Testing F_WRLOCK on region from 15 to 20
Lock would fail. F_GETLK returned:
l_type 0, l_whence 0, l_start 10, l_len 20, l_pid 1534
Testing F_RDLOCK on region from 15 to 20
F_RDLCK − Lock would succeed
...
Testing F_WRLOCK on region from 25 to 30
Lock would fail. F_GETLK returned:
l_type 0, l_whence 0, l_start 10, l_len 20, l_pid 1534
Testing F_RDLOCK on region from 25 to 30
F_RDLCK − Lock would succeed
...
Testing F_WRLOCK on region from 40 to 45
Lock would fail. F_GETLK returned:
l_type 1, l_whence 0, l_start 40, l_len 10, l_pid 1534
Testing F_RDLOCK on region from 40 to 45
Lock would fail. F_GETLK returned:
l_type 1, l_whence 0, l_start 40, l_len 10, l_pid 1534
...
Testing F_RDLOCK on region from 95 to 100
F_RDLCK − Lock would succeed

How It Works

For each group of five bytes in the file, lock4 sets up a region structure to test for locks on the file, which it
then uses to see if the region could be either write or read locked. The returned information shows the region
bytes, offset from byte zero, that would cause the lock request to fail. Since the l_pid part of the returned
structure contains the process identifier of the program that currently has the file locked, we set it to −1 (an
invalid value) then check whether it has been changed when the fcntl call returns. If the region isn't currently
locked, l_pid will be unchanged.

To understand the output, we need to look in the include file fcntl.h (in /usr/include/linux on Linux machines)
to find that an l_type of 1 is from the definition of F_WRLCK as 1, and an l_type of 0 is from the definition of
F_RDLCK as 0. Thus, an l_type of 1 tells us that the lock would fail because of an existing write lock and an
l_type of 0 is because of an existing read lock. On the regions of the file that lock3 has not locked, both shared
and exclusive locks will succeed.

From bytes 10 to 30, we can see that it would be possible to have a shared lock, because the existing lock
from the lock3 program is a shared, not an exclusive lock. On the region from bytes 40 to 50, both types of
lock would fail, since lock3 has an exclusive (F_WRLCK) lock on this region.

How It Works

225

Competing Locks

Now that we've seen how to test for existing locks on a file, let's see what happens when two programs
compete for locks on the same section of the file. We'll use our lock3 program for locking the file in the first
place and a new program to try to lock it again. To complete the example, we'll also add some calls for
unlocking.

Here's a program, lock5.c, that tries to lock regions of a file that are already locked, rather than testing the
lock status of different parts of the file.

Try It Out − Competing Locks

After the #includes and declarations, open a file descriptor:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>

const char *test_file = "/tmp/test_lock";

int main()
{
 int file_desc;
 struct flock region_to_lock;
 int res;

 file_desc = open(test_file, O_RDWR | O_CREAT, 0666);
 if (!file_desc) {
 fprintf(stderr, "Unable to open %s for read/write\n", test_file);
 exit(EXIT_FAILURE);
 }

1.

The remainder of the program is spent specifying different regions of the file and trying different
locking operations on them:

 region_to_lock.l_type = F_RDLCK;
 region_to_lock.l_whence = SEEK_SET;
 region_to_lock.l_start = 10;
 region_to_lock.l_len = 5;
 printf("Process %d, trying F_RDLCK, region %d to %d\n", getpid(),
 (int)region_to_lock.l_start, (int)(region_to_lock.l_start + region_to_lock.l_len));
 res = fcntl(file_desc, F_SETLK, ®ion_to_lock);
 if (res == −1) {
 printf("Process %d − failed to lock region\n", getpid());
 } else {
 printf("Process %d − obtained lock region\n", getpid());
 }

 region_to_lock.l_type = F_UNLCK;
 region_to_lock.l_whence = SEEK_SET;
 region_to_lock.l_start = 10;
 region_to_lock.l_len = 5;
 printf("Process %d, trying F_UNLCK, region %d to %d\n", getpid(),
 (int)region_to_lock.l_start, (int)(region_to_lock.l_start + region_to_lock.l_len));
 res = fcntl(file_desc, F_SETLK, ®ion_to_lock);
 if (res == −1) {
 printf("Process %d − failed to unlock region\n", getpid());

2.

 Competing Locks

226

 } else {
 printf("Process %d − unlocked region\n", getpid());
 }

 region_to_lock.l_type = F_UNLCK;
 region_to_lock.l_whence = SEEK_SET;
 region_to_lock.l_start = 0;
 region_to_lock.l_len = 50;
 printf("Process %d, trying F_UNLCK, region %d to %d\n", getpid(),
 (int)region_to_lock.l_start, (int)(region_to_lock.l_start + region_to_lock.l_len));
 res = fcntl(file_desc, F_SETLK, ®ion_to_lock);
 if (res == −1) {
 printf("Process %d − failed to unlock region\n", getpid());
 } else {
 printf("Process %d − unlocked region\n", getpid());
 }

 region_to_lock.l_type = F_WRLCK;
 region_to_lock.l_whence = SEEK_SET;
 region_to_lock.l_start = 16;
 region_to_lock.l_len = 5;
 printf("Process %d, trying F_WRLCK, region %d to %d\n", getpid(),
 (int)region_to_lock.l_start, (int)(region_to_lock.l_start + region_to_lock.l_len));
 res = fcntl(file_desc, F_SETLK, ®ion_to_lock);
 if (res == −1) {
 printf("Process %d − failed to lock region\n", getpid());
 } else {
 printf("Process %d − obtained lock on region\n", getpid());
 }

 region_to_lock.l_type = F_RDLCK;
 region_to_lock.l_whence = SEEK_SET;
 region_to_lock.l_start = 40;
 region_to_lock.l_len = 10;
 printf("Process %d, trying F_RDLCK, region %d to %d\n", getpid(),
 (int)region_to_lock.l_start, (int)(region_to_lock.l_start + region_to_lock.l_len));
 res = fcntl(file_desc, F_SETLK, ®ion_to_lock);
 if (res == −1) {
 printf("Process %d − failed to lock region\n", getpid());
 } else {
 printf("Process %d − obtained lock on region\n", getpid());
 }

 region_to_lock.l_type = F_WRLCK;
 region_to_lock.l_whence = SEEK_SET;
 region_to_lock.l_start = 16;
 region_to_lock.l_len = 5;
 printf("Process %d, trying F_WRLCK with wait, region %d to %d\n", getpid(),
 (int)region_to_lock.l_start, (int)(region_to_lock.l_start + region_to_lock.l_len));
 res = fcntl(file_desc, F_SETLKW, ®ion_to_lock);
 if (res == −1) {
 printf("Process %d − failed to lock region\n", getpid());
 } else {
 printf("Process %d − obtained lock on region\n", getpid());
 }

 printf("Process %d ending\n", getpid());
 close(file_desc);
 exit(EXIT_SUCCESS);
}

 Competing Locks

227

If we first run our lock3 program in the background, then immediately run this new program, the output we
get is:

Process 227 locking file
Process 228, trying F_RDLCK, region 10 to 15
Process 228 − obtained lock on region
Process 228, trying F_UNLCK, region 10 to 15
Process 228 − unlocked region
Process 228, trying F_UNLCK, region 0 to 50
Process 228 − unlocked region
Process 228, trying F_WRLCK, region 16 to 21
Process 228 − failed to lock on region
Process 228, trying F_RDLCK, region 40 to 50
Process 228 − failed to lock on region
Process 228, trying F_WRLCK with wait, region 16 to 21
Process 227 closing file
Process 228 − obtained lock on region
Process 228 ending

How It Works

Firstly, the program attempts to lock a region from bytes 10 to 15 with a shared lock. This region is already
locked with a shared lock, but simultaneous shared locks are allowed and the lock is successful.

It then unlocks (its own) shared lock on the region, which is also successful. The program then attempts to
unlock the first 50 bytes of the file, even though it doesn't have any locks set. This is also successful because,
even though this program had no locks in the first place, the final result of the unlock request is that there are
no locks held by this program in the first 50 bytes.

Next, the program attempts to lock the region from bytes 16 to 21, with an exclusive lock. This region is also
already locked with a shared lock so, this time, the new lock fails, because an exclusive lock could not be
created.

After that, the program attempts a shared lock on the region from bytes 40 to 50. This region is already locked
with an exclusive lock, so, again, the lock fails.

Finally, the program again attempts to obtain an exclusive lock on the region from bytes 16 to 21, but, this
time, it uses the F_SETLCKW command to wait until it can obtain a lock. There is then a long pause in the
output, until the lock3 program, which had already locked the region, closes the file, thus releasing all the
locks it had acquired. The lock5 program resumes execution, successfully locking the region, before it also
exits.

Other Lock Commands

There is a second method of locking files: the lockf function. This also operates using file descriptors. It has
the prototype:

#include <unistd.h>

int lockf(int fildes, int function, off_t size_to_lock);

It can take the following function values:

How It Works

228

F_ULOCK Unlock•
F_LOCK Lock exclusively•
F_TLOCK Test and lock exclusively•
F_TEST Test for locks by other processes•

The size_to_lock parameter is the number of bytes to operate on, from the current offset in the file.

lockf has a simpler interface than the fcntl interface, principally because it has rather less functionality and
flexibility. To use the function, you must seek to the start of the region you wish to lock, then call it with the
number of bytes to lock.

Like the fcntl method of file locking, all locks are only advisory; they won't actually prevent reading from or
writing to the file. It's the responsibility of programs to check for locks. The effect of mixing fcntl locks and
lockf locks is undefined, so you must decide which type of locking you wish to use and stick to it.

Deadlocks

No discussion of locking would be complete without a mention of the dangers of deadlocks. Suppose two
programs wish to update the same file. They both need to update byte one and byte two at the same time.
Program A chooses to update byte two, then byte one. Program B tries to update byte one first, then byte two.

Both programs start at the same time. Program A locks byte two and program B locks byte one. Program A
tries for a lock on byte one. Since this is already locked by program B, program A waits. Program B tries for a
lock on byte two. Since this is locked by program A, it too waits.

This situation, when neither program is able to proceed, is called a deadlock or deadly embrace. Most
commercial databases detect deadlocks and break them; the UNIX kernel doesn't. Some external intervention,
perhaps forcibly terminating one of the programs, is required to sort out the resulting mess.

Programmers must be wary of this situation. When you have multiple programs waiting for locks, you need to
be very careful to consider if a deadlock could occur. In this example it's quite easy to avoid: both programs
should simply lock the bytes they require in the same order, or use a larger region to lock.

Note We don't have the space to consider the difficulties of concurrent programs here. If you're interested in
reading further, you might like to consider obtaining a copy of Principles of Concurrent and Distributed
Programming , by M. Ben−Ari, Prentice Hall, ISBN 013711821X.

Databases

We've seen how to use files for storing data, so why should we want to use a database? Quite simply, because
there are some circumstances where the features of a database provide a better way to solve the problem.
Using a database is better than storing files for two reasons. Firstly, you can store data records that vary in
size, which can be a little difficult to implement using flat, unstructured files. Secondly, databases store and
retrieve data using an index. The big advantage is that this index need not be a simple record number, which
would be quite easy to implement in a flat file, but an arbitrary string.

The dbm Database

X/Open compliant versions of UNIX come with a databasenot, unfortunately, an ANSI SQL compliant
database, but some useful data storage and retrieval routines nonetheless.

 Deadlocks

229

Note Some Linux distributions come with an SQL database called PostgreSQL, which does support SQL, but
covering that is beyond the scope of this book.

The dbm database is good for storing indexed data which is relatively static. Some database purists would
probably argue that dbm isn't a database at all, simply an indexed file storage system. The X/Open
specification, however, refers to dbm as a database, so we'll continue to refer to it as such in this book. Note
that many Linux distributions use GNU gdbm instead.

The dbm database lets you store data structures of variable size, using an index, and then retrieve the
structure, either using the index or simply sequentially scanning the database. The dbm database is best used
for data that is accessed frequently, but updated rarely, since it tends to be rather slow to create entries, but
quick to retrieve them.

At this point we come to a minor problem different Linux distributions ship with different versions of the
dbm libraries. Some use the BSD licensed version, which can be found either at
ftp://ftp.cs.berkeley.edu/ucb/4bsd/ or from the http://www.openbsd.org sites. Others use the GNU version,
which can be found on http://www.gnu.org. To make matters even worse, the GNU flavor can be installed in
two modes, the 'normal mode' which is not fully compatible with the X/OPEN dbm specification, or
compatibility mode, which is. At the time of writing, Sleepycat Software (http://www.sleepycat.com) has an
Open Source product, The Berkeley Database, which also supports the Dbm/Ndbm historic interfaces.

This chapter has been written assuming you have an X/OPEN compatible version installed. If you have
trouble compiling these examples, either because the ndbm.h header file is not present, because the compiler
complains DBM is undefined, or the link stage of compiling the program fails, the suggested solution is to
install an updated version of the GNU version of the dbm libraries.

Firstly make yourself a temporary directory. Then go to the http://www.gnu.org site and search for the latest
version of the gdbm library. This will probably be in a file called something like gdbm_?_?_tar.gz. Download
the file to your temporary directory, and extract the files using 'tar zxvf <filename>'. Then read the README
file, which will tell you how to compile and install it. Generally you first run a command './configure' which
checks how your system is configured, then you run 'make' to compile the programs. Finally you run 'make
install' and 'make install−compat' to install both the basic files and the additional compatibility files. You may
need root permissions to run the install step, and it's often a good idea to use the '−n' option to make first, to
check what it's going to do, e.g. 'make n install'.

You should now have an X/OPEN compatible version of ndbm, normally in the /usr/local part of your system.
Your compiler setup may not search these locations by default, in which case you need to add to the gcc
command the −I/usr/local/include option to search for headers, and −L/usr/local/lib option to search for
libraries.

The dbm Routines

Like curses that we met in the last chapter, the dbm facility consists of a header file and a library that must be
linked when the program is compiled. The library is called simply dbm, so we link it by adding the option
−ldbm (or occasionally −lgdbm) to the compilation line. The header file is ndbm.h. The reason for the n prefix
is that there have been several predecessors to the dbm library, so the n simply separates this 'new' dbm
include file from any older versions that may survive.

 The dbm Routines

230

dbm Concepts

Before we can attempt to explain each of these functions, it's important to understand what the dbm database
is trying to achieve. Once we understand this, we'll be in a much better position to understand how to use the
dbm functions.

The dbm database basic element is a block of data to store, coupled with a companion block of data that acts
as a key for retrieving that data. Each dbm database must have a unique key for each block of data to be
stored. There's no restriction on either the keys or the data, nor are any errors defined for using data or keys
that are too large. The specification allows an implementation to limit the size of the key/data pair to be 1023
bytes, but generally there is no limit, because implementations have been more flexible than they were
required to be. The key value acts as an index into the data stored, like the labels in the diagram.

To manipulate these blocks as data, the ndbm.h include file defines a new type, called datum. The exact
contents of this type is implementation−dependent, but it must have at least the following members:

void *dptr;
size_t dsize

datum will be a type defined by typedef. Also declared in the ndbm.h file is a type definition for dbm, which
is a structure used for accessing the database, much like a FILE is used for accessing files. The internals of the
dbm type are implementation−dependent and should never be used.

To reference a block of data when we're using the dbm library, we must declare a datum, set dptr to point to
the start of the data and set dsize to contain its size. Both the data to store and the index used to access it are
always referenced by a datum type.

The dbm type is best thought of as analogous to a FILE type. When we open a dbm database, two physical
files are created, one with a .pag extension and one with a .dir extension. A single dbm pointer is returned,
which is used to access these two files as a pair. The files should never be read or written to directly, as they
are only intended to be accessed via the dbm routines.

Important If you are using the gdbm library, then the two files have been merged, and only a single
new file gets created.

The dbm Routines

231

If you're familiar with SQL databases, you'll notice that there are no table or column structures associated with
a dbm database. This is because dbm neither imposes a fixed size on each item of data to be stored, nor
requires internal structure to the data. The dbm library works on blocks of unstructured binary data.

dbm Access Functions

Now that we've introduced the basis on which the dbm library works, we can take a look at the functions in
detail. The prototypes for the main dbm functions are:

#include <ndbm.h>

DBM *dbm_open(const char *filename, int file_open_flags, mode_t file_mode);
int dbm_store(DBM *database_descriptor, datum key, datum content, int store_mode);
datum dbm_fetch(DBM *database_descriptor, datum key);
void dbm_close(DBM *database_descriptor);

dbm_open

This function is used to open existing databases and can be used to create new databases. The filename
argument is a base file name, without a .dir or .pag extension.

The remaining parameters are the same as the second and third parameters to the open function that we met in
Chapter 3. We can use the same #defines. The second argument controls whether the database can be read
from, written to, or both. To create a new database, the flags must be binary ORed with O_CREAT, to allow
the files to be created. The third argument specifies the initial permissions of the files that will be created.

dbm_open returns a pointer to a DBM type. This is used in all subsequent accesses of the database. On failure,
a (DBM *)0 is returned.

dbm_store

We use this function for entering data into the database. As we mentioned earlier, all data must be stored with
a unique index. To define the data we wish to store and the index used to refer to it, we must set up two datum
types: one to refer to the index and one to the actual data. The final parameter, store_mode, controls what
happens if an attempt is made to store some data using a key that already exists. If it's set to dbm_insert, the
store fails and dbm_store returns 1. If it's set to dbm_replace, the new data overwrites the existing data and
dbm_store returns 0. dbm_store will return negative numbers on other errors.

dbm_fetch

This routine is used for retrieving data from the database. It takes a dbm pointer, as returned from a previous
call to dbm_open, and a datum type, which must be set up to point to a key. A datum type is returned. If the
data relating to the key used was found in the database, the returned datum structure will have dptr and dsize
values set up to refer to the returned data. If the key was not found, the dptr will be set to null.

It's important to remember that dbm_fetch is only returning a datum containing a pointer to the data. The
actual data may still be held in local storage space inside the dbm library and should be copied into program
variables before any further dbm functions are called.

 dbm Access Functions

232

dbm_close

This routine closes a database opened with dbm_open and must be passed a dbm pointer returned from a
previous call to dbm_open.

Now that we've met the basic functions of the dbm database, we know enough to write our first dbm program,
dbm1.c. In this, we'll use a structure called test_data.

Try It Out − A Simple dbm Database

First of all, its include files, #defines, the main function and the declaration of the test_data structure:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <ndbm.h>
#include <string.h>

#define TEST_DB_FILE "/tmp/dbm1_test"
#define ITEMS_USED 3

struct test_data {
 char misc_chars[15];
 int any_integer;
 char more_chars[21];
};

int main()
{

1.

Within main, we set up the items_to_store and items_received structures, the key string and datum
types:

 struct test_data items_to_store[ITEMS_USED];
 struct test_data item_retrieved;

 char key_to_use[20];
 int i, result;

 datum key_datum;
 datum data_datum;

 DBM *dbm_ptr;

2.

Having declared a pointer to a dbm type structure, we now open our test database for reading and
writing, creating it if necessary:

 dbm_ptr = dbm_open(TEST_DB_FILE, O_RDWR | O_CREAT, 0666);
 if (!dbm_ptr) {
 fprintf(stderr, "Failed to open database\n");
 exit(EXIT_FAILURE);
 }

3.

Now we add some data to the items_to_store structure:

 memset(items_to_store, '\0', sizeof(items_to_store));
 strcpy(items_to_store[0].misc_chars, "First!");
 items_to_store[0].any_integer = 47;
 strcpy(items_to_store[0].more_chars, "foo");

4.

dbm Access Functions

233

 strcpy(items_to_store[1].misc_chars, "bar");
 items_to_store[1].any_integer = 13;
 strcpy(items_to_store[1].more_chars, "unlucky?");

 strcpy(items_to_store[2].misc_chars, "Third");
 items_to_store[2].any_integer = 3;
 strcpy(items_to_store[2].more_chars, "baz");

For each entry, we need to build a key for future referencing. This is the first letter of each string and
the integer. This key is then identified with the key_datum, while the data_datum refers to the
items_to_store entry. Then we store the data in the database.

 for (i = 0; i < ITEMS_USED; i++) {
 sprintf(key_to_use, "%c%c%d",
 items_to_store[i].misc_chars[0],
 items_to_store[i].more_chars[0],
 items_to_store[i].any_integer);

 key_datum.dptr = (void *)key_to_use;
 key_datum.dsize = strlen(key_to_use);
 data_datum.dptr = (void *)&items_to_store[i];
 data_datum.dsize = sizeof(struct test_data);

 result = dbm_store(dbm_ptr, key_datum, data_datum, DBM_REPLACE);
 if (result != 0) {
 fprintf(stderr, "dbm_store failed on key %s\n", key_to_use);
 exit(2);
 }
 }

5.

Then we see if we can retrieve this new data and, finally, we must close the database:

 sprintf(key_to_use, "bu%d", 13);
 key_datum.dptr = key_to_use;
 key_datum.dsize = strlen(key_to_use);

 data_datum = dbm_fetch(dbm_ptr, key_datum);
 if (data_datum.dptr) {
 printf("Data retrieved\n");
 memcpy(&item_retrieved, data_datum.dptr, data_datum.dsize);
 printf("Retrieved item − %s %d %s\n",
 item_retrieved.misc_chars,
 item_retrieved.any_integer,
 item_retrieved.more_chars);
 }
 else {
 printf("No data found for key %s\n", key_to_use);
 }
 dbm_close(dbm_ptr);
 exit(EXIT_SUCCESS);
}

When we compile and run the program, the output is simply:

$ gcc −o dbm1 dbm1.c −ldbm
$ dbm1
Data retrieved
Retrieved item − bar 13 unlucky?

6.

dbm Access Functions

234

If this fails to compile, you may need to install the GNU gdbm library compatibility files, as described
earlier, and/or specify additional directories when you compile, thus:

$ gcc I/usr/local/include L/usr/local/lib −o dbm1 dbm1.c ldbm

If this still fails, try replacing the ldbm part of the command with lgdbm, thus:

$ gcc I/usr/local/include L/usr/local/lib −o dbm1 dbm1.c lgdbm

How It Works

First, we open the database, creating it if we need to. We then fill in three members of items_to_store that we
are using as test data. For each of these three members, we create an index key. To keep it simple, we use the
first characters of each of the two strings, plus the integer stored.

We then set up two datum structures, one for the key and one for the data to store. Having stored the three
items in the database, we construct a new key and set up a datum structure to point at it. We then use this key
to retrieve data from the database. We check for success by making sure that the dptr in the returned datum
isn't null. Provided it isn't, we can then copy the retrieved data (which may be stored internally within the dbm
library) into our own structure, being careful to use the size dbm_fetch has returned. If we didn't do this and
were using variable sized data, we could attempt to copy non−existent data. Finally, we print out the retrieved
data to show it was retrieved correctly.

Additional dbm Functions

Now that we've seen the principal dbm functions, we can cover the few remaining functions that are used with
dbm. These are:

int dbm_delete(DBM *database_descriptor, datum key);
int dbm_error(DBM *database_descriptor);
int dbm_clearerr(DBM *database_descriptor);
datum dbm_firstkey(DBM *database_descriptor);
datum dbm_nextkey(DBM *database_descriptor);

dbm_delete

The dbm_delete function is used to delete entries from the database. It takes a key datum just like dbm_fetch
but, rather than retrieving the data, it deletes it. It returns 0 on success.

dbm_error

The dbm_error function simply tests whether an error has occurred in the database, returning 0 if there is
none.

dbm_clearerr

The dbm_clearerr clears any error condition flag that may be set in the database.

dbm Access Functions

235

dbm_firstkey and dbm_nextkey

These routines are normally used as a pair to scan through all the keys of all the items in a database. The loop
structure required is:

DBM *db_ptr;
datum key;

for(key = dbm_firstkey(db_ptr); key.dptr; key = dbm_nextkey(db_ptr));

We'll now amend dbm1.c with some of these new functions. Have a look at dbm2.c.

Try It Out − Retrieving and Deleting

Make a copy of dbm1.c and open it for editing. Edit the #define TEST_DB_FILE line:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <ndbm.h>
#include <string.h>

#define TEST_DB_FILE "/tmp/dbm2_test"
#define ITEMS_USED 3

1.

Then, the only change that we need to make is in the retrieval section:

 /* now try and delete some data */
 sprintf(key_to_use, "bu%d", 13);
 key_datum.dptr = key_to_use;
 key_datum.dsize = strlen(key_to_use);

 if (dbm_delete(dbm_ptr, key_datum) == 0) {
 printf("Data with key %s deleted\n", key_to_use);
 }
 else {
 printf("Nothing deleted for key %s\n", key_to_use);
 }

 for (key_datum = dbm_firstkey(dbm_ptr);
 key_datum.dptr;
 key_datum = dbm_nextkey(dbm_ptr)) {
 data_datum = dbm_fetch(dbm_ptr, key_datum);
 if (data_datum.dptr) {
 printf("Data retrieved\n");
 memcpy(&item_retrieved, data_datum.dptr, data_datum.dsize);
 printf("Retrieved item − %s %d %s\n",
 item_retrieved.misc_chars,
 item_retrieved.any_integer,
 item_retrieved.more_chars);
 }
 else {
 printf("No data found for key %s\n", key_to_use);
 }
 }

The output is:

2.

Additional dbm Functions

236

$ dbm2
Data with key bu13 deleted
Data retrieved
Retrieved item − Third 3 baz
Data retrieved
Retrieved item − First! 47 foo

How It Works

The first part of this program is identical to the previous example, simply storing some data in the database.
We then build a key to match the second item and delete it from the database.

The program then uses dbm_firstkey and dbm_nextkey to access each key in the database in turn, retrieving
the data. Notice that the data isn't retrieved in order; no order is implied in the keys, it's simply a way of
scanning all the entries.

The CD Application

Now that we've learned about the environment and managing data, it's time to update the application. The
dbm database seems well suited to storing our CD information, so we'll use that as the basis for our new
implementation. Since this will involve a significant rewrite, now would be a good time to look at our design
decisions to see if they need revising.

Using comma−separated variable files to store the information, whilst it gave an easy implementation in the
shell, has turned out to be very restrictive. A lot of CD titles and tracks turn out to have commas in them.
Since we can discard this entirely using dbm, that's one element of the design that we will change.

The split of the information between 'title' and 'tracks', using a separate file for each, seems to have been a
good decision, so we'll stick to the same logical arrangement.

Both the previous implementations have, to some extent, mixed the data access parts of the application with
the user interface parts, not least because it was all implemented in a single file. In this implementation, we'll
use a header file to describe the data and the routines to access it and split the user interface and data
manipulation into separate files.

Although we could have kept the curses implementation of the user interface, we'll return to a simple
line−based system. This will keep the user interface part of the application small and simple and allow us to
concentrate on the other implementation aspects.

Although we can't use SQL with dbm code we can express our new database in more formal terms using SQL
terminology. Don't worry if you're not familiar with SQL; you can find the format definition underneath. In
code the table can be described by:

CREATE TABLE cdc_entry (
 catalog CHAR(30) PRIMARY KEY REFERENCES cdt_entry(catalog),
 title CHAR(70),
 type CHAR(30),
 artist CHAR(70)
);

CREATE TABLE cdt_entry (
 catalog CHAR(30) REFERENCES cdc_entry(catalog),
 track_no INTEGER CHECK (track_no > 0),
 track_txt CHAR(70),

Additional dbm Functions

237

 PRIMARY KEY(catalog, track_no)
);

This very succinct description tells us the names and sizes of the fields. For the cdc_entry table, it tells us that
there's a unique catalog column for every entry. For the cdt_entry table, it tells us that the track number can't
be zero and that the combination of catalog and track_no columns is unique.

The CD Application Using dbm

We're now going to re−implement our application using the dbm database to store the information we need,
with the files cd_data.h, app_ui.c and cd_access.c.

We also rewrite the user interface as a command line program. Later in the book, we'll be reusing the database
interface and parts of the user interface as we explore implementing our application using different
client/server mechanisms and, finally, as an application that can be accessed across a network using a WWW
browser. Converting the interface to a simpler line−driven interface makes it easier for us to focus on the
important parts of the application, rather than on the interface.

You'll see the database header file cd_data.h and functions from the file cd_access.c reused several times in
later chapters. We start here with the header file, to define the structure of our data and the routines that we'll
use to access it.

Try It Out − cd_data.h

This is the data structure definition for the CD database. It defines structures and sizes for the two
tables that comprise the database. We start by defining some sizes for the fields that we'll use and two
structures: one for the catalog entry and one for the track entry.

/* The catalog table */
#define CAT_CAT_LEN 30
#define CAT_TITLE_LEN 70
#define CAT_TYPE_LEN 30
#define CAT_ARTIST_LEN 70

typedef struct {
 char catalog[CAT_CAT_LEN + 1];
 char title[CAT_TITLE_LEN + 1];
 char type[CAT_TYPE_LEN + 1];
 char artist[CAT_ARTIST_LEN + 1];
} cdc_entry;

/* The tracks table, one entry per track */
#define TRACK_CAT_LEN CAT_CAT_LEN
#define TRACK_TTEXT_LEN 70

typedef struct {
 char catalog[TRACK_CAT_LEN + 1];
 int track_no;
 char track_txt[TRACK_TTEXT_LEN + 1];
} cdt_entry;

1.

Now that we have some data structures, we can define some access routines that we'll need. Functions
with cdc_ are for catalog entries; functions with cdt_ are for track entries.

2.

 The CD Application Using dbm

238

Important Notice that some of the functions return data structures. We can indicate the
failure of these functions by forcing the contents of the structure to be empty.

/* Initialization and termination functions */
int database_initialize(const int new_database);
void database_close(void);

/* two for simple data retrieval */
cdc_entry get_cdc_entry(const char *cd_catalog_ptr);
cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no);

/* two for data addition */
int add_cdc_entry(const cdc_entry entry_to_add);
int add_cdt_entry(const cdt_entry entry_to_add);

/* two for data deletion */
int del_cdc_entry(const char *cd_catalog_ptr);
int del_cdt_entry(const char *cd_catalog_ptr, const int track_no);

/* one search function */
cdc_entry search_cdc_entry(const char *cd_catalog_ptr, int *first_call_ptr);

Try It Out − app_ui.c

We now move on to the user interface. This gives us a (relatively) simple program with which to
access our database functions, which we'll implement in a separate file. We start, as usual, with some
header files:

#define _XOPEN_SOURCE

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

#include "cd_data.h"

#define TMP_STRING_LEN 125 /* this number must be larger than the biggest
 single string in any database structure */

1.

We make our menu options typedefs. This is in preference to using #defined constants, as it allows
the compiler to check the types of the menu option variables.

typedef enum {
 mo_invalid,
 mo_add_cat,
 mo_add_tracks,
 mo_del_cat,
 mo_find_cat,
 mo_list_cat_tracks,
 mo_del_tracks,
 mo_count_entries,
 mo_exit
} menu_options;

2.

Now the prototypes for the local functions. Remember that the prototypes for actually accessing the
database were included in cd_data.h.

static int command_mode(int argc, char *argv[]);
static void announce(void);
static menu_options show_menu(const cdc_entry *current_cdc);

3.

Try It Out − app_ui.c

239

static int get_confirm(const char *question);
static int enter_new_cat_entry(cdc_entry *entry_to_update);
static void enter_new_track_entries(const cdc_entry *entry_to_add_to);
static void del_cat_entry(const cdc_entry *entry_to_delete);
static void del_track_entries(const cdc_entry *entry_to_delete);
static cdc_entry find_cat(void);
static void list_tracks(const cdc_entry *entry_to_use);
static void count_all_entries(void);
static void display_cdc(const cdc_entry *cdc_to_show);
static void display_cdt(const cdt_entry *cdt_to_show);
static void strip_return(char *string_to_strip);

Finally, we get to main. This starts by ensuring the current_cdc_entry that we use to keep track of the
currently selected CD catalog entry is initialized. We also parse the command line, announce what
program is being run and initialize the database.

void main(int argc, char *argv[])
{
 menu_options current_option;
 cdc_entry current_cdc_entry;
 int command_result;

 memset(¤t_cdc_entry, '\0', sizeof(current_cdc_entry));

 if (argc > 1) {
 command_result = command_mode(argc, argv);
 exit(command_result);
 }

 announce();

 if (!database_initialize(0)) {
 fprintf(stderr, "Sorry, unable to initialize database\n");
 fprintf(stderr, "To create a new database use %s −i\n", argv[0]);
 exit(EXIT_FAILURE);
 }

4.

We're now ready to process user input. We sit in a loop, asking for a menu choice and processing it,
until the user selects the exit option. Notice that we pass the current_cdc_entry structure to the
show_menu function. We do this to allow the menu choices to change if a catalog entry is currently
selected.

while(current_option != mo_exit) {
 current_option = show_menu(¤t_cdc_entry);

 switch(current_option) {
 case mo_add_cat:
 if (enter_new_cat_entry(¤t_cdc_entry)) {
 if (!add_cdc_entry(current_cdc_entry)) {
 fprintf(stderr, "Failed to add new entry\n");
 memset(¤t_cdc_entry, '\0',
 sizeof(current_cdc_entry));
 }
 }
 break;
 case mo_add_tracks:
 enter_new_track_entries(¤t_cdc_entry);
 break;
 case mo_del_cat:
 del_cat_entry(¤t_cdc_entry);
 break;

5.

Try It Out − app_ui.c

240

 case mo_find_cat:
 current_cdc_entry = find_cat();
 break;
 case mo_list_cat_tracks:
 list_tracks(¤t_cdc_entry);
 break;
 case mo_del_tracks:
 del_track_entries(¤t_cdc_entry);
 break;
 case mo_count_entries:
 count_all_entries();
 break;
 case mo_exit:
 break;
 case mo_invalid:
 break;
 default:
 break;
 } /* switch */
 } /* while */

When the main loop exits, we close the database and exit back to the environment. The welcoming
sentence is printed by the announce function:

 database_close();
 exit(EXIT_SUCCESS);
} /* main */

static void announce(void)
{
 printf("\n\nWelcome to the demonstration CD catalog database \
 program\n");
}

6.

Here we implement the show_menu function. This checks whether a current catalog entry is selected,
using the first character of the catalog name. More options are available if a catalog entry is selected.

Important Note that numbers are now used to select menu items, rather than the initial letters we
used in the previous two examples.

static menu_options show_menu(const cdc_entry *cdc_selected)
{
 char tmp_str[TMP_STRING_LEN + 1];
 menu_options option_chosen = mo_invalid;

 while (option_chosen == mo_invalid) {
 if (cdc_selected−>catalog[0]) {
 printf("\n\nCurrent entry: ");
 printf("%s, %s, %s, %s\n", cdc_selected−>catalog,
 cdc_selected−>title,
 cdc_selected−>type,
 cdc_selected−>artist);

 printf("\n");
 printf("1 − add new CD\n");
 printf("2 − search for a CD\n");
 printf("3 − count the CDs and tracks in the database\n");
 printf("4 − re−enter tracks for current CD\n");
 printf("5 − delete this CD, and all its tracks\n");
 printf("6 − list tracks for this CD\n");
 printf("q − quit\n");

7.

Try It Out − app_ui.c

241

 printf("\nOption: ");
 fgets(tmp_str, TMP_STRING_LEN, stdin);
 switch(tmp_str[0]) {
 case '1': option_chosen = mo_add_cat; break;
 case '2': option_chosen = mo_find_cat; break;
 case '3': option_chosen = mo_count_entries; break;
 case '4': option_chosen = mo_add_tracks; break;
 case '5': option_chosen = mo_del_cat; break;
 case '6': option_chosen = mo_list_cat_tracks; break;
 case 'q': option_chosen = mo_exit; break;
 }
 }
 else {
 printf("\n\n");
 printf("1 − add new CD\n");
 printf("2 − search for a CD\n");
 printf("3 − count the CDs and tracks in the database\n");
 printf("q − quit\n");
 printf("\nOption: ");
 fgets(tmp_str, TMP_STRING_LEN, stdin);
 switch(tmp_str[0]) {
 case '1': option_chosen = mo_add_cat; break;
 case '2': option_chosen = mo_find_cat; break;
 case '3': option_chosen = mo_count_entries; break;
 case 'q': option_chosen = mo_exit; break;
 }
 }
 } /* while */
 return(option_chosen);
}

There are several places where we wish to ask the user if they are sure about what they requested.
Rather than have several places in the code asking the question, we extract the code as a separate
function, get_confirm:

static int get_confirm(const char *question)
{
 char tmp_str[TMP_STRING_LEN + 1];

 printf("%s", question);
 fgets(tmp_str, TMP_STRING_LEN, stdin);
 if (tmp_str[0] == 'Y' || tmp_str[0] == 'y') {
 return(1);
 }
 return(0);
}

8.

The function, enter_new_cat_entry, allows the user to enter a new catalog entry. We don't want to
store the linefeed that fgets returns, so we strip it off.

Important Notice that we don't use the gets function, since that has no way of checking for an
overflow of the buffer. Avoid the gets function!

static int enter_new_cat_entry(cdc_entry *entry_to_update)
{
 cdc_entry new_entry;
 char tmp_str[TMP_STRING_LEN + 1];

 memset(&new_entry, '\0', sizeof(new_entry));

 printf("Enter catalog entry: ");

9.

Try It Out − app_ui.c

242

 (void)fgets(tmp_str, TMP_STRING_LEN, stdin);
 strip_return(tmp_str);
 strncpy(new_entry.catalog, tmp_str, CAT_CAT_LEN − 1);

 printf("Enter title: ");
 (void)fgets(tmp_str, TMP_STRING_LEN, stdin);
 strip_return(tmp_str);
 strncpy(new_entry.title, tmp_str, CAT_TITLE_LEN − 1);

 printf("Enter type: ");
 (void)fgets(tmp_str, TMP_STRING_LEN, stdin);
 strip_return(tmp_str);
 strncpy(new_entry.type, tmp_str, CAT_TYPE_LEN − 1);

 printf("Enter artist: ");
 (void)fgets(tmp_str, TMP_STRING_LEN, stdin);
 strip_return(tmp_str);
 strncpy(new_entry.artist, tmp_str, CAT_ARTIST_LEN − 1);

 printf("\nNew catalog entry entry is :−\n");
 display_cdc(&new_entry);
 if (get_confirm("Add this entry ?")) {
 memcpy(entry_to_update, &new_entry, sizeof(new_entry));
 return(1);
 }
 return(0);
}

We now come to the function for entering the track information, enter_new_track_entries. This is
slightly more complex than the catalog entry function, because we allow an existing track entry to be
left alone.

static void enter_new_track_entries(const cdc_entry *entry_to_add_to)
{
 cdt_entry new_track, existing_track;
 char tmp_str[TMP_STRING_LEN + 1];
 int track_no = 1;

 if (entry_to_add_to−>catalog[0] == '\0') return;
 printf("\nUpdating tracks for %s\n", entry_to_add_to−>catalog);
 printf("Press return to leave existing description unchanged,\n");
 printf(" a single d to delete this and remaining tracks,\n");
 printf(" or new track description\n");

 while(1) {

10.

First, we must check whether a track already exists with the current track number. Depending on what
we find, we change the prompt.

 memset(&new_track, '\0', sizeof(new_track));
 existing_track = get_cdt_entry(entry_to_add_to−>catalog,
 track_no);
 if (existing_track.catalog[0]) {
 printf("\tTrack %d: %s\n", track_no,
 existing_track.track_txt);
 printf("\tNew text: ");
 }
 else {
 printf("\tTrack %d description: ", track_no);
 }
 fgets(tmp_str, TMP_STRING_LEN, stdin);
 strip_return(tmp_str);

11.

Try It Out − app_ui.c

243

If there was no existing entry for this track and the user hasn't added one, we assume that there are no
more tracks to be added.

 if (strlen(tmp_str) == 0) {
 if (existing_track.catalog[0] == '\0') {
 /* no existing entry, so finished adding */
 break;
 }
 else {
 /* leave existing entry, jump to next track */
 track_no++;
 continue;
 }
 }

12.

If the user enters a single d character, this deletes the current and any higher numbered tracks. The
del_cdt_entry function will return false if it couldn't find a track to delete.

 if ((strlen(tmp_str) == 1) && tmp_str[0] == 'd') {
 /* delete this and remaining tracks */
 while (del_cdt_entry(entry_to_add_to−>catalog, track_no)) {
 track_no++;
 }
 break;
 }

13.

Here we get to the code for adding a new track, or updating an existing one. We construct the
cdt_entry structure new_track, then call the database function add_cdt_entry to add it to the database.

 strncpy(new_track.track_txt, tmp_str, TRACK_TTEXT_LEN − 1);
 strcpy(new_track.catalog, entry_to_add_to−>catalog);
 new_track.track_no = track_no;
 if (!add_cdt_entry(new_track)) {
 fprintf(stderr, "Failed to add new track\n");
 break;
 }
 track_no++;
 } /* while */
}

14.

The function del_cat_entry deletes a catalog entry. We never allow tracks for a non−existent catalog
entry to exist.

static void del_cat_entry(const cdc_entry *entry_to_delete)
{
 int track_no = 1;
 int delete_ok;

 display_cdc(entry_to_delete);
 if (get_confirm("Delete this entry and all it's tracks? ")) {
 do {
 delete_ok = del_cdt_entry(entry_to_delete−>catalog,
 track_no);
 track_no++;
 } while(delete_ok);

 if (!del_cdc_entry(entry_to_delete−>catalog)) {
 fprintf(stderr, "Failed to delete entry\n");
 }
 }
}

15.

Try It Out − app_ui.c

244

The next function is a utility for deleting all the tracks for a catalog:

static void del_track_entries(const cdc_entry *entry_to_delete)
{
 int track_no = 1;
 int delete_ok;

 display_cdc(entry_to_delete);
 if (get_confirm("Delete tracks for this entry? ")) {
 do {
 delete_ok = del_cdt_entry(entry_to_delete−>catalog, track_no);
 track_no++;
 } while(delete_ok);
 }
}

16.

Next, we create a very simple catalog search facility. We allow the user to enter a string, then check
for catalog entries that contain the string. Since there could be multiple entries that match, we simply
offer the user each match in turn:

static cdc_entry find_cat(void)
{
 cdc_entry item_found;
 char tmp_str[TMP_STRING_LEN + 1];
 int first_call = 1;
 int any_entry_found = 0;
 int string_ok;
 int entry_selected = 0;

 do {
 string_ok = 1;
 printf("Enter string to search for in catalog entry: ");
 fgets(tmp_str, TMP_STRING_LEN, stdin);
 strip_return(tmp_str);
 if (strlen(tmp_str) > CAT_CAT_LEN) {
 fprintf(stderr, "Sorry, string too long, maximum %d \
 characters\n", CAT_CAT_LEN);
 string_ok = 0;
 }
 } while (!string_ok);

 while (!entry_selected) {
 item_found = search_cdc_entry(tmp_str, &first_call);
 if (item_found.catalog[0] != '\0') {
 any_entry_found = 1;
 printf("\n");
 display_cdc(&item_found);
 if (get_confirm("This entry? ")) {
 entry_selected = 1;
 }
 }
 else {
 if (any_entry_found) printf("Sorry, no more matches found\n");
 else printf("Sorry, nothing found\n");
 break;
 }
 }
 return(item_found);
}

17.

list_tracks is a utility function that prints out all the tracks for a given catalog entry:18.

Try It Out − app_ui.c

245

static void list_tracks(const cdc_entry *entry_to_use)
{
 int track_no = 1;
 cdt_entry entry_found;

 display_cdc(entry_to_use);
 printf("\nTracks\n");
 do {
 entry_found = get_cdt_entry(entry_to_use−>catalog,
 track_no);
 if (entry_found.catalog[0]) {
 display_cdt(&entry_found);
 track_no++;
 }
 } while(entry_found.catalog[0]);
 (void)get_confirm("Press return");
} /* list_tracks */

The count_all_entries function counts all the tracks:

static void count_all_entries(void)
{
 int cd_entries_found = 0;
 int track_entries_found = 0;
 cdc_entry cdc_found;
 cdt_entry cdt_found;
 int track_no = 1;
 int first_time = 1;
 char *search_string = "";

 do {
 cdc_found = search_cdc_entry(search_string, &first_time);
 if (cdc_found.catalog[0]) {
 cd_entries_found++;
 track_no = 1;
 do {
 cdt_found = get_cdt_entry(cdc_found.catalog, track_no);
 if (cdt_found.catalog[0]) {
 track_entries_found++;
 track_no++;
 }
 } while (cdt_found.catalog[0]);
 }
 } while (cdc_found.catalog[0]);

 printf("Found %d CDs, with a total of %d tracks\n", cd_entries_found,
 track_entries_found);
 (void)get_confirm("Press return");
}

19.

Now we have display_cdc, a utility for displaying a catalog entry:

static void display_cdc(const cdc_entry *cdc_to_show)
{
 printf("Catalog: %s\n", cdc_to_show−>catalog);
 printf("\ttitle: %s\n", cdc_to_show−>title);
 printf("\ttype: %s\n", cdc_to_show−>type);
 printf("\tartist: %s\n", cdc_to_show−>artist);
}

and display_cdt, for displaying a single track entry:

20.

Try It Out − app_ui.c

246

static void display_cdt(const cdt_entry *cdt_to_show)
{
 printf("%d: %s\n", cdt_to_show−>track_no, cdt_to_show−>track_txt);
}

The utility function strip_return removes a trailing linefeed character from a string. Remember that
UNIX uses a single linefeed to indicate end of line:

static void strip_return(char *string_to_strip)
{
 int len;

 len = strlen(string_to_strip);
 if (string_to_strip[len − 1] == '\n') string_to_strip[len − 1] = '\0';
}

21.

command_mode is a function for parsing the command line arguments. The getopt function is a good
way of ensuring your program accepts arguments conforming to the standard UNIX conventions.

static int command_mode(int argc, char *argv[])
{
 int c;
 int result = EXIT_SUCCESS;
 char *prog_name = argv[0];

 /* these externals used by getopt */
 extern char *optarg;
 extern optind, opterr, optopt;

 while ((c = getopt(argc, argv, ":i")) != −1) {
 switch(c) {
 case 'i':
 if (!database_initialize(1)) {
 result = EXIT_FAILURE;
 fprintf(stderr, "Failed to initialize database\n");
 }
 break;
 case ':':
 case '?':
 default:
 fprintf(stderr, "Usage: %s [−i]\n", prog_name);
 result = EXIT_FAILURE;
 break;
 } /* switch */
 } /* while */
 return(result);
}

22.

Try It Out − cd_access.c

Now we come to the functions that access the dbm database. As usual, we start with some #include
files. We then use some #defines for specifying the files that we'll use for storing the data.

#define _XOPEN_SOURCE

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <string.h>

1.

 Try It Out − cd_access.c

247

#include <ndbm.h>

#include "cd_data.h"

#define CDC_FILE_BASE "cdc_data"
#define CDT_FILE_BASE "cdt_data"
#define CDC_FILE_DIR "cdc_data.dir"
#define CDC_FILE_PAG "cdc_data.pag"
#define CDT_FILE_DIR "cdt_data.dir"
#define CDT_FILE_PAG "cdt_data.pag"

We use these two file scope variables to keep track of the current database:

static DBM *cdc_dbm_ptr = NULL;
static DBM *cdt_dbm_ptr = NULL;

2.

By default, the database_initialize function opens an existing database, but by passing a non−zero
(i.e. true) parameter, new_database, we can force it to create a new (empty) database. If the database
is successfully initialized, the two database pointers are also initialized, indicating that a database is
open.

int database_initialize(const int new_database)
{
 int open_mode = O_RDWR;

 /* If any existing database is open then close it */
 if (cdc_dbm_ptr) dbm_close(cdc_dbm_ptr);
 if (cdt_dbm_ptr) dbm_close(cdt_dbm_ptr);

 if (new_database) {
 /* delete the old files */
 (void) unlink(CDC_FILE_PAG);
 (void) unlink(CDC_FILE_DIR);
 (void) unlink(CDT_FILE_PAG);
 (void) unlink(CDT_FILE_DIR);

 open_mode = O_CREAT | O_RDWR;
 }

 /* Open some new files, creating them if required */
 cdc_dbm_ptr = dbm_open(CDC_FILE_BASE, open_mode, 0644);
 cdt_dbm_ptr = dbm_open(CDT_FILE_BASE, open_mode, 0644);
 if (!cdc_dbm_ptr || !cdt_dbm_ptr) {
 fprintf(stderr, "Unable to create database\n");
 cdc_dbm_ptr = cdt_dbm_ptr = NULL;
 return (0);
 }
 return (1);
}

3.

database_close simply closes the database if it was open and sets the two database pointers to null, to
indicate that no database is currently open.

void database_close(void)
{
 if (cdc_dbm_ptr) dbm_close(cdc_dbm_ptr);
 if (cdt_dbm_ptr) dbm_close(cdt_dbm_ptr);

 cdc_dbm_ptr = cdt_dbm_ptr = NULL;
}

4.

Next, we have a function for retrieving a single catalog entry, when passed a pointer pointing to a
catalog text string. If the entry isn't found then the returned data has an empty catalog field.

5.

 Try It Out − cd_access.c

248

cdc_entry get_cdc_entry(const char *cd_catalog_ptr)
{
 cdc_entry entry_to_return;
 char entry_to_find[CAT_CAT_LEN + 1];
 datum local_data_datum;
 datum local_key_datum;

 memset(&entry_to_return, '\0', sizeof(entry_to_return));

We start with some sanity checks, to ensure that a database is open and that we were passed
reasonable parametersi.e. the search key contains only the valid string and nulls:

 if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (entry_to_return);
 if (!cd_catalog_ptr) return (entry_to_return);
 if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (entry_to_return);

 memset(&entry_to_find, '\0', sizeof(entry_to_find));
 strcpy(entry_to_find, cd_catalog_ptr);

6.

We set up the datum structure the dbm functions require, then use dbm_fetch to retrieve the data. If
no data was retrieved, we return the empty entry_to_return structure that we initialized earlier.

 local_key_datum.dptr = (void *) entry_to_find;
 local_key_datum.dsize = sizeof(entry_to_find);

 memset(&local_data_datum, '\0', sizeof(local_data_datum));
 local_data_datum = dbm_fetch(cdc_dbm_ptr, local_key_datum);
 if (local_data_datum.dptr) {
 memcpy(&entry_to_return, (char *)local_data_datum.dptr,
 local_data_datum.dsize);
 }
 return (entry_to_return);
} /* get_cdc_entry */

7.

We'd better be able to get a single track entry as well, which is what the next function does, in the
same fashion as get_cdc_entry, but with a pointer pointing to a catalog string and a track number as
parameters.

cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{
 cdt_entry entry_to_return;
 char entry_to_find[CAT_CAT_LEN + 10];
 datum local_data_datum;
 datum local_key_datum;

 memset(&entry_to_return, '\0', sizeof(entry_to_return));

 if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (entry_to_return);
 if (!cd_catalog_ptr) return (entry_to_return);
 if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (entry_to_return);
 /* set up the search key, which is a composite key of catalog entry
 and track number */
 memset(&entry_to_find, '\0', sizeof(entry_to_find));
 sprintf(entry_to_find, "%s %d", cd_catalog_ptr, track_no);

 local_key_datum.dptr = (void *) entry_to_find;
 local_key_datum.dsize = sizeof(entry_to_find);

 memset(&local_data_datum, '\0', sizeof(local_data_datum));
 local_data_datum = dbm_fetch(cdt_dbm_ptr, local_key_datum);
 if (local_data_datum.dptr) {
 memcpy(&entry_to_return, (char *) local_data_datum.dptr,

8.

 Try It Out − cd_access.c

249

 local_data_datum.dsize);
 }
 return (entry_to_return);
}

The next function, add_cdc_entry, adds a new catalog entry:

int add_cdc_entry(const cdc_entry entry_to_add)
{
 char key_to_add[CAT_CAT_LEN + 1];
 datum local_data_datum;
 datum local_key_datum;
 int result;

 /* check database initialized and parameters valid */
 if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (0);
 if (strlen(entry_to_add.catalog) >= CAT_CAT_LEN) return (0);

 /* ensure the search key contains only the valid string and nulls */
 memset(&key_to_add, '\0', sizeof(key_to_add));
 strcpy(key_to_add, entry_to_add.catalog);

 local_key_datum.dptr = (void *) key_to_add;
 local_key_datum.dsize = sizeof(key_to_add);
 local_data_datum.dptr = (void *) &entry_to_add;
 local_data_datum.dsize = sizeof(entry_to_add);

 result = dbm_store(cdc_dbm_ptr, local_key_datum, local_data_datum,
 DBM_REPLACE);

 /* dbm_store() uses 0 for success */
 if (result == 0) return (1);
 return (0);
}

9.

add_cdt_entry adds a new track entry. The access key is the catalog string and track number acting as
a composite.

int add_cdt_entry(const cdt_entry entry_to_add)
{
 char key_to_add[CAT_CAT_LEN + 10];
 datum local_data_datum;
 datum local_key_datum;
 int result;

 if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (0);
 if (strlen(entry_to_add.catalog) >= CAT_CAT_LEN) return (0);

 memset(&key_to_add, '\0', sizeof(key_to_add));
 sprintf(key_to_add, "%s %d", entry_to_add.catalog,
 entry_to_add.track_no);

 local_key_datum.dptr = (void *) key_to_add;
 local_key_datum.dsize = sizeof(key_to_add);
 local_data_datum.dptr = (void *) &entry_to_add;
 local_data_datum.dsize = sizeof(entry_to_add);

 result = dbm_store(cdt_dbm_ptr, local_key_datum, local_data_datum,
 DBM_REPLACE);

 /* dbm_store() uses 0 for success and −ve numbers for errors */
 if (result == 0)

10.

 Try It Out − cd_access.c

250

 return (1);
 return (0);
}

If we can add things, we'd better be able to delete them too. This function deletes catalog entries:

int del_cdc_entry(const char *cd_catalog_ptr)
{
 char key_to_del[CAT_CAT_LEN + 1];
 datum local_key_datum;
 int result;

 if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (0);
 if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (0);

 memset(&key_to_del, '\0', sizeof(key_to_del));
 strcpy(key_to_del, cd_catalog_ptr);

 local_key_datum.dptr = (void *) key_to_del;
 local_key_datum.dsize = sizeof(key_to_del);

 result = dbm_delete(cdc_dbm_ptr, local_key_datum);

 /* dbm_delete() uses 0 for success */
 if (result == 0) return (1);
 return (0);
}

11.

Here's the equivalent function for deleting a track. Remember that the track key is a composite index
of both the catalog entry string and the track number.

int del_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{
 char key_to_del[CAT_CAT_LEN + 10];
 datum local_key_datum;
 int result;

 if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (0);
 if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (0);

 memset(&key_to_del, '\0', sizeof(key_to_del));
 sprintf(key_to_del, "%s %d", cd_catalog_ptr, track_no);

 local_key_datum.dptr = (void *) key_to_del;
 local_key_datum.dsize = sizeof(key_to_del);

 result = dbm_delete(cdt_dbm_ptr, local_key_datum);

 /* dbm_delete() uses 0 for success */
 if (result == 0) return (1);
 return (0);
}

12.

Last but not least, we have a simple search function. It's not very sophisticated, but it does
demonstrate how we can scan through dbm entries without knowing the keys in advance.

Since we don't know in advance how many entries there might be, we implement this function to
return a single entry on each call. If nothing is found, the entry will be empty. To scan the whole
database, we start by calling this function with a pointer to an integer, *first_call_ptr, which should be
1 the first time the function is called. This function then knows it should start searching at the start of
the database. On subsequent calls, the variable is 0 and the function resumes searching after the last

13.

 Try It Out − cd_access.c

251

entry it found.

When we wish to restart our search, probably with a different catalog entry, we must again call this
function with *first_call_ptr set to true, which re−initializes the search.

In between calls, the function maintains some internal state information. This hides the complexity of
continuing a search from the client and preserves the 'secrecy' of how the search function is
implemented.

If the search text points to a null character then all entries are considered to match.

cdc_entry search_cdc_entry(const char *cd_catalog_ptr, int *first_call_ptr)
{
 static int local_first_call = 1;
 cdc_entry entry_to_return;
 datum local_data_datum;
 static datum local_key_datum; /* notice this must be static */

 memset(&entry_to_return, '\0', sizeof(entry_to_return));

As usual, we start with sanity checks:

 if (!cdc_dbm_ptr || !cdt_dbm_ptr) return (entry_to_return);
 if (!cd_catalog_ptr || !first_call_ptr) return (entry_to_return);
 if (strlen(cd_catalog_ptr) >= CAT_CAT_LEN) return (entry_to_return);

 /* protect against never passing *first_call_ptr true */
 if (local_first_call) {
 local_first_call = 0;
 *first_call_ptr = 1;
 }

14.

If this function has been called with *first_call_ptr set to true, we need to start (or restart) searching
from the beginning of the database. If *first_call_ptr wasn't true, we simply move on to the next key
in the database:

 if (*first_call_ptr) {
 *first_call_ptr = 0;
 local_key_datum = dbm_firstkey(cdc_dbm_ptr);
 }
 else {
 local_key_datum = dbm_nextkey(cdc_dbm_ptr);
 }

 do {
 if (local_key_datum.dptr != NULL) {
 /* an entry was found */
 local_data_datum = dbm_fetch(cdc_dbm_ptr, local_key_datum);
 if (local_data_datum.dptr) {
 memcpy(&entry_to_return, (char *) local_data_datum.dptr, local_data_datum.dsize);

15.

Our search facility is a very simple check to see whether the search string occurs in the current catalog
entry.

 /* check if search string occurs in the entry */
 if (!strstr(entry_to_return.catalog, cd_catalog_ptr))
 {
 memset(&entry_to_return, '\0',
 sizeof(entry_to_return));
 local_key_datum = dbm_nextkey(cdc_dbm_ptr);

16.

 Try It Out − cd_access.c

252

 }
 }
 }
 } while (local_key_datum.dptr &&
 local_data_datum.dptr &&
 (entry_to_return.catalog[0] == '\0'));
 return (entry_to_return);
} /* search_cdc_entry */

We're now in a position to be able to put everything together with this makefile. Don't worry about it
too much right now, because we'll be looking at how it works in the next chapter. For the time being,
type it in and save it as Makefile.

all: application

app_ui.o: app_ui.c cd_data.h
 gcc −pedantic −Wall −ansi −g −c app_ui.c

cd_access.o: cd_access.c cd_data.h
 gcc −pedantic −Wall −ansi −g −c cd_access.c

application: app_ui.o cd_access.o
 gcc −o application −pedantic −Wall −ansi −g app_ui.o cd_access.o −ldbm

Remember you may need to replace ldbm with gdbm if that's how your system is setup.

To compile your new CD application, type this at the prompt:

$ make −f Makefile

If all has gone well, the application executable will be compiled and placed in the current directory.

The first time you run the application, remember to use the '−i' option to get the database created.

Summary

In this chapter, we've learned about three different aspects of data management. Firstly, we've learned about
the UNIX memory system and how simple it is to use, even though the internal implementation of demand
paged virtual memory is quite involved. We've also found how it protects both the operating system and other
programs from attempts at illegal memory access.

We then moved on to look at how file locking allows multiple programs to cooperate in their access to data.
We looked first at a simple binary semaphore scheme and then at a more complex situation where we lock
different parts of a file for either shared or exclusive access.

Finally, we've looked at the dbm library and its ability to store and efficiently retrieve arbitrary blocks of data
using a very flexible indexing arrangement.

 Summary

253

Chapter 8: Development Tools

Overview

In this chapter, we'll look at some of the tools available for developing programs on UNIX systems. In
addition to the obvious necessities of compilers and debuggers, UNIX provides a set of tools, each of which
does a single job, and then allows the developer to combine these tools in new and innovative ways. Here,
we'll look at a few of the more important tools and see some examples of them being used to solve problems
including:

The make command and makefiles•
Source code control using RCS and CVS•
Writing a manual page•
Distributing software using patch and tar•

Problems of Multiple Source Files

When they're writing small programs, many people simply rebuild their application after edits by recompiling
all the files. However, with larger programs, some problems with this simple approach become apparent. The
time for the edit−compile−test cycle will grow. Even the most patient programmer will want to avoid
recompiling all the files when only one file has been changed.

A potentially much more difficult problem arises when multiple header files are created and included in
different source files. Suppose we have header files a.h, b.h and c.h, and C source files main.c, 2.c and 3.c.
(We hope that you choose better names than these for real projects!) We could have the situation shown
below.

/* main.c */
#include "a.h"
...
/* 2.c */
#include "a.h"
#include "b.h"
...
/* 3.c */
#include "b.h"
#include "c.h"
...

If the programmer changes c.h, the files main.c and 2.c don't need to be recompiled, since they don't depend
on this header file. The file 3.c does depend on c.h and should therefore be recompiled if c.h is changed.
However, if b.h was changed and the programmer forgot to recompile 2.c, then the resulting program might
no longer function correctly.

The make utility can solve both of these problems by ensuring that the files affected by changes are
recompiled when necessary.

Important The make command is not used only to compile programs. It can be used whenever you produce
output files from several input files. Other uses include document processing (such as with troff
or TeX).

254

The make Command and Makefiles

Although, as we shall see, the make command has a lot of built−in knowledge, it can't know how to build
your application all by itself. You must provide a file that tells make how your application is constructed. This
file is called the makefile.

The makefile most often resides in the same directory as the other source files for the project. You can have
many different makefiles on your machine at any one time. Indeed, if you have a large project, you may
choose to manage it using separate makefiles for different parts of the project.

The combination of the make command and a makefile provides a very powerful tool for managing projects.
It's often used not only to control the compilation of source code, but also to prepare manual pages and to
install the application into a target directory.

The Syntax of Makefiles

A makefile consists of a set of dependencies and rules. A dependency has a target (a file to be created) and a
set of source files upon which it is dependent. The rules describe how to create the target from the dependent
files. Commonly, the target is a single executable file.

The makefile is read by the make command, which determines the target file or files that are to be made and
then compares the dates and times of the source files to decide which rules need to be invoked to construct the
target. Often, other intermediate targets have to be created before the final target can be made. The make
command uses the makefile to determine the order in which the targets have to be made and the correct
sequence of rules to invoke.

Options and Parameters to make

The make program itself has several options. The three most commonly used are:

−k, which tells make to 'keep going' when an error is found, rather than stopping as soon as the first
problem is detected. You can use this, for example, to find out in one go which source files fail to
compile.

•

−n, which tells make to print out what it would have done, without actually doing it.•
−f <filename>, which allows you to tell make which file to use as its makefile. If you don't use this
option, make looks first for a file called makefile in the current directory. If that doesn't exist, it looks
for a file called Makefile. By convention, most UNIX programmers use Makefile.

•

To make a particular target, which is usually an executable file, you can pass its name to make as a
parameter. If you don't, make will try to make the first target listed in the makefile. Many programmers
specify all as the first target in their makefile and then list the other targets as being dependent on all. This
convention makes it clear which target the makefile should attempt to build by default when no target is
specified. We suggest you stick to this convention.

Dependencies

The dependencies specify how each file in the final application relates to the source files. In our example
above, we might specify dependencies that say our final application requires (depends on) main.o, 2.o and 3.o;
and likewise for main.o (main.c and a.h); 2.o (2.c, a.h and b.h); and 3.o (3.c, b.h and c.h). Thus main.o is
affected by changes to main.c and a.h, and it needs to be recreated, by recompiling main.c, if either of these

 The make Command and Makefiles

255

two files changes.

In a makefile, we write these rules by writing the name of the target, a colon, spaces or tabs and then a space
or tab−separated list of files that are used to create the target file. The dependency list for our example is:

myapp: main.o 2.o 3.o

main.o: main.c a.h

2.o: 2.c a.h b.h

3.o: 3.c b.h c.h

This says that myapp depends on main.o, 2.o and 3.o, main.o depends on main.c and a.h, and so on.

This set of dependencies gives a hierarchy showing how the source files relate to one other. We can see quite
easily that, if b.h changes, then we need to revise both 2.o and 3.o and, since 2.o and 3.o will have changed,
we also need to rebuild myapp.

If we wish to make several files, then we can use the phony target all. Suppose our application consisted of
both the binary file myapp and a manual page, myapp.1. We could specify this with the line:

all: myapp myapp.1

If we don't specify an all target, make simply creates the first target it finds in the makefile.

Rules

This brings us onto the second part of the makefile specifying the rules that describe how to create a target. In
our example above, once the make command has determined that 2.o needs rebuilding, what command should
be used? It may be that simply using gcc −c 2.c is sufficient (and, as we'll see later, make does indeed know
many default rules), but what if we needed to specify an include directory, or set the symbolic information
option for later debugging? We can do this by specifying explicit rules in the makefile.

At this point, we have to meet a very strange and unfortunate syntax of makefiles: the difference between a
space and a tab.

Important All rules must be on lines that start with a tab; a space won't do. Since several spaces
and a tab look much the same and since almost everywhere else in UNIX programming
there's little distinction between spaces and tabs, this can cause problems. Also, a space
at the end of a line in the makefile may cause a make command to fail.

However, it's an accident of history and there are far too many makefiles in existence to contemplate changing
it now, so take care! Fortunately, it's usually reasonably obvious when the make command isn't working
because a tab is missing.

Try It Out − A Simple makefile

Most rules consist of a simple command that could have been typed on the command line. For our example,
we will use a makefile, Makefile1.

myapp: main.o 2.o 3.o
 gcc −o myapp main.o 2.o 3.o

Options and Parameters to make

256

main.o: main.c a.h
 gcc −c main.c

2.o: 2.c a.h b.h
 gcc −c 2.c

3.o: 3.c b.h c.h
 gcc −c 3.c

We invoke the make command with the −f option, since our makefile doesn't have either of the usual default
names of makefile or Makefile. If we try this in a directory containing no source code, this happens.

$ make −f Makefile1
make: *** No rule to make target 'main.c', needed by 'main.o'. Stop.
$

The make command has assumed that the first target in the makefile, myapp, is the file that we wish to create.
It has then looked at the other dependencies and, in particular, has determined that a file called main.c is
needed. Since we haven't created this file yet and the makefile does not say how it might be created, make has
reported an error. Let's create the source files and try again. Since we're not interested in the result, these files
can be very simple. The header files are actually empty, so we can create them with touch.

$ touch a.h
$ touch b.h
$ touch c.h

main.c contains main, which calls function_two and function_three. The other two files define function_two
and function_three. The source files have #include lines for the appropriate headers, so they appear to be
dependent on the contents of the included headers. It's not much of an application, but here are the listings.

/* main.c */
#include "a.h"

extern void function_two();
extern void function_three();

int main()
{
 function_two();
 function_three();
 exit (EXIT_SUCCESS);
}
/* 2.c */
#include "a.h"
#include "b.h"

void function_two() {
}
/* 3.c */
#include "b.h"
#include "c.h"

void function_three() {
}

Let's try make again.

Options and Parameters to make

257

$ make −f Makefile1
gcc −c main.c
gcc −c 2.c
gcc −c 3.c
gcc −o myapp main.o 2.o 3.o
$

This is a successful make.

How It Works

The make command has processed the dependencies section of the makefile and determined the files that
need to be created and in which order. Even though we listed how to create myapp first, make has determined
the correct order for creating the files. It has then invoked the appropriate commands we gave it in the rules
section for creating those files. The make command displays the commands as it executes them. We can now
test our makefile to see whether it handles changes to the file b.h correctly.

$ touch b.h
$ make −f Makefile1
gcc −c 2.c
gcc −c 3.c
gcc −o myapp main.o 2.o 3.o
$

The make command has read our makefile, determined the minimum number of commands required to
rebuild myapp and carried them out in the correct order. Let's see what happens if we delete an object file.

$ rm 2.o
$ make −f Makefile1
gcc −c 2.c
gcc −o myapp main.o 2.o 3.o
$

Again, make correctly determines the actions required.

Comments in a makefile

A comment in a makefile starts with # and continues to the end of the line. As in C source files, comments in
a makefile can help both the author and others to understand what was intended when the file was written.

Macros in a makefile

Even if this was all there was to make and makefiles, they would be a powerful tool for managing multifile
projects. However, they would also tend to be large and inflexible for projects consisting of a very large
number of files. Makefiles allow us to use macros, so we can write them in a more generalized form.

We define a macro in a makefile by writing MACRONAME=value, then accessing the value of
MACRONAME by writing either $(MACRONAME) or ${MACRONAME}. Some versions of make may
also accept $MACRONAME. We can set a name to blank by leaving the rest of the line after the = blank.

Macros are often used in makefiles for options to the compiler. Often, while an application is being developed
it will be compiled with no optimization, but with debugging information included. For a release version the
opposite is usually needed; a small binary with no debugging information that runs as fast as possible.

Options and Parameters to make

258

Another problem with Makefile1 is that it assumes the compiler is called gcc. On other UNIX systems, we
might be using cc or c89. If we ever wanted to take our makefile to a different version of UNIX, or even if we
obtained a different compiler to use on our existing system, we would have to change several lines of our
makefile to make it work. Macros are a good way of collecting together all these system dependent parts,
making it easy to change them.

Macros are normally defined inside the makefile itself, but they can be specified by calling make with the
macro definition, for example, make CC=c89. Command line definitions override defines in the makefile.

Try It Out − A Makefile with Macros

Here's an revised version of our makefile, Makefile2, using macros.

all: myapp

Which compiler
CC = gcc

Where are include files kept
INCLUDE = .

Options for development
CFLAGS = −g −Wall −ansi

Options for release
CFLAGS = −O −Wall −ansi

myapp: main.o 2.o 3.o
 $(CC) −o myapp main.o 2.o 3.o

main.o: main.c a.h
 $(CC) −I$(INCLUDE) $(CFLAGS) −c main.c

2.o: 2.c a.h b.h
 $(CC) −I$(INCLUDE) $(CFLAGS) −c 2.c

3.o: 3.c b.h c.h
 $(CC) −I$(INCLUDE) $(CFLAGS) −c 3.c

If we delete our old installation and create a new one with this new makefile, we get:

$ rm *.o myapp
$ make −f Makefile2
gcc −I. −g −Wall −ansi −c main.c
gcc −I. −g −Wall −ansi −c 2.c
gcc −I. −g −Wall −ansi −c 3.c
gcc −o myapp main.o 2.o 3.o
$

How It Works

The make command replaces the $(CC), $(CFLAGS) and $(INCLUDE) with the appropriate definition, rather
like the C compiler does with #define. Now if we want to change the compile command, we only need to
change a single line of the makefile.

Try It Out − A Makefile with Macros

259

In fact, make has several special internal macros that you can use to make makefiles even more succinct. We
list the more common ones here, you will see them in use in later examples. Each of these macros is only
expanded just before it's used, so the meaning of the macro may vary as the makefile progresses. In fact,
macros would be of very little use if they didn't work like this.

$? List of prerequisites changed more recently than the current target.

$@ Name of the current target.

$< Name of the current prerequisite.

$* Name of the current prerequisite, without any suffix.
There are two other useful special characters you may see in makefile, preceding the command.

− tells make to ignore any errors. For example if you wanted to make a directory, but wished to ignore any
errors, perhaps because the directory might already exist, you just precede mkdir with a minus sign. We will
see '−' in use shortly.

@ tells make not to print the command to standard output before executing it. This is handy if you perhaps
what to use echo to display some instructions.

Multiple Targets

It's often useful to make more than a single target file, or to collect several groups of commands into a single
place. We can extend our makefile to do this. Let's add a 'clean' option that removes unwanted objects and an
'install' option that moves the application to a different directory.

Try It Out − Multiple Targets

Here's the next version of the makefile, Makefile3.

all: myapp

Which compiler
CC = gcc

Where to install
INSTDIR = /usr/local/bin

Where are include files kept
INCLUDE = .

Options for development
CFLAGS = −g −Wall −ansi

Options for release
CFLAGS = −O −Wall −ansi

myapp: main.o 2.o 3.o
 $(CC) −o myapp main.o 2.o 3.o

main.o: main.c a.h
 $(CC) −I$(INCLUDE) $(CFLAGS) −c main.c
2.o: 2.c a.h b.h
 $(CC) −I$(INCLUDE) $(CFLAGS) −c 2.c

3.o: 3.c b.h c.h

 Multiple Targets

260

 $(CC) −I$(INCLUDE) $(CFLAGS) −c 3.c

clean:
 −rm main.o 2.o 3.o

install: myapp
 @if [−d $(INSTDIR)]; \
 then \
 cp myapp $(INSTDIR);\
 chmod a+x $(INSTDIR)/myapp;\
 chmod og−w $(INSTDIR)/myapp;\
 echo "Installed in $(INSTDIR)";\
 else \
 echo "Sorry, $(INSTDIR) does not exist";\
 fi

There are several things to notice in this makefile. Firstly, the special target all still only specifies myapp as a
target. Thus when we execute make without specifying a target, the default behavior is to build the target
myapp. If it was very important that subsequent commands only executed if the previous one had succeeded,
then we could have written the commands joined by &&, like this.

@if [−d $(INSTDIR)]; \
 then \
 cp myapp $(INSTDIR) &&\
 chmod a+x $(INSTDIR)/myapp && \
 chmod og−w $(INSTDIR/myapp && \
 echo "Installed in $(INSTDIR)" ;\
 else \
 echo "Sorry, $(INSTDIR) does not exist" ; false ; \
 fi

As you may remember from the shell chapter, this is an 'and' command to the shell and has the effect that each
subsequent command only gets executed if the previous one succeeded. Here we don't care too much about
ensuring previous commands succeeded, so we stick to the simpler form.

The next important point is the two additional targets, clean and install. The clean target uses the rm
command to remove the objects. The command starts with − which tells make to ignore the result of the
command, so make clean will succeed even if there are no objects and the rm command returns an error. The
rules for making the target 'clean' don't specify clean as depending on anything; the rest of the line after clean:
is blank. Thus the target is always considered out of date and its rule is always executed if clean is specified as
a target.

The install target is dependent on myapp, so make knows that it must create myapp before carrying out other
commands for making install. The rules for making install consist of some shell script commands. Since make
invokes a shell for executing rules and uses a new shell for each rule, we must add backslashes so that all the
script commands are on one logical line and are all passed together to a single invocation of the shell for
execution. This command starts with an @ sign, which tells make not to print the command on standard
output before executing the rule.

You may not have permission as an 'ordinary' user to install new commands in /usr/local/bin. You can either
change permissions on this directory or change user (with the su command) to root before invoking make
install.

$ rm *.o myapp
$ make −f Makefile3

 Multiple Targets

261

gcc −I. −g −Wall −ansi −c main.c
gcc −I. −g −Wall −ansi −c 2.c
gcc −I. −g −Wall −ansi −c 3.c
gcc −o myapp main.o 2.o 3.o
$ make −f Makefile3
make: Nothing to be done for 'all'.
$ rm myapp
$ make −f Makefile3 install
gcc −o myapp main.o 2.o 3.o
Installed in /usr/local/bin
$ make −f Makefile3 clean
rm main.o 2.o 3.o
$

How It Works

First we delete myapp and all the objects. The make command on its own uses the target all, which causes
myapp to be built. Next we run make again, but because myapp is up to date, make does nothing. We then
delete the file myapp and do a make install. This recreates the binary and copies it to the install directory.
Finally, we run make clean, which deletes the objects.

Built−in Rules

So far, we've specified in the makefile exactly how to perform each step of the process. In fact, make has a
large number of built−in rules which can significantly simplify makefiles, particularly if we have many source
files. Let's create foo.c, a traditional 'Hello World' program.

#include <stdlib.h>
#include <stdio.h>

int main()
{
 printf("Hello World\n");
 exit (EXIT_SUCCESS);
}

Without specifying a makefile, we'll try and compile it using make.

$ make foo
cc foo.c −o foo
$

As you can see, make knows how to invoke the compiler, although, in this case, it chose cc rather than gcc.
Sometimes, these built−in rules are referred to as inference rules. The default rules use macros, so by
specifying some new values for the macros we can change the default behavior.

$ rm foo
$ make CC = gcc CFLAGS = "−Wall −g" foo
gcc −Wall −g foo.c −o foo
$

You can ask make to print its built−in rules with the −p option. There are far too many built−in rules to list
them all here, but here's a short extract from the output of make −p for the GNU version of make, showing
part of the rules:

How It Works

262

OUTPUT_OPTION = −o $@

COMPILE.c = $(CC) $(CFLAGS) $(CPPFLAGS) $(TARGET_ARCH) −c

.c.o:
 $(COMPILE.c) $< $(OUTPUT_OPTION)

We can now simplify our makefile to take account of these built−in rules by taking out the rules for making
objects and just specifying the dependencies, so the relevant section of the makefile reads simply:

main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h

You can find this version in the downloadable code as Makefile4.

Suffix Rules

The built−in rules that we've seen, work by using suffixes (similar to DOS extensions), so that when it's given
a file with one ending, make knows which rule can be used to create a file with a different ending. The most
common rule is the one used to create a file ending in .o from a file ending in .c. The rule is to use the
compiler to compile but not to link the source file.

Sometimes, we need to be able to create new rules. The authors commonly work on source files that need to
be compiled by several different compilers: two under MS−DOS and gcc under Linux. To keep one of the of
MS−DOS compilers happy, the source files, which are C++ rather than C, need to be named with a suffix of
.cpp. Unfortunately, the version of make being used with Linux doesn't have a built−in rule for compiling .cpp
files. (It does have a rule for .cc, a more common C++ file extension under UNIX.)

Thus either a rule must be specified for each individual source file, or we need to teach make a new rule for
creating objects from files with the extension .cpp. Given that there are rather a large number of source files in
this project, specifying a new rule saves a lot of typing and also makes adding new source files to the project
much easier.

To add a new suffix rule, we first add a line to the makefile telling make about the new suffix; we can then
write a rule using this new suffix. make uses the special syntax .<old suffix>.<new suffix>: to define a general
rule for creating files with the new suffix from files with the same base name but the old suffix.

Try It Out − Suffix Rules

Here's a fragment of our makefile with a new general rule for converting .cpp files to .o files. You should
insert this section at the top of the file, straight after the all: myapp line. Call the new file Makefile5.

.SUFFIXES: .cpp

cpp.o:
 $(CC) −xc++ $(CFLAGS) −I$(INCLUDE) −c $<

Let's try this new rule.

$ cp foo.c bar.cpp
$ make −f Makefile5 bar
gcc −xc++ −g −Wall −ansi −I. −c bar.cpp

 Suffix Rules

263

gcc bar.o −o bar
rm bar.o
$

How It Works

The special dependency .cpp.o: tells make that the rules that follow are for translating from a file with a suffix
of .cpp to a file with a suffix of .o. We use special macro names when we write this dependency, because we
don't know the actual names of the files that we'll be translating. To understand this rule you simply need to
remember that $< is expanded to the starting filename (with the 'old' suffix). Notice that we only tell make
how to get from a .cpp to a .o file; make already knows how to get from an object file to a binary executable
file.

When we invoke make, it uses our new rule to get from bar.cpp to bar.o, then uses its built−in rules to get
from the .o to an executable file. The extra −xc++ flag is to tell gcc that this is a C++ source file.

Managing Libraries with make

Often, when you're working on larger projects it's convenient to manage several compilation products using a
library. These are files, conventionally with the extension .a (for archive), which contain a collection of
object files. The make command has a special syntax for dealing with libraries that makes them very easy to
manage.

The syntax is lib(file.o), which means the object file file.o, as stored in the library lib.a. The make command
has a built−in rule for managing libraries, which is usually something like this.

.c.a:
 $(CC) −c $(CFLAGS) $<
 $(AR) $(ARFLAGS) $@ $*.o

The macros $(AR) and $(ARFLAGS) normally default to the command ar and the options rv, respectively.
The rather terse syntax tells make that, to get from a .c file to a .a library, it must apply two rules.

The first rule says that it must compile the source file and generate an object. The second one says to use the
ar command to revise the library, adding the new object file. If we have a library, fud, containing the file,
bas.o, in the first rule, $< is replaced by bas.c. In the second rule, $@ is replaced by the library fud.a and $* is
replaced by the name bas.

Try It Out − Managing a Library

In practice, this is actually quite simple to use. Let's change our application so that the files 2.o and 3.o are
kept in a library called mylib.a. Our makefile needs very few changes and Makefile6 looks like this. (We've
taken out the rules for dealing with C++ programs, because we won't be needing them again.)

all: myapp

Which compiler
CC = gcc

Where to install
INSTDIR = /usr/local/bin

Where are include files kept

How It Works

264

INCLUDE = .

Options for development
CFLAGS = −g −Wall −ansi

Options for release
CFLAGS = −O −Wall −ansi

Local Libraries
MYLIB = mylib.a

myapp: main.o $(MYLIB)
 $(CC) −o myapp main.o $(MYLIB)

$(MYLIB): $(MYLIB)(2.o) $(MYLIB)(3.o)
main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h

clean:
 −rm main.o 2.o 3.o $(MYLIB)

install: myapp
 @if [−d $(INSTDIR)]; \
 then \
 cp myapp $(INSTDIR);\
 chmod a+x $(INSTDIR)/myapp;\
 chmod og−w $(INSTDIR)/myapp;\
 echo "Installed in $(INSTDIR)";\
 else \
 echo "Sorry, $(INSTDIR) does not exist";\
 fi

Notice how we allow the default rules to do most of the work. Let's test our new version of the makefile.

$ rm −f myapp *.o mylib.a
$ make −f Makefile6
gcc −g −Wall −ansi −c main.c −o main.o
gcc −g −Wall −ansi −c 2.c −o 2.o
ar rv mylib.a 2.o
ar: creating mylib.a

c − 2.o
gcc −g −Wall −ansi −c 3.c −o 3.o
ar rv mylib.a 3.o
c − 3.o
gcc −o myapp main.o mylib.a
$ touch c.h
$ make −f Makefile6
gcc −g −Wall −ansi −c 3.c −o 3.o
ar rv mylib.a 3.o
a − 3.o
gcc −o myapp main.o mylib.a
$

How It Works

We first delete all the objects and the library and allow make to build myapp, which it does by compiling and
creating the library, before linking main.o with the library to create myapp. We then test the dependency rule

How It Works

265

for 3.o, which tells make that if c.h changes, 3.c must be recompiled. It does this correctly, compiling 3.c and
updating the library, before relinking to create a new myapp executable file.

Advanced Topic: Makefiles and Subdirectories

If you're working on a large project, it's sometimes convenient to split some files that comprise a library away
from the main files and store them in a subdirectory. There are two ways of doing this with make.

Firstly, you can have a second makefile in the subdirectory to compile the files, store them in a library and
then copy the library up a level into the main directory. The main makefile in the higher level directory then
has a rule for making the library which invokes the second makefile like this:

mylib.a:
 (cd mylibdirectory;$(MAKE))

This says that you must always try to make mylib.a When make invokes the rule for building the library, it
changes into the subdirectory mylibdirectory and then invokes a new make command to manage the library.
Since a new shell is invoked for this, the program using the makefile doesn't execute the cd. Only the shell
invoked to carry out the rule to build the library is in a different directory. The brackets ensure that it's all
processed by a single shell.

The second way is to use some additional macros in a single makefile. The extra macros are generated by
appending a D for directory or an F for filename to those macros we've already met. We could then override
the built−in .c.o suffix rule with:

.c.o:
 $(CC) $(CFLAGS) −c $(@D)/$(<F) −o $(@D)/$(@F)

for compiling files in a subdirectory and leaving the objects in the subdirectory. We then make the library in
the current directory with a dependency and rule something like this:

mylib.a: mydir/2.o mydir/3.o
 ar −rv mylib.a $?

You need to decide which approach you prefer for your own project. Many projects simply avoid having
subdirectories, but this can lead to a source directory with a ridiculous number of files in it. As you can see
from the brief overview above, you can use make with subdirectories with only slightly increased complexity.

GNU make and gcc

If you're using GNU make and the GNU gcc compiler, there are two interesting extra options.

The first is the −jN ('jobs') option to make. This allows make to execute N commands at the same time.
Where several different parts of the project can be compiled independently, make will invoke several rules
simultaneously. Depending on your system configuration, this can give a significant improvement in the time
to recompile. If you have many source files, it may be worth trying this option. In general, smaller numbers
such as −j3 are a good starting point. If you share your computer with other users, use the 'jobs' option with
care. Other users may not appreciate you starting large numbers of processes every time you compile!

The other useful addition is the −MM option to gcc. This produces a dependency list in a form suitable for
make. On a project with a significant number of source files, each including different combinations of header

 Advanced Topic: Makefiles and Subdirectories

266

files, it can be quite difficult (but very important) to get the dependencies correct. If you make every source
file depend on every header file, sometimes you'll compile files unnecessarily. If, on the other hand, you miss
some dependencies out, the problem is even worse because you're now failing to compile files that need
recompiling.

Try It Out − gcc −MM

$ gcc −MM main.c 2.c 3.c
main.o: main.c a.h
2.o: 2.c a.h b.h
3.o: 3.c b.h c.h
$

How It Works

The gcc compiler simply outputs the required dependency lines in a format ready for insertion into a makefile.
All we have to do is save the output into a temporary file and then insert it into the makefile for a perfect set
of dependency rules. There are no excuses for getting your dependencies wrong if you have a copy of gcc!

If you really feel confident about makefiles, you might try using the makedepend tool, which performs a
similar function to the −MM option, but actually appends the dependencies at the end of the specified
makefile.

Before we leave the topic of makefiles, it's perhaps worth pointing out that you don't have to confine yourself
to using makefiles to compile code or create libraries. You can use them to automate any task where there is a
sequence of commands that get you from some sort of input file to an output file. A typical 'non compiler' use
might be for calling AWK or sed to process some files, or even generating manual pages.

Source Code Control

If you move beyond simple projects, managing changes to source files starts to become important,
particularly if more than one person is working on the project. There are two widely used UNIX systems for
managing source files: RCS (Revision Control System) and SCCS (Source Code Control System).

The RCS utilities, along with their sources, are available from the Free Software Foundation. SCCS was
introduced by AT&T in the System V versions of UNIX and is now incorporated in the X/Open standard. In
addition, there are many other third party source code control systems, perhaps the best known of which is
CVS (Concurrent Version System), which is more advanced than SCCS or RCS, but not (yet) in such
common use.

In this chapter, we'll look primarily at RCS, but compare the RCS commands with the SCCS commands. As
you'll see, they offer very similar facilities and it's quite painless to change between them. Versions of RCS
are also available for MS−DOS, including commercially supported products. We will also take a quick look at
CVS a source code control system that is great for multiple developers collaborating using a network.

RCS

The RCS system comprises a number of commands for managing source files. It works by tracking a source
file as it's changed by maintaining a single file with a list of changes in sufficient detail to recreate any
previous version. It also allows you to store comments associated with every change, which can be very useful
if you're looking back through the history of changes to a file.

Try It Out − gcc −MM

267

As a project progresses, you can log each major change or bug fix you make to a source file separately and
store comments against each change. This can be very useful for reviewing the changes made to a file,
checking where bugs were fixed and occasionally, perhaps, where bugs were introduced!

As the RCS only saves the changes between versions, it's also very space efficient. The system also allows us
to retrieve previous revisions in case of an accidental deletion.

The rcs Command

We'll start with an initial version of the file we wish to manage. In this case, we'll use important.c, which
starts life as a copy of foo.c with the following comment at the beginning:

/*
 This is an important file for managing this project.
 It implements the canonical "Hello World" program.
*/

The first task is to initialize RCS control over the file, using the rcs command. The command rcs −i initializes
the RCS control file.

$ rcs −i important.c
RCS file: important.c,v
enter description, terminated with single '.' or end of file:
NOTE: This is NOT the log message!
>> This is an important demonstration file
>> .
done
$

We're allowed multiple comment lines. We terminate the prompting with a single . on a line by itself, or by
typing the end of file character, usually Ctrl−D.

After this command, rcs has created a new read−only file with a ,v extension:

$ ls −l
− r w − r − − r − − 1 rick users 226 Feb 11 16:25 important.c
− r − − r − − r − − 1 rick users 105 Feb 11 16:26 important.c,v
$

If you prefer to keep your RCS files in a separate directory, simply create a subdirectory called RCS before
you use rcs for the first time. All the rcs commands will automatically use the RCS subdirectory for rcs files.

The ci Command

We can now check in our file, using the ci command to store the current version.

$ ci important.c
important.c,v < important.c
initial revision: 1.1
done
$

If we had forgotten to do rcs −i first, RCS would have asked for a description of the file. One of the
advantages of RCS over SCCS is this more relaxed approach to human error. If we now look at the directory,

RCS

268

we'll see that important.c has been deleted.

$ ls −l
− r − − r − − r − − 1 rick users 442 Feb 11 16:30 important.c,v
$

The file contents and control information are all are stored in the RCS file, important.c,v.

The co Command

If we wish to change the file, we must first 'check out' the file. If we just want to read the file, we can use co
to recreate the current version of the file and change the permissions to make it read−only. If we wish to edit
it, we must lock the file with co −l. The reason for this is that, in a team project, it's important to ensure that
only one person at a time is modifying a given file, which is why only one copy of a given version of a file
has write permission. When a file is checked out with write permission, the RCS file becomes locked. Let's
lock out a copy of the file:

$ co −l important.c
important.c,v > important.c
revision 1.1 (locked)
done
$

and look at the directory:

$ ls −l
− r w − r − − r − − 1 rick users 226 Feb 11 16:35 important.c
− r − − r − − r − − 1 rick users 452 Feb 11 16:35 important.c,v
$

There's now a file for us to edit, to put in our new changes. Let's do some edits, store the new version and use
the ci command again to store the changes. The output section of important.c is now:

 printf("Hello World\n");
 printf("This is an extra line added later\n");

We use ci like this.

$ ci important.c
important.c,v < important.c
new revision: 1.2; previous revision: 1.1
enter log message, terminated with single '.' or end of file:
>> Added an extra line to be printed out.
>> .
done
$

Important To check in the file and retain the lock so that the user can continue to work on it, you
should call ci with its −l option. The file is automatically checked out again to the same
user.

We've now stored the revised version of the file. If we look at the directory, we see that important.c has again
been removed.

$ ls −l

RCS

269

− r − − r − − r − − 1 rick users 633 Feb 11 16:37 important.c,v
$

The rlog Command

It's often useful to look at a summary of changes to a file. We can do this with the rlog command.

$ rlog important.c

RCS file: important.c,v

Working file: important.c
head: 1.2
branch:
locks: strict
access list:
symbolic names:
comment leader: " * "
keyword substitution: kv
total revisions: 2; selected revisions: 2
description:
This is an important demonstration file

revision 1.2
date: 1999/02/11 16:37:35; author: rick; state: Exp; lines: +1 −0
Added an extra line to be printed out.

revision 1.1
date: 1999/02/11 16:30:19; author: rick; state: Exp;
Initial revision
===
$

The first part gives us a description of the file and the options that rcs is using. The rlog command then lists
the revisions of the file, most recent first, along with the text we entered when we checked in the revision.
"lines: +1 0" in revision 1.2 tells us that one line was added and none were deleted.

If we now want the first version of the file back, we can ask co for it by specifying the revision we require.

$ co −r1.1 important.c
important.c,v > important.c
revision 1.1
done
$

ci also has an −r option, which forces the version number to a specified value. For example,

ci −r2 important.c

would check in important.c as version 2.1. Both RCS and SCCS default to using 1 as the first minor version
number.

RCS

270

The rcsdiff Command

If we just want to know what was changed between two revisions, we can use the rcsdiff command.

$ rcsdiff −r1.1 −r1.2 important.c
===
RCS file: important.c,v
retrieving revision 1.1
retrieving revision 1.2
diff −r1.1 −r1.2
11a12
> printf("This is an extra line added later\n");

$

This tells us that a single line was inserted after the original line 11.

Identifying Revisions

The RCS system can use some special strings (macros) inside the source file to help track the changes. The
most common two macros are $RCSfile$ and Id. The macro, $RCSfile$, is expanded to the name of the file
and Id expands to a string identifying the revision. Consult the manual pages for a full list of the special
strings supported. The macros are expanded afresh whenever a file revision is checked out and updated
automatically when a revision is checked in.

Let's change our file for a third time and add some of these macros.

$ co −l important.c
important.c,v > important.c
revision 1.2 (locked)
done
$

We edit the file and it now looks like this.

/*
 This is an important file for managing this project.
 It implements the canonical "Hello World" program.

 Filename: $RCSfile$
*/

#include <stdlib.h>
#include <stdio.h>

static char *RCSinfo = "Id";

int main() {
 printf("Hello World\n");
 printf("This is an extra line added later\n");
 printf("This file is under RCS control. It's ID is\n%s\n", RCSinfo);
 exit (EXIT_SUCCESS);
}

Let's check in this revision and see how RCS manages the special strings.

$ ci important.c

RCS

271

important.c,v < important.c
new revision: 1.3; previous revision: 1.2
enter log message, terminated with single '.' or end of file:
>> Added $RCSfile$ and Id strings
>> .
done
$

If we look in the directory, we find only the RCS file:

$ ls −l
− r − − r − − r − − 1 rick users 907 Feb 11 16:55 important.c,v
$

If we check out (with the co command) and examine the current version of the source file, we can see the
macros that have been expanded.

/*
 This is an important file for managing this project.
 It implements the canonical "Hello World" program.

 Filename: $RCSfile: important.c,v $
*/

#include <stdlib.h>
#include <stdio.h>

static char *RCSinfo = "$Id: important.c,v 1.3 1999/02/11 16:55:04 rick Exp $";
int main() {
 printf("Hello World\n");
 printf("This is an extra line added later\n");
 printf("This file is under RCS control. It's ID is\n%s\n", RCSinfo);
 exit (EXIT_SUCCESS);
}

Try It Out − GNU make with RCS

GNU make already has some built−in rules for managing RCS files. We will now see how make deals with a
missing source file.

$ rm −f important.c
$ make important
co important.c,v important.c
important.c,v > important.c
revision 1.3
done
cc −c important.c −o important.o
cc important.o −o important
rm important.o important.c
$

How It Works

make has a default rule that to make a file with no extension you can compile a file of the same name, but
with a .c extension. A second default rule allows make to create important.c from important.c,v by using RCS.
Since no file called important.c exists, make has created the .c file by checking out the latest revision with co.
After compiling, it tidied up by deleting the file important.c.

RCS

272

The ident Command

We can use the ident command to find the version of a file that contains a Id string . Since we stored the
string in a variable, it also appears in the resulting executable. You may find that if you include special strings
but never access them in the code, some compilers will optimize them away. You can normally get around
this problem by adding some 'dummy' accesses to the string, although as compilers get better this is becoming
more difficult!

Try It Out − ident

$ important
Hello World
This is an extra line added later
This file is under RCS control. It's ID is
$Id: important.c,v 1.3 1999/02/11 16:55:04 rick Exp $
$ ident important
important:
 $Id: important.c,v 1.3 1999/02/11 16:55:04 rick Exp $
$

How It Works

By executing the program we show the string has been incorporated into the executable. Then we show how
the ident command can extract Id strings from an executable file.

This technique of using RCS and Id strings that appear in executables, can be a very powerful tool for
checking which version of a file a customer is reporting a problem in. You can also use RCS (or SCCS) as
part of a project tracking facility to track problems being reported and how they are fixed. If you're selling
software, or even giving it away, it's very important to know what was changed between different releases.

If you'd like some more information, the rcsinfo pages in the manual give a thorough introduction to the RCS
system, in addition to the standard RCS pages. There are also manual pages for the individual commands ci,
co, etc.

SCCS

SCCS offers very similar facilities to RCS. The advantage of SCCS is that it's specified in X/Open, so all
branded versions of UNIX should support it. On a more practical level, RCS is very portable and can be freely
distributed. So, if you have a UNIX−like system, whether it's X/Open conformant or not, you should be able
to obtain and install RCS for it. For this reason we don't describe SCCS further here, except to provide a brief
command comparison for those moving between the two systems.

Comparing RCS and SCCS

It's difficult to provide a direct comparison of commands between the two systems, so the table which follows
should only be considered as a quick pointer. The commands listed here don't take the same options to
perform the same tasks. If you have to use SCCS, you'll need to find the appropriate options, but at least you'll
know where to start looking.

RCS SCCS

rcs admin

ci delta

RCS

273

co get

rcsdiff sccsdiff

ident what
In addition to those listed above, the SCCS sccs command has some crossover with the rcs and co commands
in RCS. For example, sccs edit and sccs create are equivalent to co −l, and rcs −i respectively.

CVS

An alternative to using RCS to manage changes to files is CVS, the Concurrent Versions System. This is
becoming more popular, probably because it has one distinct advantage over RCS. It's practical to use CVS
over the Internet, not just on a shared local directory like RCS. CVS also allows for parallel development, i.e.
many programmers can work on the same file at once whereas RCS only allows one user to work on one
particular file at a time. CVS commands resemble to RCS commands, because CVS was initially developed as
a front end to RCS.

Since it can work across a network in a flexible way, CVS is suitable for use if the only network linking the
developers is the Internet. Many Linux and GNU projects are using CVS to help the different developers
coordinate their work. In general, the way that you use CVS on a remote set of files is almost identical to how
you would use it on a local set.

In this chapter, we will look briefly at the basics of CVS, so that you can get started with local repositories
and understand how to get a copy of the latest sources of a project when the CVS server is on the Internet.
More information is in the CVS manual, written by Per Cederqvist et. al., Copyright Signum Support AB, but
distributed under the terms of the GNU General Public License and available on many web sites, where you
will also find FAQ files and various other helpful files.

Getting started with CVS

First we need to create a repository, where CVS will store both its control files and the master copies of files
that it is managing. A repository has a tree structure, so you can use a single repository to store not just a
whole directory structure for a single project, but many projects in the same repository. However you can use
separate repositories for separate unrelated projects as well. We will see below how to tell CVS which
repository to use.

Using CVS locally

Let's start by creating a repository. To keep it simple, this will be a local repository and, since we will be
using only one, a convenient place to put it is somewhere in /usr/local. On most Linux distributions all normal
users are members of the group users so we use this as the group of the repository, so all users can access it.

As superuser, create a directory for the repository.

mkdir /usr/local/repository
chgrp users /usr/local/repository

As a normal user again, initialize it as a CVS repository. You may need to obtain write access to
/usr/local/repositry to do this.

$ cvs −d /usr/local/repository init

The −d option tells CVS where we want the repository to be created.

 CVS

274

Now that the repository has been created, we can store our initial versions of the project in CVS. However, at
this point we can save ourselves some typing. All cvs commands have two ways of looking for the CVS
directory. Firstly they look for a −d <path> on the command line (as we used with the init command), if the d
option is not present then it looks for an environment variable, CVSROOT. Rather than use the −d option all
the time, we will set up this environment variable. This is the command to use if you use bash as your shell.

$ export CVSROOT = /usr/local/repository

First change to the directory where the project is, then we tell cvs to import all the files in the directory.

$ cd cvs−sp
$ cvs import −m"Initial version of Simple Project" wrox/chap8−cvs wrox start

This bit of magic tells CVS to import all the files in the current directory, and gives it a log message.

The option wrox/chap8−cvs tells CVS where, relative to the root of the CVS tree, to store the new project.
Remember CVS can store multiple projects in same repository, if you wish. The option wrox is a vendor tag
used to identify the supplier of the initial version of files being imported and start is a release tag. Release tags
can be used to identify, as a group, sets of related files − such as those that make up a particular release of an
application. CVS responds with:

N wrox/chap8−cvs/Makefile
N wrox/chap8−cvs/hello.c

No conflicts created by this import

telling us that it imported two files correctly.

Now is a good time to check that we can retrieve our files from CVS. Let's just create a 'junk' directory, and
check our files back out again, just to make sure all is well.

$ mkdir junk
$ cd junk
$ cvs checkout wrox/chap8−cvs

We give CVS the same path as when we checked the files in. CVS creates a directory wrox/chap8−cvs in the
current directory, and puts the files there for us.

Now we are ready to make some changes to our project. Let's edit hello.c, and make a minor change. Let's just
add a line.

printf("Have a nice day\n");

Then recompile and run the program to check all is well.

We can ask CVS what has been changed in the project. We don't have to tell CVS which file we are interested
in, it can work on a whole directory at a time.

$ cvs diff

CVS responds with:

cvs diff: Diffing .

 CVS

275

Index: hello.c
===
RCS file: /usr/local/repository/wrox/chap8−cvs/hello.c,v
retrieving revision 1.1.1.1
diff −r1.1.1.1 hello.c
6c6
<
−−−
> printf("Have a nice day\n");

We are happy with our change, so lets commit it to CVS.

When you commit a change with CVS, it will start an editor to allow you to enter a log message. You may
want to set the environment variable CVSEDITOR to force a particular editor before you run the commit
command.

$ cvs commit

CVS responds by telling us what it is checking.

Checking in hello.c;
/usr/local/repository/wrox/chap8−cvs/hello.c,v <−− hello.c
new revision: 1.2; previous revision: 1.1
done

Now we can ask CVS about changes to the project since we first checked it in. We ask for a set of differences
since revision 1.1 (the initial version) on project wrox/chap8−cvs.

$ cvs rdiff −r1.1 wrox/chap8−cvs

CVS tells us the details.

cvs rdiff: Diffing wrox/chap8−cvs
Index: wrox/chap8−cvs/hello.c
diff −c wrox/chap8−cvs/hello.c:1.1 wrox/chap8−cvs/hello.c:1.2
*** wrox/chap8−cvs/hello.c:1.1 Tue Aug 3 19:54:14 1999
−−− wrox/chap8−cvs/hello.c Tue Aug 3 19:57:19 1999

*** 3,7 ****
−−− 3,8 −−−−
 main(int argc, char* argv[]) {

 printf("Hello World\n");
+ printf("Have a nice day\n");

 }

Suppose you have had a copy of code out of CVS for a while in a local directory, and want to refresh files in
your local directory that others have changed, but you have not edited. CVS can do this for you, using the
update command. Move to the top part of the path, in this case to the directory containing wrox, and execute
the command:

$ cvs update −Pd wrox/chap8−cvs

and CVS will refresh files for you, extracting from the repository files that others have changed but you have
not, and putting them in your local directory. Of course some of the changes might be incompatible with your

 CVS

276

changes but that is a problem you will have to work on. CVS is good, but it can't perform magic!

You can see by now that using CVS is very like using RCS. However there is one very important difference,
that we haven't mentioned yet − the ability to operate over a network without using a mounted file system.

Accessing CVS over a network

We told CVS where the repository was either by using a −d option to each command, or by setting the
CVSROOT environment variable. If we want to operate over a network, we simply use a more advanced
syntax for this parameter. For example, at the time of writing the GNOME (GNU Network Object Model
Environment, a popular open source graphical desktop system) development sources are all accessible on the
Internet using CVS. You need only specify where the appropriate CVS repository is by pre−pending some
network information to the front of the path specifier.

For example, at the time of writing you point CVS at the GNOME source CVS repository by setting
CVSROOT to pserver:anonymous@anoncvs.gnome.org:/cvs/gnome. This tells CVS that the repository is
using password authentication (pserver), and is on the server anoncvs.gnome.org.

Before we can access the sources, we need to do a login, like this.

$ cvs login

Press return when prompted for the password.

We are now ready to use cvs commands, much as though we where working on a local repository, with one
minor exception − we add the −z3 option to all cvs commands to force compression, saving network
bandwidth.

If we wanted to fetch the ORBit sources for example, then the command is:

$ cvs −z3 checkout ORBit

If we want to set our own repository to be accessible over the network, then we need to start a CVS server on
our machine. This can be done by starting it via inetd. We simply add a line to /etc/inetd.conf and restart inetd.
The line we need is:

2401 stream tcp nowait root /usr/bin/cvs cvs b /usr/bin −allow−root = /usr/local/repository pserver

This instructs inetd to automatically start a CVS session to clients connecting on port 2401, the standard CVS
server port. For more information on starting network services via inetd see the manual pages for inetd and
inetd.conf.

In this brief section we have barely had room to scratch the surface of the facilities of CVS. If you want to use
CVS seriously, then we strongly urge you to set up a local repository to experiment on, get the extensive CVS
documentation, and have fun! Remember, this is open source, so if you ever get seriously stuck about what
the code is doing, or (unlikely, but possible!) think you have found a bug − you can always get the source
code and have a look for yourself.

There is one other benefit of CVS not only is there an MS Windows version of the cvs client application, for
poor users without their own Linux box, there is also a Java client version, for even wider portability.

CVS

277

Writing a Manual Page

If you're writing a new command, as part of the task you should be creating a manual page to go with it. As
you've probably noticed, the layout of most manual pages follows a closely set pattern, which is of the form:

Header•
Name•
Synopsis•
Description•
Options•
Files•
See also•
Bugs•

You can leave out sections that aren't relevant. 'Author' also appears often in Linux manual pages.

UNIX manual pages are formatted with a utility called nroff, or on most Linux systems the GNU project's
equivalent, groff. Both these are developments of an earlier roff or run−off command. The input to nroff or
groff is plain text, except that, at first glance, the syntax looks impenetrably difficult. Don't panic! As with
UNIX programming, where the easiest way of writing a new program is to start with an existing program and
adapt it, so it is with manual pages.

It's beyond the scope of this book to explain in detail the many options, commands and macros that the groff
(or nroff) command can use. Rather, we present a simple template that you can borrow and adapt for your
own pages.

Here's the source of a simple manual page for our application.

.TH MYAPP 1

.SH NAME
Myapp \− A simple demonstration application that does very little.

.SH SYNOPSIS

.B myapp
[\−option ...]

.SH DESCRIPTION

.PP
\fImyapp\fP is a complete application that does nothing useful.

.PP
It was written for demonstration purposes.
.SH OPTIONS
.PP
It doesn't have any, but let's pretend, to make this template complete:

.TP

.BI \−option
If there was an option, it would not be −option.

.SH RESOURCES

.PP
myapp uses almost no resources.

 Writing a Manual Page

278

.SH DIAGNOSTICS
The program shouldn't output anything, so if you find it doing so there's
probably something wrong. The return value is zero.

.SH SEE ALSO
The only other program we know with this this little functionality is the
ubiquitous hello world application.

.SH COPYRIGHT
myapp is Copyright (c) 1999 Wrox Press.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111 1307 USA.

.SH BUGS
There probably are some, but we don't know what they are yet.

.SH AUTHORS
Neil Matthew and Rick Stones

As you can see, macros are introduced with a full stop (.) at the start of the line and tend to be very
abbreviated. The 1 at then end of the top line is the section of the manual in which the command appears.
Since commands appear in section 1, that is where we place our new application.

You should be able to generate your own manual pages by modifying this one and inspecting the source for
others. You might also take a look at the Linux Man Page mini−HowTo, written by Jens Schweikhardt as part
of the Linux Documentation Project archives.

Now we have the source to the manual page, we can process it with groff. The groff command commonly
produces ASCII text (−Tascii) or PostScript (−Tps) output. We tell groff it's a manual page using the −man
option, which causes special manual page macro definitions to be loaded.

$ groff −Tascii −man myapp.1

This gives the output:

MYAPP(1) MYAPP(1)
NAME
 Myapp − A simple demonstration application that does very
 little.

SYNOPSIS
myapp [−option ...]

DESCRIPTION

 Writing a Manual Page

279

myapp is a complete application that does nothing useful.

 It was written for demonstration purposes.

OPTIONS
 It doesn't have any, but let's pretend, to make this tem−
 plate complete:

−option
 If there was an option, it would not be −option.

RESOURCES
 myapp uses almost no resources.

DIAGNOSTICS
 The program shouldn't output anything, so if you find it
 doing so there's probably something wrong. The return
 value is zero.

SEE ALSO
 The only other program we know with this this little func−
 tionality is the ubiquitous hello world application.

COPYRIGHT
 myapp is Copyright (c) 1999 Wrox Press.

 This program is free software; you can redistribute it
 and/or modify it under the terms of the GNU General Public
 License as published by the Free Software Foundation;
 either version 2 of the License, or (at your option) any
 later version.

 This program is distributed in the hope that it will be
 useful, but WITHOUT ANY WARRANTY; without even the implied
 warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
 PURPOSE. See the GNU General Public License for more
 details.

 1

MYAPP(1) MYAPP(1)

 You should have received a copy of the GNU General Public
 License along with this program; if not, write to the Free
 Software Foundation, Inc., 59 Temple Place − Suite 330
 Boston, MA 02111−1307, USA
BUGS
 There probably are some, but we don't know what they are
 yet.

 Writing a Manual Page

280

AUTHORS
 Neil Matthew and Rick Stones

Now that we've tested our manual page, we need to install it. The man command that shows manual pages
uses the MANPATH environment variable to search for manual pages. We can either put our new page in a
directory for local manual pages or store it directly in the system /usr/man/man1 directory.

The first time someone asks for this manual page, the man command will automatically format and display it.
Some versions of man can automatically generate and store preformatted (and possibly compressed) ASCII
text versions of manual pages to speed up subsequent requests for the same page.

Distributing Software

The main problem with program distribution is ensuring that all the files are included and are of exactly the
right version. Fortunately, the Internet programming community has evolved a very robust set of methods
which go a long way towards removing the problems. These methods include:

Packaging all component files into a single package file, using standard tools available on all Unix
machines.

•

Tight version numbering of packages.•
A file naming convention that includes the version number in the package file, so that users can easily
see which version they are dealing with.

•

Use of subdirectories in the package to ensure that when files are extracted from the package file, they
are placed in a separate directory so there's no confusion about what's included in the package and
what isn't.

•

The evolution of these methods has meant that programs can be easily and reliably distributed. The ease with
which a program can be installed is another matter, because that depends on the program and the system on
which it's being installed, but at least you can be sure that you have the right component files.

The patch Program

When programs have been distributed, it's almost inevitable that users will discover bugs or that the author
will want to issue enhancements and updates. When authors distribute programs as binaries, they often simply
ship new binaries. Sometimes (all too often), vendors simply release a new version of the program, often with
an obscure revision reference and little information about what has changed.

On the other hand, distributing your software as source code is excellent because it allows people to see how
you have implemented things and how you have used features. It also allows people to check exactly what
programs are doing and to reuse parts of the source code (providing they keep to the licensing agreement).

However, with the source of the Linux kernel weighing in at (very roughly) 13 Mb of compressed source
code, shipping an updated set of kernel sources would involve considerable resources, when, in fact, probably
only a small percentage of the source has changed between each release.

Fortunately, there is a utility program for solving this problem: patch. It was written by Larry Wall, who also
wrote the Perl programming language. The patch command allows you to distribute just the 'differences', so
anyone with version 1 of a file and a difference file for version 1 to version 2 can use the patch command to
generate version 2 for themselves.

 Distributing Software

281

If we start with version 1 of a file:

This is file one
line 2
line 3
there is no line 4, this is line 5
line 6

and then produce version 2:

This is file two
line 2
line 3
line 4
line 5
line 6
a new line 8

we can create a difference listing with the diff command.

$ diff file1.c file2.c > diffs

The diffs file contains:

1c1
< This is file one

> This is file two
4c4,5
< there is no line 4, this is line 5

> line 4
> line 5
5a7
> a new line 8

This is actually a set of editor commands for changing one file into another. Suppose we have file1.c and the
diffs file. We can update our file using patch:

$ patch file1.c diffs
Hmm... Looks like a normal diff to me...
Patching file file1.c using Plan A...
Hunk #1 succeeded at 1.
Hunk #2 succeeded at 4.
Hunk #3 succeeded at 7.
done
$

The patch command has now changed file1.c to be the same as file2.c.

Patch has an extra 'trick': the ability to unpatch. Suppose we decide we didn't like the changes and wanted our
original file1.c back? No problem; just use patch again, using the −R (reverse patch) option.

$ patch −R file1.c diffs
Hmm... Looks like a normal diff to me...
Patching file file1.c using Plan A...
Hunk #1 succeeded at 1.

 Distributing Software

282

Hunk #2 succeeded at 4.
Hunk #3 succeeded at 6.
done
$

file1.c is returned to its original state.

The patch command has several other options, but, generally, is very good at deciding from its input what you
were trying to do and simply 'doing the right thing'. If patch ever fails, it creates a file with the .rej extension
containing the parts that couldn't be patched.

When you're dealing with software patches, it's a good idea to use the diff −c option, which produces a
'context diff'. These provide a number of lines before and after each change so that patch can verify that the
context matches before applying the patch. The patch is also easier to read.

Important If you find and fix a bug in a program, it's easier, more precise and more polite to send
the author a patch than just a description of the fix.

Other Distribution Utilities

UNIX programs and sources are commonly distributed in a file whose name contains the version number,
with an extension of .tar.gz or .tgz. These are gzip−ed TAR (tape archive) files. If you're using normal tar,
you must process these files in two steps. Let's create a gzip file of our application.

$ tar cvf myapp−1.0.tar main.c 2.c 3.c *.h myapp.1 Makefile6
main.c
2.c
3.c
a.h
b.h
c.h
myapp.1
Makefile6
$

We now have a TAR file.

$ ls −l *.tar
− r w − r − − r − − 1 rick users 10240 Feb 11 18:30 myapp−1.0.tar
$

We can make this smaller using the compression program gzip.

$ gzip myapp−1.0.tar
$ ls −l *.gz
−r w − r − − r − − 1 rick users 1580 Feb 11 18:30 myapp−1.0.tar.gz
$

A very impressive reduction in size. This .tar.gz may then be renamed to a simple .tgz extension.

$ mv myapp−1.0.tar.gz myapp_v1.tgz

This practice of renaming files to end with a dot and three characters seems to be a concession to MS−DOS
and some MS−Windows software, which, unlike UNIX, is heavily dependent on the correct extension being

 Other Distribution Utilities

283

present. To get our file back, we decompress and extract them from the tar file again.

$ mv myapp_v1.tgz myapp−1.0.tar.gz
$ gzip −d myapp−1.0.tar.gz
$ tar xvf myapp−1.0.tar
main.c
2.c
3.c
a.h
b.h
c.h
myapp.1
Makefile6
$

With GNU's version of tar, things are even easier We can create the compressed archive in a single step.

$ tar zcvf myapp_v1.tgz main.c 2.c 3.c *.h myapp.1 Makefile6
main.c
2.c
3.c
a.h
b.h
c.h
myapp.1
Makefile6
$

We can decompress it just as easily.

$ tar zxvf myapp_v1.tgz
main.c
2.c
3.c
a.h
b.h
c.h
myapp.1
Makefile6
$

If you want to know the contents of the archive without actually extracting them, you should call the tar
program with the slightly different options, tar ztvf.

tar Command Description

We've been using tar for the examples above without describing the options any more than absolutely
necessary. We'll now take a quick look at the command and a few of its more popular options. As you can see
from our examples, the basic syntax is:

tar [options] [list of files]

The first item in the list is the target and although we've been dealing with files, it could just as well be a
device. (tar stands for tape archive.) The other items in the list are added to a new or existing archive,
depending on the options. The list can also include directories, in which case all subdirectories are also
included in the file by default. If you're extracting files, there's no need to specify names because full paths are

Other Distribution Utilities

284

preserved by tar.

In this section, we've used combinations of six different options.

c Creates a new archive.

f Specifies that the target is a file rather than a device.

t Lists the contents of an archive without actually extracting
them.

v Verbose: tar displays messages as it goes.

x Extracts file from an archive.

z Filters the archive through gzip, from within GNU tar.
There are many more options to tar which allow finer control over the operation of the command and the
archives it creates. Refer to the tar manual pages for more information.

Summary

In this chapter, we have seen just a few of the UNIX tools that make development and distribution of
programs manageable. Firstly and perhaps most importantly, we used make and makefiles to manage multiple
source files. We then looked at source code control, which lets us track changes as we develop our code. We
then looked at patch, tar and gzip, which are used for distributing and updating programs.

 Summary

285

Chapter 9: Debugging
Every significant piece of software will contain defects, typically 2 to 5 per 100 lines of code. These mistakes
lead to programs and libraries that don't perform as required, so that there's a difference between what they do
and what they're supposed to do. Bugs and their removal can consume a large amount of a programmer's time
during software development.

In this chapter, we'll look at software defects and consider some tools and techniques for tracking down
specific instances of erroneous behavior. This isn't the same as testing (the task of verifying the program's
operation in all possible conditions), although testing and debugging are, of course, related and many bugs are
discovered during the testing process.

Types of Error

A bug usually arises from one of a small number of causes, each of which suggests a method of detection and
removal.

Specification Errors

If a program is incorrectly specified, it will inevitably fail to perform as required. The best programmer in the
world will simply write the wrong program. Before you start programming (or designing), make sure that you
know and understand clearly what your program needs to do. You can detect and remove many (if not all)
specification errors by reviewing the requirements and agreeing them with those who will use the program.

Design Errors

Programs of any size need to be designed. It's not usually enough to sit down at a computer keyboard, type in
source code directly and expect the program to work first time. Take time to think about how you will
construct the program, what data structures you'll need and how they will be used. Try to work out the details
in advance, because it can save a lot of rewrites later on.

Coding Errors

Of course, everyone makes typing errors. Creating the source code from your design is an imperfect process.
This is where many bugs will creep in. When you're faced with a bug in a program, don't overlook the
possibility of simply re−reading the source code, or asking someone else to. It's surprising just how many
bugs you can detect and remove by talking through the implementation with someone else.

Important Languages with compilers, such as C, have an advantage here in that syntax errors can be caught
at compile time, whereas interpreted languages such as the UNIX shell might only detect syntax
errors when you try to run the program. If the problem is with error handling code, this might not
be easy to spot in testing.

Try executing the core of the program on paper, a process sometimes called dry running. For the most
important routines, write down the values of inputs and calculate the outputs step−by−step. You don't always
have to use a computer to debug and sometimes it can be the computer causing the problems. Even the people
who write libraries, compilers and operating systems make mistakes! On the other hand, don't be too quick to
blame the tools, it is rather more likely that there's a bug in a new program than the compiler.

286

General Debugging Techniques

There are several distinct approaches to debugging and testing a typical UNIX program. We generally run the
program and see what happens. If it doesn't work, we need to decide what to do about it. We can change the
program and try again (code inspection, trial and error), we can try to gain more information about what's
happening inside the program (instrumentation), or we can inspect the program operation directly (controlled
execution). The five stages of debugging are:

Testing: finding out what defects or bugs exist.•
Stabilization: making the bugs repeatable.•
Localization: identifying the line(s) of code responsible.•
Correction: fixing the code.•
Verification: making sure the fix works.•

A Program with Bugs

Let's look at an example program that contains bugs. During the course of this chapter, we can try to debug it.
The program has been written during the development of a larger software system. Its purpose is to test out a
single function, sort, which is intended to implement a bubble sort algorithm on an array of structures of type
item. The items are sorted in ascending order of the member, key. The program calls sort on a sample array to
test it. In the "real world", we would never seek to use this particular sort of algorithm, it's far too inefficient.
We have used it here because it is short, relatively simple to understand, but also easy to get wrong. In fact,
the standard C library has a function already, qsort.

Unfortunately, the code is not very readable, there are no comments and the original programmer isn't
available. We'll have to struggle with it on our own, starting from the basic routine debug1.c.

/* 1 */ typedef struct {
/* 2 */ char *data;
/* 3 */ int key;
/* 4 */ } item;
/* 5 */
/* 6 */ item array[] = {
/* 7 */ {"bill", 3},
/* 8 */ {"neil", 4},
/* 9 */ {"john", 2},
/* 10 */ {"rick", 5},
/* 11 */ {"alex", 1},
/* 12 */ };
/* 13 */
/* 14 */ sort(a,n)
/* 15 */ item *a;
/* 16 */ {
/* 17 */ int i = 0, j = 0;
/* 18 */ int s = 1;
/* 19 */
/* 20 */ for(; i < n && s != 0; i++) {
/* 21 */ s = 0;
/* 22 */ for(j = 0; j < n; j++) {
/* 23 */ if(a[j].key > a[j+1].key) {
/* 24 */ item t = a[j];
/* 25 */ a[j] = a[j+1];
/* 26 */ a[j+1] = t;
/* 27 */ s++;
/* 28 */ }

 General Debugging Techniques

287

/* 29 */ }
/* 30 */ n−−;
/* 31 */ }
/* 32 */ }
/* 33 */
/* 34 */ main()
/* 35 */ {
/* 36 */ sort(array,5);
/* 37 */ }

Let's try to compile this program.

$ cc −o debug1 debug1.c

It compiles successfully with no reported errors or warnings.

Before we run this program, we'll add some code to print out the result. Otherwise, we won't know whether
the program has worked. We will add some additional lines to display the array after it's been sorted. We call
the new version debug2.c.

/* 34 */ main()
/* 35 */ {
/* 36 */ int i;
/* 37 */ sort(array,5);
/* 38 */ for(i = 0; i < 5; i++)
/* 39 */ printf("array[%d] = {%s, %d}\n",
/* 40 */ i, array[i].data, array[i].key);
/* 41 */ }

This additional code isn't strictly part of the programmer's remit. We've had to put it in just for testing. We'll
have to be very careful that we don't introduce further bugs in our test code. Now compile again and, this
time, run the program.

$ cc −o debug2 debug2.c
$./debug2

What happens when you do this will depend on your flavor of UNIX (or Linux) and on how it's set up. On one
of the authors' systems, we got:

array[0] = {john, 2}
array[1] = {alex, 1}
array[2] = {(null), −1}
array[3] = {bill, 3}
array[4] = {neil, 4}

But on the other author's system (running a different Linux kernel), we got:

Segmentation fault

On your UNIX system, you may see either of these outputs, or a different result again. We expected to see:

array[0] = {alex, 1}
array[1] = {john, 2}
array[2] = {bill, 3}
array[3] = {neil, 4}
array[4] = {rick, 5}

 General Debugging Techniques

288

Clearly, there's a serious problem with this code. If it runs at all, it's failing to sort the array correctly and, if
it's being terminated with a segmentation fault, the operating system is sending a signal to the program saying
that it has detected an illegal memory access and is prematurely terminating the program to prevent memory
being corrupted.

The ability of the operating system to detect illegal memory access depends on its hardware configuration and
some subtleties of its memory management implementation. On most systems, the memory allocated to the
program by the operating system is larger than the memory actually being used. If the illegal memory access
occurs in this region of memory, the hardware may not be able to detect the illegal accesss. This is why not all
versions of UNIX will generate a segmentation violation.

Important Some library functions, such as printf, will also prevent illegal accesses in some special
circumstances, such as using a null pointer.

When you're tracking down array access problems, it's often a good idea to increase the size of array elements,
as this increases the size of the error. If we read a single byte beyond the end of an array of bytes, we may 'get
away with it' as the memory allocated to the program will be rounded up to an operating system specific
boundary, possibly as much as 8K.

If we increase the array element size, in this case by changing the item member data to be an array of 4096
characters, any access to a non−existent array element will probably be to a memory location beyond that
allocated. Each element of the array is 4K in size, so the memory we use incorrectly will be 0−4K off the end.

If we do this, calling the result debug3.c, we get a segmentation fault on both the authors' flavors of Linux.

/* 2 */ char data[4096];
$ cc −o debug3 debug3.c
$./debug3
Segmentation fault (core dumped)

It's possible that some flavors of Linux or UNIX still won't produce a segmentation fault. When the ANSI C
standard states that the behavior is 'undefined', it truly does allow the program to do anything. It certainly
looks like we have written a non−conforming C program here and a non−conforming C program may exhibit
very strange behavior! As we will see the fault does turn out to fall into the category of 'undefined behavior'.

Code Inspection

As we mentioned above, it's often a good idea to re−read your program when it fails to run as expected. For
the purposes of this chapter, let's assume that the code has been reviewed and that obvious howlers have been
dealt with.

Important Code inspection is also a term for the more formal process of a group of developers tracing
through a few hundred lines of code in detail, but the scale really doesn't matter; it's still code
inspection and it's still a very useful technique.

There are tools that you can use to help with code reviews, the compiler being an obvious one. It will tell you
if you have any syntax errors in your program.

Important Some compilers also have options to raise warnings on dubious practices, such as failing to
initialize variables and using assignments in conditions. For example, the GNU compiler can be

 Code Inspection

289

run with the options,

gcc −Wall −pedantic ansi

which enables many warnings and additional checks for conformance to C standards. We
recommend you get into the habit of using these options, −Wall especially. It can generate
helpful information when tracking down program faults.

We'll others tool, lint and LClint, a little later on. Like the compiler, they analyse source code and report on
code that might be incorrect.

Instrumentation

Instrumentation is the adding of code to a program for the purpose of collecting more information about the
behavior of the program as it runs. It's very common to add printf calls, as we have done in our example, to
print out the values of variables at different stages in a program's execution. We could usefully add several
further printf calls, but we should be aware that the process entails an additional edit and compile whenever
the program is changed and, of course, we will need to remove the code when the bugs are fixed.

There are two instrumentation techniques that can help here. The first uses the C preprocessor to selectively
include instrumentation code so that we only need to recompile the program to include or exclude debugging
code. We can do this quite simply with constructs like:

#ifdef DEBUG
 printf("variable x has value = %d\n", x);
#endif

We can compile the program with the compiler flag −DDEBUG to define the DEBUG symbol and include the
extra code, or without to exclude it. We can make more sophisticated use of a numeric debug macro, like this.

#define BASIC_DEBUG 1
#define EXTRA_DEBUG 2
#define SUPER_DEBUG 4

#if (DEBUG & EXTRA_DEBUG)
 printf...
#endif

In this case, we must always define the DEBUG macro, but we can set it to represent a set of debug
information, or a level of detail. The compiler flag −DDEBUG=5 would, in this case, enable BASIC_DEBUG
and SUPER_DEBUG, but not EXTRA_DEBUG. The flag −DDEBUG=0 would disable all debug
information. Alternatively, including the following lines eliminates the need to specify DEBUG on the
command line in the case where no debugging is required:

#ifndef DEBUG
#define DEBUG 0
#endif

There are several macros defined by the C preprocessor that can help with debug information. These are
macros that expand to give information about the current compilation.

Macro Description

__LINE__ A decimal constant representing the current line number.

 Instrumentation

290

__FILE__ A string representing the current file name.

__DATE__ A string of the form "Mmm dd yyyy", the current date.

__TIME__ A string of the form "hh:mm:ss", the current time.
Note that these symbols are prefixed and suffixed by two underscores. This is common for standard
preprocessor symbols and you should take care to avoid choosing symbols that might clash. The term current
in the above descriptions refers to the point at which the preprocessing is being performed, i.e. the time and
date the compiler was run and the file processed.

Try It Out − Debug Information

Here's a program, cinfo.c, that prints information about its compilation date and time, if debugging is enabled.

#include <stdio.h>

int main()
{
#ifdef DEBUG
 printf("Compiled: " __DATE__ " at " __TIME__ "\n");
 printf("This is line %d of file %s\n", __LINE__, __FILE__);
#endif
 printf("hello world\n");
 exit(0);
}

When we compile this program with debug enabled (using −DDEBUG), we see the compilation information.

$ cc −o cinfo −DDEBUG cinfo.c
$./cinfo
Compiled: Aug 8 1999 at 11:15:21
This is line 7 of file cinfo.c
hello world
$

How It Works

The C preprocessor part of the compiler keeps a track of the current line and file when it's compiling. It
substitutes the current (compile time) values of these variables whenever it encounters the symbols __LINE__
and __FILE__. The date and time of compilation are made available similarly. Since __DATE__ and
__TIME__ are strings, we can concatenate them with format strings for printf because ANSI C specifies that
adjacent strings are treated as one.

Debugging without Recompiling

Before we move on, it's worth mentioning that there's a way of using the printf function to help with
debugging without using the #ifdef DEBUG technique, which requires a program to be recompiled before it
can be used.

The method is to add a global variable as a debug flag, allow a −d option at the command line, which allows
the user to switch debugging on even after the program has been released, and add a debug logging function.
Now you can intersperse the program code with things like this:

if (debug) {
sprintf(msg, ...)

Try It Out − Debug Information

291

write_debug(msg)
}

You should write debug output to stderr, or, if this isn't practical because of the nature of the program, use the
logging facilities provided by the syslog function.

If you add traces like this to solve problems during development, just leave the code in there. Provided you
use a small amount of care, this can be quite safe. The benefit comes when the program has been released; if
users encounter a problem, they can run it with debugging on and diagnose the errors for you. Instead of
reporting that the program gave the message segmentation fault, they can also report exactly what the program
was doing at the time, not just what the user was doing. The difference can be immense.

There is, obviously, a downside to this approach; the program is larger than it needs to be. In most cases, this
is more an apparent problem than a real one. The program will probably be 20% or 30% larger, but in most
cases this doesn't have any real impact on performance. Poor performance comes from increasing size by
orders of magnitude, not by a mere doubling.

Controlled Execution

Let's get back to the example program. We have a bug. We can modify the program by adding additional code
to print out the values of variables as the program runs, or we can use a debugger to control the program's
execution and view its state as execution proceeds.

There are a number of debuggers available on UNIX systems, depending on the vendor. Common ones are
adb, sdb, and dbx. The more sophisticated ones allow us to look at the state of the program in some detail, at a
source code level. This is true of sdb, dbx and also of the GNU debugger, gdb, that can be used with Linux.
There also exist 'front ends' to gdb which make it more user−friendly; xxgdb, tgdb and DDD are such
programs. The Emacs editor also has a facility(gdb−mode) that allows you to run gdb on your program, set
breakpoints, and see which line in the source code is being executed.

To prepare a program for debugging, you need to compile it with one or more special compiler options. These
options instruct the compiler to include extra debugging information into the program. This information
includes symbols and line numbers: information the debugger can use to show us where in the source code
execution has reached.

The −g flag is the usual one used to compile a program for debugging. We must use it for compiling each
source file that needs to be debugged and also for the linker, so that special versions of the standard C library
can be used to provide debug support in library functions. The compiler program will pass the flag to the
linker automatically. Debugging can be used with libraries that aren't compiled for the purpose, but with less
flexibility.

Debug information can make the executable many (up to ten) times larger. Even though the executable may
be larger (and take up more disk space) the amount of memory the program needs to run is effectively the
same. It is usually a good idea to remove debug information before you release your programs, and only after
they have been debugged.

Important You can remove debug information from an executable file without recompiling by running strip
<file>.

 Controlled Execution

292

Debugging with gdb

We'll use the GNU debugger, gdb, to debug this program. It's a very capable debugger which is freely
available and can be used on many UNIX platforms. It's also the default debugger on Linux systems. gdb has
been ported to many other platforms and can be used to debug embedded real−time systems.

Starting gdb

Let's recompile our example program for debugging and start gdb.

$ cc −g −o debug3 debug3.c
$ gdb debug3
GNU gdb 4.17.0.11 with Linux support
Copyright 1998 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386−redhat−linux"...
(gdb)

gdb has extensive online help and the complete manual is available as a set of files which may be viewed with
the info program, or from within emacs.

(gdb) help
List of classes of commands:

aliases −− Aliases of other commands
breakpoints −− Making program stop at certain points
data −− Examining data
files −− Specifying and examining files
internals − Maintenance commands
obscure − Obscure features
running − Running the program
stack − Examining the stack
status − Status inquiries
support − Support facilities
tracepoints − Tracing of program execution without stopping the program
user−defined − User−defined commands

Type "help" followed by a class name for a list of commands in that class.
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.
(gdb)

gdb is itself a text−based application, but it does provide a few short cuts to help with repetitive tasks. Many
versions have command line editing, with a history, so you can scroll back and execute the same command
again (try using the cursor keys). All versions support an empty command: hitting Return will execute the last
command again. This is especially useful when stepping through a program line by line with the step or next
commands.

 Debugging with gdb

293

Running a Program

We can execute the program with the run command. Any arguments that we give to the run command are
passed to the program as its arguments. In this case, we don't need any arguments.

We'll assume here that your system, like both the authors', is now generating a segmentation fault. If it isn't,
read on. You'll find out what to do when one of your own programs does generate a segmentation violation. If
you're not getting a segmentation violation, but want to work though this example as you read the book, you
can pick up the program again at debug4.c, when the first of the memory access problems has been fixed.

(gdb) run
Starting program: /home/neil/debug3

Program received signal SIGSEGV, Segmentation fault.
0x8048488 in sort (a=0x8049684, n=5) at debug3.c:23
23 /* 23 */ if(a[j].key > a[j+1].key) {

 (gdb)

The program runs, incorrectly, as before. When the program faults, gdb shows us the reason and the location.
We can now investigate the underlying cause of the problem.

Depending on your kernel, C library and compiler version you may see the program fault at a slightly
different place, for example on line 25 when array items are exchanged rather than line 23 when array item
keys are compared. If this is the case you'll see something like:

Program received signal SIGSEGV, Segmentation fault.
0x8000613 in sort (a=0x8001764, n=5) at debug3.c:25
25 /* 25 */ a[j] = a[j+1];

You should still be able to follow the gdb sample session shown below.

Stack Trace

The program has been halted in the sort function, at line 23 of the source file debug3.c. If we hadn't compiled
the program with additional debug information (cc −g), we wouldn't be able to see where the program had
failed, nor would we be able to use variable names to examine data.

We can see how we got to this position by using the backtrace command.

(gdb) backtrace
#0 0x8048488 in sort (a=0x8049684, n=5) at debug3.c:23
#1 0x804859e in main () at debug3.c:37
#2 0x40031cb3 in __libc_start_main (main=0x804858c <main>, argc=1,
 argv=0xbffffd64, init=0x8048298 <_init>, fini=0x804863c <_fini>,
 rtld_fini=0x4000a350 <_dl_fini>, stack_end=0xbffffd5c)
 at ../sysdeps/generic/libc−start.c:78
(gdb)

This is a very simple program and the trace is short because we haven't called many functions from within
other functions. You can see that sort was called from main at line 37 of the same file, debug3.c. Usually, the
problem is much more complex and we use backtrace to discover the route we took to the error position. This
can be very useful when debugging functions that are called from many different places.

 Running a Program

294

The backtrace command may be abbreviated bt and, for compatibility, with other debuggers, the where
command has the same function.

Examining Variables

The information printed by gdb when it stopped the program and in the stack trace shows us the values of
function arguments.

The sort function was called with a parameter, a, that has the value 0x8049684. This is the address of the
array. It will typically be different on different systems, depending on the compiler used and the operating
system.

The offending line, 23, is a comparison of one array element with another.

/* 23 */ if(a[j].key > a[j+1].key) {

We can use the debugger to examine the contents of function parameters, local variables and global data. The
print command shows us the contents of variables and other expressions.

(gdb) print j
$1 = 4

Here, we can see that the local variable j has the value 4. This means that the program has attempted to
execute the statement:

if(a[4].key > a[4+1].key)

The array that we have passed to sort, array, has only five elements, which will be indexed 0 through 4. So,
this statement reads from the non−existent array[5]. The loop variable j has taken an incorrect value.

If you are working through this example and your program faulted at line 25 this is because your system
detected a read past the end of the array only when it got to exchanging elements, executing

/* 25 */ a[j] = a[j+1];

which with j set to 4 results in

a[4] = a[4+1];

We can take a look at the elements of the passed array by using an expression with print. With gdb we can use
almost any legal C expression to print the value of variables, array elements and pointers.

(gdb) print a[3]
$2 = {data = "alex", '\000' <repeats 4091 times>, key = 1}
(gdb)

gdb keeps the results of commands in pseudo variables, $<number>. The last result is always $ and the one
before that is $$. This allows one result to be used in another command. For example:

(gdb) print j
$3 = 4
(gdb) print a[$−1].key
$4 = 1

 Examining Variables

295

Listing the Program

We can view the source code of the program from within gdb by using the list command. This prints out a
portion of the code around the current position. Subsequent uses of list will print out more. You can also give
list a line number or function name as an argument and it will show the code at that position.

(gdb) list
18 /* 18 */ int s = 1;
19 /* 19 */
20 /* 20 */ for(; i < n && s != 0; i++) {
21 /* 21 */ s = 0;
22 /* 22 */ for(j = 0; j < n; j++) {
23 /* 23 */ if(a[j].key > a[j+1].key) {
24 /* 24 */ item t = a[j];
25 /* 25 */ a[j] = a[j+1];
26 /* 26 */ a[j+1] = t;
27 /* 27 */ s++;
(gdb)

We can see that, on line 22, the loop is set to execute while the variable j is less than n. In this case, n is 5, so j
will have the final value of 4, which is one too far. A value of 4 causes a comparison of a[4] with a[5] and
possibly a swap. One solution to this particular problem is to correct the loop termination condition to be j <
n−1.

Let's make that change, call the new program debug4.c, recompile and try again.

/* 22 */ for(j = 0; j < n−1; j++) {
$ cc −g −o debug4 debug4.c
$./debug4
array[0] = {john, 2}
array[1] = {alex, 1}
array[2] = {bill, 3}
array[3] = {neil, 4}
array[4] = {rick, 5}

The program still doesn't work, as it has printed an incorrectly sorted list. Let's use gdb to step through the
program as it runs.

Setting Breakpoints

To find out where the program is failing, we need to be able to see what it's doing as it runs. We can stop the
program at any point by setting breakpoints. These cause the program to stop and return control to the
debugger. We'll be able to inspect variables and then allow the program to continue.

There are two loops in the sort function. The outer loop, with loop variable i, is run once for each element in
the array. The inner loop swaps the element with those further down the list. This has the effect of 'bubbling
up' the smaller elements to the top. After each run of the outer loop, the largest element should have made its
way to the bottom. We can confirm this by stopping the program at the outer loop and examining the state of
the array.

There are a number of commands used for setting breakpoints. These are listed by gdb with help breakpoint:

(gdb) help breakpoint
Making program stop at certain points.

 Listing the Program

296

List of commands:

awatch − Set a watchpoint for an expression
break − Set breakpoint at specified line or function
catch − Set breakpoints to catch exceptions that are raised
clear − Clear breakpoint at specified line or function
commands − Set commands to be executed when a breakpoint is hit
condition − Specify breakpoint number N to break only if COND is true
delete − Delete some breakpoints or auto−display expressions
disable − Disable some breakpoints
enable − Enable some breakpoints
hbreak − Set a hardware assisted breakpoint
ignore − Set ignore−count of breakpoint number N to COUNT
rbreak − Set a breakpoint for all functions matching REGEXP
rwatch − Set a read watchpoint for an expression
tbreak − Set a temporary breakpoint
thbreak − Set a temporary hardware assisted breakpoint
watch − Set a watchpoint for an expression
Type "help" followed by command name for full documentation.
Command name abbreviations are allowed if unambiguous.

Let's set a breakpoint at line 20 and run the program:

$ gdb debug4
(gdb) break 20
Breakpoint 1 at 0x80483f1: file debug4.c, line 20.
(gdb) run
Starting program: /home/neil/debug4

Breakpoint 1, sort (a=0x8049684, n=5) at debug4.c:20
20 /* 20 */ for(; i < n && s != 0; i++) {

We can print out the array value and then allow the program to continue with the cont command. This allows
the program to run until it hits the next breakpoint, in this case until it executes line 20 again. We can have
many breakpoints active at any time.

(gdb) print array[0]
$1 = {data = "bill", '\000' <repeats 4091 times>, key = 3}

To print a number of consecutive items, we can use the construction @<number> to cause gdb to print a
number of array elements. To print all five elements of array we can use:

(gdb) print array[0]@5
$2 = {{data = "bill", '\000' <repeats 4091 times>, key = 3}, {
 data = "neil", '\000' <repeats 4091 times>, key = 4}, {
 data = "john", '\000' <repeats 4091 times>, key = 2}, {
 data = "rick", '\000' <repeats 4091 times>, key = 5}, {
 data = "alex", '\000' <repeats 4091 times>, key = 1}}

Note that the output has been tidied up slightly to make it easier to read. Because this is the first time through
the loop, the array is unchanged. When we allow the program to continue, we see successive alterations to
array as execution proceeds:

(gdb) cont
Continuing.

Breakpoint 1, sort (a=0x8049684, n=4) at debug4.c:20

 Listing the Program

297

20 /* 20 */ for(; i < n && s != 0; i++) {

(gdb) print array[0]@5
$3 = {{data = "bill", '\000' <repeats 4091 times>, key = 3}, {
 data = "john", '\000' <repeats 4091 times>, key = 2}, {
 data = "neil", '\000' <repeats 4091 times>, key = 4}, {
 data = "alex", '\000' <repeats 4091 times>, key = 1}, {
 data = "rick", '\000' <repeats 4091 times>, key = 5}}
(gdb)

We can use the display command to set gdb to automatically display the array whenever the program stops at
a breakpoint:

(gdb) display array[0]@5
1: array[0] @ 5 = {{data = "bill", '\000' <repeats 4091 times>, key = 3}, {
 data = "john", '\000' <repeats 4091 times>, key = 2}, {
 data = "neil", '\000' <repeats 4091 times>, key = 4}, {
 data = "alex", '\000' <repeats 4091 times>, key = 1}, {
 data = "rick", '\000' <repeats 4091 times>, key = 5}}

Furthermore, we can change the breakpoint so that, instead of stopping the program, it simply displays the
data we have requested and carries on. To do this, we use the commands command. This allows us to specify
what debugger commands to execute when a breakpoint is hit. Since we have already specified a display, we
need only set the breakpoint command to continue execution.

(gdb) commands
Type commands for when breakpoint 1 is hit, one per line.
End with a line saying just "end".
> cont
> end

Now, when we allow the program to continue it runs to completion, printing the value of the array each time
around the outer loop.

(gdb) cont
Continuing.

Breakpoint 1, sort (a=0x8049684, n=3) at debug4.c:20
20 /* 20 */ for(; i < n && s != 0; i++) {
1: array[0] @ 5 = {{data = "john", '\000' <repeats 4091 times>, key = 2}, {
 data = "bill", '\000' <repeats 4091 times>, key = 3}, {
 data = "alex", '\000' <repeats 4091 times>, key = 1}, {
 data = "neil", '\000' <repeats 4091 times>, key = 4}, {
 data = "rick", '\000' <repeats 4091 times>, key = 5}}

Breakpoint 1, sort (a=0x8049684, n=2) at debug4.c:20
20 /* 20 */ for(; i < n && s != 0; i++) {
1: array[0] @ 5 = {{data = "john", '\000' <repeats 4091 times>, key = 2}, {
 data = "alex", '\000' <repeats 4091 times>, key = 1}, {
 data = "bill", '\000' <repeats 4091 times>, key = 3}, {
 data = "neil", '\000' <repeats 4091 times>, key = 4}, {
 data = "rick", '\000' <repeats 4091 times>, key = 5}}
array[0] = {john, 2}
array[1] = {alex, 1}
array[2] = {bill, 3}
array[3] = {neil, 4}
array[4] = {rick, 5}

 Listing the Program

298

Program exited with code 025.
(gdb)

gdb reports that the program exits with an unusual exit code. This is because the program itself doesn't call
exit and doesn't return a value from main. The exit code is effectively meaningless in this case and a
meaningful one ought to be provided by a call to exit.

The program doesn't seem to execute the outer loop as many times as we expected. We can see that the value
of the parameter, n, used in the loop termination condition is reducing at each breakpoint. This means that the
loop won't execute enough times. The culprit is the decrement of n on line 30:

/* 30 */ n−−;

This is an attempt to optimize the program by taking advantage of the fact that at the end of each outer loop
the largest element of array will be at the bottom and so there is less left to sort. But, as we've seen, this
interferes with the outer loop and causes problems. The simplest fix (though there are others) is to delete the
offending line. Let's test whether this change will fix the problem by using the debugger to apply a 'patch'.

Patching with the Debugger

We've already seen that we can use the debugger to set breakpoints and examine the value of variables. By
using a breakpoint with actions, we can try out a fix, called a patch, before changing the source code and
recompiling. In this case, we need to break the program on line 30 and increment the variable n. Then, when
line 30 is executed, the value will be unchanged.

Let's restart the program from the beginning. First, we must delete our breakpoint and display. We can see
what breakpoints and displays we have enabled using the info command:

(gdb) info display
Auto−display expressions now in effect:
Num Enb Expression
1: y array[0] @ 5
(gdb) info break
Num Type Disp Enb Address What
1 breakpoint keep y 0x080483f1 in sort at debug4.c:20
 breakpoint already hit 4 times
 cont

We can either disable these or delete them entirely. If we disable them, we retain the option to re−enable them
at a later time if we need to:

(gdb) disable break 1
(gdb) disable display 1
(gdb) break 30
Breakpoint 2 at 0x8048570: file debug4.c, line 30.
(gdb) commands 2
Type commands for when breakpoint 2 is hit, one per line.
End with a line saying just "end".
>set variable n = n+1
>cont
>end
(gdb) run
Starting program: /home/neil/debug4

Breakpoint 2, sort (a=0x8049684, n=5) at debug4.c:30

 Patching with the Debugger

299

30 /* 30 */ n−−;

Breakpoint 2, sort (a=0x8049684, n=5) at debug4.c:30
30 /* 30 */ n−−;

Breakpoint 2, sort (a=0x8049684, n=5) at debug4.c:30
30 /* 30 */ n−−;

Breakpoint 2, sort (a=0x8049684, n=5) at debug4.c:30
30 /* 30 */ n−−;

Breakpoint 2, sort (a=0x8049684, n=5) at debug4.c:30
30 /* 30 */ n−−;
array[0] = {alex, 1}
array[1] = {john, 2}
array[2] = {bill, 3}
array[3] = {neil, 4}
array[4] = {rick, 5}

Program exited with code 025.
(gdb)

The program runs to completion and prints the correct result. We could now make the change and move on to
test it with more data.

Learning more about gdb

The GNU debugger is an exceptionally powerful tool that can provide a lot of information about the internal
state of executing programs. On systems that support a facility called hardware breakpoints, you can use gdb
to monitor changes to variables in real time. Hardware breakpoints are a feature of some CPUs, these
processors are able to stop automatically if certain conditions arise, typically a memory access in a given
region. Alternatively, gdb can 'watch' expressions. This means that, with a performance penalty, gdb can stop
a program when an expression takes a particular value, regardless of where in the program the calculation
took place.

Breakpoints can be set with counts and conditions so that they only trigger after a fixed number of times or
only trigger when a condition is met.

gdb is also able to attach itself to programs that are already running. This can be very useful when you're
debugging client/server systems, as you can debug a misbehaving server process as it runs, without having to
stop and restart it. You can compile programs with (for example) gcc −O −g to get the benefit of optimization
and debug information. The downside is that optimization may reorder code a bit, so, as you single−step
through code, you may find yourself 'jumping around' to achieve the same effect as intended by the original
source code.

gdb is available under the terms of the GNU Public License and most UNIX systems can support it. We
strongly recommend that you get to know it.

More Debugging Tools

Apart from out−and−out debuggers, such as gdb, UNIX systems typically provide a number of other tools that
you can use to aid the debugging process. Some of these provide static information about a program, others a
dynamic analysis.

 Learning more about gdb

300

Static analysis provides information from the program source code alone. Programs like ctags, cxref and
cflow work with the source files and provide useful information about function calling and location.

Dynamic analysis provides information about how a program behaves during execution. Programs like prof
and gprof provide information about which functions have been executed and for how long.

Let's take a look at some of these tools and their output. Not all of these tools will be available on all systems,
although many of them have freely available versions.

Lint: Removing the Fluff from Your Programs

Original UNIX systems provided a utility called lint. It was essentially the front end of a C compiler with
added tests designed to apply some 'common sense' and produce warnings. It would detect cases where
variables were used before being set and where function arguments were not used, among other things.

More modern C compilers can, at a cost to compile−time performance, produce similar warnings. lint itself
has been overtaken by the standardization of C. Because the tool was based on an early C compiler, it doesn't
cope at all well with ANSI syntax. There are some commercial versions of lint available for UNIX and at least
one on the Internet for Linux, which is Larch, part of a project at MIT to produce tools for formal
specifications. The lint−like tool, lclint can provide useful code review comments.

Important lclint can be found at
http://www.sds.lcs.mit.edu/Larch

Here's a sample output from lclint running on an early version of the example program that we debugged
earlier:

$ lclint debug0.c
LCLint 1.4c Fri Oct 13 10:28:08 MET 1995

debug0.c:14,22: Old style function declaration.
debug0.c:15,17: **** Processing Params ****
debug0.c:20,24: Unrecognized identifier: n
debug0.c:20,35: Variable s used before set
debug0.c:20,20: if predicate not bool, type int: i < n & s != 0
debug0.c:32,14: Path with no return in function declared to return int
debug0.c:36,14: Return value (type int) ignored: sort(array, 5)
debug0.c:37,14: Path with no return in function declared to return int

Finished LCLint checking 8 code errors found
$

The utility complains about old style (non−ANSI) function declarations and inconsistencies between function
return types and the values they do (or do not) return. These don't affect the operation of the program, but
ought to be addressed.

It has also detected two real bugs in the following code fragment:

/* 18 */ int s;
/* 19 */
/* 20 */ for(; i < n & s != 0; i++) {
/* 21 */ s = 0;

 Lint: Removing the Fluff from Your Programs

301

The lclint tool has determined that the variable s is used on line 20, but hasn't been initialized and that the
operator & has been used in place of the more usual &&. In this case, the operator precedence alters the
meaning of the test and is a problem for the program.

Both these errors were fixed in a code review before debugging started. Although this example is a little
contrived for the purposes of demonstration, these are errors that regularly crop up in real world programs.

Function Call Tools

Three utilities, ctags, cxref and cflow, form part of the X/Open specification and, therefore, must be present
on UNIX branded systems with software development capabilities.

Important These utilities, and others mentioned in this chapter may not be present in your Linux
distribution. If not, you may like to search for implementations on the Internet. A good place to
start (for Linux distributions that support the RPM package format) is
http://rufus.w3.org/linux/RPM

ctags

The ctags program creates an index of functions. For each function, you get a list of the places it's used, like
the index of a book.

ctags [−a] [−f filename] sourcefile sourcefile ...
ctags −x sourcefile sourcefile ...

By default, ctags creates a file, called tags, in the current directory, which contains, for each function declared
in any of the input source files, lines of the form:

announce app_ui.c /^static void announce(void) /

Each line in the file consists of a function name, the file it's declared in and a regular expression that can be
used to find the function definition within the file. Some editors such as Emacs can use files of this kind to
help navigate through source code.

Alternatively, using the −x option to ctags (if available in your version) you can produce lines of a similar
form on the standard output:

find_cat 403 app_ui.c static cdc_entry find_cat(

You can redirect the output to a different file by using the option −f filename and append it to an existing file
by specifying the −a option.

cxref

The cxref program analyses C source code and produces a cross−reference. It shows where each symbol
(variable, #define and function) is mentioned in the program. It produces a sorted list with each symbol's
definition location marked with an asterisk, as shown on the following page:

 SYMBOL FILE FUNCTION LINE

 BASENID prog.c *12 *96 124 126 146 156 166
 BINSIZE prog.c *30 197 198 199 206

 Function Call Tools

302

 BUFMAX prog.c *44 45 90
 BUFSIZ /usr/include/stdio.h *4
 EOF /usr/include/stdio.h *27
 argc prog.c 36
 prog.c main *37 61 81
 argv prog.c 36
 prog.c main *38 61
calldata prog.c *5
 prog.c main 64 188
 calls prog.c *19
 prog.c main 54

On the author's machine, the above output was generated with the command,

$ cxref *.c *.h

but the exact syntax varies from version to version. Consult the documentation for your system or the man
pages for more information on whether cxref is available and how to use it.

cflow

The cflow program prints a function call tree, a diagram that shows which function calls which others, and
which functions are called by them, and so on. It can be useful to find out the structure of a program to
understand how it operates and to see what impact changes to a function will have. Some versions of cflow
can operate on object files as well as source code. Refer to the manual page for details of operation.

Here's some sample output taken from a version of cflow (cflow−2.0) that is available on the Internet and
maintained by Marty Leisner:

1 file_ungetc {prcc.c 997}
2 main {prcc.c 70}
3 getopt {}
4 show_all_lists {prcc.c 1070}
5 display_list {prcc.c 1056}
6 printf {}
7 exit {}
8 exit {}
9 usage {prcc.c 59}
10 fprintf {}
11 exit {}

This sample tells us that main calls (among others) show_all_lists and that show_all_lists in turn calls
display_list, which itself calls printf.

One option to this version of cflow is −i to produce an inverted flow graph. For each function, these list the
other functions that make a call to that function. It sounds complicated, but it really isn't. Here's a sample.

19 display_list {prcc.c 1056}
20 show_all_lists {prcc.c 1070}
21 exit {}
22 main {prcc.c 70}
23 show_all_lists {prcc.c 1070}
24 usage {prcc.c 59}
...
74 printf {}
75 display_list {prcc.c 1056}

Function Call Tools

303

76 maketag {prcc.c 487}
77 show_all_lists {prcc.c 1070}
78 main {prcc.c 70}
...
99 usage {prcc.c 59}
100 main {prcc.c 70}

This shows us that the functions that call exit, for example, are main, show_all_lists and usage.

Execution Profiling

A technique that is often useful when you're trying to track down performance problems with a program is
execution profiling. Normally supported by special compiler options and ancillary programs, a profile of a
program shows where it's spending its time.

prof/gprof

The prof program (and its GNU equivalent, gprof) prints a report from an execution trace file that is produced
when a profiled program is run. A profiled executable is created by specifying the p flag (for prof) or −pg flag
(for gprof) to the compiler:

$ cc −pg −o program program.c

The program is linked with a special version of the C library and is changed to include monitoring code. This
may vary with specific systems, but is commonly achieved by arranging for the program to be interrupted
frequently and the execution location recorded. The monitor data is written to a file in the current directory,
mon.out (gmon.out for gprof).

$./program
$ ls −ls
 2 −rw−r−−r−− 1 neil users 1294 Feb 4 11:48 gmon.out

The prof/gprof program reads this monitoring data and produces a report. Refer to the manual pages for detail
on program options. Here is some (abbreviated) gprof output as an example.

 cumulative self self total
 time seconds seconds calls ms/call ms/call name
 18.5 0.10 0.10 8664 0.01 0.03 _doscan [4]
 18.5 0.20 0.10 mcount (60)
 14.8 0.28 0.08 43320 0.00 0.00 _number [5]
 9.3 0.33 0.05 8664 0.01 0.01 _format_arg [6]
 7.4 0.37 0.04 112632 0.00 0.00 _ungetc [8]
 7.4 0.41 0.04 8757 0.00 0.00 _memccpy [9]
 7.4 0.45 0.04 1 40.00 390.02 _main [2]
 3.7 0.47 0.02 53 0.38 0.38 _read [12]
 3.7 0.49 0.02 w4str [10]
 1.9 0.50 0.01 26034 0.00 0.00 _strlen [16]
 1.9 0.51 0.01 8664 0.00 0.00 strncmp [17]

Assertions

While it's common to introduce debug code such as printf calls, possibly by conditional compilation, during
the development of a program, it's sometimes impractical to leave these messages in a delivered system.
However, it's often the case that problems occur during the program operation that are related to incorrect

 Execution Profiling

304

assumptions, rather than coding errors. These are events that "can't happen". For example, a function may be
written with the understanding that its input parameters will be within a certain range. If it's passed incorrect
data, it might invalidate the whole system.

For these cases, where the internal logic of the system needs to be confirmed, X/Open provides the assert
macro which can be used to test that an assumption is correct and halt the program if not.

#include <assert.h>

void assert(int expression)

The assert macro evaluates the expression and, if it's non−zero, writes some diagnostic information to the
standard error and calls abort to end the program.

The header file assert.h defines the macro depending on the definition of NDEBUG. If NDEBUG is defined
when the header file is processed, assert is defined to be essentially nothing. This means that you can turn off
assertions at compile time by compiling with −DNDEBUG or by including the line,

#define NDEBUG

in each source file before including assert.h.

Problems with assert

This method of use is one problem with assert. If you use assert during testing, but turn if off for production
code, potentially, your production code has less safety checking than when you are testing it. Leaving
assertions enabled in production code is not normally an optionwould you like your code to present a
customer with the unfriendly error assert failed and a stopped program? You may consider it better to write
your own error trapping routine that still checks the assertion, but doesn't need to be completely disabled in
production code.

You must also be careful that there are no side−effects in the assert expression. For example, if you use a
function call with a side−effect, the effect won't happen in the production code if assertions are removed.

Here's a program, assert.c, that defines a function that must take a positive value. It protects against the
possibility of a bad argument by using an assertion.

Try It Out − assert

Including the assert.h header file and a 'square root' function which checks that the parameter is positive, we
can then write the main function:

#include <stdio.h>
#include <math.h>
#include <assert.h>
double my_sqrt(double x)
{
 assert(x >= 0.0);
 return sqrt(x);
}

int main()
{

 Problems with assert

305

 printf("sqrt +2 = %g\n", my_sqrt(2.0));
 printf("sqrt −2 = %g\n", my_sqrt(−2.0));
 exit(0);
}

Now, when we run the program, we see an assertion violation when we pass an illegal value. The exact format
of the assertion failure message will vary from system to system.

$ cc −o assert assert.c −lm
$./assert
sqrt +2 = 1.41421
assert.c:7: my_sqrt: Assertion 'x >= 0.0' failed.
Aborted (core dumped)
$

How It Works

When we try to call the function, my_sqrt, with a negative number, the assertion fails. The assert macro
provides the file and line number where the assertion violation occurred, as well as the condition that failed.
The program terminates with an abort trap. This is the result of assert calling abort.

If we recompile the program with −DNDEBUG, the assertion is compiled out and we get a mathematical error
when we call the sqrt function from my_sqrt.

$ cc −o assert −DNDEBUG assert.c −lm
$./assert
sqrt +2 = 1.41421
Floating point exception
$

Some mathematics library versions will return a NaN value (Not A Number) indicating an invalid result.

sqrt 2 = nan

Memory Debugging

One area that is a rich source of bugs that are difficult to track down is dynamic memory allocation. If you
write a program that uses malloc and free to allocate memory, it's important that you keep good track of the
blocks you allocate and make sure that you don't use a block that you've freed up.

Typically, memory blocks are allocated by malloc and assigned to pointer variables. If the pointer variable is
changed and there are no other pointers pointing to the memory block, it will become inaccessible. This is a
memory leak and it causes your program to grow in size. If you leak a lot of memory, your system will
eventually slow down and run out of memory.

If you write beyond the end of an allocated block (or before the beginning of a block), you'll very likely
corrupt the data structures used by the malloc library to keep track of allocations. In this case, at some future
time, a call to malloc, or even free, will cause a segmentation violation and your program will crash. Tracking
down the precise point at which the fault occurred can be very difficult, as it may have been a long time
before the event which caused the crash.

Unsurprisingly, there are tools, commercial and free, that can help with these two problem types. There are,
for example, many different versions of malloc and free, some of which contain additional code to check on

How It Works

306

allocations and de−allocations to try to cater for the cases where a block is freed twice and some other types
of misuse.

ElectricFence

The ElectricFence library was developed by Bruce Perens and is available as an optional component in some
Linux distributions such as RedHat and can be readily found on the Internet. It attempts to use the virtual
memory facilities of UNIX to protect the memory used by malloc and free. Its aim is to halt the program at the
point of memory corruption.

Try It Out − ElectricFence

Here's a program, efence.c, that allocates a memory block with malloc and then writes beyond the end of the
block. Let's see what happens.

#include <stdio.h>
#include <stdlib.h>

int main()
{
 char *ptr = (char *) malloc(1024);
 ptr[0] = 0;

 /* Now write beyond the block */
 ptr[1024] = 0;
 exit(0);
}

When we compile and run the program, we see no untoward behavior. However, it's likely that the malloc
memory area has sustained some corruption and we would eventually run into trouble.

$ cc −o efence efence.c
$./efence
$

However, if we take exactly the same program and link with the ElectricFence library, libefence.a, we get an
immediate response.

$ cc −o efence efence.c −lefence
$./efence

 Electric Fence 2.0.5 Copyright (C) 1987−1998 Bruce Perens.
Segmentation fault
$

Running under the debugger pinpoints the problem:

$ cc −g −o efence efence.c −lefence
$ gdb efence
(gdb) run
Starting program: /home/neil/efence

 Electric Fence 2.0.5 Copyright (C) 1987−1998 Bruce Perens.

Program received signal SIGSEGV, Segmentation fault.

 ElectricFence

307

0x80008e4 in main () at efence.c:11
11 ptr[1024] = 0;
(gdb)

How It Works

ElectricFence replaces malloc and associated functions with versions that use virtual memory features of the
computer's processor to protect against illegal memory access. When such an access occurs, a segmentation
violation signal is raised and the program halts.

Checker

Tristan Gingold has developed Checker, a modified compiler back end and C library for Linux and UNIX that
is capable of detecting many of the problems that we have discussed. In particular, it can detect incorrect
pointer references, array access errors and memory leaks. It is usually not included in Linux distributions but
can be found at http://www.gnu.org/software/checker/checker.html.

Programs and libraries need to be recompiled to use Checker, but, as source code is available for almost all
software for Linux, this isn't too much of a restriction, and pre−compiled libraries for use with Checker are
usually available

Try It Out − Checker

Here's a program, checker.c, that allocates some memory, reads from an uninitialized portion of that memory,
writes beyond the end of it and then makes it inaccessible.

#include <stdio.h>
#include <stdlib.h>

int main()
{
 char *ptr = (char *) malloc(1024);
 char ch;

 /* Uninitialized read */
 ch = ptr[0];

 /* Write beyond the block */
 ptr[1024] = 0;

 /* Orphan the block */
 ptr = 0;
 exit(0);
}

To use Checker, we simply have to replace our compiler command with checkergcc, a driver program that
takes care of invoking the correct compiler version and linking with special, Checkered, libraries.

When we run the program, we see lots of problems diagnosed:

$ checkergcc −o checker checker.c
$./checker
Checker version 0.7 Copyright (C) 1993,1994,1995 Tristan Gingold.
This program has been compiled with 'checkergcc' or 'checkerg++'.
Checker is a memory access detector.

How It Works

308

Checker is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
For more information, set CHECKEROPTS to 'help'
From Checker (pid:01359): 'checker' is runing (Sun Feb 4 14:54:00 1996)

From Checker (pid:01359): (ruh) read uninitialized byte(s) in a block.
When Reading 1 byte(s) at address 0x0801e12c, inside the heap (sbrk).
0 bytes into a block (start: 0x801e12c, length: 1024, mdesc: 0x0).
The block was allocated from:
 pc=0x080099db in _malloc() at ./l−malloc/malloc.c:211
 pc=0x08009a3d in malloc() at ./l−malloc/malloc.c:232
 pc=0x080001df in main() at checker.c:6
 pc=0x0800010c in _start() at :0
Stack frames are:
 pc=0x08000200 in main() at checker.c:10
 pc=0x0800010c in _start() at :0
From Checker (pid:01359): (bvh) block bounds violation in the heap.
When Writing 1 byte(s) at address 0x0801e52c, inside the heap (sbrk).
0 bytes after a block (start: 0x801e12c, length: 1024, mdesc: 0x0).
The block was allocated from:
 pc=0x080099db in _malloc() at ./l−malloc/malloc.c:211
 pc=0x08009a3d in malloc() at ./l−malloc/malloc.c:232
 pc=0x080001df in main() at checker.c:6
 pc=0x0800010c in _start() at :0
Stack frames are:
 pc=0x08000225 in main() at checker.c:13
 pc=0x0800010c in _start() at :0

Here, we can see that the bad reads and writes have been caught and the memory blocks concerned are given,
together with the place they were allocated. We can use the debugger to break the program at the point of the
error.

There are many options to Checker, including the suppression of certain types of error and memory leak
detection. To detect our example leak, we must use one of the options that are passed through the
CHECKEROPTS environment variable. To check for memory leaks when the program ends, we need to
specify −D=end:

$ CHECKEROPTS=−D=end checker

...

From Checker (pid:01407): (gar) garbage detector results.
There is 1 leak and 0 potential leak(s).
Leaks consume 1024 bytes (1 KB) / 131193 KB.
(0.00% of memory is leaked.)
Found 1 block(s) of size 1024.
Block at ptr=0x801e40c
 pc=0x08009900 in _malloc() at ./l−malloc/malloc.c:174
 pc=0x08009a3d in malloc() at ./l−malloc/malloc.c:232
 pc=0x080001df in main() at checker.c:6
 pc=0x0800010c in _start() at :0

How It Works

We have modified our program by using the checkergcc compiler to include additional code to check each
pointer reference as it happens. If the access concerns an allocated memory block and is illegal, Checker

How It Works

309

prints a message. At the end of the program, a garbage collection routine is run that determines if any memory
blocks have been allocated and not freed. These orphaned blocks are reported.

Resources

The utility programs discussed in this chapter have mostly been made available on FTP servers on the
Internet. The authors concerned may, in some cases, retain copyright. Many of the utilities were taken from
the Linux archive ftp://metalab.unc.edu/pub/Linux, and we expect new versions will be found there as they
are released.

Other Internet resources are listed in Appendix C.

Summary

In this chapter, we've looked at some debugging tools and techniques. UNIX, and especially Linux, provide
some powerful aids to help with removing defects from programs.

We eliminated some bugs from a program, using gdb, and looked at some static analysis tools such as cflow
and lclint.

Finally, we looked at problems that arise when we use dynamically allocated memory and some utilities that
can help diagnose them, such as ElectricFence and Checker.

 Resources

310

Chapter 10: Processes and Signals

Overview

Processes and signals form a fundamental part of the UNIX operating environment. They control almost all
activities performed by a UNIX computer system. An understanding of how UNIX manages processes will
hold any systems programmer, applications programmer or system administrator in good stead.

In this chapter, we'll look at how processes are handled in the Linux environment and how to find out exactly
what the computer is doing at any given time. We'll also see how to start and stop other processes from within
our own programs, how to make processes send and receive messages and how to avoid zombies. In
particular, we'll learn about:

Process structure, type and scheduling•
Starting new processes in different ways•
Parent, child and zombie processes•
What signals are and how to use them•

What is a Process?

The Single UNIX Specification, Version 2 (UNIX98) and its predecessor Version 1 (UNIX95), defines a
process as an address space with one or more threads executing within that address space, and the required
system resources for those threads." We will look at threads in the next chapter. For now, we will just regard a
process as a program that is running.

A multitasking operating system such as UNIX lets many programs run at once. Each instance of a running
program constituting a process. This is especially evident with a windowing system such as the X Window
system (sometimes simply called X). Like Microsoft Windows, it provides a graphical user interface that
allows many applications to be run at once. Each application can display one or more windows. We'll see
more of the X Windows system in Chapter 16.

As a multiuser system, UNIX allows many users to access the system at the same time. Each user can run
many programs, or even many instances of the same program, at the same time. The system itself runs other
programs to manage system resources and control user access.

As we saw in Chapter 4, a program that is running, or process, consists of program code, data, variables
(occupying system memory), open files (file descriptors) and an environment. Typically, a UNIX system will
share code and system libraries between processes, so that there's only one copy the code in memory at any
one time.

Process Structure

Let's have a look at how a couple of processes might be arranged within the operating system. If two users,
neil and rick, both run the grep program at the same time to look for different strings in different files, the
processes being used might look like this.

311

If we run the ps command, described below, the output will look something like this.

$ ps −af
UID PID PPID C STIME TTY TIME CMD
rick 101 96 0 18:24 tty2 00:00:00 grep pid_t /usr/include/sys/*.h
neil 102 92 0 18:24 tty4 00:00:00 grep XOPEN /usr/include/features.h

Each process is allocated a unique number, a process identifier, or PID. This is usually a positive integer
between 2 and 32768. When a process is started, the next unused number in sequence is chosen and the
numbers restart at 2 so that they wrap around. The number 1 is typically reserved for the special init process,
which manages other processes. We will come back to init shortly. Here we see that the two processes started
by neil and rick have been allocated the identifiers 101 and 102.

The program code that will be executed by the grep command is stored in a disk file. Normally, a UNIX
process can't write to the memory area used to hold the program code, so the code is loaded into memory as
read−only. You saw in the diagram that, as this area can't be written, it can safely be shared.

The system libraries can also be shared. Thus there need be only one copy of printf for example in memory,
even if many running programs call it. This is a more sophisticated, but similar, scheme to the way dynamic
link libraries (DLLs) work in Microsoft Windows.

As you can see in the diagram above, an additional benefit is that the disk file containing the executable
program grep is smaller because it doesn't contain shared library code. This might not seem much for a single
program, but extracting the common routines for (say) the standard C library saves a significant amount of
space over a whole operating system.

Of course, not everything that a program needs to run can be shared. For example, the variables that it uses are
distinct for each process. In this example, we see that the search string passed to the grep command appears as
a variable, s, in the data space of each process. These are separate and can't normally be read by other
processes. The files that are being used in the two grep commands are also different; the processes have their
own set of file descriptors used for file access.

Additionally, a process has its own stack space, used for local variables in functions and for controlling
function calls and returns. It also has its own environment space, containing environment variables that may
be established solely for this process to use, as we saw when we looked at putenv and getenv in Chapter 4. A
process must also maintain its own program counter, a record of where it has got to in its execution, which is
the execution thread. In the next chapter we will see that when we use threads, processes can have more than
one thread of execution.

On many Linux systems, and some UNIX systems, there is a special set of files in a directory called /proc.
These are rather special files, as they allow you to 'look inside' processes while they are running.

Finally, because UNIX has a virtual memory system that pages code and data out to an area of the hard disk,
many more processes can be managed than would fit into the physical memory.

 Chapter 10: Processes and Signals

312

The Process Table

The UNIX process table is like a data structure describing all of the processes that are currently loaded with,
for example, their PID, status and command string, the sort of information output by ps. The operating system
manages processes using their PIDs and they are used as an index into the process table. The table is of
limited size, so the number of processes a system will support is limited. Ancient UNIX systems were limited
to 256 processes. More modern implementations have relaxed this restriction considerably and may be limited
only by the memory available to construct a process table entry.

Viewing Processes

The ps command shows the processes we're running, the process another user is running or all the processes
on the system. Here is some sample output.

$ ps −af
UID PID PPID C STIME TTY TIME CMD
root 433 425 0 18:12 tty1 00:00:00 [bash]
rick 445 426 0 18:12 tty2 00:00:00 −bash
rick 456 427 0 18:12 tty3 00:00:00 [bash]
root 467 433 0 18:12 tty1 00:00:00 sh /usr/X11R6/bin/startx
root 474 467 0 18:12 tty1 00:00:00 xinit /etc/X11/xinit/xinitrc −−
root 478 474 0 18:12 tty1 00:00:00 /usr/bin/gnome−session
root 487 1 0 18:12 tty1 00:00:00 gnome−smproxy −−sm−client−id def
root 493 1 0 18:12 tty1 00:00:01 [enlightenment]
root 506 1 0 18:12 tty1 00:00:03 panel −−sm−client−id default8
root 508 1 0 18:12 tty1 00:00:00 xscreensaver −no−splash −timeout
root 510 1 0 18:12 tty1 00:00:01 gmc −−sm−client−id default10
root 512 1 0 18:12 tty1 00:00:01 gnome−help−browser −−sm−client−i
root 649 445 0 18:24 tty2 00:00:00 su
root 653 649 0 18:24 tty2 00:00:00 bash
neil 655 428 0 18:24 tty4 00:00:00 −bash
root 713 1 2 18:27 tty1 00:00:00 gnome−terminal
root 715 713 0 18:28 tty1 00:00:00 gnome−pty−helper
root 717 716 13 18:28 pts/0 00:00:01 emacs
root 718 653 0 18:28 tty2 00:00:00 ps af

This shows information about many processes, including the processes involved with the Emacs editor under
X Windows on a Linux system. For example, the TTY column shows which terminal the process was started
from, TIME gives the CPU time used so far and the CMD column shows the command used to start the
process. Let's take a closer look at some of these.

 neil 655 428 0 18:24 tty4 00:00:00 bash

The initial login was performed on virtual console number four. This is just the console on this machine. The
shell program that is running is the Linux default, bash.

root 467 433 0 18:12 tty1 00:00:00 sh /usr/X11R6/bin/startx

The X Window system was started by the command startx. This is a shell script that starts the X Server and
runs some initial X Windows programs.

root 717 716 13 18:28 pts/0 00:00:01 emacs

 The Process Table

313

This process represents a window in the X Windows system running Emacs. It was started by the window
manager in response to a request for a new window. A new pseudo terminal, pts/0, has been assigned for the
shell to read from and write to.

root 512 1 0 18:12 tty1 00:00:01 gnome−help−browser −−sm−client−i

This is the Gnome help browser started by the window manager.

By default, the ps program only shows processes that maintain a connection with a terminal, a console, a
serial line, or a pseudo terminal. Other processes run without needing to communicate with a user on a
terminal. These are typically system processes that UNIX uses to manage shared resources. We can use ps to
see all such processes using the −a option, and to get 'full' information with −f. Note that the exact syntax for
the ps command and the format of the output may vary slightly from system to system. Refer to the manual
for more details on the options and output format of ps.

System Processes

Here are some of the other processes running on this Linux system. The output has been abbreviated for
clarity.

$ ps −ax
 PID TTY STAT TIME COMMAND
 1 ? S 0:00 init
 7 ? S 0:00 update (bdflush)
 40 ? S 0:01 /usr/sbin/syslogd
 46 ? S 0:00 /usr/sbin/lpd
 51 ? S 0:00 sendmail: accepting connections
 88 v02 S 0:00 /sbin/agetty 38400 tty2
 109 ? R 0:41 X :0
 192 pp0 R 0:00 ps −ax

Here we can see one very important process indeed.

 1 ? S 0:00 init

In general, each process is started by another, known as its parent process. A process so started is known as a
child process. When UNIX starts, it runs a single program, the prime ancestor and process number 1, init. This
is, if you like, the operating system process manager. Other system processes we'll meet soon are started by
init, or by other processes started by init.

One such example is the login procedure. init starts the getty program once for each serial terminal or dial in
modem that we can use to log in. These are shown in the ps output like this.

 88 v02 S 0:00 /sbin/agetty 38400 tty2

The getty processes wait for activity at the terminal, prompt the user with the familiar login prompt and then
pass control to the login program, which sets up the user environment and finally starts a shell. When the user
shell exits, init starts another getty process.

You can see that the ability to start new processes and to wait for them to finish is fundamental to the system.
We'll see later in this chapter how to perform the same tasks from within our own programs with the system
calls fork, exec and wait.

 System Processes

314

Process Scheduling

One further ps output example is the entry for the ps command itself.

 192 pp0 R 0:00 ps −ax

This indicates that process 192 is in a run state (R) and is executing the command ps −ax. Thus the process is
described in its own output! The status indicator shows only that the program is ready to run, not necessarily
that it's actually running. On a single processor computer, only one process can run at a time, while others
wait their turn. These turns, known as time slices, are quite short and give the impression that programs are
running at the same time. The R just shows that the program is not waiting for other processes to finish or
waiting for input or output to complete. That is why there are two such processes listed in our example output.
(The other is the X display server.)

The UNIX system uses a process scheduler to decide which process will receive the next time slice. It does
this using the process priority. We met priorities back in Chapter 4. Processes with a high priority get to run
more often, while others, such as low priority background tasks, run less frequently. With UNIX, processes
can't overrun their allocated time slice. They are preemptively multitasked, so that they are suspended and
resumed without their cooperation. Older systems, such as Microsoft Windows 3.x, generally require
processes to explicitly yield so that others may resume.

The operating system determines the priority of a process based on a 'nice' value, which defaults to 10, and on
the behavior of the program. Programs that run for long periods without pausing generally get lower priorities.
Programs that pause while (for example) waiting for input get rewarded. This helps keep a program that
interacts with the user responsive; while it is waiting for some input from the user, the system increases its
priority, so that when it's ready to resume, it has a high priority. We can set the process nice value using nice
and adjust it using renice. The nice command reduces the nice value of a process by 10. We can view the nice
values of active processes using the l or f (for long output) option to ps. The value we are interested in is
shown in the NI (nice) column.

$ ps −l
 F UID PID PPID PRI NI SIZE RSS WCHAN STAT TTY TIME COMMAND
 0 501 146 1 1 0 85 756 130b85 S v01 0:00 oclock

Here we can see that the oclock program is running with a default nice value. If it had been started with the
command:

$ nice oclock &

it would have been allocated a nice value of +10. If we adjust this value with the command:

$ renice 10 146
146: old priority 0, new priority 10

the clock program will run less often. We can see the modified nice value with ps again.

 F UID PID PPID PRI NI SIZE RSS WCHAN STAT TTY TIME COMMAND
 0 501 146 1 20 10 85 756 130b85 S N v01 0:00 oclock

The status column now also contains N to indicate that the nice value has changed from the default. The PPID
field of ps output indicates the parent process ID, the PID of either the process that caused this process to start
or, if that process is no longer running, init (PID 1).

 Process Scheduling

315

The UNIX scheduler decides which process to allow to run on the basis of priority. Exact implementations
vary, of course, but higher priority processes run more often. In some cases, low priority processes don't run at
all if higher priority processes are ready to run.

Starting New Processes

We can cause a program to run from inside another program and thereby create a new process by using the
system library function.

#include <stdlib.h>

int system (const char *string);

The system function runs the command passed to it as string and waits for it to complete. The command is
executed as if the command,

$ sh −c string

has been given to a shell. system returns 127 if a shell can't be started to run the command and −1 if another
error occurs. Otherwise, system returns the exit code of the command.

Try It Out − system

We can use system to write a program to run ps for us. While this is not tremendously useful in itself, we'll
see how to develop this technique in later examples. We also don't check that the system call actually worked
for the sake of simplicity in the example.

#include <stdlib.h>
#include <stdio.h>

int main()
{
 printf("Running ps with system\n");
 system("ps −ax");
 printf("Done.\n");
 exit(0);
}

When we compile and run this program, system.c, we get the following.

$./system
Running ps with system
 PID TTY STAT TIME COMMAND
 1 ? S 0:00 init
 7 ? S 0:00 update (bdflush)
...
 146 v01 S N 0:00 oclock
 256 pp0 S 0:00 ./system
 257 pp0 R 0:00 ps −ax
Done.

Because the system function uses a shell to start the desired program, we could put it in the background by
changing the function call in system.c to the following.

 Starting New Processes

316

 system("ps −ax &");

When we compile and run this version of the program, we get:

$./system2
Running ps with system
Done.
$ PID TTY STAT TIME COMMAND
 1 ? S 0:00 init
 7 ? S 0:00 update (bdflush)
...
 146 v01 S N 0:00 oclock
 266 pp0 R 0:00 ps −ax

How It Works

In the first example, the program calls system with the string "ps −ax", which executes the ps program. Our
program returns from the call to system when the ps command has finished. The system function can be quite
useful, but is also limited. Because our program has to wait until the process started by the call to system
finishes, we can't get on with other tasks.

In the second example, the call to system returns as soon as the shell command finishes. Because it's a request
to run a program in the background, the shell returns as soon as the ps program is started, just as would
happen if we had typed:

$ ps −ax &

at a shell prompt. The system program then prints Done. and exits before the ps command has had a chance to
produce any output. The ps output follows the shell prompt put out after system exits. This kind of process
behavior can be quite confusing for users. To make good use of processes, we need finer control over their
actions. Let's look at a lower level interface to process creation, exec.

Important In general, using system is a far from ideal way to start other processes, because it
invokes the desired program using a shell. This is both inefficient, because a shell is
started then the program is started, and also quite dependent on the installation for the
shell and environment that is used. In the next section we see a much better way of
invoking programs, which should almost always be used in preference to the system
call.

Replacing a Process Image

There is a whole family of related functions grouped under the exec heading. They differ in the way that they
start processes and present program arguments. An exec function replaces the current process with a new
process specified by the path or file argument.

#include <unistd.h>

char **environ;

int execl(const char *path, const char *arg0, ..., (char *)0);
int execlp(const char *file, const char *arg0, ..., (char *)0);
int execle(const char *path, const char *arg0, ..., (char *)0, const char *envp[]);
int execv(const char *path, const char *argv[]);
int execvp(const char *file, const char *argv[]);

How It Works

317

int execve(const char *path, const char *argv[], const char *envp[]);

These functions belong to two types. execl, execlp, and execle take a variable number of arguments ending
with a null pointer. execv and execvp have as their second argument an array of strings. In both cases, the new
program starts with the given arguments appearing in the argv array passed to main. These functions are
usually implemented using execve, though there is no requirement for it to be done this way.

The functions with names suffixed with a p differ in that they will search the PATH environment variable to
find the new program executable file. If the executable isn't on the path, an absolute file name, including
directories, will need to be passed to the function as a parameter.

The global variable environ is available to pass a value for the new program environment. Alternatively, an
additional argument to the functions execle and execve is available for passing an array of strings to be used
as the new program environment.

If we wish to use an exec function to start the ps program, we have the following choices.

#include <unistd.h>

/* Example of an argument list */
/* Note that we need a program name for argv[0] */
const char *ps_argv[] =
 {"ps", "−ax", 0};

/* Example environment, not terribly useful */
const char *ps_envp[] =
 {"PATH=/bin:/usr/bin", "TERM=console", 0};

/* Possible calls to exec functions */
execl("/bin/ps", "ps", "−ax", 0); /* assumes ps is in /bin */
execlp("ps", "ps", "−ax", 0); /* assumes /bin is in PATH */
execle("/bin/ps", "ps", "−ax", 0, ps_envp); /* passes own environment */

execv("/bin/ps", ps_argv);
execvp("ps", ps_argv);
execve("/bin/ps", ps_argv, ps_envp);

Try It Out − execlp

Let's modify our example to use an execlp call.

#include <unistd.h>
#include <stdio.h>

int main()
{
 printf("Running ps with execlp\n");
 execlp("ps", "ps", "−ax", 0);
 printf("Done.\n");
 exit(0);
}

When we run this program, pexec.c, we get the usual ps output, but no Done. message at all. Note also that
there is no reference to a process called pexec in the output.

$./pexec

 Try It Out − execlp

318

Running ps with execlp
 PID TTY STAT TIME COMMAND
 1 ? S 0:00 init
 7 ? S 0:00 update (bdflush)
...
 146 v01 S N 0:00 oclock
 294 pp0 R 0:00 ps −ax

How It Works

The program prints its first message and then calls execlp, which searches the directories given by the PATH
environment variable for a program called ps. It then executes this program in place of our pexec program,
starting it as if we had given the shell command:

$ ps −ax

When ps finishes, we get a new shell prompt. We don't return to pexec, so the second message doesn't get
printed. The PID of the new process is the same as the original, as are the parent PID and nice value. In effect,
all that has happened is that the running program has started to execute new code from a new executable file
specified in the call to exec.

There is a limit on the combined size of the argument list and environment for a process started by exec
functions. This is given by ARG_MAX and on Linux systems is 128k bytes. Other systems may set a much
reduced limit that can lead to problems. The POSIX specification indicates that ARG_MAX should be at least
4096 bytes.

The exec functions generally don't return unless an error occurs, in which case the error variable errno is set
and the exec function returns −1.

The new process started by exec inherits many features from the original. In particular, open file descriptors
remain open in the new process, unless their 'close on exec flag' has been set (refer to the fcntl system call in
Chapter 3 for more details). Any open directory streams in the original process are closed.

Duplicating a Process Image

To use processes to perform more than one function at a time, we can either use threads, covered in the next
chapter, or we need to create an entirely separate process from within a program, as init does, rather than
replace the current thread of execution, as in the exec case.

We can create a new process by calling fork. This system call duplicates the current process, creating a new
entry in the process table with many of the same attributes as the current process. The new process is almost
identical to the original, executing the same code but with its own data space, environment and file
descriptors. Combined with the exec functions, fork is all we need to create new processes.

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

The call to fork in the parent returns the PID of the new child process. The new process continues to execute
just like the original, with the exception that in the child process the call to fork returns 0. This allows both the
parent and child to determine which is which.

How It Works

319

If fork fails, it returns −1. This is commonly due to a limit on the number of child processes that a parent may
have (CHILD_MAX), in which case errno will be set to EAGAIN. If there is not enough space for an entry in
the process table, or not enough virtual memory, the errno variable will be set to ENOMEM.

A typical code fragment using fork is:

 pid_t new_pid;

 new_pid = fork();

 switch(new_pid) {
 case −1 : /* Error */
 break;
 case 0 : /* We are child */
 break;
 default : /* We are parent */
 break;
 }

Try It Out − fork

Let's look at a simple example, fork.c.

#include <sys/types.h>
#include <unistd.h>
#include <stdio.h>

int main()
{
 pid_t pid;
 char *message;

 Try It Out − fork

320

 int n;

 printf("fork program starting\n");
 pid = fork();
 switch(pid)
 {
 case −1:
 perror("fork failed");
 exit(1);
 case 0:
 message = "This is the child";
 n = 5;
 break;
 default:
 message = "This is the parent";
 n = 3;
 break;
 }

 for(; n > 0; n−−) {
 puts(message);
 sleep(1);
 }
 exit(0);
}

This program runs as two processes. A child is created (born?) and prints a message five times. The original
process (the parent) prints a message only three times. The parent process finishes before the child has printed
all of its messages, so we see the next shell prompt appear mixed in with the output.

$./fork
fork program starting
This is the parent
This is the child
This is the parent
This is the child
This is the parent
This is the child
$ This is the child
This is the child

How It Works

When fork is called, this program divides into two separate processes. The parent process is identified by a
non−zero return from fork and is used to set a number of messages to print, each separated by one second.

Waiting for a Process

When we start a child process with fork, it takes on a life of its own and runs independently. Sometimes, we
would like to find out when a child process has finished. For example, in the previous program, the parent
finishes ahead of the child and we get some messy output as the child continues to run. We can arrange for the
parent process to wait until the child finishes before continuing by calling wait.

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *stat_loc);

How It Works

321

The wait system call causes a parent process to pause until one of its child processes is stopped. The call
returns the PID of the child process. This will normally be a child process that has terminated. The status
information allows the parent process to determine the exit status of the child process, i.e. the value returned
from main or passed to exit. If stat_loc is not a null pointer, the status information will be written to the
location to which it points.

We can interpret the status information using macros defined in sys/wait.h. These include:

Macro Definition

WIFEXITED(stat_val) Non−zero if the child is terminated normally.

WEXITSTATUS(stat_val) If WIFEXITED is non−zero, this returns child exit code.

WIFSIGNALED(stat_val) Non−zero if the child is terminated on an uncaught signal.

WTERMSIG(stat_val) If WIFSIGNALED is non−zero, this returns a signal number.

WIFSTOPPED(stat_val) Non−zero if the child has stopped.

WSTOPSIG(stat_val) If WIFSTOPPED is non−zero, this returns a signal number.

Try It Out − wait

Let's modify our program slightly so we can wait for and examine the child process exit status. Call
the new program wait.c.

#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <stdio.h>

int main()
{
 pid_t pid;
 char *message;
 int n;
 int exit_code;

 printf("fork program starting\n");
 pid = fork();
 switch(pid)
 {
 case −1:
 perror("fork failed");
 exit(1);
 case 0:
 message = "This is the child";
 n = 5;
 exit_code = 37;
 break;
 default:
 message = "This is the parent";
 n = 3;
 exit_code = 0;
 break;
 }

 for(; n > 0; n−−) {
 puts(message);
 sleep(1);
 }

1.

Try It Out − wait

322

This section of the program waits for the child process to finish.

 if (pid != 0) {
 int stat_val;
 pid_t child_pid;

 child_pid = wait(&stat_val);

 printf("Child has finished: PID = %d\n", child_pid);
 if(WIFEXITED(stat_val))
 printf("Child exited with code %d\n", WEXITSTATUS(stat_val));
 else
 printf("Child terminated abnormally\n");
 }
 exit(exit_code);
}

When we run this program, we see the parent wait for the child.

$./wait
fork program starting
This is the parent
This is the child
This is the parent
This is the child
This is the parent
This is the child
This is the child
This is the child
Child has finished: PID = 410
Child exited with code 37
$

How It Works

The parent process (which got a non−zero return from the fork call) uses the wait system call to suspend its
own execution until status information becomes available for a child process. This happens when the child
calls exit; we gave it an exit code of 37. The parent then continues, determines that the child terminated
normally by testing the return value of the wait call and extracts the exit code from the status information.

Zombie Processes

Using fork to create processes can be very useful, but you must keep track of child processes. When a child
process terminates, an association with its parent survives until the parent in turn either terminates normally or
calls wait. The child process entry in the process table is therefore not freed up immediately. Although no
longer active, the child process is still in the system because its exit code needs to be stored in case the parent
subsequently calls wait. It becomes what is known as a zombie process.

We can see a zombie process being created if we change the number of messages in the fork example
program. If the child prints fewer messages than the parent, it will finish first and will exist as a zombie until
the parent has finished.

How It Works

323

Try It Out − Zombies

fork2.c is the same as fork.c, except that the number of messages printed by the child and parent processes is
reversed. Here are the relevant lines of code.

 switch(pid)
 {
 case −1:
 perror("fork failed");
 exit(1);
 case 0:
 message = "This is the child";
 n = 3;
 break;
 default:
 message = "This is the parent";
 n = 5;
 break;
 }

How It Works

If we run the above program with fork2 & and then call the ps program after the child has finished but before
the parent has finished, we'll see a line like this. (Non−Linux systems will usually say <defunct> rather than
<zombie>.)

 PID TTY STAT TIME COMMAND

 420 pp0 Z 0:00 (fork2) <zombie>

If the parent then terminates abnormally, the child process automatically gets the process with PID 1 (init) as
parent. The child process is now a zombie which is no longer running, but which has been inherited by init
because of the abnormal termination of the parent process. The zombie will remain in the process table until
collected by the init process, when it's removed from the process table. The bigger the table, the slower this
procedure. You need to avoid zombie processes, as they consume resource until init cleans them up.

There's another system call that you can use to wait for child processes. It's called waitpid and you can use it
to wait for a specific process to terminate.

#include <sys/types.h>
#include <sys/wait.h>

pid_t waitpid(pid_t pid, int *stat_loc, int options);

The pid argument specifies the PID of a particular child process to wait for. If it's −1, waitpid will return
information for any child process. Like wait, it will write status information to the location pointed to by
stat_loc, if that is not a null pointer. The options argument allows us to modify the behavior of waitpid. The
most useful option is WNOHANG, which prevents the call to waitpid from suspending execution of the caller.
You can use it to find out whether any child processes have terminated and, if not, to continue. Other options
are the same as for wait.

So if we wanted to have a parent process regularly check whether a specific child process has terminated, we
could use the call,

Try It Out − Zombies

324

waitpid(child_pid, (int *) 0, WNOHANG);

This will return zero if the child has not terminated or stopped, or child_pid if it has. waitpid will return −1 on
error and set errno. This can happen if there are no child processes (errno set to ECHILD), if the call is
interrupted by a signal (EINTR), or if the option argument is invalid (EINVAL).

Input and Output Redirection

We can use our knowledge of processes to alter the behavior of programs by exploiting the fact that open file
descriptors are preserved across calls to fork and exec. The next example involves a filter program, that is a
program that reads from its standard input and writes to its standard output, performing some useful
transformation as it does so.

Try It Out − Redirection

Here's a very simple filter program, upper.c, that reads input and converts it to uppercase.

#include <stdio.h>
#include <ctype.h>

int main()
{
 int ch;
 while((ch = getchar()) != EOF) {
 putchar(toupper(ch));
 }
 exit(0);
}
$./upper
hello THERE
HELLO THERE
^D
$

We can, of course, use it to convert a file to uppercase by using the shell redirection:

$ cat file.txt
this is the file, file.txt, it is all lower case.
$ upper < file.txt
THIS IS THE FILE, FILE.TXT, IT IS ALL LOWER CASE.

What if we want to use this filter from within another program? This program, useupper.c, accepts a file name
as an argument and will respond with an error if called incorrectly.

#include <unistd.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 char *filename;

 if (argc != 2) {
 fprintf(stderr, "usage: useupper file\n");
 exit(1);
 }

 Input and Output Redirection

325

 filename = argv[1];

We reopen the standard input, again checking for any errors as we do so, and then use execl to call upper.

 if(!freopen(filename, "r", stdin)) {
 fprintf(stderr, "could not redirect stdin from file %s\n", filename);
 exit(2);
 }

 execl("./upper", "upper", 0);

Don't forget that execl replaces the current process; if there is no error, the remaining lines are not executed.

 perror("could not exec ./upper");
 exit(3);
}

How It Works

When we run this program, we can give it a file to convert to uppercase. The job is done by the program
upper, which doesn't handle file name arguments. Note that we don't require the source code for upper; we can
run any executable program in this way.

$./useupper file.txt
THIS IS THE FILE, FILE.TXT, IT IS ALL LOWER CASE.

The useupper program uses freopen to close the standard input and associate the file stream stdin with the file
given as a program argument. It then calls execl to replace the running process code with that of the upper
program. Because open file descriptors are preserved across the call to execl, the upper program runs exactly
as it would have under the shell command:

$ upper < file.txt

Threads

UNIX processes can cooperate; they can send each other messages and they can interrupt one another. They
can even arrange to share segments of memory between themselves, but they are essentially separate entities
within the operating system. They do not readily share variables.

There is a class of process known as a thread available in many UNIX and Linux systems. While threads can
be difficult to program, they can be of great value in some applications, such as a multithreaded database
servers. Programming threads on Linux (and UNIX generally) is not as common as using multiple processes,
because UNIX processes are quite light weight, and programming multiple co−operation processes is much
easier than programming threads. Threads are covered in the next chapter.

Signals

A signal is an event generated by the UNIX system in response to some condition, upon receipt of which a
process may in turn take some action. Signals are generated by some error conditions, such as memory
segment violations, floating point processor errors or illegal instructions. They are generated by the shell and
terminal handlers to cause interrupts. They can also be explicitly sent from one process to another as a way of
passing information or modifying behavior. In all these cases, the programming interface is the same. Signals

How It Works

326

can be generated, caught and acted upon, or (for some at least) ignored. Signal names are defined by including
the header file signal.h. They all begin with "SIG" and include:

Signal Name Description

SIGABORT *Process abort.

SIGALRM Alarm clock.

SIGFPE *Floating point exception.

SIGHUP Hangup.

SIGILL *Illegal instruction.

SIGINT Terminal interrupt.

SIGKILL Kill (can't be caught or ignored).

SIGPIPE Write on a pipe with no reader.

SIGQUIT Terminal quit.

SIGSEGV *Invalid memory segment access.

SIGTERM Termination.

SIGUSR1 User−defined signal 1.

SIGUSR2 User−defined signal 2.
If a process receives one of these signals without first arranging to catch it, the process will be terminated
immediately. For signals marked with a *, implementation−dependent actions may also be taken. Usually, a
core dump file is created. This file, called core and placed in the current directory, is an image of the process
that can be useful in debugging.

Additional signals include:

Signal Name Description

SIGCHLD Child process has stopped or exited.

SIGCONT Continue executing, if stopped.

SIGSTOP Stop executing. (Can't be caught or ignored.)

SIGTSTP Terminal stop signal.

SIGTTIN Background process trying to read.

SIGTTOU Background process trying to write.
SIGCHLD can be useful for managing child processes. It's ignored by default. The remaining signals cause
the process receiving them to stop, except for SIGCONT which causes the process to resume. They are used
by shell programs for job control and are rarely used by user programs.

We'll look at the first group of signals in a little more detail later, but for now, it's enough to know that if the
shell and terminal driver are configured normally, typing the interrupt character (often Ctrl−C) at the
keyboard will result in the SIGINT signal being sent to the foreground process, i.e. the program currently
running. This will cause the program to terminate unless it has arranged to catch the signal.

If we want to send a signal to a process other than the current foreground task, we use the kill command. This
takes an optional signal number or name, and the PID (usually found using the ps command) to send the
signal too. For example, to send a 'hangup' signal to a shell running on a different terminal with process id
512, we would use the command.

kill HUP 512

How It Works

327

A useful variant of the kill command is killall, which allows you to send a signal to all processes running a
specified command. Not all versions of UNIX support it, though Linux generally does. This is useful when
you do not know the PID, or when you want to send a signal to several different processes executing the same
command. A common use is to tell the inetd program to re−read it's configuration options. (We will meet
inetd again in chapter 14.) To do this we can use the command:

killall HUP inetd

Programs can handle signals using the signal library function.

#include <signal.h>

void (*signal(int sig, void (*func)(int)))(int);

This rather complex declaration says that signal is a function that takes two parameters, sig and func. The
signal to be caught or ignored is given as argument sig. The function to be called when the specified signal is
received is given as func. This function must be one that takes a single int argument (the signal received) and
is of type void. The signal function itself returns a function of the same type, which is the previous value of
the function set up to handle this signal, or one of these two special values:

SIG_IGN Ignore the signal.

SIG_DFL Restore default behavior.
An example should make things clear. Let's write a program, ctrlc.c, that reacts to Ctrl−C by printing an
appropriate message rather than terminating. A second Ctrl−C will end the program.

Try It Out − Signal Handling

The function ouch reacts to the signal which is passed in the parameter sig. This function will be called when
a signal occurs. It prints a message and then resets the signal handling for SIGINT (by default generated by
pressing Ctrl−C) back to the default behavior.

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

void ouch(int sig)
{
 printf("OUCH! − I got signal %d\n", sig);
 (void) signal(SIGINT, SIG_DFL);
}

The main function has to intercept the SIGINT signal generated when we type Ctrl−C. For the rest of the
time, it just sits in an infinite loop printing a message once a second.

int main()
{
 (void) signal(SIGINT, ouch);

 while(1) {
 printf("Hello World!\n");
 sleep(1);
 }
}

 Try It Out − Signal Handling

328

Typing Ctrl−C for the first time causes the program to react and then continue. When we type Ctrl−C again,
the program ends, because the behavior of SIG_ING has returned to the default behavior of causing the
program to exit.

$./ctrlc
Hello World!
Hello World!
Hello World!
Hello World!
^C
OUCH! − I got signal 2
Hello World!
Hello World!
Hello World!
Hello World!
^C
$

As you can see from this example, the signal handling function takes a single integer parameter, the signal
number that caused the function to be called. This can be useful if the same function is used to handle more
than one signal. Here, we print out the value of SIGINT, which on this system happens to have the value 2.
You shouldn't rely on traditional numeric values for signals; always use signal names in new programs.

Important Normally, when you call printf inside a signal handler, you need to set a flag in the signal handler
and then check the flag later. Towards the end of the chapter you will find a list of calls than can
safely be made inside signal handlers.

How It Works

The program arranges for the function ouch to be called when we give the SIGINT signal by typing Ctrl−C.
After the interrupt function ouch has completed, the program carries on, but the signal action is restored to the
default. (Different versions of UNIX, particularly those derived from Berkley UNIX, have historically had
subtly different signal behaviors. If you want the default action to a signal restored after it has occurred, it's
always best to specifically code it that way.) When it receives a second SIGINT signal, the program takes the
default action, which is to terminate the program.

If we wished to retain the signal handler and continue to react to Ctrl−C, we would need to re−establish it by
calling signal again. This leads to a short time when the signal is not handled, from the start of the interrupt
function to just before the signal handler is re−established. It's possible for a second signal to be received in
this time and terminate the program against our wishes.

Important We don't recommend that you use the signal interface. We include it here because you
will find it in many older programs. We'll see sigaction, a more cleanly defined and
reliable interface later, which you should use in all new programs.

The signal function returns the previous value of the signal handler for the specified signal if there is one, or
SIG_ERR otherwise, in which case, errno will be set to a positive value. errno will be set to EINVAL if an
invalid signal is specified or an attempt is made to handle a signal that may not be caught or ignored, such as
SIGKILL.

How It Works

329

Sending Signals

A process may send a signal to another process, including itself, by calling kill. The call will fail if the
program doesn't have permission to send the signal, commonly because the target process is owned by another
user. This is the program equivalent of the shell command of the same name.

#include <sys/types.h>
#include <signal.h>

int kill(pid_t pid, int sig);

The kill function sends the specified signal, sig, to the process whose identifier is given by pid. It returns 0 on
success. To send a signal, the sending process must have permission to do so. Normally, this means that both
processes must have the same user ID, i.e. you can only send a signal to one of your own processes, although
the superuser may send signals to any process.

kill will fail, return −1 and set errno if the signal given is not a valid one (errno set to EINVAL), if it doesn't
have permission (EPERM) or if the specified process doesn't exist (ESRCH).

Signals provide us with a useful alarm clock facility. The alarm function call can be used by a process to
schedule a SIGALRM signal at some time in the future.

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

The alarm call schedules the delivery of a SIGALRM signal in seconds seconds' time. In fact, the alarm will
be delivered shortly after that, due to processing delays and scheduling uncertainties. A value of 0 will cancel
any outstanding alarm request. Calling alarm before the signal is received will cause the alarm to be
rescheduled. Each process can have only one outstanding alarm. alarm returns the number of seconds left
before any outstanding alarm call would be sent, or 1 if the call fails.

To see how alarm works, we can simulate its effect by using fork, sleep and signal. A program could start a
new process for the sole purpose of sending a signal at some time later.

Try It Out − An Alarm Clock

In alarm.c, the first function, ding, simulates an alarm clock.

#include <sys/types.h>
#include <signal.h>
#include <stdio.h>
#include <unistd.h>

static int alarm_fired = 0;

void ding(int sig)
{
alarm_fired = 1;
}

1.

In main, we tell the child process to wait for five seconds before sending a SIGALRM signal to its
parent.

int main()

2.

 Sending Signals

330

{
pid_t pid;

 printf("alarm application starting\n");

 pid = fork();
 switch(pid) {
 case −1:
 /* Failure */
 perror("fork failed");
 exit(1);
 case 0:
 /* child */
 sleep(5);
 kill(getppid(), SIGALRM);
 exit(0);
 }

The parent process arranges to catch SIGALRM with a call to signal and then waits for the inevitable.

 /* if we get here we are the parent process */
 printf("waiting for alarm to go off\n");
 (void) signal(SIGALRM, ding);

 pause();
 if (alarm_fired) printf("Ding!\n");

 printf("done\n");
 exit(0);
}

When we run this program, it pauses for five seconds while it waits for the simulated alarm clock.

$./alarm
alarm application starting
waiting for alarm to go off
<5 second pause>
Ding!
done
$

3.

This program introduces a new function, pause, which simply causes the program to suspend execution until
a signal occurs. When it receives a signal, any established handler is run and execution continues as normal.
It's declared as:

#include <unistd.h>

int pause(void);

and returns −1 (if the next received signal doesn't cause the program to terminate) with errno set to EINTR
when interrupted by a signal. It is more common to use sigsuspend when waiting for signals, which we will
meet in a minute.

How It Works

The alarm clock simulation program starts a new process via fork. This child process sleeps for five seconds
and then sends a SIGALRM to its parent. The parent arranges to catch SIGALRM and then pauses until a
signal is received. We do not call printf in the signal handler directly, rather we set a flag and then check the

How It Works

331

flag afterwards.

Using signals and suspending execution is an important part of UNIX programming. It means that a program
need not necessarily run all the time. Rather than run in a loop continually checking whether an event has
occurred, it can wait for an event to happen. This is especially important in a multiuser environment where
processes share a single processor and this kind of busy wait has a large impact on system performance. A
particular problem with signals is "what happens if a signal occurs in the middle of a system call?" The
answer is rather messily 'it depends'. In general, you only need to worry about 'slow' system calls, such as
reading from a terminal, where the system call will return with an error if a signal occurs while it is waiting. If
you start using signals in your program you need to be aware that some system calls could now fail because a
signal has received, a possible error condition that you may not have considered before signal handling was
added.

You must program your signals carefully, as there are a number of 'race conditions' that can occur in programs
that use them. For example, if you intend to call pause to wait for a signal and that signal occurs before the
call to pause, your program may wait indefinitely for an event that won't occur. These race conditions, critical
timing problems, catch many a novice programmer. Always check signal code very carefully.

A Robust Signals Interface

We've covered raising and catching signals using signal and friends in some depth, because they are very
common in UNIX programs. However, the X/Open and UNIX specifications recommends a newer
programming interface for signals that is more robust: sigaction.

#include <signal.h>

int sigaction(int sig, const struct sigaction *act, struct sigaction *oact);

The sigaction structure, used to define the actions to be taken on receipt of the signal specified by sig, is
defined in signal.h and has at least the following members.

void (*) (int) sa_handler /* function, SIG_DFL or SIG_IGN
sigset_t sa_mask /* signals to block in sa_handler
int sa_flags /* signal action modifiers

The sigaction function sets the action associated with the signal sig. If oact is not null, sigaction writes the
previous signal action to the location it refers to. If act is null, this is all sigaction does. If act isn't null, the
action for the specified signal is set.

As with signal, sigaction returns 0 if successful and −1 if not. The error variable errno will be set to EINVAL
if the specified signal is invalid or if an attempt is made to catch or ignore a signal that can't be caught or
ignored.

Within the sigaction structure pointed to by the argument act, sa_handler is a pointer to a function called when
signal sig is received. This is much like the function func we saw earlier passed to signal. We can use the
special values SIG_IGN and SIG_DFL in the sa_handler field to indicate that the signal is to be ignored or the
action is to be restored to its default respectively.

The sa_mask field specifies a set of signals to be added to the process' signal mask before the sa_handler
function is called. These are the set of signals that are blocked and won't be delivered to the process. This
prevents the case we saw earlier where a signal is received before its handler has run to completion. Using the
sa_mask field can eliminate this race condition.

How It Works

332

However, signals caught with handlers set by sigaction are by default not reset and the sa_flags field must be
set to contain the value SA_RESETHAND if we wish to obtain the behavior we saw earlier with signal.
Before we look in any more detail at sigaction, let's rewrite the program ctrlc.c, using sigaction instead of
signal.

Try It Out − sigaction

Make the changes shown below so that SIGINT is intercepted by sigaction. We will call the new program
ctrlc2.c.

#include <signal.h>
#include <stdio.h>
#include <unistd.h>

void ouch(int sig)
{
 printf("OUCH! − I got signal %d\n", sig);
}

int main()
{
 struct sigaction act;

 act.sa_handler = ouch;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;

 sigaction(SIGINT, &act, 0);

 while(1) {
 printf("Hello World!\n");
 sleep(1);
 }
}

When we run this version of the program, we always get a message when we type Ctrl−C because SIGINT is
handled repeatedly by sigaction. To terminate the program, we have to type Ctrl−\, which generates the
SIGQUIT signal by default.

$./ctrlc2
Hello World!
Hello World!
Hello World!
^C
OUCH! − I got signal 2
Hello World!
Hello World!
^C
OUCH! − I got signal 2
Hello World!
Hello World!
^\
Quit
$

How It Works

333

How It Works

The program calls sigaction instead of signal to set the signal handler for Ctrl−C (SIGINT) to the function
ouch. It first has to set up a sigaction structure that contains the handler, a signal mask and flags. In this case,
we don't need any flags and an empty signal mask is created with the new function sigemptyset.

After running this program you will find a file called core has been created. You can safely delete it.

Signal Sets

The header file signal.h defines the type sigset_t and functions used to manipulate sets of signals. These sets
are used in sigaction and other functions to modify process behavior on receipt of signals.

#include <signal.h>

int sigaddset(sigset_t *set, int signo);
int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigdelset(sigset_t *set, int signo);

These functions perform the operations suggested by their names. sigemptyset initializes a signal set to be
empty. sigfillset initializes a signal set to contain all defined signals. sigaddset and sigdelset add and delete a
specified signal (signo) from a signal set. They all return 0 if successful and −1 with errno set on error. The
only error defined is EINVAL if the specified signal is invalid.

The function sigismember determines whether the given signal is a member of a signal set. It returns 1 if the
signal is a member of the set, 0 if it isn't and −1 with errno set to EINVAL if the signal is invalid.

#include <signal.h>

int sigismember(sigset_t *set, int signo);

The process signal mask is set or examined by calling the function sigprocmask. This signal mask is the set of
signals that are currently blocked and will therefore not be received by the current process.

#include <signal.h>

int sigprocmask(int how, const sigset_t *set, sigset_t *oset);

sigprocmask can change the process signal mask in a number of ways according to the how argument. New
values for the signal mask are passed in the argument set, if it isn't null, and the previous signal mask will be
written to the signal set oset.

The how argument can be one of:

SIG_BLOCK The signals in set are added to the signal mask.

SIG_SETMASK The signal mask is set from set.

SIG_UNBLOCK The signals in set are removed from the signal mask.
If the set argument is a null pointer, the value of how is not used and the only purpose of the call is to fetch the
value of the current signal mask into oset.

How It Works

334

If it completes successfully, sigprocmask returns 0, or it returns −1 if the how parameter is invalid, in which
case errno will be set to EINVAL.

If a signal is blocked by a process, it won't be delivered, but will remain pending. A program can determine
which of its blocked signals are pending by calling the function sigpending.

#include <signal.h>

int sigpending(sigset_t *set);

This writes a set of signals that are blocked from delivery and are pending into the signal set pointed to by set.
It returns 0 if successful, otherwise −1 with errno set to indicate the error. This function can be useful when a
program needs to handle signals and to control when the handling function is called.

A process can suspend execution until the delivery of one of a set of signals by calling sigsuspend. This is a
more general form of the pause function we met earlier.

#include <signal.h>

int sigsuspend(const sigset_t *sigmask);

The sigsuspend function replaces the process signal mask with the signal set given by sigmask and then
suspends execution. It will resume after the execution of a signal handling function. If the received signal
terminates the program, sigsuspend will never return. If a received signal doesn't terminate the program,
sigsuspend returns −1 with errno set to EINTR.

sigaction Flags

The sa_flags field of the sigaction structure used in sigaction may contain the following values to modify
signal behavior.

SA_NOCLDSTOP Don't generate SIGCHLD when child processes stop.

SA_RESETHAND Reset signal action to SIG_DFL on receipt.

SA_RESTART Restart interruptible functions rather than error with EINTR.

SA_NODEFER Don't add the signal to the signal mask when caught.
The SA_RESETHAND flag can be used to automatically clear a signal function when a signal is caught, as
we saw before.

Many system calls that a program uses are interruptible, i.e. when they receive a signal they will return with
an error and errno will be set to EINTR to indicate that the function returned due to a signal. This behavior
requires extra care by an application using signals. If SA_RESTART is set in the sa_flags field in a call to
sigaction, a function that might otherwise be interrupted by a signal will instead be restarted once the signal
handling function has been executed.

Ordinarily, when a signal handling function is being executed, the signal received is added to the process
signal mask for the duration of the handling function. This prevents a subsequent occurrence of the same
signal, causing the signal handling function to run again. If the function is not re−entrant, having it called by
another occurrence of a signal before it finished handling the first may cause problems. If, however, the
SA_NODEFER flag is set, the signal mask is not altered when it receives this signal.

Signal Sets

335

A signal−handling function could be interrupted in the middle and called again by something else. When you
come back to the first call, it's vital that it still operates correctly. It's not just recursive (calling itself), but
re−entrant (can be entered and executed again without problems). Interrupt service routines in the kernel that
deal with more than one device at a time need to be re−entrant, as a higher priority interrupt might 'get in'
during the execution of the same code.

Functions that are safe to call inside a signal handler, those guaranteed by the X/Open specification either to
be re−entrant or not to raise signals themselves are listed below.

Important All functions not listed below should be considered to be unsafe with respect to signals.

access alarm cfgetispeed cfgetospeed

cfsetispeed cfsetospeed chdir chmod

chown close creat dup2

dup execle execve _exit

fcntl fork fstat getegid

geteuid getgid getgroups getpgrp

getpid getppid getuid kill

link lseek mkdir mkfifo

open pathconf pause pipe

read rename rmdir setgid

setpgid setsid setuid sigaction

sigaddset sigdelset sigemptyset sigfillset

sigismember signal sigpending sigprocmask

sigsuspend sleep stat sysconf

tcdrain tcflow tcflush tcgetattr

tcgetpgrp tcsendbreak tcsetattr tcsetpgrp

time times umask uname

unlink utime wait waitpid

write
Common Signal Reference

In this section, we list the signals that UNIX programs typically need with their default behaviors.

The default action for the signals in the following table is abnormal termination of the process with all the
consequences of _exit (which is like exit but performs no cleanup before returning to the kernel). However the
status is made available to wait and waitpid indicates abnormal termination by the specified signal.

Signal Name Description

SIGALRM Generated by the timer set by the alarm function.

SIGHUP Sent to the controlling process by a disconnecting terminal, or by the controlling
process on termination to each foreground process.

SIGINT Typically raised from the terminal by typing Ctrl−C or the configured interrupt
character.

SIGKILL

Signal Sets

336

Typically used from the shell to forcibly terminate an errant process as this
signal can't be caught or ignored.

SIGPIPE Generated by an attempt to write to a pipe with no associated reader.

SIGTERM Sent as a request for a process to finish. Used by UNIX when shutting down to
request that system services stop. This is the default signal sent from the kill
command.

SIGUSR1, SIGUSR2 May be used by processes to communicate with each other, possibly to cause
them to report status information.

By default, the signals in the next table also cause abnormal termination. Additionally,
implementation−dependent actions, such as creation of a core file, may occur.

Signal Name Description

SIGFPE Generated by a floating point arithmetic exception.

SIGILL An illegal instruction has been executed by the processor. Usually caused by a
corrupt program or invalid shared memory module.

SIGQUIT Typically raised from the terminal by typing Ctrl−\ or the configured quit
character.

SIGSEGV A segmentation violation, usually caused by reading or writing at an illegal
location in memory either by exceeding array bounds or de−referencing an
invalid pointer. Overwriting a local array variable and corrupting the stack can
cause a SIGSEGV to be raised when a function returns to an illegal address.

A process is suspended by default on receipt of one of the signals in the following table.

Signal Name Description

SIGSTOP Stop executing (can't be caught or ignored).

SIGTSTP Terminal stop signal, often raised by typing Ctrl−Z.

SIGTTIN, SIGTTOU Used by the shell to indicate that background jobs have stopped because they
need to read from the terminal or produce output.

SIGCONT restarts a stopped process and is ignored if received by a process which is not stopped. The
SIGCHLD signal is ignored by default.

Signal Name Description

SIGCONT Continue executing, if stopped.

SIGCHLD Raised when a child process stops or exits.

Summary

In this chapter, we have seen how processes are a fundamental part of the UNIX operating system. We have
learned how they can be started, terminated and viewed and how we can use them to solve programming
problems.

We've also taken a look at signals, events that can be used to control the actions of running programs. What
we have seen is that all UNIX utilities, down to and including init, use the same set of system calls available
to any programmer.

 Summary

337

Chapter 11: POSIX Threads
In the previous chapter, we saw how processes are handled in Linux (and indeed in UNIX). These
multi−processing features have long been a feature of UNIX type operating systems. Sometimes the overhead
of creating a new process with fork is considered too great. Then it would be very useful to make a single
program do two things at once, or at least to appear to do so. Alternatively, you might want two or more
things to happen at the same time in a closely coupled way.

What is a Thread?

Multiple strands of execution in a single program are called threads. A more precise definition would be that
a thread is 'a sequence of control within a process'. All the programs we have seen so far have executed as a
single process, although Linux, like many other operating systems, is quite capable of running multiple
processes simultaneously. Indeed all processes have at least one thread of execution. All the processes that we
have seen so far have had just one thread of execution.

It's important to be clear about the difference between the fork system call and the creation of new threads.
When a process executes a fork call, a new copy of the process is created with its own variables and its own
PID. This new process is scheduled independently, and (in general) executes almost completely independently
of the process that created it. When we create a new thread in a process, the new thread of execution gets its
own stack (and hence local variables) but shares global variables, file descriptors, signal handlers and its
current directory state with its creator.

The idea of threads has been around for some time, but until the IEEE POSIX committee published some
standards, they had not been widely available in UNIX type operating systems, and the implementations that
did exist tended to vary between different vendors. With the advent of the POSIX 1003.1c specification all
that has changed; threads are not only better standardized, but also available on most Linux distributions.

Advantages and Drawbacks of Threads

Creating a new thread has some distinct advantages over creating a new process in certain circumstances. The
overhead of creating a new thread is significantly less than that of creating a new process. (Though Linux is
particularly efficient at creating new processes compared to some other operating systems.)

Sometimes it is very useful to make a program appear to do two things at once. The classic example is to
perform a real−time word count on a document, while still editing the text. One thread can manage the user's
input and perform editing. The other, which can still see the same document content, can continuously update
a word count variable. The first thread (or even a third one) can use this shared variable to keep the user
informed. A perhaps more realistic example is a multithreaded database server, where an apparent single
process serves multiple clients, improving the overall data throughput by servicing some requests while others
are blocked waiting for disk activity. For a database server, this apparent multitasking is quite hard to do
efficiently in different processes, because the requirements for locking and data consistency cause the
different processes to be very tightly coupled. This can be done much more easily with multiple threads than
multiple processes.

Threads do have drawbacks. Since they are relatively new, they are not as widely available as longer
established features. Writing multithreaded programs requires very careful thought. The potential for
introducing subtle timing faults, or faults caused by the unintentional sharing of variables, in a multithreaded
program is considerable. Debugging a multithreaded program is much harder than a single threaded one.

338

A program that splits a large calculation into two and runs the two parts as different threads will not
necessarily run quicker on a single processor machine, as there are only so many CPU cycles to be had!

However, threads undoubtedly do have their uses. For example, the performance of an application that mixes
input, calculation and output may be improved by running these as three separate threads. While the input or
output thread is waiting for a connection, one of the other threads can continue. Thus while any application
can ultimately only do one thing at a time, threads enable an application to do something useful while it waits
for such things as connections.

Switching between threads, at least in theory, requires the operating system to do much less work than
switching between processes. Thus threads are much less demanding on resources than processes, and it is
more practical to run programs that logically require many threads of executions on single processor systems.
In practice this may not always be true. Indeed, on Linux, which implements threads via a clone system call, a
new thread in a process is very similar 'under the hood' to a new process. To most users of course it doesn't
matter how it's implemented so long as it works, but you should be aware that using threads to save the
overhead of a process is not a strong argument under Linux.

In this chapter, we are going to look at:

Checking for thread support on your platform•
Creating new threads within a process•
Synchronizing data access between threads in a single process•
Modifying the attributes of a thread•
Controlling one thread from another in the same process.•

Checking for Thread Support

Before using threads, it's sensible to check that the setup actually has support for threads, and is compliant
with the POSIX standard. When your C compiler compiles code, it sets some constants internally, and the
header files that you include in your program add some more. By checking what definitions are in place in the
code when it gets compiled we can check quite a lot about the compiler and libraries, most interestingly in this
case their support for threads.

We can do this check in two ways, the difficult way and the easy way. The difficult way is to scour the
headers files, such as limits.h, unistd.h and (more specific to Linux systems) features.h. The easy way is to
write a very short program, compile it and see what we get.

We are going to do it the easy way! The definition we are interested in is the value _POSIX_VERSION. If it's
not defined at all, there is no POSIX support at all. If it is defined, it takes one of various values telling us
what level of support is present. The value we want for full thread support is 199506L or higher. However,
even if _POSIX_VERSION has a lower value, there may still be some thread support and it may still be
possible to do most of the examples in this chapter.

Try it out − POSIX compliance test

Let's find out the level of POSIX support. This is thread1.c. It doesn't do anything other than test for threads
support in the libraries that you use when compiling a program.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

 Checking for Thread Support

339

int main() {
 printf("POSIX version is set to %ld\n", _POSIX_VERSION);
 if (_POSIX_VERSION < 199506L) {
 if (_POSIX_C_SOURCE >= 199506L) {
 printf("Sorry, you system does not support POSIX1003.1c threads\n");
 }
 else {
 printf("Try again with −D_POSIX_C_SOURCE=199506L\n");
 }
 }
 else {
 printf("Your system supports POSIX1003.1c threads,\n");
 #ifdef _POSIX_THREAD_PRIORITY_SCHEDULING
 printf("including support for priority scheduling\n");
 #else
 printf("but does not support priority scheduling\n");
 #endif
 }
 exit(EXIT_SUCCESS);
}

We include some standard headers and check the value of _POSIX_VERSION. Normally on Linux systems,
the compiler defines _POSIX_C_SOURCE as a number greater than or equal to 199506L automatically, and
this causes other definitions to be set. We check that, if the _POSIX_VERSION check fails, the compiler has
indeed set _POSIX_C_SOURCE. On both the authors' machines the result is:

$./thread1
POSIX version is set to 199506
Your system supports POSIX1003.1c threads,
including support for priority scheduling

If your setup did not report support, or failed to compile at all, you should try compiling the program again,
setting _POSIX_C_SOURCE on the command line, like this:

cc −D_POSIX_C_SOURCE=199506L thread1.c −o thread1

If your system still doesn't report support for POSIX1003.1c threads, then you may not be able to test the
examples in this chapter, or they may not all work exactly as specified.

How it works

The program simply tests the presence of defines when code is compiled after including some standard
headers.

A First Threads Program

There is a whole set of library calls associated with threads, most of whose names start with pthread_. To use
these library calls we must define the macro _REENTRANT, include the file pthread.h and link with the
threads library using −lpthread.

When the original library routines were designed, it was assumed that there would only be a single thread of
execution in any process. An obvious example is errno, the variable used for retrieving error information after
a call fails. In a multithreaded program there would by default only be a single errno variable shared between

How it works

340

all the threads. The variable could easily be updated by a call in one thread before a different thread has been
able to retrieve a previous error code. Similar problems exits with functions such as fputs, which normally use
a single global area for buffering output.

We need routines known as re−entrant. Re−entrant code can be called more than once, either by different
threads, or called by nested invocations in some way, and still function correctly. Thus usually, the re−entrant
section of code must only use local variables, in such a way that each and every call to the code gets its own
unique copy of the data.

In multithreaded programs, we tell the compiler that we need this feature by defining the macro
_REENTRANT before any #include lines in our program. This does three things for us, and does them so
elegantly that usually we don't even need to know what was done. Some functions get prototypes for a
re−entrant safe equivalent. These are normally the same function name, but with _r appended so that, for
example, gethostbyname is changed to gethostbyname_r. Some stdio.h functions that are normally
implemented as macros become proper re−entrant safe functions. The variable errno, from errno.h, is changed
to call a function, that can determine the real errno value in a multithread safe way.

Including the file pthread.h provides us with other definitions and prototypes that we will need in our code
much like stdio.h for standard input and output routines. Finally, we need to link with the POSIX threads
library, that implements the pthread functions.

pthread_create creates a new thread much as fork creates a new process.

#include <pthread.h>

int pthread_create(pthread_t *thread, pthread_attr_t *attr, void *(*start_routine)(void *), void *arg);

This may look imposing, but it is actually quite easy to use. The first argument is a pointer to pthread_t. When
a thread is created, an identifier is written to the variable to which this pointer points. This identifier enables
us to refer to the thread. The next argument sets the thread attributes. You do not usually need any special
attributes, and you can simply pass NULL as this argument. Later in the chapter, we will see how to use these
attributes. The final two arguments tell the thread the function that it is to start executing and the arguments
that are to be passed to this function.

void *(*start_routine)(void *)

is simply saying we must pass the address of a function taking a pointer to void as a parameter, and returning
a pointer to void. Thus we can pass any type of single argument and return a pointer to any type. Using fork
causes execution to continue in the same location with a different return code, whereas using a new thread
explicitly provides a pointer to a function where the new thread should start execution.

The return value is 0 for success, or an error number if anything goes wrong. The manual pages have details
of error conditions for this and other functions used in this chapter.

Important pthread_create, like most pthread_ functions, is among the few UNIX functions that do not
follow the convention of using −1 for errors. Unless you are very sure, it's always safest to
double check the manual before checking the error code.

When a thread terminates, it calls the pthread_exit function, much like a process calls exit when it terminates.
This function terminates the calling thread, returning a pointer to an object. Never use it to return a pointer to
a local variable, which will cease to exist when the thread does causing a serious bug. pthread_exit is declared

How it works

341

as follows.

#include <pthread.h>

void pthread_exit(void *retval);

pthread_join is the thread equivalent of wait that processes use to collect child processes. This function is
declared as follows.

#include <pthread.h>

int pthread_join(pthread_t th, void **thread_return);

The first parameter is the thread for which to wait, the identifier that pthread_create filled in for us. The
second argument is a pointer to a pointer to the return value from the thread. Like pthread_create this function
returns zero for success and an error code on failure.

Try it out − a simple threaded program.

This program creates a single extra thread, shows that it is sharing variables with the original thread and gets
the new thread to return a result to the original thread. Multithreaded programs don't get much simpler than
this! Here is thread2.c.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

void *thread_function(void *arg);

char message[] = "Hello World";

int main() {
 int res;
 pthread_t a_thread;
 void *thread_result;

 res = pthread_create(&a_thread, NULL, thread_function, (void *)message);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 printf("Waiting for thread to finish...\n");
 res = pthread_join(a_thread, &thread_result);
 if (res != 0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }
 printf("Thread joined, it returned %s\n", (char *)thread_result);
 printf("Message is now %s\n", message);
 exit(EXIT_SUCCESS);
}

void *thread_function(void *arg) {
 printf("thread_function is running. Argument was %s\n", (char *)arg);
 sleep(3);
 strcpy(message, "Bye!");

Try it out − a simple threaded program.

342

 pthread_exit("Thank you for the CPU time");
}

To compile this, you need to ensure that _REENTRANT is defined and that, if necessary, you have defined
_POSIX_C_SOURCE yourself. On the authors' systems, we just need to define _REENTRANT, so the
compile line is simply:

$ cc −D_REENTRANT thread2.c −o thread2 −lpthread

When you run this program, you should see:

$./thread2
Waiting for thread to finish...
thread_function is running. Argument was Hello World
Thread joined, it returned Thank you for the CPU time
Message is now Bye!

How it works.

We declare a prototype for the function that the thread will call when we create it.

void *thread_function(void *arg);

As required by pthread_create, it takes a pointer to void as its only argument and returns a pointer to void. We
will come to the definition (and the implementation) of this function in a moment.

In main, we declare some variables, then call pthread_create to cause our new thread to start running.

 pthread_t a_thread;
 void *thread_result;

 res = pthread_create(&a_thread, NULL, thread_function, (void *)message);

We pass the address of a pthread_t object, that we can use to refer to the thread afterwards. We don't wish to
modify the default thread attributes, so we pass NULL as the second parameter. The final two parameters are
the function to call and a parameter to pass to it.

If the call succeeds, two threads are now running. The original thread (main) continues and executes the code
after pthread_create, and a new thread starts executing in our imaginatively named thread_function.

The original thread checks that the new thread has started and then calls pthread_join.

 res = pthread_join(a_thread, &thread_result);

Here we pass the identifier of the thread that we are waiting to join and a pointer to a result. This function will
wait until the other thread terminates before it returns. It then prints the return value from the thread, the
contents of a variable, and exits.

The new thread starts executing in thread_function, prints out its arguments, sleeps for a short period, updates
global variables and then exits returning a string to the main thread. The new thread writes to the same array,
message, to which the original thread has access. This would not be so if we had called fork rather than
pthread_create.

How it works.

343

Simultaneous Execution

Next, we are going to write a program that checks that the execution of two threads occurs simultaneously
(still, of course, on a single processor system, because the CPU is being cleverly switched between the
threads). Since we haven't yet met any of the thread synchronization functions we need to do this efficiently, it
will be a very inefficient program, that does what is known as a polling between the two threads. Again we
will make use of the fact that everything except local function variables are shared between the different
threads in a process.

Try it out − simultaneous execution of two threads

thread3.c is created by slightly modifying thread2.c. We add an extra file scope variable to test which thread is
running.

int run_now = 1;

We will set run_now to 1 when the main function is executing, and 2 when our new thread is executing.

In the main function, after the creation of the new thread, we add the following code.

 int print_count1 = 0;

 while(print_count1++ < 20) {
 if (run_now == 1) {
 printf("1");
 run_now = 2;
 }
 else {
 sleep(1);
 }
 }

If run_now is 1, we print "1" and set it to 2. Otherwise, we sleep briefly and check the value again. We are
waiting for the value to change to 1 by checking over and over again. This is called a "busy wait", although
we have slowed it down by sleeping for a second between checks. We'll see a better way to do this later.

In thread_function, where our new thread is executing, we do much the same but with the values reversed.

 int print_count2 = 0;

 while(print_count2++ < 20) {
 if (run_now == 2) {
 printf("2");
 run_now = 1;
 }
 else {
 sleep(1);
 }
 }

We have also removed the parameter passing and return value passing, since we are no longer interested in
them.

 Simultaneous Execution

344

When we run the program, we see the following. (You may find that it takes a few seconds for the program to
produce output.)

$ cc −D_REENTRANT thread3.c −o thread3 −lpthread
$./thread3
12121212121212121212
Waiting for thread to finish...
Thread joined

How it works.

Each thread tells the other one to run by setting the run_now variable and then waits till the other thread has
changed it's value before running again. This shows that execution passes between the two threads
automatically and again illustrates the point that both threads are sharing the run_now variable.

Synchronization

We saw that both threads are executing together, but our method of switching between them was clumsy and
inefficient. Fortunately, there are a set functions specifically for giving us better ways to control the execution
of threads and access to critical sections of code.

We will look at two basic methods here. The first is semaphores, which act like gatekeepers around a piece of
code. The second is mutexes, which act as a mutual exclusion (hence mutex) device to protect sections of
code.

Both are similar. (Indeed, one can be implemented in terms of the other.) However, there are some cases
where the semantics of the problem suggest one is more expressive than the other. For example, controlling
access to some shared memory, which only one thread can access it at a time, would most naturally involve a
mutex. However, controlling access to a set of identical objects as a whole, such as giving a telephone line to
a thread out of a set of five available lines, suits a counting semaphore better. Which one you choose depends
on personal preference and the most appropriate mechanism for your program.

Synchronization with Semaphores

Important There are two sets of interface functions for semaphores. One is taken from POSIX Realtime
Extensions and used for threads. The other is known as System V semaphores, which are
commonly used for process synchronization. (We will we will meet the second type in a later
chapter.) The two are not guaranteed interchangeable and, although very similar, use different
function calls.

We are going to look at the simplest type of semaphore, a binary semaphore that takes only values 0 or 1.
There is a more general semaphore, a counting semaphore that takes a wider range of values. Normally
semaphores are used to protect a piece of code so that only one thread of execution can run it at any one time
and, for this job, a binary semaphore is needed. Occasionally, we want to permit a limited number of threads
to execute a given piece of code and, for this, we would use a counting semaphore. Since counting
semaphores are much less common, we won't consider them further here, except to say that they are just a
logical extension of a binary semaphore and that the actual function calls needed are identical.

The semaphore functions do not start with pthread_, like most thread specific functions but with sem_. There
are four basic semaphore functions used in threads. They are all quite simple.

How it works.

345

A semaphore is created with the sem_init function, which is declared as follows.

#include <semaphore.h>

int sem_init(sem_t *sem, int pshared, unsigned int value);

This function initializes a semaphore object pointed to by sem, sets its sharing option (of which more in a
moment), and gives it an initial integer value. The pshared parameter controls the type of semaphore. If the
value of pshared is 0, then the semaphore is local to the current process. Otherwise, the semaphore may be
shared between processes. Here we are only interested in semaphores that are not shared between processes.
At the time of writing Linux doesn't support this sharing, and passing a non−zero value for pshared will cause
the call to fail.

The next pair of functions control the value of the semaphore and are declared as follows.

#include <semaphore.h>

int sem_wait(sem_t * sem);

int sem_post(sem_t * sem);

These both take a pointer to the semaphore object initialized by a call to sem_init.

The sem_post function atomically increases the value of the semaphore by 1. "Atomically" here means that, if
two threads simultaneously try and increase the value of a single semaphore by 1, they do not interfere with
each other, as might happen if two programs read, increment and write a value to a file at the same time. The
semaphore will always be correctly increased in value by 2, since two threads tried to change it.

The sem_wait function atomically decreases the value of the semaphore by one, but always waits till the
semaphore has a non−zero count first. Thus if you call sem_wait on a semaphore with a value of 2, the thread
will continue executing but the semaphore will be decreased to 1. If sem_wait is called on a semaphore with a
value of 0, then the function will wait until some other thread has incremented the value so that it is no longer
0. If two threads are both waiting in sem_wait for the same semaphore to become non−zero and it is
incremented once by a third process, then only one of the two waiting processes will get to decrement the
semaphore and continue; the other will remain waiting.

This atomic 'test and set' ability in a single function is what makes semaphores so valuable. There is another
semaphore function, sem_trywait that is the non−blocking partner of sem_wait. We don't discuss it further
here, but you can find more details in the manual pages.

The last semaphore function is sem_destroy. This function tidies up the semaphore when we have finished
with it. It is declared as follows.

#include <semaphore.h>

int sem_destroy(sem_t * sem);

Again, this function takes a pointer to a semaphore and tidies up any resources that it may have. If you attempt
to destroy a semaphore for which some thread is waiting, you will get an error.

Like most Linux functions, these functions all return 0 on success.

How it works.

346

Try it out − a thread semaphore.

This code, thread4.c is also based on thread2.c. Since a lot has changed, we will present it in full.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>

void *thread_function(void *arg);
sem_t bin_sem;

#define WORK_SIZE 1024
char work_area[WORK_SIZE];

int main() {
 int res;
 pthread_t a_thread;
 void *thread_result;

 res = sem_init(&bin_sem, 0, 0);
 if (res != 0) {
 perror("Semaphore initialization failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_create(&a_thread, NULL, thread_function, NULL);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 printf("Input some text. Enter 'end' to finish\n");
 while(strncmp("end", work_area, 3) != 0) {
 fgets(work_area, WORK_SIZE, stdin);
 sem_post(&bin_sem);
 }
 printf("\nWaiting for thread to finish...\n");
 res = pthread_join(a_thread, &thread_result);
 if (res != 0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }
 printf("Thread joined\n");
 sem_destroy(&bin_sem);
 exit(EXIT_SUCCESS);
}

void *thread_function(void *arg) {
 sem_wait(&bin_sem);
 while(strncmp("end", work_area, 3) != 0) {
 printf("You input %d characters\n", strlen(work_area) −1);
 sem_wait(&bin_sem);
 }
 pthread_exit(NULL);
}

The first important change is the inclusion of semaphore.h, to give us access to the semaphore functions. Then
we declare a semaphore and some variables and initialize the semaphore before we create our new thread.

Try it out − a thread semaphore.

347

sem_t bin_sem;

#define WORK_SIZE 1024
char work_area[WORK_SIZE];

int main() {
 int res;
 pthread_t a_thread;
 void *thread_result;
 res = sem_init(&bin_sem, 0, 0);
 if (res != 0) {
 perror("Semaphore initialization failed");
 exit(EXIT_FAILURE);
 }

Note that we set the initial value of the semaphore to 0.

In the function main, after we have started the new thread, we read some text from the keyboard, load our
work area and then increment the semaphore with sem_post.

 printf("Input some text. Enter 'end' to finish\n");
 while(strncmp("end", work_area, 3) != 0) {
 fgets(work_area, WORK_SIZE, stdin);
 sem_post(&bin_sem);
 }

In the new thread, we wait for the semaphore and then count the characters from the input.

 sem_wait(&bin_sem);
 while(strncmp("end", work_area, 3) != 0) {
 printf("You input %d characters\n", strlen(work_area) −1);
 sem_wait(&bin_sem);
 }

While the semaphore is set, we are waiting for keyboard input. When we have some input we release the
semaphore allowing the second thread to count the characters before the first thread reads the keyboard again.

Again both threads share the same work_area array. Again, we have omitted some error checking, such as the
returns from sem_wait to make the code samples more succinct and easier to follow. However in production
code, you should always check for error returns unless there is a very good reason to omit this check.

Let's give our program a run.

$ cc −D_REENTRANT thread4.c −o thread4 −lpthread
$./thread4
Input some text. Enter 'end' to finish
The Wasp Factory
You input 16 characters
Iain Banks
You input 10 characters
end

Waiting for thread to finish...
Thread joined

In threaded programs, timing faults are always hard to find, but the program seems resilient to both quick
input of text and more leisurely pauses.

Try it out − a thread semaphore.

348

How it works.

When we initialize the semaphore, we set its value to 0. Thus, when the threads function starts, the call to
sem_wait blocks and waits for the semaphore to become non−zero.

In the main thread, we wait till we have some text and then increment the semaphore with sem_post, which
immediately allows the other thread to return from its sem_wait and start executing. Once it has counted the
characters it again calls sem_wait and is blocked until the main thread again calls sem_post to increment the
semaphore.

A common source of problem is to overlook subtle timing faults. Let's modify the program slightly to
thread4a.c to pretend that text input from the keyboard is sometime replaced with automatically available text.
We modify the reading loop in the main to this:

 printf("Input some text. Enter 'end' to finish\n");
 while(strncmp("end", work_area, 3) != 0) {
 if (strncmp(work_area, "FAST", 4) == 0) {
 sem_post(&bin_sem);
 strcpy(work_area, "Wheeee...");
 } else {
 fgets(work_area, WORK_SIZE, stdin);
 }
 sem_post(&bin_sem);
 }

Now if we enter 'FAST' the program calls sem_post to allow the character counter to run, but immediately
updates work_area with something different.

$ cc −D_REENTRANT thread4a.c −o thread4a −lpthread
$./thread4a
Input some text. Enter 'end' to finish
Excession
You input 9 characters
FAST
You input 7 characters
You input 7 characters
You input 7 characters
end

Waiting for thread to finish...
Thread joined

The problem is that our program was relying on text input from the program taking so long that there was
time for the other thread to count the words before the main thread was ever ready to give it more words to
count. When we tried to give it two different sets of words to count in quick succession ('FAST' from the
keyboard, then 'Weeee...' automatically), there was no time for the second thread to execute. However, the
semaphore had been incremented more than once, so the counter thread just kept counting the words and
decreasing the semaphore until it became zero again.

This shows just how careful you need to be with timing considerations in multithreaded programs. It's
possible to fix the program, by using an extra semaphore to make the main thread wait until the counter thread
has had chance to finish its counting.

How it works.

349

Synchronization with Mutexes

The other way of synchronizing access in multithreaded programs is with mutexes. These act by allowing the
programmer to 'lock' an object, so that only one thread can access it. To control access to a critical section of
code you lock a mutex before entering the code section and then unlock it when you have finished.

The basic functions required to use mutexes are very similar to those needed for semaphores. They are
declared as follows.

#include <pthread.h>

int pthread_mutex_init(pthread_mutex_t *mutex, const pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex));

int pthread_mutex_unlock(pthread_mutex_t *mutex);

int pthread_mutex_destroy(pthread_mutex_t *mutex);

As usual, 0 is returned for success, on failure an error code is returned, but errno is not set, you must use the
return code.

As with semaphores, they all take a pointer to a previously declared object, this time a pthread_mutex_t. The
extra attribute parameter pthread_mutex_init allows us to provide attributes for the mutex, which control its
behavior. The attribute type by default is 'fast'. This has the slight drawback that, if your program tries to call
pthread_mutex_lock on a mutex that it already has locked, then the program will block. Since the thread that
holds the lock is the one that is now blocked, the mutex can never be unlocked and the program is deadlocked.
It is possible to alter the attributes of the mutex so that it either checks for this and returns an error or acts
recursively and allows multiple locks by the same thread if there are the same number of unlocks afterwards.

Setting the attribute of a mutex is beyond the scope of this book, so we will pass NULL for the attribute
pointer, and use the default behavior. You can find more about changing the attributes in the manual page for
pthread_mutex_init.

Try it out − a thread mutex.

Again this is a modification of thread2.c but heavily modified. This time, we will be a little paranoid about
access to our critical variables and use a mutex to ensure they are only ever accessed by one thread at any one
time. To keep the example code easy to read, we have omitted some error checking on the returns from mutex
lock and unlock. In production code, we would check these return values. Here is the new program, thread5.c.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <pthread.h>
#include <semaphore.h>

void *thread_function(void *arg);
pthread_mutex_t work_mutex; /* protects both work_area and time_to_exit */
#define WORK_SIZE 1024
char work_area[WORK_SIZE];
int time_to_exit = 0;

 Synchronization with Mutexes

350

int main() {
 int res;
 pthread_t a_thread;
 void *thread_result;
 res = pthread_mutex_init(&work_mutex, NULL);
 if (res != 0) {
 perror("Mutex initialization failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_create(&a_thread, NULL, thread_function, NULL);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 pthread_mutex_lock(&work_mutex);
 printf("Input some text. Enter 'end' to finish\n");
 while(!time_to_exit) {
 fgets(work_area, WORK_SIZE, stdin);
 pthread_mutex_unlock(&work_mutex);
 while(1) {
 pthread_mutex_lock(&work_mutex);
 if (work_area[0] != '\0') {
 pthread_mutex_unlock(&work_mutex);
 sleep(1);
 }
 else {
 break;
 }
 }
 }
 pthread_mutex_unlock(&work_mutex);
 printf("\nWaiting for thread to finish...\n");
 res = pthread_join(a_thread, &thread_result);
 if (res != 0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }
 printf("Thread joined\n");
 pthread_mutex_destroy(&work_mutex);
 exit(EXIT_SUCCESS);
}

void *thread_function(void *arg) {
 sleep(1);
 pthread_mutex_lock(&work_mutex);
 while(strncmp("end", work_area, 3) != 0) {
 printf("You input %d characters\n", strlen(work_area) −1);
 work_area[0] = '\0';
 pthread_mutex_unlock(&work_mutex);
 sleep(1);
 pthread_mutex_lock(&work_mutex);
 while (work_area[0] == '\0') {
 pthread_mutex_unlock(&work_mutex);
 sleep(1);
 pthread_mutex_lock(&work_mutex);
 }
 }
 time_to_exit = 1;
 work_area[0] = '\0';
 pthread_mutex_unlock(&work_mutex);
 pthread_exit(0);

 Synchronization with Mutexes

351

}
$ cc −D_REENTRANT thread5.c −o thread5 −lpthread
$./thread5
Input some text. Enter 'end' to finish
Whit
You input 4 characters
The Crow Road
You input 13 characters
end

Waiting for thread to finish...
Thread joined

How it works.

We start by declaring a mutex, our work area and, this time, an additional variable, time_to_exit.

pthread_mutex_t work_mutex; /* protects both work_area and time_to_exit */

#define WORK_SIZE 1024
char work_area[WORK_SIZE];
int time_to_exit = 0;

Then we initialize the mutex.

 res = pthread_mutex_init(&work_mutex, NULL);
 if (res != 0) {
 perror("Mutex initialization failed");
 exit(EXIT_FAILURE);
 }

Next we start the new thread. Here is the code that executes in the thread function.

 pthread_mutex_lock(&work_mutex);
 while(strncmp("end", work_area, 3) != 0) {
 printf("You input %d characters\n", strlen(work_area) −1);
 work_area[0] = '\0';
 pthread_mutex_unlock(&work_mutex);
 sleep(1);
 pthread_mutex_lock(&work_mutex);
 while (work_area[0] == '\0') {
 pthread_mutex_unlock(&work_mutex);
 sleep(1);
 pthread_mutex_lock(&work_mutex);
 }
 }
 time_to_exit = 1;
 work_area[0] = '\0';
 pthread_mutex_unlock(&work_mutex);

First the new thread tries to lock the mutex. If this is already locked, the call will block until it is released.
Once we have access, we check to see whether we are being requested to exit. If we are requested to exit, we
simply set time_to_exit, zap the first character of the work area and exit.

If we didn't want to exit, we count the characters and then zap the first character to a null. We use the first
character being null as a way of telling the reader program that we have finished the counting. We then unlock
the mutex and wait for the main thread to run. Periodically, we attempt to lock the mutex and, when we

How it works.

352

succeed, check whether the main thread has given us any more work to do. If it hasn't, we unlock the mutex
and wait some more. If it has, we count the characters and go round the loop again.

Here is the main thread.

 pthread_mutex_lock(&work_mutex);
 printf("Input some text. Enter 'end' to finish\n");
 while(!time_to_exit) {
 fgets(work_area, WORK_SIZE, stdin);
 pthread_mutex_unlock(&work_mutex);
 while(1) {
 pthread_mutex_lock(&work_mutex);
 if (work_area[0] != '\0') {
 pthread_mutex_unlock(&work_mutex);
 sleep(1);
 }
 else {
 break;
 }
 }
 }
 pthread_mutex_unlock(&work_mutex);

This is quite similar. We lock the work area so that we can read text into it and then unlock it to allow the
other thread access to count the words. Periodically, we re−lock the mutex, check whether the words have
been counted (work_area[0] set to a null), and release the mutex if we need to wait longer. As we noted
earlier, this kind of polling for an answer is generally not good programming and in the real world we would
probably have used a semaphore to avoid this. However the code served its purpose as an example.

Thread Attributes

When we first looked at threads, we did not discuss the question of thread attributes. We will now do so.
There are quite a few attributes of threads that you can control. However, here we are only going to look at
those that you are most likely to need. Details of the others can be found in the manual pages.

In all our previous examples, we have had to re−synchronize our threads using pthread_join before we allow
the program to exit. We need to do this if we want to allow one thread to return data to the thread that created
it. Sometimes, we neither need the second thread to return information to the main thread nor want the main
thread to wait for it.

Suppose that we create a second thread to spool a backup copy of a data file that is being edited while the
main thread continues to service the user. When the backup has finished the second thread can just terminate.
There is no need for it to re−join the main thread.

We can create threads that behave like this. They are called detached threads, and we create them by
modifying the thread attributes or by calling pthread_detach. Since we want to demonstrate attributes, we will
use the former method here.

The most important function that we need is pthread_attr_init, which initializes a thread attribute object.

#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);

 Thread Attributes

353

Once again, 0 is returned for success, and an error code is returned on failure.

There is also a destroy function, pthread_attr_destroy, but at the time of writing its implementation in Linux is
to do nothing. Its purpose is to allow clean destruction of the attribute object, and you should call it, even
though it currently does nothing on Linux, just in case the implementation one day changes and requires it to
be called.

When we have a thread attribute object initialized, there are many additional functions that we can call to set
different attribute behaviors. We will list them all here but look closely at only two. Here is the list of attribute
functions that can be used.

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);

int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);

int pthread_attr_getschedpolicy(const pthread_attr_t *attr, int *policy);

int pthread_attr_setschedparam(pthread_attr_t *attr, const struct sched_param *param);

int pthread_attr_getschedparam(const pthread_attr_t *attr, struct sched_param *param);

int pthread_attr_setinheritsched(pthread_attr_t *attr, int inherit);

int pthread_attr_getinheritsched(const pthread_attr_t *attr, int *inherit);

int pthread_attr_setscope(pthread_attr_t *attr, int scope);

int pthread_attr_getscope(const pthread_attr_t *attr, int *scope);

int pthread_attr_setstacksize(pthread_attr_t *attr, int scope);

int pthread_attr_getstacksize(const pthread_attr_t *attr, int *scope);

As you can see, there are quite a lot of attributes.

detachedstate

This attribute allows us to avoid the need for threads to re−join. Like most of these _set functions, it takes a
pointer to the attribute and a flag to determine the state required. The two possible flag values for
pthread_attr_setdetachstate are PTHREAD_CREATE_JOINABLE and PTHREAD_CREATE_DETACHED.
By default, the attribute will have value PTHREAD_CREATE_JOINABLE so that we should allow the two
threads to join. If the state is set to PTHREAD_CREATE_DETACHED, then you cannot call pthread_join to
recover the exit state of another thread.

schedpolicy

This controls how threads are scheduled. The options are SCHED_OTHER, SCHED_RP and SCHED_FIFO.
By default, the attribute is SCHED_OTHER. The other two types of scheduling are only available to
processes running with superuser permissions, as they both have real time scheduling but with slightly
different behavior. SCHED_RR uses a round−robin scheduling scheme, and SCHED_FIFO uses a 'first in,
first out' policy. Discussion of these is beyond the scope of this book.

detachedstate

354

schedparam

This is a partner to schedpolicy and allows control over the scheduling of threads running with schedule
policy SCHED_OTHER. We will have a look at an example of this in a short while.

inheritsched

This attribute takes two possible values, PTHREAD_EXPLICIT_SCHED and
PTHREAD_INHERIT_SCHED. By default, the value is PTHREAD_EXPLICIT_SCHED, which means
scheduling is explicitly set by the attributes. By setting it to PTHREAD_INHERIT_SCHED, a new thread
will instead use the parameters that its creator thread was using.

scope

This attribute controls how scheduling of a thread is calculated. Since Linux only currently supports the value
PTHREAD_SCOPE_SYSTEM, we will not look at this further here.

stacksize

This attribute controls the thread creation stack size, set in bytes. This is part of the 'optional' section of the
specification and is only supported on implementations where _POSIX_THREAD_ATTR_STACKSIZE is
defined. Linux implements threads with a large amount of stack by default, so the feature is generally
redundant on Linux and consequently not implemented.

Try it out − setting the detached state attribute

For our detached thread example, thread6.c, we create a thread attribute, set it to be detached and then create a
thread using the attribute. Now when the child thread has finished, it calls pthread_exit in the normal way.
This time, however, the originating thread no longer waits for the thread that it created to re−join. We use a
simple thread_finished flag to allow the main thread to detect whether the child has finished and to show that
the threads are still sharing variables.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

void *thread_function(void *arg);

char message[] = "Hello World";
int thread_finished = 0;

int main() {
 int res;
 pthread_t a_thread;

 pthread_attr_t thread_attr;

 res = pthread_attr_init(&thread_attr);
 if (res != 0) {
 perror("Attribute creation failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);

schedparam

355

 if (res != 0) {
 perror("Setting detached attribute failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_create(&a_thread, &thread_attr, thread_function, (void *)message);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 (void)pthread_attr_destroy(&thread_attr);
 while(!thread_finished) {
 printf("Waiting for thread to say it's finished...\n");
 sleep(1);
 }
 printf("Other thread finished, bye!\n");
 exit(EXIT_SUCCESS);
}

void *thread_function(void *arg) {
 printf("thread_function is running. Argument was %s\n", (char *)arg);
 sleep(4);
 printf("Second thread setting finished flag, and exiting now\n");
 thread_finished = 1;
 pthread_exit(NULL);
}

There are no surprises in the output.

$ cc −D_REENTRANT thread6.c −o thread6 −lpthread
$./thread6
Waiting for thread to say it's finished...
thread_function is running. Argument was Hello World
Waiting for thread to say it's finished...
Waiting for thread to say it's finished...
Waiting for thread to say it's finished...
Second thread setting finished flag, and exiting now
Other thread finished, bye!

How it works.

The two important sections of code are:

 pthread_attr_t thread_attr;

 res = pthread_attr_init(&thread_attr);
 if (res != 0) {
 perror("Attribute creation failed");
 exit(EXIT_FAILURE);
 }

which declares a thread attribute and initializes it, and

 res = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED);
 if (res != 0) {
 perror("Setting detached attribute failed");
 exit(EXIT_FAILURE);
 }

How it works.

356

which sets the attribute values to have the detached state.

The other slight differences are creating the thread, passing the address of the attributes:

 res = pthread_create(&a_thread, &thread_attr, thread_function, (void *)message);

and, for completeness, destroying the attributes when we have used them:

 pthread_attr_destroy(&thread_attr);

Thread Attributes − Scheduling

Let's take a look at a second thread attribute we might wish to change, scheduling. This is very similar to
setting the detached state, but there are two more functions that we can use to find the available priority levels,
sched_get_priority_max and sched_get_priority_min.

Try is out − scheduling

Since this thread7.c is very similar to the previous example, we'll just look at the differences.

After we have set the detached attribute, we set the scheduling policy.

 res = pthread_attr_setschedpolicy(&thread_attr, SCHED_OTHER);
 if (res != 0) {
 perror("Setting scheduling policy failed");
 exit(EXIT_FAILURE);
 }

Next we find the range of priorities that are allowed:

 max_priority = sched_get_priority_max(SCHED_OTHER);
 min_priority = sched_get_priority_min(SCHED_OTHER);

and set one:

 scheduling_value.sched_priority = min_priority;
 res = pthread_attr_setschedparam(&thread_attr, &scheduling_value);
 if (res != 0) {
 perror("Setting scheduling priority failed");
 exit(EXIT_FAILURE);
 }

How it works

This is very similar to setting a detached state attribute, except that we set the scheduling policy instead.

Canceling a Thread

Sometimes, we want one thread to be able to ask another thread to terminate, rather like sending it a signal.
There is a way to do this with threads and, in parallel with signal handling, threads get a way of modifying
how they behave when they are asked to terminate.

Thread Attributes − Scheduling

357

Let's look first at the function to request a thread to terminate.

#include <pthread.h>

int pthread_cancel(pthread_t thread);

This is pretty straight forward, given a thread identifier, we can request that it is cancelled. On the receiving
end of the cancel request, things are slightly more complicated, but not much. A thread can set its cancel state
using pthread_setcancelstate.

#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);

The first parameter is either PTHREAD_CANCEL_ENABLE that allows it to receive cancel requests, or
PTHREAD_CANCEL_DISABLE, which causes them to be ignored. The oldstate pointer allows the previous
state to be retrieved. If you are not interested, you can simply pass NULL. If cancel requests are accepted,
then there is a second level of control the thread can take, the cancel type, which is set with
pthread_setcanceltype.

#include <pthread.h>

int pthread_setcanceltype(int type, int *oldtype);

The type can take one of two values, PTHREAD_CANCEL_ASYNCHRONOUS, which causes cancellation
requests to be acted upon immediately, and PTHREAD_CANCEL_DEFERRED, which makes cancellation
requests wait until the thread executes one of the functions, pthread_join, pthread_cond_wait,
pthread_cond_timedwait, pthread_testcancel, sem_wait, or sigwait.

We have not seen all of these calls in this chapter, as not all are generally needed. More details can be found,
as ever, in the manual pages.

Important According to the POSIX standard, other system calls that may block, such as read, wait and so
on should also be cancellation points. At the time of writing Linux does not yet support all of
these being cancellation points. However some experimentation suggests that some blocked
calls, such as sleep, do allow cancellation to take place. To be on the safe side you may wish to
add some pthread_testcancel calls in code that you expect to be canceled.

Again, the oldtype allows the previous state to be retrieved, or a NULL can be passed if you are not interested
in knowing the previous state. By default, threads start with the cancellation state
PTHREAD_CANCEL_ENABLE and the cancellation type PTHREAD_CANCEL_DEFERRED.

Try it out − canceling a thread.

Our program thread8.c is derived, yet again, from thread2.c. This time, the main thread sends a cancel request
to the thread that it has created.

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

void *thread_function(void *arg);

Try it out − canceling a thread.

358

int main() {
 int res;
 pthread_t a_thread;
 void *thread_result;

 res = pthread_create(&a_thread, NULL, thread_function, NULL);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 sleep(3);
 printf("Cancelling thread...\n");
 res = pthread_cancel(a_thread);
 if (res != 0) {
 perror("Thread cancelation failed");
 exit(EXIT_FAILURE);
 }
 printf("Waiting for thread to finish...\n");
 res = pthread_join(a_thread, &thread_result);
 if (res != 0) {
 perror("Thread join failed");
 exit(EXIT_FAILURE);
 }
 exit(EXIT_SUCCESS);
}

void *thread_function(void *arg) {
 int i, res;
 res = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
 if (res != 0) {
 perror("Thread pthread_setcancelstate failed");
 exit(EXIT_FAILURE);
 }
 res = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);
 if (res != 0) {
 perror("Thread pthread_setcanceltype failed");
 exit(EXIT_FAILURE);
 }
 printf("thread_function is running\n");
 for(i = 0; i < 10; i++) {
 printf("Thread is still running (%d)...\n", i);
 sleep(1);
 }
 pthread_exit(0);
}

When we run this, we get:

$ cc −D_REENTRANT thread8.c −o thread8 −lpthread
$./thread8
thread_function is running
Thread is still running (0)...
Thread is still running (1)...
Thread is still running (2)...
Cancelling thread...
Waiting for thread to finish...
Thread is still running (3)...
$

Try it out − canceling a thread.

359

How it works

After the new thread has been created in the usual way, the main thread sleeps (to allow the new thread some
time to get started) and then issues a cancel request.

 sleep(3);
 printf("Cancelling thread...\n");
 res = pthread_cancel(a_thread);
 if (res != 0) {
 perror("Thread cancelation failed");
 exit(EXIT_FAILURE);
 }

In the created thread, we first set the cancel state to allow canceling.

 res = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
 if (res != 0) {
 perror("Thread pthread_setcancelstate failed");
 exit(EXIT_FAILURE);
 }

Then we set the cancel type to be deferred.

 res = pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, NULL);
 if (res != 0) {
 perror("Thread pthread_setcanceltype failed");
 exit(EXIT_FAILURE);
 }

Finally, we wait around to be canceled.

 for(i = 0; i < 10; i++) {
 printf("Thread is still running (%d)...\n", i);
 sleep(1);
 }

Threads in Abundance

Up to now, we have always had the normal thread of execution of a program create just one other thread.
However we didn't want you to think that you could only create one extra thread. For our final example in this
chapter, thread9.c, we show how to create several threads in the same program and then collect them again in
a order different from that in which they were started.

Try it out − many threads

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <pthread.h>

#define NUM_THREADS 6

void *thread_function(void *arg);

int main() {

How it works

360

 int res;
 pthread_t a_thread[NUM_THREADS];
 void *thread_result;
 int lots_of_threads;

 for(lots_of_threads = 0; lots_of_threads < NUM_THREADS; lots_of_threads++) {
 res = pthread_create(&(a_thread[lots_of_threads]), NULL, thread_function, (void *)&lots_of_threads);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 sleep(1);
 }
 printf("Waiting for threads to finish...\n");
 for(lots_of_threads = NUM_THREADS − 1; lots_of_threads >= 0; lots_of_threads−−) {
 res = pthread_join(a_thread[lots_of_threads], &thread_result);
 if (res == 0) {
 printf("Picked up a thread\n");
 }
 else {
 perror("pthread_join failed");
 }
 }
 printf("All done\n");
 exit(EXIT_SUCCESS);
}

void *thread_function(void *arg) {
 int my_number = *(int *)arg;
 int rand_num;

 printf("thread_function is running. Argument was %d\n", my_number);
 rand_num=1+(int)(9.0*rand()/(RAND_MAX+1.0));
 sleep(rand_num);
 printf("Bye from %d\n", my_number);
 pthread_exit(NULL);
}

When we run it, we get:

$ cc −D_REENTRANT thread9.c −o thread9 −lpthread
$./thread9
thread_function is running. Argument was 0
thread_function is running. Argument was 1
thread_function is running. Argument was 2
thread_function is running. Argument was 3
thread_function is running. Argument was 4
Bye from 1
thread_function is running. Argument was 5
Waiting for threads to finish...
Bye from 5
Picked up a thread
Bye from 0
Bye from 2
Bye from 3
Bye from 4
Picked up a thread
Picked up a thread
Picked up a thread
Picked up a thread
Picked up a thread

How it works

361

All done

As you can see, we created many threads and allowed them to finish out of sequence. There is a subtle bug in
this program that makes itself evident if you remove the call to sleep from the loop that starts the threads. We
have included it to show you just how careful you need to be when writing programs that use threads. Can you
spot it? We'll explain below.

How it works.

This time we create an array of thread IDs:

 pthread_t a_thread[NUM_THREADS];

and loop round creating several threads:

 for(lots_of_threads = 0; lots_of_threads < NUM_THREADS; lots_of_threads++) {
 res = pthread_create(&(a_thread[lots_of_threads]), NULL,
 thread_function, (void *)&lots_of_threads);
 if (res != 0) {
 perror("Thread creation failed");
 exit(EXIT_FAILURE);
 }
 sleep(1);
 }

The threads themselves then wait for a random time before exiting:

void *thread_function(void *arg) {
 int my_number = *(int *)arg;
 int rand_num;

 printf("thread_function is running. Argument was %d\n", my_number);
 rand_num=1+(int)(9.0*rand()/(RAND_MAX+1.0));
 sleep(rand_num);
 printf("Bye from %d\n", my_number);
 pthread_exit(NULL);
}

While in the main (original) thread, we wait to pick them up, but not in the order in which we created them.

 for(lots_of_threads = NUM_THREADS − 1; lots_of_threads >= 0; lots_of_threads−−) {
 res = pthread_join(a_thread[lots_of_threads], &thread_result);
 if (res == 0) {
 printf("Picked up a thread\n");
 }
 else {
 perror("pthread_join failed");
 }
 }

If you try to run the program with no sleep, you might see some strange effects, including some threads being
started with the same argument. Did you spot why this could happen? The threads are being started using a
local variable for the argument to the thread function. This variable is updated in the loop. The offending lines
are:

 for(lots_of_threads = 0; lots_of_threads < NUM_THREADS; lots_of_threads++) {

How it works.

362

 res = pthread_create(&(a_thread[lots_of_threads]), NULL,
 thread_function, (void *)&lots_of_threads);

If the main thread runs fast enough, it might alter the argument (lots_of_threads) for some of the threads.
Behavior like this arises when not enough care is taken with shared variables and multiple execution paths. To
correct the problem, we need to pass the value directly like this:

res = pthread_create(&(a_thread[lots_of_threads]), NULL, thread_function, (void *)lots_of_threads);

and of course change thread_function.

void *thread_function(void *arg) {
 int my_number = (int)arg;

This is in the downloadable code as thread9a.c.

Summary

In this chapter, we have looked at POSIX threads. We have seen how to create several threads of execution
inside a process, where each thread shares file scope variables.

We then looked at the two ways threads can control access to critical code and data, using both semaphores
and mutexes. After that we moved onto controlling the attributes of threads and, in particular, how we could
separate them from the main thread so that it no longer had to wait for threads that it had created to complete.
After a quick look at how one thread can request another to finish and at how the receiving thread can manage
such requests, we saw a example of a program with many simultaneous threads executing.

We haven't had the space to cover every last function call and nuance associated with threads, but you should
now have enough understanding to start writing your own programs with threads and to investigate the more
esoteric aspects of threads by reading the manual pages.

 Summary

363

Chapter 12: Inter−process Communication: Pipes

Overview

In the last chapter, we saw a very simple way of sending messages between two processes using signals. We
created notification events that could be used to provoke a response, but the information transferred was
limited to a signal number.

In this chapter, we'll be looking at pipes, which allow more useful data to be exchanged between processes.
By the end of the chapter, we'll be using our new−found knowledge to re−implement the running CD database
program as a client/server application.

We'll cover:

The definition of a pipe•
Process pipes•
Pipe calls•
Parent and child processes•
Named pipes: FIFOs•
Client/server considerations•

What is a Pipe?

We use the term pipe when we connect a data flow from one process to another. Generally we attach, or pipe,
the output of one process to the input of another.

Most UNIX users will already be familiar with the idea of linking shell commands together, so that the output
of one process is fed straight to the input of another. For shell commands, this is entered as:

cmd1 | cmd2

The shell arranges the standard input and output of the two commands, so that:

The standard input to cmd1 comes from the terminal keyboard.•
The standard output from cmd1 is fed to cmd2 as its standard input.•
The standard output from cmd2 is connected to the terminal screen.•

What the shell has done, in effect, is reconnect the standard input and output streams so that data flows from
the keyboard input through the two commands and is then output to the screen.

In this chapter, we'll be seeing how to achieve this effect in a program and how we can use pipes to connect
multiple processes together to allow us to implement a simple client/server system.

364

In chapter 5 we mentioned pty's, which have similarities to the pipes described here, but are rather more
specialized, so we won't be covering them here.

Process Pipes

Perhaps the simplest way of passing data between two programs is with the popen and pclose functions. These
have the prototypes:

#include <stdio.h>

FILE *popen(const char *command, const char *open_mode);
int pclose(FILE *stream_to_close);

popen

The popen function allows a program to invoke another program as a new process and either pass data to or
receive data from it. The command string is the name of the program to run, together with any parameters.
open_mode must be either "r" or "w".

If the open_mode is "r", output from the invoked program is made available to the invoking program and can
be read from the file stream FILE * returned by popen, using the usual stdio library functions for reading (for
example, fread). However, if open_mode is w, the program can send data to the invoked command with calls
to fwrite. The invoked program can then read the data on its standard input. Normally, the program being
invoked won't be aware that it's reading data from another process; it simply reads its standard input stream
and acts on it.

Each call to popen must specify either "r" or "w"; no other option is supported in a standard implementation of
popen. This means that we can't invoke another program and both read and write to it. On failure, popen
returns a null pointer. If you want bi−directional communication using pipes, then the normal solution is to
use two pipes, one for data flow in each direction.

pclose

When the process started with popen has finished, we can close the file stream associated with it using pclose.
The pclose call will only return once the process started with popen finishes. If it's still running when pclose is
called, the pclose call will wait for the process to finish.

The pclose call normally returns the exit code of the process whose file stream it is closing. If the invoking
process has executed a wait statement before calling pclose, the exit status will be lost and pclose will return
−1, with errno set to ECHILD.

Let's try a simple popen and pclose example, popen1.c. We'll use popen in a program to access information
from uname. The uname −a command prints system information, including the machine type, the OS name,
version and release and the machine's network name.

Try It Out − Reading Output From an External Program

Having initialized the program, we open the pipe to uname, making it readable and setting read_fp to point to
the output. At the end, the pipe pointed to by read_fp is closed.

#include <unistd.h>

 Process Pipes

365

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{
 FILE *read_fp;
 char buffer[BUFSIZ + 1];
 int chars_read;
 memset(buffer, '\0', sizeof(buffer));
 read_fp = popen("uname −a", "r");
 if (read_fp != NULL) {
 chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
 if (chars_read > 0) {
 printf("Output was:−\n%s\n", buffer);
 }
 pclose(read_fp);
 exit(EXIT_SUCCESS);
 }
 exit(EXIT_FAILURE);
}

When we run this program on one of the author's machines, we get:

$ popen1
Output was:−
Linux tilde 2.2.5−15 #1 Mon Apr 19 18:20:08 EDT 1999 i686 unknown

How It Works

The program uses the popen call to invoke the uname command with the −a parameter. It then uses the
returned file stream to read data up to BUFSIZ characters (this being a #define from stdio.h) and then prints it
out so it appears on the screen. Since we've captured the output of uname inside a program, it's available for
processing.

Sending Output to popen

Now that we've seen an example of capturing output from an external program, let's look at sending output to
an external program. Here's a program, popen2.c, that pipes data to another. Here, we'll use od (octal dump).

Try It Out − Sending Output to an External Program

Have a look at the following code, even type it in if you like...

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

int main()
{
 FILE *write_fp;
 char buffer[BUFSIZ + 1];

 sprintf(buffer, "Once upon a time, there was...\n");
 write_fp = popen("od −c", "w");
 if (write_fp != NULL) {

How It Works

366

 fwrite(buffer, sizeof(char), strlen(buffer), write_fp);
 pclose(write_fp);
 exit(EXIT_SUCCESS);
 }
 exit(EXIT_FAILURE);
}

When we run this program, we get the output:

$ popen2
0000000 O n c e u p o n a t i m e
0000020 , t h e r e w a s . . . \n
0000037

How It Works

The program uses popen with the parameter w to start the od −c command, so that it can send data to it. It then
sends a string which the od −c command receives, processes and prints the result of its processing on its
standard output.

From the command line, we can get the same output with the command:

$ echo "Once upon a time, there was..." | od −c

Passing More Data

The mechanism that we've used so far simply sent or received all the data in a single fread or fwrite.
Sometimes, we may want to send the data in smaller pieces, or perhaps we may not know the size of the
output. To avoid having to declare a very large buffer, we can just use multiple fread or fwrite calls and
process the data in parts.

Here's a program, popen3.c, that reads all of the data from a pipe.

Try It Out − Reading Larger Amounts of Data from a Pipe

In this program, we read data from an invoked ps −alx process. There's no way to know in advance how much
output there will be, so we must allow for multiple reads of the pipe being required.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{
 FILE *read_fp;
 char buffer[BUFSIZ + 1];
 int chars_read;

 memset(buffer, '\0', sizeof(buffer));
 read_fp = popen("ps −ax", "r");
 if (read_fp != NULL) {
 chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
 while (chars_read > 0) {
 buffer[chars_read − 1] = '\0';
 printf("Reading:−\n %s\n", buffer);

How It Works

367

 chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
 }
 pclose(read_fp);
 exit(EXIT_SUCCESS);
 }
 exit(EXIT_FAILURE);
}

The output we get, edited for brevity, is:

$ popen3
Reading:−
 PID TTY STAT TIME COMMAND
 1 ? S 0:04 init
 2 ? SW 0:00 [kflushd]
 3 ? SW 0:00 [kpiod]
 4 ? SW 0:00 [kswapd]
 5 ? SW< 0:00 [mdrecoveryd]
...
 240 tty2 S 0:02 emacs draft1.txt
Reading:−
 368 tty1 S 0:00 popen3
 369 tty1 R 0:00 ps −ax
...

How It Works

The program uses popen with an r parameter, in a similar fashion to popen1.c. This time, it continues reading
from the file stream until there is no more data available. Notice that, although the ps command takes some
time to execute, UNIX arranges the process scheduling so that both programs run when they can. If the reader
process, popen3, has no input data, it's suspended until some becomes available. If the writer process, ps,
produces more output than can be buffered, it's suspended until the reader has consumed some of the data.

In this example, you may not see Reading:− output a second time. This will be the case if BUFSIZ is greater
than the length of the ps command output. Some Linux systems set BUFSIZ as high as 8,000 or more.

How popen is Implemented

The popen call runs the program you requested by first invoking the shell, sh, passing it the command string
as an argument. This has two effects, one good, the other not so good.

In UNIX, all parameter expansion is done by the shell, so invoking the shell to parse the command string
before the program is invoked allows any shell expansion, such as *.c, to be done before the program starts.
This is often quite useful and allows complex shell commands to be started with popen. Other process creation
functions, such as execl, can be much more complex to invoke, because the calling process has to perform its
own shell expansion.

The unfortunate effect of using the shell is that it means for every call to popen, not only is the requested
program being invoked, but also a shell. Each call to popen then results in two extra processes being started.
This makes the popen function a little expensive in terms of system resources.

Here's a program, popen4.c, that we can use to demonstrate the behavior of popen. We can count the lines in
all the popen example source files by cating the files and then piping its output to wc −l, which counts the
number of lines. On the command line, we would use:

How It Works

368

$ cat popen*.c | wc −l

Note Actually, wc −l popen*.c is easier to type and more efficient, but the example serves to illustrate the
principle...

Try It Out − popen Starts a Shell

This program uses exactly the command given above, but through popen so that it can read the result:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{
 FILE *read_fp;
 char buffer[BUFSIZ + 1];
 int chars_read;

 memset(buffer, '\0', sizeof(buffer));
 read_fp = popen("cat popen*.c | wc −l", "r");
 if (read_fp != NULL) {
 chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
 while (chars_read > 0) {
 buffer[chars_read − 1] = '\0';
 printf("Reading:−\n %s\n", buffer);
 chars_read = fread(buffer, sizeof(char), BUFSIZ, read_fp);
 }
 pclose(read_fp);
 exit(EXIT_SUCCESS);
 }
 exit(EXIT_FAILURE);
}

When we run this program, the output is:

$ popen4
Reading:−
 101

How It Works

The program shows that the shell is being invoked to expand popen*.c to the list of all files starting popen and
ending in .c and also to process the pipe (|) symbol and feed the output from cat into wc. We invoke the shell,
the cat program and wc and cause an output redirection, all in a single popen call. The program that invokes
the command sees only the final output.

The Pipe Call

We've seen the high−level popen function, but we'll now move on to look at the lower−level pipe function.
This provides a means of passing data between two programs, without the overhead of invoking a shell to
interpret the requested command. It also gives us more control over the reading and writing of data.

The pipe function has the prototype:

#include <unistd.h>

How It Works

369

int pipe(int file_descriptor[2]);

pipe is passed (a pointer to) an array of two integer file descriptors. It fills the array with two new file
descriptors and returns a zero. On failure, it returns −1 and sets errno to indicate the reason for failure. Errors
defined in the Linux man pages are:

EMFILE Too many file descriptors are in use by the
process.

ENFILE The system file table is full.

EFAULT The file descriptor is not valid.
The two file descriptors returned are connected in a special way. Any data written to file_descriptor[1] can be
read back from file_descriptor[0]. The data is processed in a first in, first out basis, usually abbreviated to
FIFO. This means that if you write the bytes 1, 2, 3 to file_descriptor[1], reading from file_descriptor[0] will
produce 1, 2, 3. This is different from a stack, which operates on a last in, first out basis, usually abbreviated
to LIFO.

Important It's important to realize that these are file descriptors, not file streams, so we must use the
lower−level read and write calls to access the data, rather than fread and fwrite.

Here's a program, pipe1.c, that uses pipe to create a pipe.

Try It Out − The pipe Function

Type in the following code. Note the file_pipes pointer, which is passed to the pipe function as a parameter.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{
 int data_processed;
 int file_pipes[2];
 const char some_data[] = "123";
 char buffer[BUFSIZ + 1];

 memset(buffer, '\0', sizeof(buffer));

 if (pipe(file_pipes) == 0) {
 data_processed = write(file_pipes[1], some_data, strlen(some_data));
 printf("Wrote %d bytes\n", data_processed);
 data_processed = read(file_pipes[0], buffer, BUFSIZ);
 printf("Read %d bytes: %s\n", data_processed, buffer);
 exit(EXIT_SUCCESS);
 }
 exit(EXIT_FAILURE);
}

When we run this program, the output is:

$ pipe1
Wrote 3 bytes
Read 3 bytes: 123

Try It Out − The pipe Function

370

How It Works

The program creates a pipe using the two file descriptors file_pipes[]. It then writes data into the pipe using
the file descriptor file_pipes[1] and reads it back from file_pipes[0]. Notice that the pipe has some internal
buffering which stores the data in between the calls to write and read.

You should be aware that the effect of trying to write, using file_descriptor[0], or read using file_descriptor[1]
is undefined, so the behavior may differ between UNIX implementations. On the authors' systems, such calls
will fail with a −1 return value, which at least ensures that it's easy to catch this mistake.

At first glance, this example of a pipe doesn't seem to offer us anything that we couldn't have done with a
simple file. The real advantage of pipes comes when you wish to pass data between two processes. As we saw
in the last chapter, when a program creates a new process using the fork call, file descriptors that were
previously open remain open. By creating a pipe in the original process and then forking to create a new
process, we can pass data from one process to the other down the pipe.

Try It Out − Pipes across a fork

This is pipe2.c. It starts rather like the first example, up until we make the call to fork.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{
 int data_processed;
 int file_pipes[2];
 const char some_data[] = "123";
 char buffer[BUFSIZ + 1];
 pid_t fork_result;

 memset(buffer, '\0', sizeof(buffer));

 if (pipe(file_pipes) == 0) {
 fork_result = fork();
 if (fork_result == −1) {
 fprintf(stderr, "Fork failure");
 exit(EXIT_FAILURE);
 }

1.

We've made sure the fork worked, so if fork_result equals zero, we're in the child process:

 if (fork_result == 0) {
 data_processed = read(file_pipes[0], buffer, BUFSIZ);
 printf("Read %d bytes: %s\n", data_processed, buffer);
 exit(EXIT_SUCCESS);
 }

2.

Otherwise, we must be the parent process:

 else {
 data_processed = write(file_pipes[1], some_data,
 strlen(some_data));
 printf("Wrote %d bytes\n", data_processed);
 }
 }

3.

How It Works

371

 exit(EXIT_SUCCESS);
}

When we run this program. the output is, as before:

$ pipe2
Wrote 3 bytes
Read 3 bytes: 123

How It Works

First, the program creates a pipe with the pipe call. It then uses the fork call to create a new process. If the fork
was successful, the parent writes data into the pipe, while the child reads data from the pipe. Both parent and
child exit after a single write and read. If the parent exits before the child you might see the shell prompt
between the two outputs.

Although the program is superficially very similar to the first pipe example, we've taken a big step forward by
being able to use separate processes for the reading and writing. We can illustrate this with the following
diagram:

Parent and Child Processes

The next logical step in our investigation of the pipe call is to allow the child process to be a different program
from its parent, rather than just a different process. We do this using the exec call. One difficulty is that the
new execed process needs to know which file descriptor to access. In our previous example, this wasn't a
problem, since the child had access to its copy of the file_pipes data. After an exec call, this will no longer be
the case, as the old process has been replaced by the new child process. We can get round this by passing the
file descriptor (which is, after all, just a number) as a parameter to the execed program.

To show how this works, we need two programs. The first is the 'data producer'. It creates the pipe and then
invokes the child, the 'data consumer'.

Try It Out − Pipes and exec

For the first program, we adapt pipe2.c to pipe3.c. The lines that we've changed are shown shaded:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{
 int data_processed;
 int file_pipes[2];
 const char some_data[] = "123";
 char buffer[BUFSIZ + 1];

1.

How It Works

372

 pid_t fork_result;

 memset(buffer, '\0', sizeof(buffer));

 if (pipe(file_pipes) == 0) {
 fork_result = fork();
 if (fork_result == (pid_t)−1) {
 fprintf(stderr, "Fork failure");
 exit(EXIT_FAILURE);
 }

 if (fork_result == 0) {
 sprintf(buffer, "%d", file_pipes[0]);
 (void)execl("pipe4", "pipe4", buffer, (char *)0);
 exit(EXIT_FAILURE);
 }
 else {
 data_processed = write(file_pipes[1], some_data,
 strlen(some_data));
 printf("%d − wrote %d bytes\n", getpid(), data_processed);
 }
 }
 exit(EXIT_SUCCESS);
}

The 'consumer' program, pipe4.c, that reads the data is much simpler:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main(int argc, char *argv[])
{
 int data_processed;
 char buffer[BUFSIZ + 1];
 int file_descriptor;

 memset(buffer, '\0', sizeof(buffer));
 sscanf(argv[1], "%d", &file_descriptor);
 data_processed = read(file_descriptor, buffer, BUFSIZ);

 printf("%d − read %d bytes: %s\n", getpid(), data_processed, buffer);
 exit(EXIT_SUCCESS);
}

2.

Remembering that pipe3 invokes the pipe4 program for us, when we run pipe3, we get the following output:

$ pipe3
980 − wrote 3 bytes
981 − read 3 bytes: 123

How It Works

The pipe3 program starts like the previous example, using the pipe call to create a pipe and then using the fork
call to create a new process. It then uses sprintf to store the 'read' file descriptor number of the pipe in a buffer
that will form an argument of pipe4.

A call to execl is used to invoke the pipe4 program. The arguments to execl are:

How It Works

373

The program to invoke.

argv[0], which takes the program name.

argv[1], which contains the file descriptor number we want the program to read from.

(char *)0, which terminates the parameters.

The pipe4 program extracts the file descriptor number from the argument string and then reads from that file
descriptor to obtain the data.

Reading Closed Pipes

Before we move on, we need to look a little more carefully at the file descriptors that are open. Up to this
point we have allowed the reading process simply to read some data and then exit, assuming that UNIX will
clean up the files as part of the process termination.

Most programs that read data from the standard input do so differently to the examples we've seen so far.
They don't usually know how much data they have to read, so they will normally loop, reading data,
processing it, then reading more data, until there's no more data to read.

A read call will normally block, i.e. cause the process to wait until data becomes available. If the other end of
the pipe has been closed, then no process has the pipe open for writing and the read blocks. Since this isn't
very helpful, a read on a pipe that isn't open for writing returns zero, rather than blocking. This allows the
reading process to detect the pipe equivalent of end−of−file and act appropriately. Notice that this isn't the
same as reading an invalid file descriptor, which read considers an error, indicating this by returning −1.

If we use a pipe across a fork call, there are two different file descriptors that we can use to write to the pipe,
one in the parent and one in the child. We must close the write file descriptors of the pipe in both parent and
child processes before the pipe is considered closed and a read call will fail. We'll see an example of this later
when we return to this subject in more detail to look at the O_NONBLOCK flag and FIFOs.

Pipes Used as Standard Input and Output

Now that we know how to make a read on an empty pipe fail, we can look at a much cleaner method of
connecting two processes with a pipe. We arrange for one of the pipe file descriptors to have a known value,
usually the standard input, 0, or the standard output, 1. This is slightly more complex to set up in the parent,
but allows the child program to be much simpler.

The one big advantage is that we can invoke standard programs, ones that don't expect a file descriptor as a
parameter. In order to do this, we need to use the dup function that we met in Chapter 3. There are two closely
related versions of dup, that have the prototypes:

#include <unistd.h>

int dup(int file_descriptor);
int dup2(int file_descriptor_one, int file_descriptor_two);

The purpose of the dup call is to open a new file descriptor, a little like the open call. What is special is that
the new file descriptor created by dup refers to the same file (or pipe) as an existing file descriptor. In the case
of dup, the new file descriptor is always the lowest number available; while in the case of dup2 it's the same

 Reading Closed Pipes

374

as, or the first available descriptor greater than, the parameter file_descriptor_two.

Important We can get the same effect as dup and dup2 by using the more general fcntl call, with a
command F_DUPFD. Having said that, the dup call is easier to use, since it's tailored specifically
to the needs of creating duplicate file descriptors. It's also very commonly used, so you'll find it
more frequently in existing programs than fcntl and F_DUPFD.

So how does dup help us in passing data between processes? The trick is knowing that the standard input file
descriptor is always zero and that dup always returns a new file descriptor using the lowest available number.
By first closing file descriptor 0 and then calling dup, the new file descriptor will have the number zero. Since
the new descriptor is a duplicate of an existing one, standard input will have been changed to access the file or
pipe whose file descriptor we passed to dup. We will have created two file descriptors that refer to the same
file or pipe and one of them will be the standard input.

File Descriptor Manipulation by close and dup

File descriptor numberInitially After close After dup

0 Standard input Pipe file descriptor

1 Standard output Standard output Standard output

2 Standard error Standard error Standard error

3 Pipe file descriptor Pipe file descriptor Pipe file descriptor
Let's return to our previous example, but this time we'll arrange for the child program to have its stdin file
descriptor replaced with the read end of the pipe we create. We'll also do some tidying up of file descriptors so
the child program can correctly detect the end of the data in the pipe. As usual, we'll omit some error checking
for the sake of brevity.

Try It Out − Pipes and dup

Modify pipe3.c to pipe5.c, using the following code:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main()
{
 int data_processed;
 int file_pipes[2];
 const char some_data[] = "123";
 (pid_t) fork_result;

 if (pipe(file_pipes) == 0) {
 fork_result = fork();
 if (fork_result == (pid_t)−1) {
 fprintf(stderr, "Fork failure");
 exit(EXIT_FAILURE);
 }

 if (fork_result == (pid_t)0) {
 close(0);
 dup(file_pipes[0]);
 close(file_pipes[0]);
 close(file_pipes[1]);

1.

Pipes Used as Standard Input and Output

375

 execlp("od", "od", "−c", (char *)0);
 exit(EXIT_FAILURE);
 }
 else {
 close(file_pipes[0]);
 data_processed = write(file_pipes[1], some_data,
 strlen(some_data));
 close(file_pipes[1]);
 printf("%d − wrote %d bytes\n", (int)getpid(), data_processed);
 }
 }
 exit(EXIT_SUCCESS);
}

The output from this program is:

$ pipe5
1239 − wrote 3 bytes
0000000 1 2 3
0000003

How It Works

As before, the program creates a pipe and then forks, creating a child process. At this point, both the parent
and child have file descriptors that access the pipe, one each for reading and writing, so there are four open
file descriptors in total.

Let's look at the child process first. The child closes its standard input with close(0), and then calls
dup(file_pipes[0]). This duplicates the file descriptor associated with the read end of the pipe as file descriptor
0, the standard input. The child then closes the original file descriptor for reading from the pipe, file_pipes[0].
Since the child will never write to the pipe, it also closes the write file descriptor associated with the pipe,
file_pipes[1]. It now has a single file descriptor associated with the pipe, file descriptor 0, its standard input.

It can then use exec to invoke any program that reads standard input. In this case, we use the od command.
The od command will wait for data to be available to it as if it were waiting for input from a user terminal. In
fact, without some special code to explicitly detect the difference, it won't know that the input is from a pipe
rather than a terminal.

The parent starts by closing the read end of the pipe file_pipes[0], since it will never read the pipe. It then
writes data to the pipe. When all the data has been written, it closes the write end of the pipe and exits. Since
there are now no file descriptors open that could write to the pipe, the od program will be able to read the
three bytes written to the pipe, but subsequent reads will then return 0 bytes, indicating an end of file. When
the read returns 0, the od program exits. This is analogous to running the od command on a terminal, then
typing Ctrl−D to send end of file to the od command.

We can show the sequence pictorially. After the call to pipe:

Pipes Used as Standard Input and Output

376

After the call to fork:

When the program is ready to transfer data:

Named Pipes: FIFOs

So far, we have only been able to pass data between programs that are related, i.e. programs that have been
started from a common ancestor process. Often, this isn't very convenient, as we would like unrelated
processes to be able to exchange data.

We do this with FIFOs, often referred to as named pipes. A named pipe is a special type of file (remember
everything in UNIX is a file!) that exists as a name in the file system, but behaves like the unnamed pipes that
we've met already.

We can create named pipes from the command line and from within a program. Historically, the command
line program for creating them was mknod:

$ mknod filename p

However, the mknod command is not in the X/Open command list, so may not be available on all UNIX
systems. The preferred command line method is to use:

$ mkfifo filename

Note Some older versions of UNIX only have mknod command. X/Open Issue 4 Version 2 has the mknod
function call, but not the command. Linux, friendly as ever, supports mknod and mkfifo.

 Named Pipes: FIFOs

377

From inside a program, we can use two different calls. These are:

#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *filename, mode_t mode);
int mknod(const char *filename, mode_t mode | S_IFIFO, (dev_t) 0);

Like the mknod command, you can use the mknod function for making many special types of file. Using a
dev_t value of 0 and ORing the file access mode with S_IFIFO is the only portable use of this function which
creates a named pipe. We'll use the simpler mkfifo function in our examples.

Try It Out − Creating a Named Pipe

For fifo1.c, just type in the following code:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>

int main()
{
 int res = mkfifo("/tmp/my_fifo", 0777);
 if (res == 0) printf("FIFO created\n");
 exit(EXIT_SUCCESS);
}

We can look for the pipe with:

$ ls −lF /tmp/my_fifo
prwxr−xr−x 1 rick users 0 Dec 10 14:55 /tmp/my_fifo|

Notice that the first character is a p, indicating a pipe. The | symbol at the end is added by the ls command's
−F option and also indicates a pipe.

How It Works

The program uses the mkfifo function to create a special file. Although we ask for a mode of 0777, this is
altered by the user mask (umask) setting (in this case 022), just like normal file creation, so the resulting file
has mode 755.

We can remove the FIFO by using the rm command, or from within a program by using the unlink system
call.

Accessing a FIFO

One very useful feature of named pipes is that, because they appear in the file system, we can use them in
commands where we would normally use a file name. Before we do more programming using the FIFO file
we've created, we can investigate the behavior of our FIFO file using normal file commands.

Try It Out − Creating a Named Pipe

378

Try It Out − Accessing a FIFO File

First, let's try reading the (empty) FIFO:

$ cat < /tmp/my_fifo

1.

Now try writing to the FIFO:

$ echo "sdsdfasdf" > /tmp/my_fifo

2.

If we do both at once, we can pass information through the pipe:

$ cat < /tmp/my_fifo &
[1] 1316
$ echo "sdsdfasdf" > /tmp/my_fifo
sdsdfasdf

[1]+ Done cat </tmp/my_fifo
$

3.

With the first two stages, the program simply hangs until we interrupt it, conventionally with Ctrl−C. With
the third, we get the screen output shown.

How It Works

Since there was no data in the FIFO, the cat and echo programs block, waiting for some data to arrive and
some other process to read the data, respectively.

Looking at the third stage, the cat process is initially blocked in the background. When echo makes some data
available, the cat command reads the data and prints it on the standard output. Notice that the cat program
then exits without waiting for more data. It doesn't block because the pipe will have been closed and calls to
read in the cat program will return 0 bytes, indicating the end of file.

Now that we've seen how the FIFO behaves when we access it using command line programs, let's look in
more detail at the program interface, which allows us more control over how reads and writes behave when
we're accessing a FIFO.

Important Unlike a pipe created with the pipe call, a FIFO exists as a named file, not as an open file
descriptor, and must be opened before it can be read from or written to. You open and close a
FIFO using the same open and close functions that we saw used earlier for files, with some
additional functionality. The open call is passed the path name of the FIFO, rather than that of a
regular file.

Opening a FIFO with open

The main restriction on opening FIFOs is that a program may not open a FIFO for reading and writing with
the mode O_RDWR. If a program does this, the result is undefined. This is quite a sensible restriction since,
normally, we only use a FIFO for passing data in a single direction, so we have no need for a O_RDWR
mode. A process would read its own output back from a pipe if it were opened read/write.

If we do wish to pass data in both directions between programs, it's much better to use either a pair of FIFOs
or pipes, one for each direction, or (unusually) explicitly change the direction of the data flow by closing and
re−opening the FIFO. We'll return to bi−directional data exchange using FIFOs later in the chapter.

 Try It Out − Accessing a FIFO File

379

The other difference between opening a FIFO and a regular file is the use of the open_flag (the second
parameter to open) with the option O_NONBLOCK. Using this open mode not only changes how the open
call is processed, but also changes how read and write requests are processed on the returned file descriptor.

There are four legal combinations of O_RDONLY, O_WRONLY and the O_NONBLOCK flag. We'll
consider each in turn.

open(const char *path, O_RDONLY);

In this case, the open call will block, i.e. not return until a process opens the same FIFO for writing. This is
like the first cat example above.

open(const char *path, O_RDONLY | O_NONBLOCK);

The open call will now succeed and return immediately, even if the FIFO had not been opened for writing by
any process.

open(const char *path, O_WRONLY);

In this case, the open call will block until a process opens the same FIFO for reading.

open(const char *path, O_WRONLY | O_NONBLOCK);

This will always return immediately, but if no process has the FIFO open for reading, open will return an
error, −1, and the FIFO won't be opened. If a process does have the FIFO open for reading, the file descriptor
returned can be used for writing to the FIFO.

Notice the asymmetry between the use of O_NONBLOCK with O_RDONLY and O_WRONLY, in that a
non−blocking open for writing fails if no process has the pipe open for reading, but a non−blocking read
doesn't fail. The behavior of the close call isn't affected by the O_NONBLOCK flag.

Let's look at how we can use the behavior of open with the O_NONBLOCK flag to synchronize two
processes. Rather than use a number of example programs, we'll write a single test program, fifo2.c, that
allows us to investigate the behavior of FIFOs.

Try It Out − Opening FIFO Files

Let's start with the header files, a #define and the check that the correct number of command−line
arguments have been supplied:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"

int main(int argc, char *argv[])
{
 int res;
 int open_mode = 0;

1.

How It Works

380

 if (argc < 2) {
 fprintf(stderr, "Usage: %s <some combination of\
 O_RDONLY O_WRONLY O_NONBLOCK>\n", *argv);
 exit(EXIT_FAILURE);
 }

Assuming that the program passed the test, we now set the value of open_mode from those
arguments:

 argv++;
 if (strncmp(*argv, "O_RDONLY", 8) == 0) open_mode |= O_RDONLY;
 if (strncmp(*argv, "O_WRONLY", 8) == 0) open_mode |= O_WRONLY;
 if (strncmp(*argv, "O_NONBLOCK", 10) == 0) open_mode |= O_NONBLOCK;
 argv++;
 if (*argv) {
 if (strncmp(*argv, "O_RDONLY", 8) == 0) open_mode |= O_RDONLY;
 if (strncmp(*argv, "O_WRONLY", 8) == 0) open_mode |= O_WRONLY;
 if (strncmp(*argv, "O_NONBLOCK", 10) == 0) open_mode |= O_NONBLOCK;
 }

2.

We now check whether the FIFO exists and create it if necessary. Then the FIFO is opened and output
given to that effect while the program catches forty winks. Last of all, the FIFO is closed.

 if (access(FIFO_NAME, F_OK) == −1) {
 res = mkfifo(FIFO_NAME, 0777);
 if (res != 0) {
 fprintf(stderr, "Could not create fifo %s\n", FIFO_NAME);
 exit(EXIT_FAILURE);
 }
 }

 printf("Process %d opening FIFO\n", getpid());
 res = open(FIFO_NAME, open_mode);
 printf("Process %d result %d\n", getpid(), res);
 sleep(5);
 if (res != −1) (void)close(res);
 printf("Process %d finished\n", getpid());
 exit(EXIT_SUCCESS);
}

3.

How It Works

This program allows us to specify on the command line the combinations of O_RDONLY, O_WRONLY and
O_NONBLOCK that we wish to use. It does this by comparing known strings with command line parameters
and setting (with |=) the appropriate flag if the string matches. The program uses the access function to check
whether the FIFO file already exists and will create it if required.

We never destroy the FIFO because we have no way of telling if another program already has the FIFO in use.
Anyway, we now have our test program, so let's try out a couple of combinations:

O_RDONLY and O_WRONLY with no O_NONBLOCK

$./fifo2 O_RDONLY &
[1] 152
Process 152 opening FIFO
$./fifo2 O_WRONLY
Process 153 opening FIFO
Process 152 result 3
Process 153 result 3

How It Works

381

Process 152 finished
Process 153 finished

This is probably the most common use of named pipes. It allows the reader process to start, wait in the open
call and then both programs to continue when the second program opens the FIFO. Notice that both the reader
and writer processes have synchronized at the open call.

Important When a UNIX process is blocked, it doesn't consume CPU resources, so this method of process
synchronization is very CPU−efficient.

O_RDONLY with O_NONBLOCK and O_WRONLY

$./fifo2 O_RDONLY O_NONBLOCK &
[1] 160
Process 160 opening FIFO
$./fifo2 O_WRONLY
Process 161 opening FIFO
Process 160 result 3
Process 161 result 3
Process 160 finished
Process 161 finished
[1]+ Done fifo2 O_RDONLY O_NONBLOCK

This time, the reader process executes the open call and continues immediately, even though no writer process
is present. The writer also immediately continues past the open call, since the FIFO is already open for
reading.

These two examples are probably the most common combinations of open modes. Feel free to use the
example program to experiment with some other combinations.

Reading and Writing FIFOs

Using the O_NONBLOCK mode affects how read and write calls behave on FIFOs.

A read on an empty blocking FIFO (i.e. one not opened with O_NONBLOCK) will wait until some data can
be read. Conversely, a read on a non−blocking FIFO with no data will return 0 bytes.

A write on a full blocking FIFO will wait until the data can be written. A write on a FIFO that can't accept all
of the bytes being written will either:

Fail if the request is for PIPE_BUF bytes or less and the data can't be written.•
Write part of the data if the request is for more than PIPE_BUF bytes, returning the number of bytes
actually written, which could be zero.

•

The size of a FIFO is an important consideration. There is a system−imposed limit on how much data can be
'in' a FIFO at any one time. This is the #define PIPE_BUF, usually found in limits.h. On Linux and many
other UNIX systems, this is commonly 4096 bytes, but could be as low as 512 bytes on some systems. The
system guarantees that writes of PIPE_BUF or fewer bytes on a FIFO that has been opened O_WRONLY, i.e.
blocking, will either write all or none of the bytes.

Whilst this limit is not very important in the simple case of a single FIFO writer and a single FIFO reader, it's
quite common to use a single FIFO to allow many different programs to send requests to a single FIFO reader.
If several different programs try to write to the FIFO at the same time, it's usually vital that the blocks of data

How It Works

382

from different programs don't get interleaved, i.e. each write is 'atomic'. How do you do this?

Well, if you ensure that all your write requests are to a blocking FIFO and are less than PIPE_BUF bytes in
size, the system will ensure data never gets interleaved. In general, it's a good idea to restrict the data
transferred via a FIFO to blocks of PIPE_BUF bytes, unless you're using only a single writer and a single
reader process.

To show how unrelated processes can communicate using named pipes, we need two separate programs,
fifo3.c and fifo4.c.

Try It Out − Inter−process Communication with FIFOs

The first program is our producer program. This creates the pipe if required, then writes data to it as
quickly as possible.

Note Note that, for illustration purposes, we don't mind what the data is, so we don't bother to
initialize buffer. In both listings, shaded lines show the changes from fifo2.c, with all the
command line argument code removed.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"
#define BUFFER_SIZE PIPE_BUF
#define TEN_MEG (1024 * 1024 * 10)

int main()
{
 int pipe_fd;
 int res;
 int open_mode = O_WRONLY;
 int bytes_sent = 0;
 char buffer[BUFFER_SIZE + 1];

 if (access(FIFO_NAME, F_OK) == −1) {
 res = mkfifo(FIFO_NAME, 0777);
 if (res != 0) {
 fprintf(stderr, "Could not create fifo %s\n", FIFO_NAME);
 exit(EXIT_FAILURE);
 }
 }

 printf("Process %d opening FIFO O_WRONLY\n", getpid());
 pipe_fd = open(FIFO_NAME, open_mode);
 printf("Process %d result %d\n", getpid(), pipe_fd);

 if (pipe_fd != −1) {
 while(bytes_sent < TEN_MEG) {
 res = write(pipe_fd, buffer, BUFFER_SIZE);
 if (res == −1) {
 fprintf(stderr, "Write error on pipe\n");
 exit(EXIT_FAILURE);

1.

How It Works

383

 }
 bytes_sent += res;
 }
 (void)close(pipe_fd);
 }
 else {
 exit(EXIT_FAILURE);
 }

 printf("Process %d finished\n", getpid());
 exit(EXIT_SUCCESS);
}

Our second program, the consumer, is much simpler. It reads and discards data from the FIFO.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define FIFO_NAME "/tmp/my_fifo"
#define BUFFER_SIZE PIPE_BUF

int main()
{
 int pipe_fd;
 int res;
 int open_mode = O_RDONLY;
 char buffer[BUFFER_SIZE + 1];
 int bytes_read = 0;

 memset(buffer, '\0', sizeof(buffer));

 printf("Process %d opening FIFO O_RDONLY\n", getpid());
 pipe_fd = open(FIFO_NAME, open_mode);
 printf("Process %d result %d\n", getpid(), pipe_fd);

 if (pipe_fd != −1) {
 do {
 res = read(pipe_fd, buffer, BUFFER_SIZE);
 bytes_read += res;
 } while (res > 0);
 (void)close(pipe_fd);
 }
 else {
 exit(EXIT_FAILURE);
 }

 printf("Process %d finished, %d bytes read\n", getpid(), bytes_read);
 exit(EXIT_SUCCESS);
}

When we run these programs at the same time, using the time command to time the reader, the output
we get is (with some tidying for clarity):

$./fifo3 &
[1] 375

2.

How It Works

384

Process 375 opening FIFO O_WRONLY
$ time ./fifo4
Process 377 opening FIFO O_RDONLY
Process 375 result 3
Process 377 result 3
Process 375 finished
Process 377 finished, 10485760 bytes read
0.01user 0.02system 0:00.03elapsed 85%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (80major+9minor)pagefaults 0swaps
[1]+ Done fifo3

How It Works

Both programs use the FIFO in blocking mode. We start fifo3 (the writer/producer) first, which blocks,
waiting for a reader to open the FIFO. When fifo4 (the consumer) is started, the writer is then unblocked and
starts writing data to the pipe. At the same time, the reader starts reading data from the pipe.

Important UNIX arranges the scheduling of the two processes so they both run when they can and are
blocked when they can't. So, the writer is blocked when the pipe is full and the reader blocked
when the pipe is empty.

The output from the time command shows us that it took the reader under 0.1 seconds to run and read ten
megabytes of data. This shows us that pipes, at least as implemented in the author's version of Linux, can be
an efficient way of transferring data between programs.

Advanced Topic: Client/Server using FIFOs

For our final look at FIFOs, let's consider how we might build a very simple client/server application using
named pipes. We want to have a single server process that accepts requests, processes them and returns the
resulting data to the requesting party, the client.

We want to allow multiple client processes to send data to the server. In the interests of simplicity, we'll
assume that the data to be processed can be broken into blocks, each smaller than PIPE_BUF bytes. Of
course, we could implement this system in many ways, but we'll consider only one method as an illustration
of how named pipes can be used.

Since the server will only process one block of information at a time, it seems logical to have a single FIFO
which is read by the server and written to by each of the clients. By opening the FIFO in blocking mode, the
server and the clients will be automatically blocked as required.

Returning the processed data to the clients is slightly more difficult. We need to arrange a second pipe, one
per client, for the returned data. By passing the process identifier (PID) of the client in the original data sent to
the server, both parties can use this to generate the unique name for the return pipe.

Try It Out − An Example Client/Server Application

First, we need a header file, cliserv.h, that defines the data common to both client and server
programs. It also includes the required system headers, for convenience.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

1.

How It Works

385

#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#define SERVER_FIFO_NAME "/tmp/serv_fifo"
#define CLIENT_FIFO_NAME "/tmp/cli_%d_fifo"

#define BUFFER_SIZE 20

struct data_to_pass_st {
 pid_t client_pid;
 char some_data[BUFFER_SIZE − 1];
};

Now for the server program, server.c. In this section, we create and then open the server pipe. It's set
to be read−only, with blocking. After sleeping (for demonstration purposes), the server reads in any
data from the client, which has the data_to_pass_st structure.

#include "cliserv.h"
#include <ctype.h>

int main()
{
 int server_fifo_fd, client_fifo_fd;
 struct data_to_pass_st my_data;
 int read_res;
 char client_fifo[256];
 char *tmp_char_ptr;

 mkfifo(SERVER_FIFO_NAME, 0777);
 server_fifo_fd = open(SERVER_FIFO_NAME, O_RDONLY);
 if (server_fifo_fd == −1) {
 fprintf(stderr, "Server fifo failure\n");
 exit(EXIT_FAILURE);
 }

 sleep(10); /* lets clients queue for demo purposes */

 do {
 read_res = read(server_fifo_fd, &my_data, sizeof(my_data));
 if (read_res > 0) {

2.

In this next stage, we perform some processing on the data just read from the client: we convert all the
characters in some_data to uppercase and combine the CLIENT_FIFO_NAME with the received
client_pid.

 tmp_char_ptr = my_data.some_data;
 while (*tmp_char_ptr) {
 *tmp_char_ptr = toupper(*tmp_char_ptr);
 tmp_char_ptr++;
 }
 sprintf(client_fifo, CLIENT_FIFO_NAME, my_data.client_pid);

3.

Then we send the processed data back, opening the client pipe in write−only, blocking mode. Finally,
we shut down the server FIFO by closing the file and then unlinking the FIFO.

 client_fifo_fd = open(client_fifo, O_WRONLY);
 if (client_fifo_fd != −1) {
 write(client_fifo_fd, &my_data, sizeof(my_data));
 close(client_fifo_fd);
 }

4.

How It Works

386

 }
 } while (read_res > 0);
 close(server_fifo_fd);
 unlink(SERVER_FIFO_NAME);
 exit(EXIT_SUCCESS);
}

Here's the client, client.c. The first part of this program opens the server FIFO, if it already exists, as a
file. It then gets its own process ID, which forms some of the data that will be sent to the server. The
client FIFO is created, ready for the next section.

#include "cliserv.h"
#include <ctype.h>

int main()
{
 int server_fifo_fd, client_fifo_fd;
 struct data_to_pass_st my_data;
 int times_to_send;
 char client_fifo[256];

 server_fifo_fd = open(SERVER_FIFO_NAME, O_WRONLY);
 if (server_fifo_fd == −1) {
 fprintf(stderr, "Sorry, no server\n");
 exit(EXIT_FAILURE);
 }

 my_data.client_pid = getpid();
 sprintf(client_fifo, CLIENT_FIFO_NAME, my_data.client_pid);
 if (mkfifo(client_fifo, 0777) == −1) {
 fprintf(stderr, "Sorry, can't make %s\n", client_fifo);
 exit(EXIT_FAILURE);
 }

5.

For each of the five loops, the client data is sent to the server. Then the client FIFO is opened
(read−only, blocking mode) and the data read back. Finally, the server FIFO is closed and the client
FIFO removed from memory.

 for (times_to_send = 0; times_to_send < 5; times_to_send++) {
 sprintf(my_data.some_data, "Hello from %d", my_data.client_pid);
 printf("%d sent %s, ", my_data.client_pid, my_data.some_data);
 write(server_fifo_fd, &my_data, sizeof(my_data));
 client_fifo_fd = open(client_fifo, O_RDONLY);
 if (client_fifo_fd != −1) {
 if (read(client_fifo_fd, &my_data, sizeof(my_data)) > 0) {
 printf("received: %s\n", my_data.some_data);
 }
 close(client_fifo_fd);
 }
 }
 close(server_fifo_fd);
 unlink(client_fifo);
 exit(EXIT_SUCCESS);
}

To test this out, we need to run a single copy of the server and several clients. To get them all started
at close to the same time, we use the following shell commands:

$ server &
$ for i in 1 2 3 4 5
do

6.

How It Works

387

client &
done

This starts one server process and five client processes. The output from the clients, edited for brevity,
looks like this:

531 sent Hello from 531, received: HELLO FROM 531
532 sent Hello from 532, received: HELLO FROM 532
529 sent Hello from 529, received: HELLO FROM 529
530 sent Hello from 530, received: HELLO FROM 530
531 sent Hello from 531, received: HELLO FROM 531
532 sent Hello from 532, received: HELLO FROM 532

As you can see, different client requests are being interleaved and each client is getting the suitably processed
data returned to it. Note that the interleaving is random and the order in which client requests are received will
vary between the machines and possibly between runs on the same machine.

How It Works

In this section, we'll try to explain the sequence of client and server operations as they interact, something that
we haven't covered so far.

The server creates its FIFO in read−only mode and blocks. This it does until the first client connects by
opening the same FIFO for writing. At that point, the server process is unblocked and the sleep is executed, so
the writes from the clients queue up. (In a real application, the sleep would be removed; we're only using it to
demonstrate the correct operation of our program with multiple simultaneous clients.)

In the meantime, after the client has opened the server FIFO, it creates its own uniquely−named FIFO for
reading data back from the server. Only then does it write data to the server (blocking if the pipe is full or the
server's still sleeping) and then blocks on a read on its own FIFO, waiting for the reply.

On receiving the data from the client, the server processes it, opens the client pipe for writing and writes the
data back, which unblocks the client. When the client is unblocked, it can read from its pipe the data written to
it by the server.

The whole process repeats until the last client closes the server pipe, causing the server's read to fail (return 0),
since no process has the server pipe open for writing. If this were a real server process that needed to wait for
further clients, we would need to modify it to either:

Open a file descriptor to its own server pipe, so read always blocks rather than returning 0.•
When read returns 0 bytes, close and reopen the server pipe, so the server process blocks in the open
waiting for a client, just as it did when it first started.

•

Both these techniques are illustrated in the rewrite of the CD Database application to use named pipes.

The CD Application

Now that we've seen how we can use named pipes to implement a simple client/server system, we can revisit
our CD database application and convert it accordingly. We'll also incorporate some signal handling, to allow
us to perform some tidy−up actions when the process is interrupted.

How It Works

388

Before we get to look in detail at this new version, let's compile the application. If you have the source code
from the web site, use the Makefile to compile it to server_app and client_app programs. Typing server_app
−i allows the program to initialize a new CD database. Needless to say, the client won't run unless the server
is up and running. Here's the Makefile to show how the programs fit together.

all: server_app client_app

CC=cc
CFLAGS=−I/usr/include/db1 −pedantic −Wall

For debugging un−comment the next line
DFLAGS=−DDEBUG_TRACE=1 −g

Include for systems with dbm, but only as part of the BSD licensed version,
and not in the standard locations. This is the default...
DBM_INC_PATH=/usr/include/db1
DBM_LIB_PATH=/usr/lib
DBM_LIB_FILE=db

For systems with dbm in the standard places, comment out the previous
definitions, and uncomment these

#DBM_INC_PATH=/usr/include
#DBM_LIB_PATH=/usr/lib
#DBM_LIB_FILE=ndbm

For systems where the gdbm libraries have been fetched and installed
separately in the default locations under /usr/local
comment out the previous definitions, and uncomment these
#DBM_INC_PATH=/usr/local/include
#DBM_LIB_PATH=/usr/local/lib
#DBM_LIB_FILE=gdbm

.c.o:
 $(CC) $(CFLAGS) −I$(DBM_INC_PATH) $(DFLAGS) −c $<

app_ui.o: app_ui.c cd_data.h
cd_dbm.o: cd_dbm.c cd_data.h
client_if.o: client_if.c cd_data.h cliserv.h
pipe_imp.o: pipe_imp.c cd_data.h cliserv.h
server.o: server.c cd_data.h cliserv.h

client_app: app_ui.o client_if.o pipe_imp.o
 $(CC) −o client_app $(DFLAGS) app_ui.o client_if.o pipe_imp.o

server_app: server.o cd_dbm.o pipe_imp.o
 $(CC) −o server_app −L$(DBM_LIB_PATH) $(DFLAGS) server.o cd_dbm.o pipe_imp.o −l$(DBM_LIB_FILE)

clean:
 rm −f server_app client_app *.o *~

Aims

Our aim is to split the part of the application that deals with the database away from the user interface part of
the application. We also wish to run a single server process, but allow many simultaneous clients. We also
wish to minimize the changes to the existing code. Wherever possible, we'll leave existing code unchanged.

 Aims

389

To keep things simple, we also want to be able to create (and delete) pipes within the application, so there's no
need for a system administrator to create named pipes before we can use it.

It's also important to ensure that we never busy wait, consuming CPU power, for an event. As we've seen,
UNIX allows us to block, waiting for events without using significant resources. We should use the blocking
nature of pipes to ensure we use the CPU efficiently. After all, the server could, in theory, wait for many hours
for a request to arrive.

Implementation

In the earlier, single process version of the application that we saw in Chapter 7, we used a set of data access
routines for manipulating the data. These were:

int database_initialize(const int new_database);
void database_close(void);
cdc_entry get_cdc_entry(const char *cd_catalog_ptr);
cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no);
int add_cdc_entry(const cdc_entry entry_to_add);
int add_cdt_entry(const cdt_entry entry_to_add);
int del_cdc_entry(const char *cd_catalog_ptr);
int del_cdt_entry(const char *cd_catalog_ptr, const int track_no);
cdc_entry search_cdc_entry(const char *cd_catalog_ptr,
 int *first_call_ptr);

These functions provide a convenient place to make a clean separation between client and server.

In the single process implementation, we can view the application as having two parts, even though it was
compiled as a single program:

In the client−server implementation, we want to logically insert some named pipes and supporting code
between the two major parts of the application.

This is the structure we need:

 Implementation

390

In our implementation, we choose to put both the client and server interface routines in the same file,
pipe_imp.c. This keeps all the code that depends on the use of named pipes for the client/server
implementation in a single file. The formatting and packaging of the data being passed is kept separate from
the routines that implement the named pipes. We end up with more source files, but a better logical division
between them. The calling structure in the application is:

The files app_ui.c, client_if.c and pipe_imp.c are compiled together to give a client program The files
cd_dbm.c, server.c and pipe_imp.c are compiled together to give a server program. A header file cliserv.h,
acts as a common definitions header file to tie the two together.

The files app_ui.c and cd_dbm.c have only very minor changes, principally to cater for the split into two
programs. Since the application is now quite large and a significant proportion of the code is unchanged from
that previously seen, we only show here the files cliserv.h, client_if.c and pipe_imp.c.

First, we'll look at cliserv.h. This file defines the client/server interface. It's required by both client and server
implementations.

Important Some parts of this file are dependent on the specific client/server implementation, in this case
named pipes. We'll be changing to a different client/server model at the end of the next chapter.

 Implementation

391

Try It Out − The Header File, cliserv.h

There follow the required #include headers:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

1.

We then define the named pipes. We use one pipe for the server and one pipe for each client. Since
there may be multiple clients, the client incorporates a process ID into the name, to ensure that its pipe
is unique:

#define SERVER_PIPE "/tmp/server_pipe"
#define CLIENT_PIPE "/tmp/client_%d_pipe"

#define ERR_TEXT_LEN 80

2.

We implement the commands as enumerated types, rather than #defines.

Note This is a good way of allowing the compiler to do more type checking and also helps in
debugging the application, as many debuggers are able to show the name of enumerated
constants, but not the name defined by a #define directive.

The first typedef gives the type of request being sent to the server, the second the server response to
the client.

typedef enum {
 s_create_new_database = 0,
 s_get_cdc_entry,
 s_get_cdt_entry,
 s_add_cdc_entry,
 s_add_cdt_entry,
 s_del_cdc_entry,
 s_del_cdt_entry,
 s_find_cdc_entry
} client_request_e;

typedef enum {
 r_success = 0,
 r_failure,
 r_find_no_more
} server_response_e;

3.

Next, we declare a structure that will form the message passed in both directions between the two
processes.

Important Since we don't actually need to return both a cdc_entry and cdt_entry in the same
response, we could have combined them in a union. For simplicity, we keep them
separate. This also makes the code easier to maintain.

typedef struct {
 pid_t client_pid;
 client_request_e request;
 server_response_e response;

4.

Try It Out − The Header File, cliserv.h

392

 cdc_entry cdc_entry_data;
 cdt_entry cdt_entry_data;
 char error_text[ERR_TEXT_LEN + 1];
} message_db_t;

Finally, we get to the pipe interface functions that perform data transfer, implemented in pipe_imp.c.
These divide into server− and client−side functions, in the first and second blocks respectively:

int server_starting(void);
void server_ending(void);
int read_request_from_client(message_db_t *rec_ptr);
int start_resp_to_client(const message_db_t mess_to_send);
int send_resp_to_client(const message_db_t mess_to_send);
void end_resp_to_client(void);

int client_starting(void);
void client_ending(void);
int send_mess_to_server(message_db_t mess_to_send);
int start_resp_from_server(void);
int read_resp_from_server(message_db_t *rec_ptr);
void end_resp_from_server(void);

5.

We split the rest of the discussion into the client interface functions and details of the server− and client−side
functions found in pipe_imp.c, and look at the source code as necessary.

Client Interface Functions

Now we look at client_if.c. This provides 'fake' versions of the database access routines. These encode the
request in a message_db_t structure, then use the routines in pipe_imp.c to transfer the request to the server.
This allows us to make minimal changes to the original app_ui.c.

Try It Out − The Client's Interpreter

This file implements the nine database functions prototyped in cd_data.h. It does so by passing
requests to the server and then returning the server response from the function, acting as an
intermediary.

The file starts with #include files and constants:

#define _POSIX_SOURCE

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>

#include "cd_data.h"
#include "cliserv.h"

1.

The static variable mypid reduces the number of calls to getpid that would otherwise be required. We
use a local function, read_one_response, to eliminate duplicated code:

static pid_t mypid;

static int read_one_response(message_db_t *rec_ptr);

2.

 Client Interface Functions

393

The database_initialize and close routines are still called, but are now used, respectively, for
initializing the client−side of the pipes interface and for removing redundant named pipes when the
client exits.

int database_initialize(const int new_database)
{
 if (!client_starting()) return(0);
 mypid = getpid();
 return(1);

} /* database_initialize */

void database_close(void) {
 client_ending();
}

3.

The get_cdc_entry routine is called to get a catalog entry from the database, given a CD catalog title.
Here we encode the request in a message_db_t structure and pass it to the server. We then read the
response back into a different message_db_t structure. If an entry is found, it's included inside the
message_db_t structure as a cdc_entry structure, so we pass back the appropriate part of the structure:

cdc_entry get_cdc_entry(const char *cd_catalog_ptr)
{
 cdc_entry ret_val;
 message_db_t mess_send;
 message_db_t mess_ret;

 ret_val.catalog[0] = '\0';
 mess_send.client_pid = mypid;
 mess_send.request = s_get_cdc_entry;
 strcpy(mess_send.cdc_entry_data.catalog, cd_catalog_ptr);

 if (send_mess_to_server(mess_send)) {
 if (read_one_response(&mess_ret)) {
 if (mess_ret.response == r_success) {
 ret_val = mess_ret.cdc_entry_data;
 } else {
 fprintf(stderr, "%s", mess_ret.error_text);
 }
 } else {
 fprintf(stderr, "Server failed to respond\n");
 }
 } else {
 fprintf(stderr, "Server not accepting requests\n");
 }
 return(ret_val);
}

4.

Here's the source for the function read_one_response that we use to avoid duplicating code:

static int read_one_response(message_db_t *rec_ptr) {

 int return_code = 0;
 if (!rec_ptr) return(0);

 if (start_resp_from_server()) {
 if (read_resp_from_server(rec_ptr)) {
 return_code = 1;
 }
 end_resp_from_server();
 }

5.

 Client Interface Functions

394

 return(return_code);
}

The other get_xxx, del_xxx and add_xxx routines are implemented in a similar way to the
get_cdc_entry function and are reproduced here for completeness. First, the function for retrieving
CD tracks:

cdt_entry get_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{
 cdt_entry ret_val;
 message_db_t mess_send;
 message_db_t mess_ret;

 ret_val.catalog[0] = '\0';
 mess_send.client_pid = mypid;
 mess_send.request = s_get_cdt_entry;
 strcpy(mess_send.cdt_entry_data.catalog, cd_catalog_ptr);
 mess_send.cdt_entry_data.track_no = track_no;

 if (send_mess_to_server(mess_send)) {
 if (read_one_response(&mess_ret)) {
 if (mess_ret.response == r_success) {
 ret_val = mess_ret.cdt_entry_data;
 } else {
 fprintf(stderr, "%s", mess_ret.error_text);
 }
 } else {
 fprintf(stderr, "Server failed to respond\n");
 }
 } else {
 fprintf(stderr, "Server not accepting requests\n");
 }
 return(ret_val);
}

6.

Next, two functions for adding data, first to the catalog and then to the tracks database:

int add_cdc_entry(const cdc_entry entry_to_add)
{
 message_db_t mess_send;
 message_db_t mess_ret;

 mess_send.client_pid = mypid;
 mess_send.request = s_add_cdc_entry;
 mess_send.cdc_entry_data = entry_to_add;

 if (send_mess_to_server(mess_send)) {
 if (read_one_response(&mess_ret)) {
 if (mess_ret.response == r_success) {
 return(1);
 } else {
 fprintf(stderr, "%s", mess_ret.error_text);
 }
 } else {
 fprintf(stderr, "Server failed to respond\n");
 }
 } else {
 fprintf(stderr, "Server not accepting requests\n");
 }
 return(0);
}

7.

 Client Interface Functions

395

int add_cdt_entry(const cdt_entry entry_to_add)
{
 message_db_t mess_send;
 message_db_t mess_ret;

 mess_send.client_pid = mypid;
 mess_send.request = s_add_cdt_entry;
 mess_send.cdt_entry_data = entry_to_add;

 if (send_mess_to_server(mess_send)) {
 if (read_one_response(&mess_ret)) {
 if (mess_ret.response == r_success) {
 return(1);
 } else {
 fprintf(stderr, "%s", mess_ret.error_text);
 }
 } else {
 fprintf(stderr, "Server failed to respond\n");
 }
 } else {
 fprintf(stderr, "Server not accepting requests\n");
 }
 return(0);
}

And lastly, two functions for data deletion:

int del_cdc_entry(const char *cd_catalog_ptr)
{
 message_db_t mess_send;
 message_db_t mess_ret;

 mess_send.client_pid = mypid;
 mess_send.request = s_del_cdc_entry;
 strcpy(mess_send.cdc_entry_data.catalog, cd_catalog_ptr);

 if (send_mess_to_server(mess_send)) {
 if (read_one_response(&mess_ret)) {
 if (mess_ret.response == r_success) {
 return(1);
 } else {
 fprintf(stderr, "%s", mess_ret.error_text);
 }
 } else {
 fprintf(stderr, "Server failed to respond\n");
 }
 } else {
 fprintf(stderr, "Server not accepting requests\n");
 }
 return(0);
}

int del_cdt_entry(const char *cd_catalog_ptr, const int track_no)
{
 message_db_t mess_send;
 message_db_t mess_ret;

 mess_send.client_pid = mypid;
 mess_send.request = s_del_cdt_entry;
 strcpy(mess_send.cdt_entry_data.catalog, cd_catalog_ptr);
 mess_send.cdt_entry_data.track_no = track_no;

8.

 Client Interface Functions

396

 if (send_mess_to_server(mess_send)) {
 if (read_one_response(&mess_ret)) {
 if (mess_ret.response == r_success) {
 return(1);
 } else {
 fprintf(stderr, "%s", mess_ret.error_text);
 }
 } else {
 fprintf(stderr, "Server failed to respond\n");
 }
 } else {
 fprintf(stderr, "Server not accepting requests\n");
 }
 return(0);
}

Searching the Database

The function for the search on the CD key is rather more complex. The user of this function expects to call it
once to start a search. We catered for this in Chapter 7 by setting *first_call_ptr true on this first call and the
function then to return the first match. On subsequent calls to the search function, *first_call_ptr is false and
further matches are returned, one per call.

Now that we've split the application across two processes, we can no longer allow the search to proceed one
entry at a time in the server, because a different client may request a different search from the server whilst
our search is in progress. We can't make the server side store the context (where the search had got to) for
each client search separately, since the client side can simply stop searching part of the way through a search,
when a user finds the CD they are looking for, or if the client 'falls over'.

We can either change the way the search is performed, or, as we have chosen here, hide the complexity in the
interface routine. What we've done is to arrange for the server to return all the possible matches to a search
and then store them in a temporary file until they are requested by the client.

Important Our original application functioned in a similar way to a SQL database, which may use a cursor
to move through intermediate results. Such a system would have to make a similar design
decision about how to return multiple results of a SQL query.

Try It Out − Searching

This function looks more complicated than it is because it calls three pipe functions that we'll be
looking at in the next section, send_mess_to_server, start_resp_from_server and
read_resp_from_server:

cdc_entry search_cdc_entry(const char *cd_catalog_ptr, int *first_call_ptr)
{
 message_db_t mess_send;
 message_db_t mess_ret;

 static FILE *work_file = (FILE *)0;
 static int entries_matching = 0;
 cdc_entry ret_val;

 ret_val.catalog[0] = '\0';

 if (!work_file && (*first_call_ptr == 0)) return(ret_val);

1.

Try It Out − The Client's Interpreter

397

Here's the first call to search, i.e. with *first_call_ptr set to true. It's set to false immediately, lest we
forget. A work_file is created and the client message structure initialized.

 if (*first_call_ptr) {
 *first_call_ptr = 0;
 if (work_file) fclose(work_file);
 work_file = tmpfile();
 if (!work_file) return(ret_val);

 mess_send.client_pid = mypid;
 mess_send.request = s_find_cdc_entry;
 strcpy(mess_send.cdc_entry_data.catalog, cd_catalog_ptr);

2.

Now there's this three−deep condition test, which makes calls to functions in pipe_imp.c. If the
message is successfully sent to the server, the client waits for the server's response. While reads from
the server are successful, the search matches are returned to the client's work_file and the
entries_matching counter is incremented.

 if (send_mess_to_server(mess_send)) {
 if (start_resp_from_server()) {
 while (read_resp_from_server(&mess_ret)) {
 if (mess_ret.response == r_success) {
 fwrite(&mess_ret.cdc_entry_data, sizeof(cdc_entry), 1, work_file);
 entries_matching++;
 } else {
 break;
 }
 } /* while */
 } else {
 fprintf(stderr, "Server not responding\n");
 }
 } else {
 fprintf(stderr, "Server not accepting requests\n");
 }

3.

The next test checks whether the search had any luck. Then the fseek call sets the work_file to the
next place for data to be written.

 if (entries_matching == 0) {
 fclose(work_file);
 work_file = (FILE *)0;
 return(ret_val);
 }
 (void)fseek(work_file, 0L, SEEK_SET);

4.

If this is not the first call to the search function with this particular search term, the code checks
whether there are any matches left. Finally, the next matching entry is read to the ret_val structure.
The previous checks guarantee that a matching entry exists.

 } else {
 /* not *first_call_ptr */
 if (entries_matching == 0) {
 fclose(work_file);
 work_file = (FILE *)0;
 return(ret_val);
 }
 }

 fread(&ret_val, sizeof(cdc_entry), 1, work_file);
 entries_matching−−;

5.

Try It Out − The Client's Interpreter

398

 return(ret_val);
}

The Server Interface

Just as the client side has an interface to the app_ui.c program, so the server side needs a program to control
the (renamed) cd_access.c, now cd_dbm.c. The server's main function is listed here.

Try It Out − server.c

Some global variables, a prototype for process_command and a signal catcher to ensure a clean exit.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <limits.h>
#include <signal.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>

#include "cd_data.h"
#include "cliserv.h"

int save_errno;
static int server_running = 1;

static void process_command(const message_db_t mess_command);

void catch_signals()
{
 server_running = 0;
}

1.

Now we come to the main function. After checking that the signal catching routines are all right, the
program checks to see whether you passed −i on the command line. If you did, it will create a new
database. If the call to the database_initialize routine in cd_dbm.c fails, an error message is shown. If
all is well and the server is running, any requests from the client are fed to the process_command
function that we'll meet in a moment.

int main(int argc, char *argv[]) {
 struct sigaction new_action, old_action;
 message_db_t mess_command;
 int database_init_type = 0;

 new_action.sa_handler = catch_signals;
 sigemptyset(&new_action.sa_mask);
 new_action.sa_flags = 0;
 if ((sigaction(SIGINT, &new_action, &old_action) != 0) ||
 (sigaction(SIGHUP, &new_action, &old_action) != 0) ||
 (sigaction(SIGTERM, &new_action, &old_action) != 0)) {
 fprintf(stderr, "Server startup error, signal catching failed\n");
 exit(EXIT_FAILURE);
 }

 if (argc > 1) {

2.

 The Server Interface

399

 argv++;
 if (strncmp("−i", *argv, 2) == 0) database_init_type = 1;
 }
 if (!database_initialize(database_init_type)) {
 fprintf(stderr, "Server error:−\
 could not initialize database\n");
 exit(EXIT_FAILURE);
 }

 if (!server_starting()) exit(EXIT_FAILURE);

 while(server_running) {
 if (read_request_from_client(&mess_command)) {
 process_command(mess_command);
 } else {
 if(server_running) fprintf(stderr, "Server ended − can not \
 read pipe\n");
 server_running = 0;
 }
 } /* while */
 server_ending();
 exit(EXIT_SUCCESS);
}

Any client messages are fed to the process_command function, where they are fed into a case
statement that makes the appropriate calls to cd_dbm.c.

static void process_command(const message_db_t comm)
{
 message_db_t resp;
 int first_time = 1;

 resp = comm; /* copy command back, then change resp as required */

 if (!start_resp_to_client(resp)) {
 fprintf(stderr, "Server Warning:−\
 start_resp_to_client %d failed\n", resp.client_pid);
 return;
 }

 resp.response = r_success;
 memset(resp.error_text, '\0', sizeof(resp.error_text));
 save_errno = 0;

 switch(resp.request) {
 case s_create_new_database:
 if (!database_initialize(1)) resp.response = r_failure;
 break;
 case s_get_cdc_entry:
 resp.cdc_entry_data =
 get_cdc_entry(comm.cdc_entry_data.catalog);
 break;
 case s_get_cdt_entry:
 resp.cdt_entry_data =
 get_cdt_entry(comm.cdt_entry_data.catalog,
 comm.cdt_entry_data.track_no);
 break;
 case s_add_cdc_entry:
 if (!add_cdc_entry(comm.cdc_entry_data)) resp.response =
 r_failure;
 break;
 case s_add_cdt_entry:

3.

 The Server Interface

400

 if (!add_cdt_entry(comm.cdt_entry_data)) resp.response =
 r_failure;
 break;
 case s_del_cdc_entry:
 if (!del_cdc_entry(comm.cdc_entry_data.catalog)) resp.response
 = r_failure;
 break;
 case s_del_cdt_entry:
 if (!del_cdt_entry(comm.cdt_entry_data.catalog,
 comm.cdt_entry_data.track_no)) resp.response = r_failure;
 break;
 case s_find_cdc_entry:
 do {
 resp.cdc_entry_data =
 search_cdc_entry(comm.cdc_entry_data.catalog,
 &first_time);
 if (resp.cdc_entry_data.catalog[0] != 0) {
 resp.response = r_success;
 if (!send_resp_to_client(resp)) {
 fprintf(stderr, "Server Warning:−\
 failed to respond to %d\n", resp.client_pid);
 break;
 }
 } else {
 resp.response = r_find_no_more;
 }
 } while (resp.response == r_success);
 break;
 default:
 resp.response = r_failure;
 break;
 } /* switch */

 sprintf(resp.error_text, "Command failed:\n\t%s\n",
 strerror(save_errno));

 if (!send_resp_to_client(resp)) {
 fprintf(stderr, "Server Warning:−\
 failed to respond to %d\n", resp.client_pid);
 }

 end_resp_to_client();
 return;
}

Before we look at the actual pipe implementation, let's discuss the sequence of events that need to occur to
pass data between the client and server processes. This diagram shows both client and server processes
starting and how both parties loop while processing commands and responses.

 The Server Interface

401

In this implementation, the situation is slightly more difficult, since, for a search request, the client passes a
single command to the server and then expects back one or more responses from the server. This leads to
some additional complexity, mainly in the client.

The Pipe

Here's the pipes implementation file, pipe_imp.c, which has both the client− and server−side functions.

Important As we saw in Chapter 9, the symbol, DEBUG_TRACE, can be defined to show the sequence of
calls as the client and server processes pass messages between each other.

Try It Out − Pipes Implementation Header

First the #includes:

#include "cd_data.h"
#include "cliserv.h"

1.

We also define some values that we need in different functions within the file:

static int server_fd = −1;
static pid_t mypid = 0;
static char client_pipe_name[PATH_MAX + 1] = {'\0'};
static int client_fd = −1;
static int client_write_fd = −1;

2.

 The Pipe

402

Server−side Functions

Next, we need to look at the server−side functions. The first section below shows the functions that open and
close the named pipe and read messages from the clients. The second Try It Out shows the code that opens,
sends and closes the client pipes, based on the process ID the client includes in its message.

Try It Out − Server Functions

The server_starting routine creates the named pipe from which the server will read commands. It then
opens it for reading. This open will block until a client opens the pipe for writing. We use a blocking
mode, so that the server can perform blocking reads on the pipe while waiting for commands to be
sent to it.

int server_starting(void)
{
 #if DEBUG_TRACE
 printf("%d :− server_starting()\n", getpid());
 #endif

 unlink(SERVER_PIPE);
 if (mkfifo(SERVER_PIPE, 0777) == −1) {
 fprintf(stderr, "Server startup error, no FIFO created\n");
 return(0);
 }

 if ((server_fd = open(SERVER_PIPE, O_RDONLY)) == −1) {
 if (errno == EINTR) return(0);
 fprintf(stderr, "Server startup error, no FIFO opened\n");
 return(0);
 }
 return(1);
}

1.

When the server ends, it removes the named pipe, so clients can detect that no server is running.

void server_ending(void)
{
 #if DEBUG_TRACE
 printf("%d :− server_ending()\n", getpid());
 #endif

 (void)close(server_fd);
 (void)unlink(SERVER_PIPE);
}

2.

The read_request_from_client function, shown below, will block reading the server pipe until a client
writes a message into it:

int read_request_from_client(message_db_t *rec_ptr)
{
 int return_code = 0;
 int read_bytes;

 #if DEBUG_TRACE
 printf("%d :− read_request_from_client()\n", getpid());
 #endif

 if (server_fd != −1) {
 read_bytes = read(server_fd, rec_ptr, sizeof(*rec_ptr));

3.

Try It Out − Pipes Implementation Header

403

...

 }
 return(return_code);
}

In the special case when no clients have the pipe open for writing, the read will return 0, i.e. it detects
an EOF. Then the server closes the pipe and opens it again, so that it blocks until a client also opens
the pipe. This is just the same as when the server first starts; we have re−initialized the server. Insert
this code in the function above:

 if (read_bytes == 0) {
 (void)close(server_fd);
 if ((server_fd = open(SERVER_PIPE, O_RDONLY)) == −1) {
 if (errno != EINTR) {
 fprintf(stderr, "Server error, FIFO open failed\n");
 }
 return(0);
 }
 read_bytes = read(server_fd, rec_ptr, sizeof(*rec_ptr));
 }
 if (read_bytes == sizeof(*rec_ptr)) return_code = 1;

4.

The server is a single process that may be serving many clients simultaneously. Since each client uses a
different pipe to receive its responses, the server needs to write to a different pipe to send responses to
different clients. Since file descriptors are a limited resource, the server only opens a client pipe for writing
when it has data to send.

We split the opening, writing and closing of the client pipe into three separate functions. We need to do this
when we're returning multiple results to a search, so we can open the pipe once, write many responses, then
close it again.

Try It Out − Plumbing the Pipes

First, we open the client pipe:

int start_resp_to_client(const message_db_t mess_to_send)
{
 #if DEBUG_TRACE
 printf("%d :− start_resp_to_client()\n", getpid());
 #endif

 (void)sprintf(client_pipe_name, CLIENT_PIPE, mess_to_send.client_pid);
 if ((client_fd = open(client_pipe_name, O_WRONLY)) == −1) return(0);
 return(1);
}

1.

The messages are all sent using calls to this function. We'll look at the corresponding client−side
functions that field the message soon.

int send_resp_to_client(const message_db_t mess_to_send)
{
 int write_bytes;

 #if DEBUG_TRACE
 printf("%d :− send_resp_to_client()\n", getpid());
 #endif

 if (client_fd == −1) return(0);

2.

Try It Out − Pipes Implementation Header

404

 write_bytes = write(client_fd, &mess_to_send, sizeof(mess_to_send));
 if (write_bytes != sizeof(mess_to_send)) return(0);
 return(1);
}

Finally, we close the client pipe:

void end_resp_to_client(void)
{
 #if DEBUG_TRACE
 printf("%d :− end_resp_to_client()\n", getpid());
 #endif

 if (client_fd != −1) {
 (void)close(client_fd);
 client_fd = −1;
 }
}

3.

Client−side Functions

Complementing the server are the client functions in pipe_imp.c. Very similar, except for the
worryingly−named send_mess_to_server.

Try It Out − Client Functions

After checking that a server is accessible, the client_starting function initializes the client−side pipe:

int client_starting(void)
{
 #if DEBUG_TRACE
 printf("%d :− client_starting\n", getpid());
 #endif

 mypid = getpid();
 if ((server_fd = open(SERVER_PIPE, O_WRONLY)) == −1) {
 fprintf(stderr, "Server not running\n");
 return(0);
 }

 (void)sprintf(client_pipe_name, CLIENT_PIPE, mypid);
 (void)unlink(client_pipe_name);
 if (mkfifo(client_pipe_name, 0777) == −1) {
 fprintf(stderr, "Unable to create client pipe %s\n",
 client_pipe_name);
 return(0);
 }
 return(1);
}

1.

The client_ending function closes file descriptors and deletes the now redundant named pipe:

void client_ending(void)
{
 #if DEBUG_TRACE
 printf("%d :− client_ending()\n", getpid());
 #endif

 if (client_write_fd != −1) (void)close(client_write_fd);
 if (client_fd != −1) (void)close(client_fd);
 if (server_fd != −1) (void)close(server_fd);

2.

Try It Out − Pipes Implementation Header

405

 (void)unlink(client_pipe_name);
}

The send_mess_to_server function passes the request through the server pipe:

int send_mess_to_server(message_db_t mess_to_send)
{
 int write_bytes;

 #if DEBUG_TRACE
 printf("%d :− send_mess_to_server()\n", getpid());
 #endif

 if (server_fd == −1) return(0);
 mess_to_send.client_pid = mypid;
 write_bytes = write(server_fd, &mess_to_send, sizeof(mess_to_send));
 if (write_bytes != sizeof(mess_to_send)) return(0);
 return(1);
}

3.

As with the server−side functions we saw earlier, the client gets results back from the server using three
functions, to cater for multiple search results.

Try It Out − Getting Server Results

This client function starts to listen for the server response. It opens a client pipe as read−only and then
reopens this pipe's file as write−only. We'll see why in a moment.

int start_resp_from_server(void)
{
 #if DEBUG_TRACE
 printf("%d :− start_resp_from_server()\n", getpid());
 #endif

 if (client_pipe_name[0] == '\0') return(0);
 if (client_fd != −1) return(1);

 client_fd = open(client_pipe_name, O_RDONLY);
 if (client_fd != −1) {
 client_write_fd = open(client_pipe_name, O_WRONLY);
 if (client_write_fd != −1) return(1);
 (void)close(client_fd);
 client_fd = −1;
 }
 return(0);
}

1.

Here's the main read from the server which gets the matching database entries:

int read_resp_from_server(message_db_t *rec_ptr)
{
 int read_bytes;
 int return_code = 0;

 #if DEBUG_TRACE
 printf("%d :− read_resp_from_server()\n", getpid());
 #endif

 if (!rec_ptr) return(0);
 if (client_fd == −1) return(0);

2.

Try It Out − Pipes Implementation Header

406

 read_bytes = read(client_fd, rec_ptr, sizeof(*rec_ptr));
 if (read_bytes == sizeof(*rec_ptr)) return_code = 1;
 return(return_code);
}

And finally, the client function that marks the end of the server response...

void end_resp_from_server(void)
{
 #if DEBUG_TRACE
 printf("%d :− end_resp_from_server()\n", getpid());
 #endif

 /* This function is empty in the pipe implementation */
}

3.

How It Works

The second, additional open of the client pipe for writing in start_resp_from_server,

client_write_fd = open(client_pipe_name, O_WRONLY);

is used to prevent a race condition, when the server needs to respond to several requests from the client in
quick succession.

To explain this a little more, consider the following sequence of events:

The client writes a request to the server.1.
The server reads the request, opens the client pipe and sends the response back, but is suspended
before it gets as far as closing the client pipe.

2.

The client opens its pipe for reading, reads the first response and closes its pipe.3.
The client then sends a new command and opens the client pipe for reading.4.
The server then resumes running, closing its end of the client pipe.5.

Unfortunately, at this point the client is trying to read the pipe, looking for a response to its next request, but
the read will return with 0 bytes, since no process has the client pipe open for writing.

By allowing the client to open its pipe for both reading and writing, thus removing the need for repeatedly
re−opening the pipe, we avoid this race condition. Note that the client never writes to the pipe, so there's no
danger of reading erroneous data.

Application Summary

We've now separated our CD database application into a client and a server. This will allow us to develop the
user interface and the underlying database technology independently. We can see that a well−defined database
interface allows each major element of the application to make the best use of computer resources. If we take
things a little further, we could change the pipes implementation to a networked one and use a dedicated
database server machine. We'll learn more about networking in Chapter 13.

Summary

In this chapter, we've looked at passing data between processes using pipes.

Try It Out − Pipes Implementation Header

407

First, we looked at unnamed pipes created with the popen or the pipe call and discussed how, using a pipe and
the dup call, we can pass data from one program to the standard input of another.

We then looked at named pipes and saw how we can pass data between unrelated programs.

Finally, we implemented a simple client/server example, using FIFOs to give us not only process
synchronization, but also bi−directional data flow.

Try It Out − Pipes Implementation Header

408

Chapter 13: Semaphores, Message Queues and
Shared Memory
In this chapter, we are going to look at a set of interprocess communication facilities that were introduced in
the AT&T System V.2 release of UNIX. Since all these facilities appeared in the same release and have a
similar programmatic interface, they are often referred to as the IPC (InterProcess Communication) facilities,
or System V IPC. As we've already seen, they are by no means the only way of communicating between
processes, but the expression System V IPC is usually used to refer to these specific facilities.

Semaphores

When we write programs that use threads, operating in either multiuser systems, multiprocessing systems or a
combination of the two, we often discover that we have critical sections of code where we need to ensure that
a single executing process has exclusive access to a resource.

In our first example application using dbm to access a database in Chapter 7, the data could be corrupted if
multiple programs tried to update the database at exactly the same time. There's no trouble with two different
programs asking different users to enter data for the database, the only problem is in the parts of the code that
update the database. These are the critical sections.

To prevent problems caused by more than one program accessing a resource, we need a way of generating and
using a token that grants access to only one thread of execution in a critical section at a time. We saw briefly
in Chapter 11 some thread specific ways we could use a mutex or semaphores to control access to critical
sections in a threaded program. In this chapter we return to the topic of semaphores, but look more generally
at how they are used between different processes. Be aware that the semaphore functions used with threads
are not the ones we will meet here, be careful not to confuse the two types.

It's surprisingly difficult to write code that achieves this without specialist hardware support, although there's
a solution known as Dekker's Algorithm. Unfortunately, this algorithm relies on a 'busy wait', or 'spin lock',
where a process runs continuously, waiting for a memory location to be changed. In a multitasking
environment such as UNIX, this is an undesirable waste of CPU resources.

One possible solution that we've already seen is to create files using the O_EXCL flag with the open function,
which provides atomic file creation. This allows a single process to succeed in obtaining a token, the newly
created file. This method is fine for simple problems, but rather messy and very inefficient for more complex
examples.

An important step forward in this area of concurrent programming occurred when Dijkstra introduced the
concept of the semaphore. A semaphore is a special variable that takes only whole positive numbers and
upon which only two operations are allowed: wait and signal. Since 'wait' and 'signal' already have special
meanings in UNIX programming, we'll use the original notation:

P(semaphore variable) for wait,•
V(semaphore variable) for signal.•

These letters come from the Dutch words for wait (passeren: to pass, as in a check point before the critical
section) and signal (vrijgeven: to give, as in giving up control of the critical section). You may also come
across the terms 'up' and 'down' used in relation to semaphores, taken from the use of signaling flags.

409

Semaphore Definition

The simplest semaphore is a variable that can take only the values 0 and 1, a binary semaphore, and this is
the most common form. Semaphores that can take many positive values are called general semaphores. For
the remainder of this chapter, we'll concentrate on binary semaphores.

The definitions of P and V are surprisingly simple. Suppose we have a semaphore variable, sv. The two
operations are then defined as:

P(sv) If sv is greater than zero, decrement sv. If sv is zero, suspend execution of this process.

V(sv) If some other process has been suspended waiting for sv, make it resume execution. If no
process is suspended waiting for sv, increment sv.

Another way of thinking about semaphores is that the semaphore variable, sv, is true when the critical section
is available, is decremented by P(sv) so it's false when the critical section is busy, and incremented by V(sv)
when the critical section is again available. Be aware that simply having a normal variable that you decrement
and increment is not good enough, because you can't express in C or C++ the need to make a single, atomic
operation of the test to see whether the variable is true, or the change of the variable to make it false. This is
what makes the semaphore operations special.

A Theoretical Example

We can see how this works with a simple theoretical example. Suppose we have two processes proc1 and
proc2, both of which need exclusive access to a database at some point in their execution. We define a single
binary semaphore, sv, that starts with the value 1 and can be accessed by both processes. Both processes then
need to perform the same processing to access the critical section of code, indeed the two processes could
simply be different invocations of the same program.

The two processes share the sv semaphore variable. Once one process has executed P(sv), it has obtained the
semaphore and can enter the critical section. The second process is prevented from entering the critical section
because, when it attempts to execute P(sv), it's made to wait until the first process has left the critical section
and executed V(sv)to release the semaphore.

The required pseudo−code is:

semaphore sv = 1;

loop forever {
 P(sv);
 critical code section;
 V(sv);
 non−critical code section;
}

The code is surprisingly simple because the definition of the P and V operations is very powerful. Here's a
diagram showing how the P and V operations act as a gate into critical sections of code:

 Semaphore Definition

410

UNIX Semaphore Facilities

Now that we've seen what semaphores are and how they work in theory, we can look at how the features are
implemented in UNIX. The interface is rather elaborate and offers far more facilities than are generally
required. All the UNIX semaphore functions operate on arrays of general semaphores, rather than a single
binary semaphore. At first sight this just seems to make things more complicated, but in complex cases where
a process needs to lock multiple resources the ability to operate on an array of semaphores is a big advantage.
In this chapter we will concentrate on using single semaphores, since in most cases that's all you will need to
use.

The semaphore function definitions are:

#include <sys/sem.h>

int semctl(int sem_id, int sem_num, int command, ...);
int semget(key_t key, int num_sems, int sem_flags);
int semop(int sem_id, struct sembuf *sem_ops, size_t num_sem_ops);

Important In practice, the #include files sys/types.h and sys/ipc.h are also usually needed to get some of the
defines you need for particular operations. There are, however, a few cases when they won't be
necessary.

As we work through each function in turn, remember that these functions were designed to work for arrays of
semaphore values, which makes their operation significantly more complex than would have been required for
a single semaphore.

Notice that key acts very much like a file name in that it represents a resource that programs may use and
cooperate in using if they agree on a common name. Similarly, the identifier returned by semget and used by
the other shared memory functions is very much like the FILE * file stream returned by fopen in that it's a
value used by the process to access the shared file. And, just as with files, different processes will have
different semaphore identifiers, though they refer to the same semaphore. This use of a key and identifiers is
common to all of the IPC facilities discussed here, although each facility uses independent keys and
identifiers.

semget

The semget function creates a new semaphore or obtains the semaphore key of an existing semaphore.

int semget(key_t key, int num_sems, int sem_flags);

The first parameter, key, is an integral value used to allow unrelated processes to access the same semaphore.
All semaphores are accessed indirectly by the program supplying a key, for which the system then generates a

 UNIX Semaphore Facilities

411

semaphore identifier. The semaphore key is only used with semget. All other semaphore functions use the
semaphore identifier returned from semget.

There is a special semaphore key value, IPC_PRIVATE, that creates a semaphore that only the creating
process can access. It must forward this identifier directly to the processes that need it, which are usually child
processes it has created. This is rarely used. You should check that you don't accidentally use the value your
system declares as IPC_PRIVATE. On Linux systems, the value of IPC_PRIVATE is usually 0.

The num_sems parameter is the number of semaphores required. This is almost always 1.

The sem_flags parameter is a set of flags, very much like the flags to the open function. The lower nine bits
are the permissions for the semaphore, which behave like file permissions. In addition, these can be bitwise
ORed with the value IPC_CREAT to create a new semaphore. It's not an error to have the IPC_CREAT flag
set and give the key of an existing semaphore. The IPC_CREAT flag is silently ignored if not required. We
can use IPC_CREAT and IPC_EXCL together to ensure that we obtain a new, unique semaphore. It will
return an error if the semaphore already exists.

The semget function returns a positive (non−zero) value on success; this is the semaphore identifier used in
the other semaphore functions. On error, it returns −1.

semop

The function semop is used for changing the value of the semaphore:

int semop(int sem_id, struct sembuf *sem_ops, size_t num_sem_ops);

The first parameter, sem_id, is the semaphore identifier, as returned from semget. The second parameter,
sem_ops, is a pointer to an array of structures, each of which will have at least the following members:

struct sembuf {
 short sem_num;
 short sem_op;
 short sem_flg;
}

The first member, sem_num, is the semaphore number, usually 0 unless you're working with an array of
semaphores. The sem_op member is the value by which the semaphore should be changed. You can change a
semaphore by amounts other than 1. In general, only two values are used, −1, which is our P operation to wait
for a semaphore to become available, and +1, which is our V operation to signal that a semaphore is now
available.

The final member, sem_flg, is usually set to SEM_UNDO. This causes the operating system to track the
changes made to the semaphore by the current process and, if the process terminates without releasing the
semaphore, allows the operating system to automatically release the semaphore if it was held by this process.
It's good practice to set sem_flg to SEM_UNDO, unless you specifically require different behavior. If you do
decide you need a value other than SEM_UNDO, then it's important to be consistent, or you can get very
confused as to whether the kernel is attempting to 'tidy up' your semaphores when your process exits.

All actions called for by semop are taken together to avoid a race condition implied by using multiple
semaphores. You can find full details of the processing of semop in the man pages.

UNIX Semaphore Facilities

412

semctl

The semctl function allows direct control of semaphore information:

int semctl(int sem_id, int sem_num, int command, ...);

The first parameter, sem_id, is a semaphore identifier, obtained from semget. The sem_num parameter is the
semaphore number. You use this when you're working with arrays of semaphores. Usually, this is 0, the first
and only semaphore. The command parameter is the action to take and a fourth parameter, if present, is a
union semun, which must have at least the following members:

union semun {
 int val;
 struct semid_ds *buf;
 unsigned short *array;
}

Some versions of Linux have a definition of the semun union in a header file, though X/Open does say that
you have to declare your own. If you do find that you need to declare your own, check the manual pages for
semctl to see if there is definition given. If there is, we suggest you use exactly the definition given in your
manual, even if it differs from that above. This is the semun.h that we used, but you should check the manual
pages for your particular Linux system, and change it if necessary:

#ifndef _SEMUN_H

#define _SEMUN_H

union semun {
 int val; /* value for SETVAL */
 struct semid_ds *buf; /* buffer for IPC_STAT, IPC_SET */
 unsigned short int *array; /* array for GETALL, SETALL */
 struct seminfo *__buf; /* buffer for IPC_INFO */
};

#endif

There are many different possible values of command allowed for semctl. Only two, which we describe here,
are commonly used. For full details of the semctl function you should consult the manual page.

The two common values of command are:

SETVAL: used for initializing a semaphore to a known value. The value required is passed as the val
member of the union semun. This is required to set the semaphore up before it's used for the first time.

•

IPC_RMID: used for deleting a semaphore identifier when it's no longer required.•

The semctl function returns different values, depending on the command parameter. For SETVAL and
IPC_RMID it returns 0 for success and −1 on error.

Using Semaphores

As you can see from the above descriptions, semaphore operations can be rather complex. This is most
unfortunate, since programming multiple processes or threads with critical sections is quite a difficult problem
on its own and having a complex programming interface simply adds to the intellectual burden.

UNIX Semaphore Facilities

413

Fortunately, we can solve most problems that require semaphores using only a single binary semaphore, the
simplest type. In our example, we'll use the full programming interface to create a much simpler P and V type
interface for a binary semaphore. We'll then use this much simpler interface to demonstrate how semaphores
function.

To experiment with semaphores, we'll use a single program, sem1.c, which we can invoke several times. We'll
use an optional parameter to specify whether the program is responsible for creating and destroying the
semaphore.

We use the output of two different characters to indicate entering and leaving the critical section. The program
invoked with a parameter prints an X on entering and exiting its critical section. Other invocations of the
program print an O on entering and exiting their critical sections. Since only one process should be able to
enter its critical section at any given time, all X and O characters should appear in pairs.

Try It Out − Semaphores

After the #includes, the function prototypes and the global variable, we come to the main function.
There the semaphore is created with a call to semget, which returns the semaphore ID. If the program
is the first to be called (i.e. it's called with a parameter and argc > 1), a call is made to set_semvalue to
initialize the semaphore and op_char is set to X.

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

#include "semun.h"

static int set_semvalue(void);
static void del_semvalue(void);
static int semaphore_p(void);
static int semaphore_v(void);

static int sem_id;

int main(int argc, char *argv[])
{
 int i;
 int pause_time;
 char op_char = 'O';

 srand((unsigned int)getpid());

 sem_id = semget((key_t)1234, 1, 0666 | IPC_CREAT);

 if (argc > 1) {
 if (!set_semvalue()) {
 fprintf(stderr, "Failed to initialize semaphore\n");
 exit(EXIT_FAILURE);
 }
 op_char = 'X';
 sleep(2);
 }

1.

Try It Out − Semaphores

414

Then we have a loop which enters and leaves the critical section ten times. There, we first make a call
to semaphore_p which sets the semaphore to wait, as this program is about to enter the critical
section.

 for(i = 0; i < 10; i++) {

 if (!semaphore_p()) exit(EXIT_FAILURE);
 printf("%c", op_char);fflush(stdout);
 pause_time = rand() % 3;
 sleep(pause_time);
 printf("%c", op_char);fflush(stdout);

2.

After the critical section, we call semaphore_v, setting the semaphore available, before going through
the for loop again after a random wait. After the loop, the call to del_semvalue is made to clean up the
code:

 if (!semaphore_v()) exit(EXIT_FAILURE);

 pause_time = rand() % 2;
 sleep(pause_time);
 }

 printf("\n%d − finished\n", getpid());

 if (argc > 1) {
 sleep(10);
 del_semvalue();
 }

 exit(EXIT_SUCCESS);
}

3.

The function set_semvalue initializes the semaphore using the SETVAL command in a semctl call.
We need to do this before we can use the semaphore:

static int set_semvalue(void)
{
 union semun sem_union;

 sem_union.val = 1;
 if (semctl(sem_id, 0, SETVAL, sem_union) == −1) return(0);
 return(1);
}

4.

The del_semvalue function has almost the same form, except that the call to semctl uses the command
IPC_RMID to remove the semaphore's ID:

static void del_semvalue(void)
{
 union semun sem_union;

 if (semctl(sem_id, 0, IPC_RMID, sem_union) == −1)
 fprintf(stderr, "Failed to delete semaphore\n");
}

5.

semaphore_p changes the semaphore by −1 (waiting):

static int semaphore_p(void)
{
 struct sembuf sem_b;

 sem_b.sem_num = 0;

6.

Try It Out − Semaphores

415

 sem_b.sem_op = −1; /* P() */
 sem_b.sem_flg = SEM_UNDO;
 if (semop(sem_id, &sem_b, 1) == −1) {
 fprintf(stderr, "semaphore_p failed\n");
 return(0);
 }
 return(1);
}

semaphore_v is similar except for setting the sem_op part of the sembuf structure to 1, so that the
semaphore becomes available.

static int semaphore_v(void)
{
 struct sembuf sem_b;

 sem_b.sem_num = 0;
 sem_b.sem_op = 1; /* V() */
 sem_b.sem_flg = SEM_UNDO;
 if (semop(sem_id, &sem_b, 1) == −1) {
 fprintf(stderr, "semaphore_v failed\n");
 return(0);
 }
 return(1);
}

7.

Notice that this simple program allows only a single binary semaphore per program, although we could extend
it to pass the semaphore variable if we need more semaphores. Normally, a single binary semaphore is
sufficient.

We can test our program by invoking it several times. The first time, we pass a parameter to tell the program
that it's responsible for creating and deleting the semaphore. The other invocations have no parameter.

Here's some sample output, with two invocations of the program:

$ sem1 1 &
[1] 1082
$ sem1
OOXXOOXXOOXXOOXXOOXXOOOOXXOOXXOOXXOOXXXX
1083 − finished
1082 − finished
$

As you can see, the Os and Xs are properly paired, indicating that the critical section is being correctly
processed. If this doesn't work on your particular system, you may have to use the command stty −tostop
before invoking the program, to ensure that the background program generating tty output does not cause a
signal to be generated.

How It Works

The program starts by obtaining a semaphore identity from the (arbitrary) key that we've chosen using the
semget function. The IPC_CREAT flag causes the semaphore to be created if one is required.

If the program has a parameter, it's responsible for initializing the semaphore, which it does with our function
set_semvalue, a simplified interface to the more general semctl function. It also uses the presence of the
parameter to determine which character it should print out. The sleep simply allows us some time to invoke

How It Works

416

other copies of the program, before this copy gets to execute too many times round its loop. We use srand and
rand to introduce some pseudo−random timing into the program.

The program then loops ten times, with pseudo−random waits in its critical and non−critical sections. The
critical section is guarded by calls to our semaphore_p and semaphore_v functions, which are simplified
interfaces to the more general semop function.

Before it deletes the semaphore, the program that was invoked with a parameter then waits to allow other
invocations to complete. If the semaphore isn't deleted, it will continue to exist in the system, even though no
programs are using it. In real programs, it's very important to ensure you don't unintentionally leave
semaphores around after execution. It may cause problems next time you run the program and, also,
semaphores are a limited resource which you must conserve.

Semaphore Summary

As we've seen, semaphores have a complex programming interface. Fortunately, we can easily provide
ourselves with a much simplified interface, which is sufficient for most semaphore programming problems.

Shared Memory

Shared memory is the second of the three IPC facilities. It allows two unrelated processes to access the same
logical memory. Shared memory is a very efficient way of transferring data between two running processes.
Although the X/Open standard doesn't require it, it's probable that most implementations of shared memory
arrange for the memory being shared between different processes to be the same physical memory.

Overview

Shared memory is a special range of addresses that is created by IPC for one process and appears in the
address space of that process. Other processes can then 'attach' the same shared memory segment into their
own address space. All processes can access the memory locations just as though the memory had been
allocated by malloc. If one process writes to the shared memory, the changes immediately become visible to
any other process that has access to the same shared memory.

By itself, shared memory doesn't provide any synchronization facilities. There are no automatic facilities to
prevent a second process starting to read the shared memory before the first process has finished writing to it.
It's the responsibility of the programmer to synchronize access.

 Semaphore Summary

417

The arrows show the mapping of the logical address space of each process to the physical memory available.
In practice, the situation is more complex than this because the available memory actually consists of a mix of
physical memory and memory pages that have been swapped out to disk.

Shared Memory Functions

The functions for shared memory resemble those for semaphores:

#include <sys/shm.h>

void *shmat(int shm_id, const void *shm_addr, int shmflg);
int shmctl(int shm_id, int cmd, struct shmid_ds *buf);
int shmdt(const void *shm_addr);
int shmget(key_t key, size_t size, int shmflg);

As with semaphores, the include files sys/types.h and sys/ipc.h are normally also required.

shmget

We create shared memory using the shmget function:

int shmget(key_t key, size_t size, int shmflg);

As with semaphores, the program provides key, which effectively names the shared memory segment, and the
shmget function returns a shared memory identifier which is used in subsequent shared memory functions.
There's a special key value, IPC_PRIVATE, which creates shared memory private to the process. You
wouldn't normally use this value, but it is possible for a single process to share memory with itself.

The second parameter, size, specifies the amount of memory required, in bytes.

The third parameter, shmflg, consists of nine permission flags, which are used in the same way as the mode
flags for creating files. A special bit defined by IPC_CREAT must be bitwise ORed with the permissions to

 Shared Memory Functions

418

create a new shared memory segment. It's not an error to have the IPC_CREAT flag set and pass the key of an
existing shared memory segment. The IPC_CREAT flag is silently ignored if not required.

The permission flags are very useful with shared memory, since they allow a process to create shared memory
that can be written by processes owned by the creator of the shared memory, but only read by processes that
have been created by other users. We can use this to provide efficient read−only access to data by placing it in
shared memory, without the risk of it being changed by other users.

If the shared memory is successfully created, shmget returns a non−negative integer, the shared memory
identifier. On failure, it returns −1.

shmat

When we first create a shared memory segment, it's not accessible by any process. To enable access to the
shared memory, we must attach it to the address space of a process. We do this with the shmat function:

void *shmat(int shm_id, const void *shm_addr, int shmflg);

The first parameter, shm_id, is the shared memory identifier returned from shmget.

The second parameter, shm_addr, is the address at which the shared memory is to be attached to the current
process. This should normally be a null pointer, which allows the system to choose the address at which the
memory appears.

The third parameter, shmflg, is a set of bitwise flags. The two possible values are SHM_RND, which, in
conjunction with shm_addr, controls the address at which the shared memory is attached, and
SHM_RDONLY, which makes the attached memory read−only. It's very rare to need to control the address at
which shared memory is attached; you should normally allow the system to choose an address for you, as
doing otherwise will make the application highly hardware−dependent.

If the shmat call is successful, it returns a pointer to the first byte of shared memory. On failure −1 is returned.

The shared memory will have read or write access depending on the owner (the creator of the shared
memory), the permissions and the owner of the current process. Permissions on shared memory are similar to
the permissions on files.

An exception to this rule arises if shmflg & SHM_RDONLY is true. Then the shared memory won't be
writeable, even if permissions would have allowed write access.

shmdt

The shmdt function detaches the shared memory from the current process. It takes a pointer to the address
returned by shmat. On success, it returns 0, on error −1. Note that detaching the shared memory doesn't delete
it, it just makes it unavailable to the current process.

shmctl

The control functions for shared memory are (thankfully) rather simpler than the more complex ones for
semaphores:

int shmctl(int shm_id, int command, struct shmid_ds *buf);

Shared Memory Functions

419

The shmid_ds structure has at least the following members:

struct shmid_ds {
 uid_t shm_perm.uid;
 uid_t shm_perm.gid;
 mode_t shm_perm.mode;
}

The first parameter, shm_id, is the identifier returned from shmget.

The second parameter, command, is the action to take. It can take three values:

Command Description

IPC_STAT Sets the data in the shmid_ds structure to reflect the values associated with the shared
memory.

IPC_SET Sets the values associated with the shared memory to those provided in the shmid_ds
data structure, if the process has permission to do so.

IPC_RMID Deletes the shared memory segment.
The third parameter, buf is a pointer to structure containing the modes and permissions for the shared
memory.

On success, it returns 0, on failure, −1. X/Open doesn't specify what happens if you attempt to delete a shared
memory segment while it's attached. Generally, a shared memory segment that is attached but deleted
continues to function until it has been detached from the last process. However, since this behavior isn't
specified, it's best not to rely on it.

Now that we've seen the shared memory functions, we can write some code to use them. We'll write a pair of
programs, shm1.c and shm2.c. The first (the consumer) will create a shared memory segment and then display
any data that is written into it. The second (the producer) will attach to an existing shared memory segment
and allow us to enter data into the segment.

Try It Out − Shared Memory

First we create a common header file to describe the shared memory we wish to pass about. We call
this shm_com.h:

#define TEXT_SZ 2048

struct shared_use_st {
 int written_by_you;
 char some_text[TEXT_SZ];
};

This defines a structure to use in both the consumer and producer programs. We use an int flag
written_by_you to tell the consumer when data has been written to the rest of the structure, and
arbitrarily decide we need to transfer up to 2k of text.

1.

Our first program is a consumer. After the headers the shared memory segment (the size of our shared
memory structure) is created with a call to shmget, with the IPC_CREAT bit specified:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

2.

Shared Memory Functions

420

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#include "shm_com.h"

int main()
{
 int running = 1;
 void *shared_memory = (void *)0;
 struct shared_use_st *shared_stuff;
 int shmid;

 srand((unsigned int)getpid());

 shmid = shmget((key_t)1234, sizeof(struct shared_use_st), 0666 | IPC_CREAT);

 if (shmid == −1) {
 fprintf(stderr, "shmget failed\n");
 exit(EXIT_FAILURE);
 }

We now make the shared memory accessible to the program:

 shared_memory = shmat(shmid, (void *)0, 0);
 if (shared_memory == (void *)−1) {
 fprintf(stderr, "shmat failed\n");
 exit(EXIT_FAILURE);
 }

 printf("Memory attached at %X\n", (int)shared_memory);

3.

The next portion of the program assigns the shared_memory segment to shared_stuff, which then
prints out any text in written_by_you. The loop continues until end is found in written_by_you. The
call to sleep forces the consumer to sit in its critical section, which makes the producer wait.

 shared_stuff = (struct shared_use_st *)shared_memory;
 shared_stuff−>written_by_you = 0;
 while(running) {
 if (shared_stuff−>written_by_you) {
 printf("You wrote: %s", shared_stuff−>some_text);
 sleep(rand() % 4); /* make the other process wait for us ! */
 shared_stuff−>written_by_you = 0;
 if (strncmp(shared_stuff−>some_text, "end", 3) == 0) {
 running = 0;
 }
 }
 }

4.

Lastly, the shared memory is detached and then deleted:

 if (shmdt(shared_memory) == −1) {
 fprintf(stderr, "shmdt failed\n");
 exit(EXIT_FAILURE);
 }

 if (shmctl(shmid, IPC_RMID, 0) == −1) {
 fprintf(stderr, "shmctl(IPC_RMID) failed\n");
 exit(EXIT_FAILURE);
 }

 exit(EXIT_SUCCESS);

5.

Shared Memory Functions

421

}

Our second program, shm2.c, is the producer and allows us to enter data for consumers. It's very
similar to shm1.c and looks like this:

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

#include "shm_com.h"

int main()
{
 int running = 1;
 void *shared_memory = (void *)0;
 struct shared_use_st *shared_stuff;
 char buffer[BUFSIZ];
 int shmid;

 shmid = shmget((key_t)1234, sizeof(struct shared_use_st), 0666 | IPC_CREAT);

 if (shmid == −1) {
 fprintf(stderr, "shmget failed\n");
 exit(EXIT_FAILURE);
 }
 shared_memory = shmat(shmid, (void *)0, 0);
 if (shared_memory == (void *)−1) {
 fprintf(stderr, "shmat failed\n");
 exit(EXIT_FAILURE);
 }

 printf("Memory attached at %X\n", (int)shared_memory);

 shared_stuff = (struct shared_use_st *)shared_memory;
 while(running) {
 while(shared_stuff−>written_by_you == 1) {
 sleep(1);
 printf("waiting for client...\n");
 }
 printf("Enter some text: ");
 fgets(buffer, BUFSIZ, stdin);

 strncpy(shared_stuff−>some_text, buffer, TEXT_SZ);
 shared_stuff−>written_by_you = 1;

 if (strncmp(buffer, "end", 3) == 0) {
 running = 0;
 }
 }

 if (shmdt(shared_memory) == −1) {
 fprintf(stderr, "shmdt failed\n");
 exit(EXIT_FAILURE);
 }
 exit(EXIT_SUCCESS);
}

6.

Shared Memory Functions

422

When we run these programs, we get some sample output such as this:

$ shm1 &
[1] 294
Memory attached at 50007000
$ shm2
Memory attached at 50007000
Enter some text: hello
You wrote: hello
waiting for client...
waiting for client...
Enter some text: Linux!
You wrote: Linux!
waiting for client...
waiting for client...
waiting for client...
Enter some text: end
You wrote: end
$

How It Works

The first program, shm1, creates the shared memory segment and then attaches it to its address space. We
impose a structure, shared_use_st on the first part of the shared memory. This has a flag, written_by_you,
which is set when data is available. When this flag is set, the program reads the text, prints it out, then clears
the flag to show it has read the data. We use the special string, end, to allow a clean exit from the loop. The
program then detaches the shared memory segment and deletes it.

The second program, shm2, gets and attaches the same shared memory segment, since it uses the same key,
1234. It then prompts the user to enter some text. If the flag written_by_you is set, it knows that the client
process hasn't yet read the previous data and waits for it. When the other process clears this flag, shm2 writes
in the new data and sets the flag. It also uses the magic string, end, to terminate and detach the shared memory
segment.

Notice that we had to provide our own, rather crude synchronization flag, written_by_you, that involves a
very inefficient busy wait (by continuously looping). In real programs we would have passed a message,
either using a pipe or IPC messages (which we'll meet shortly), generated a signal, or used a semaphore to
provide synchronization between the reading and writing parts of the application.

Shared Memory Summary

Shared memory provides an efficient way of sharing and passing data between multiple processes. Since it
provides no synchronization facilities, we usually need to use some other mechanism to synchronize access to
the shared memory. Typically, we might use shared memory to provide efficient access to large areas of
memory and pass small messages to synchronize access to that memory.

Message Queues

We'll now take a look at the third and final IPC facility: message queues.

Shared Memory Functions

423

Overview

In many ways, message queues are like named pipes, but without the complexity associated with opening and
closing the pipe. However, using messages doesn't get us away from the problems that we have with named
pipes, such as blocking on full pipes.

Message queues provide a way of sending a block of data from one process to another. Additionally, each
block of data is considered to have a type, and a receiving process may receive blocks of data having different
type values independently. The good news is that we can almost totally avoid the synchronization and
blocking problems of named pipes by sending messages. Even better, we can 'look ahead' for messages that
are urgent in some way. The bad news is that, just like pipes, there's a maximum size limit imposed on each
block of data and also a limit on the maximum total size of all blocks on all queues throughout the system.

Whilst stating that these limits are imposed, the X/Open specification offers no way of discovering what the
limits are, except that exceeding them is a valid reason for some message queue functions to fail. Linux does
have two defines, MSGMAX and MSGMNB which define the maximum size in bytes of an individual
message and maximum size of a queue, respectively. These macros may be different or, for that matter, not
even present on other systems.

Message Queue Functions

The message queue function definitions are:

#include <sys/msg.h>

int msgctl(int msqid, int cmd, struct msqid_ds *buf);
int msgget(key_t key, int msgflg);
int msgrcv(int msqid, void *msg_ptr, size_t msg_sz, long int msgtype, int msgflg);
int msgsnd(int msqid, const void *msg_ptr, size_t msg_sz, int msgflg);

As with semaphores and shared memory, the include files sys/types.h and sys/ipc.h are normally also
required.

msgget

We create and access a message queue using the msgget function:

int msgget(key_t key, int msgflg);

The program must provide a key value which, as with other IPC facilities, names a particular message queue.
The special value IPC_PRIVATE creates a private queue, accessible only by the current process. As before,
the second parameter, msgflg, consists of nine permission flags. A special bit defined by IPC_CREAT must
be bitwise ORed with the permissions to create a new message queue. It's not an error to set the IPC_CREAT
flag and give the key of an existing message queue. The IPC_CREAT flag is silently ignored if the message
queue already exists.

The msgget function returns a positive number, a queue identifier, on success, or −1 on failure.

 Overview

424

msgsnd

The msgsnd function allows us to add a message to a message queue.

int msgsnd(int msqid, const void *msg_ptr, size_t msg_sz, int msgflg);

The structure of the message is constrained in two ways. Firstly, it must be smaller than the system limit and,
secondly, it must start with a long int, which will be used as a message type in the receive function. When
you're using messages, it's best to define your message structure something like this:

struct my_message {
 long int message_type;
 /* The data you wish to transfer */
}

Since the message_type is used in message reception, you can't simply ignore it. Not only must you declare
your data structure to include it, it's also wise to initialize it, so that it contains a known value.

The first parameter, msqid, is the message queue identifier returned from a msgget function.

The second parameter, msg_ptr, is a pointer to the message to be sent, which must start with a long int type as
we described above.

The third parameter, msg_sz, is the size of the message pointed to by msg_ptr. This size must not include the
long int message type.

The fourth parameter, msgflg, controls what happens if either the current message queue is full, or the
system−wide limit on queued messages has been reached. If msgflg has the IPC_NOWAIT flag set, the
function will return immediately without sending the message and the return value will be −1. If the msgflg
has the IPC_NOWAIT flag clear, the sending process will be suspended waiting for space to become
available in the queue.

On success, the function returns 0, on failure −1. If the call is successful, a copy of the message data has been
taken and placed on the message queue.

msgrcv

The msgrcv function retrieves messages from a message queue.

int msgrcv(int msqid, void *msg_ptr, size_t msg_sz, long int msgtype, int msgflg);

The first parameter, msqid, is the message queue identifier returned from a msgget function.

The second parameter, msg_ptr, is a pointer to the message to be received, which must start with a long int
type as described above in the msgsnd function.

The third parameter, msg_sz, is the size of the message pointed to by msg_ptr, not including the long int
message type.

The fourth parameter, msgtype, is a long int, which allows a simple form of reception priority to be
implemented. If msgtype has the value 0, the first available message in the queue is retrieved. If it's greater
than zero, the first message with the same message type is retrieved. If it's less than zero, the first message

Message Queue Functions

425

which has a type the same as or less than the absolute value of msgtype is retrieved.

This sounds more complicated than it actually is in practice. If you simply want to retrieve messages in the
order in which they were sent, set msgtype to 0. If you want to retrieve only messages with a specific message
type, set msgtype equal to that value. If you want to receive messages with a type of n or smaller, set msgtype
to −n.

The fifth parameter, msgflg, controls what happens when no message of the appropriate type is waiting to be
received. If the IPC_NOWAIT flag in msgflg is set, the call will return immediately with a return value of −1.
If the IPC_NOWAIT flag of msgflg is clear, the process will be suspended, waiting for an appropriate type of
message to arrive.

On success, msgrcv returns the number of bytes placed in the receive buffer, the message is copied into the
user allocated buffer pointed to by msg_ptr, and the data is deleted from the message queue. It returns −1 on
error.

msgctl

The final message queue function is msgctl, which is very similar to that of the control function for shared
memory.

int msgctl(int msqid, int command, struct msqid_ds *buf);

The msqid_ds structure has at least the following members:

struct msqid_ds {
 uid_t msg_perm.uid;
 uid_t msg_perm.gid
 mode_t msg_perm.mode;
}

The first parameter, msqid, is the identifier returned from msgget.

The second parameter, command, is the action to take. This can take three values.

Command Description

IPC_STAT Sets the data in the msqid_ds structure to reflect the values associated with the
message queue.

IPC_SET If the process has permission to do so, this sets the values associated with the
message queue to those provided in the msqid_ds data structure.

IPC_RMID Deletes the message queue.
0 is returned on success, −1 on failure. If a message queue is deleted while a process is waiting in a msgsnd or
msgrcv function, the send or receive function will fail.

Now that we've seen the definitions for message queues, we can see how they work in practice. As before,
we'll write two programs, one, msg1.c, to receive and one, msg2.c, to send. We'll allow either program to
create the message queue, but use the receiver to delete it after it receives the last message.

Message Queue Functions

426

Try It Out − Message Queues

Here's the receiver program:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

struct my_msg_st {
 long int my_msg_type;
 char some_text[BUFSIZ];
};

int main()
{
 int running = 1;
 int msgid;
 struct my_msg_st some_data;
 long int msg_to_receive = 0;

1.

First, we set up the message queue:

 msgid = msgget((key_t)1234, 0666 | IPC_CREAT);

 if (msgid == −1) {
 fprintf(stderr, "msgget failed with error: %d\n", errno);
 exit(EXIT_FAILURE);
 }

2.

Then the messages are retrieved from the queue, until an end message is encountered. Lastly, the
message queue is deleted:

 while(running) {
 if (msgrcv(msgid, (void *)&some_data, BUFSIZ,
 msg_to_receive, 0) == −1) {
 fprintf(stderr, "msgrcv failed with error: %d\n", errno);
 exit(EXIT_FAILURE);
 }
 printf("You wrote: %s", some_data.some_text);
 if (strncmp(some_data.some_text, "end", 3) == 0) {
 running = 0;
 }
 }

 if (msgctl(msgid, IPC_RMID, 0) == −1) {
 fprintf(stderr, "msgctl(IPC_RMID) failed\n");
 exit(EXIT_FAILURE);
 }

 exit(EXIT_SUCCESS);
}

3.

The sender program is very similar to msg1.c. In the main set up, delete the msg_to_receive
declaration and replace it with buffer[BUFSIZ], remove the message queue delete and make the
following changes to the running loop. We now have a call to msgsnd to send the entered text to the

4.

Message Queue Functions

427

queue:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define MAX_TEXT 512

struct my_msg_st {
 long int my_msg_type;
 char some_text[MAX_TEXT];
};

int main()
{
 int running = 1;
 struct my_msg_st some_data;
 int msgid;
 char buffer[BUFSIZ];
msgid = msgget((key_t)1234, 0666 | IPC_CREAT);

 if (msgid == −1) {
 fprintf(stderr, "msgget failed with error: %d\n", errno);
 exit(EXIT_FAILURE);
 }

 while(running) {
 printf("Enter some text: ");
 fgets(buffer, BUFSIZ, stdin);
 some_data.my_msg_type = 1;
 strcpy(some_data.some_text, buffer);

 if (msgsnd(msgid, (void *)&some_data, MAX_TEXT, 0) == −1) {
 fprintf(stderr, "msgsnd failed\n");
 exit(EXIT_FAILURE);
 }
 if (strncmp(buffer, "end", 3) == 0) {
 running = 0;
 }
 }

 exit(EXIT_SUCCESS);
}

Unlike in the pipes example, there's no need for the processes to provide their own synchronization method.
This is a significant advantage of messages over pipes.

Providing there's room in the message queue, the sender can create the queue, put some data into the queue
and then exit before the receiver even starts. We'll run the sender, msg2, first. Here's some sample output:

$ msg2
Enter some text: hello
Enter some text: How are you today?

Message Queue Functions

428

Enter some text: end
$ msg1
You wrote: hello
You wrote: How are you today?
You wrote: end
$

How It Works

The sender program creates a message queue with msgget, then adds messages to the queue with msgsnd. The
receiver obtains the message queue identifier with msgget, then receives messages until the special text end is
received. It then tidies up by deleting the message queue with msgctl.

Message Queue Summary

Message queues provide a reasonably easy and efficient way of passing data between two unrelated processes.
They have the advantage over named pipes that the message queue exists independently of both the sending
and receiving processes, which removes some of the difficulties that occur synchronizing the opening and
closing of named pipes.

The Application

We're now in a position to modify our CD database application to use the IPC facilities that we've seen in this
chapter.

Although we could use many different combinations of the three IPC facilities, since the information we need
to pass is quite small, it's sensible to implement the passing of requests and responses directly using message
queues.

If the amounts of data that we needed to pass were large, we could have considered passing the actual data in
shared memory and using either semaphores or messages to pass a 'token' to inform the other process that data
was available in shared memory.

The message queue interface removes the problem that we had in Chapter 11, where we needed both
processes to have the pipe open while data was passed. Using message queues allows one process to put
messages in the queue, even if that process is currently the only user of the queue.

The only significant decision we need to make is how to return answers to clients. A simple choice would be
to have one queue for the server and one queue for each client. If there were a large number of simultaneous
clients, this could cause problems by requiring a large number of message queues. By using the message ID
field in the message, we can allow all the clients to use a single queue and 'address' response messages to
particular client processes by using the client process ID in the message. Each client can then retrieve only
messages addressed to itself, leaving messages for other clients in the queue.

To convert our CD application to use IPC facilities, we only need to replace the file pipe_imp.c. In the
following pages, we'll describe the principal sections of the replacement file, ipc_imp.c.

Try It Out − Revising the Server Functions

First, we include the appropriate headers, declare some message queue keys and define a structure to
hold our message data:

1.

Message Queue Functions

429

#include "cd_data.h"
#include "cliserv.h"

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define SERVER_MQUEUE 1234
#define CLIENT_MQUEUE 4321
struct msg_passed {
 long int msg_key; /* used for client pid */
 message_db_t real_message;
};

Two variables with file scope hold the two queue identifiers returned from the msgget function:

static int serv_qid = −1;
static int cli_qid = −1;

2.

We make the server responsible for creating both message queues:

int server_starting()
{
 #if DEBUG_TRACE
 printf("%d :− server_starting()\n", getpid());
 #endif

 serv_qid = msgget((key_t)SERVER_MQUEUE, 0666 | IPC_CREAT);
 if (serv_qid == −1) return(0);

 cli_qid = msgget((key_t)CLIENT_MQUEUE, 0666 | IPC_CREAT);
 if (cli_qid == −1) return(0);

 return(1);
}

3.

The server is also responsible for tidying up if it ever exits. When the server ends, we set our file
scope variables to illegal values. This will catch any bugs if the server attempts to send messages after
it has called server_ending.

void server_ending()
{
 #if DEBUG_TRACE
 printf("%d :− server_ending()\n", getpid());
 #endif

 (void)msgctl(serv_qid, IPC_RMID, 0);
 (void)msgctl(cli_qid, IPC_RMID, 0);

 serv_qid = −1;
 cli_qid = −1;
}

4.

The server read function reads a message of any type (that is, from any client) from the queue, and
returns the data part (ignoring the type) of the message.

int read_request_from_client(message_db_t *rec_ptr)
{
 struct msg_passed my_msg;
 #if DEBUG_TRACE
 printf("%d :− read_request_from_client()\n", getpid());
 #endif

5.

Message Queue Functions

430

 if (msgrcv(serv_qid, (void *)&my_msg, sizeof(*rec_ptr), 0, 0) == −1) {
 return(0);
 }
 *rec_ptr = my_msg.real_message;
 return(1);
}

Sending a response uses the client process ID that was stored in the request to address the message:

int send_resp_to_client(const message_db_t mess_to_send)
{
 struct msg_passed my_msg;
 #if DEBUG_TRACE
 printf("%d :− send_resp_to_client()\n", getpid());
 #endif

 my_msg.real_message = mess_to_send;
 my_msg.msg_key = mess_to_send.client_pid;

 if (msgsnd(cli_qid, (void *)&my_msg, sizeof(mess_to_send), 0) == −1) {
 return(0);
 }
 return(1);
}

6.

Try It Out − Revising the Client Functions

When the client starts, it needs to find the server and client queue identifiers. The client doesn't create
the queues. This function will fail if the server isn't running, as the message queues won't exist.

int client_starting()
{
 #if DEBUG_TRACE
 printf("%d :− client_starting\n", getpid());
 #endif

 serv_qid = msgget((key_t)SERVER_MQUEUE, 0666);
 if (serv_qid == −1) return(0);

 cli_qid = msgget((key_t)CLIENT_MQUEUE, 0666);
 if (cli_qid == −1) return(0);
 return(1);
}

1.

As with the server, when the client ends, we set our file scope variables to illegal values. This will
catch any bugs where the client attempts to send messages after it has called client_ending.

void client_ending()
{
 #if DEBUG_TRACE
 printf("%d :− client_ending()\n", getpid());
 #endif

 serv_qid = −1;
 cli_qid = −1;
}

2.

To send a message to the server, we store the data inside our structure. Notice that we must set the
message key. As 0 is an illegal value for the key, leaving the key undefined would mean that it takes
an (apparently) random value, so this function could occasionally fail if the value happens to be 0.

3.

Try It Out − Revising the Client Functions

431

int send_mess_to_server(message_db_t mess_to_send)
{
 struct msg_passed my_msg;
 #if DEBUG_TRACE
 printf("%d :− send_mess_to_server()\n", getpid());
 #endif

 my_msg.real_message = mess_to_send;
 my_msg.msg_key = mess_to_send.client_pid;

 if (msgsnd(serv_qid, (void *)&my_msg, sizeof(mess_to_send), 0) == −1) {
 perror("Message send failed");
 return(0);
 }
 return(1);
}

When the client retrieves a message from the server, it uses its process ID to receive only messages
addressed to itself, ignoring any messages for other clients.

int read_resp_from_server(message_db_t *rec_ptr)
{
 struct msg_passed my_msg;
 #if DEBUG_TRACE
 printf("%d :− read_resp_from_server()\n", getpid());
 #endif

 if (msgrcv(cli_qid, (void *)&my_msg, sizeof(*rec_ptr), getpid(), 0) == −1) {
 return(0);
 }
 *rec_ptr = my_msg.real_message;
 return(1);
}

4.

To retain complete compatibility with pipe_imp.c, we need to define an extra four functions. In our
new program, however, the functions are empty. The operations they implemented when using pipes
are simply not needed any more.

int start_resp_to_client(const message_db_t mess_to_send)
{
 return(1);
}

void end_resp_to_client(void)
{
}

int start_resp_from_server(void)
{
 return(1);
}

void end_resp_from_server(void)
{
}

5.

The conversion of the application to message queues illustrates the power of IPC message queues. We require
fewer functions and even those we do need are much smaller than they were previously.

Try It Out − Revising the Client Functions

432

IPC Status Commands

Although they're not required for X/Open compliance, most UNIX systems with semaphores provide a set of
commands that allow command line access to IPC information. These are the ipcs and ipcrm commands,
which are very useful when you're developing programs.

Semaphores

To examine the state of semaphores on the system, use the ipcs −s command. If any semaphores are present,
the output will have the form:

$ ipcs −s
−−− Semaphore Arrays −−−−
semid owner perms nsems status
768 rick 666 1

You can use the ipcrm command to remove any semaphores accidentally left by programs. To delete the
above semaphore, the command (on Linux) would be:

$ ipcrm sem 768

Many UNIX systems would use:

$ ipcrm −s 768

Shared Memory

Like semaphores, many systems provide command line programs for accessing the details of shared memory.
These are ipcs −m and ipcrm shm <id> (or ipcrm −m <id>).

Here's some sample output from ipcs:

$ ipcs −m

−−− Shared Memory Segments −−−−
shmid owner perms bytes nattch status
384 rick 666 4096 2

This shows a single shared memory segment of 4Kb attached by two processes.

The ipcrm shm <id> command allows shared memory to be removed. This is sometimes useful when a
program has failed to tidy up shared memory.

Message Queues

For message queues the commands are ipcs −q and ipcrm msg <id> (or ipcrm −q <id>).

Here's some sample output from ipcs:

$ ipcs −q

−−− Message Queues −−−−

 IPC Status Commands

433

msqid owner perms used−bytes messages
384 rick 666 2048 2

This shows two messages, with a total size of 2048 bytes in a message queue.

The ipcrm msg <id> command allows a message queue to be removed.

Summary

In this chapter, we've looked at the three inter−process communication facilities which first became widely
available in UNIX System V.2: semaphores, shared memory, and message queues. We've seen the
sophisticated facilities that they offer and how, once these functions are understood, they offer a powerful
solution to many inter−process communication requirements.

 Summary

434

Chapter 14: Sockets

Overview

In this chapter, we'll look at yet another method of process communication, but one with a difference. Until
now, all the facilities have relied on shared resources on a single computer system. The resource varies; it can
be file system space, shared physical memory or message queues, but only processes running on a single
machine can use them.

The Berkeley versions of UNIX introduced a new communication tool, the socket interface, which is an
extension of the pipes concept. You can use sockets in much the same way as pipes, but they include
communication across a network of computers. A process on one machine can use sockets to communicate
with a process on another, which allows for client/server systems that are distributed across a network.
Sockets may also be used between processes on the same machine.

Also, the sockets interface has been made available for Microsoft Windows via a publicly available
specification called Windows Sockets, or WinSock. Socket services are provided by a Winsock.dll system
file. Thus Microsoft Windows programs can communicate across a network to UNIX computers and vice
versa providing client/server systems. Although the programming interface for WinSock isn't quite the same
as UNIX sockets, it still has sockets as its basis.

We can't cover the extensive UNIX networking capabilities in a single chapter, so you'll find here a
description of the principal programmatic networking interfaces. These should allow you to write your own
network programs. We'll look at:

How a socket connection operates•
Socket attributes, addresses and communications•
Network information and the Internet Daemon•
Clients and servers•

What is a Socket?

A socket is a communication mechanism that allows client/server systems to be developed either locally, on a
single machine, or across networks. UNIX functions, such as printing, and network utilities, such as rlogin
and ftp, usually use sockets to communicate.

Sockets are created and used in a different way to pipes, because they make a clear distinction between client
and server. The socket mechanism can implement multiple clients attached to a single server.

Socket Connections

We can think of socket connections as telephone calls into a busy building. A call comes into an organization
and is answered by a receptionist who puts the call through to the correct department (the server process) and
then from there to the right person (the server socket). Each incoming call (client) is routed to an appropriate
endpoint and the intervening operators are free to deal with further calls. Before we look at the way socket
connections are established in UNIX systems, we need to understand how they operate for socket applications
that maintain a connection.

435

First of all, a server application creates a socket, which is just an operating system resource assigned to the
server process. As the server creates it using the system call socket, it can't be accessed by other processes.

Next, the server process gives the socket a name. Local sockets are given a file name in the UNIX file system,
often to be found in /tmp or /usr/tmp. For network sockets, it will be a service identifier (port number/access
point) relevant to the particular network to which the clients can connect. A socket is named using the system
call bind. The server process then waits for a client to connect to the named socket. The system call, listen,
creates a queue for incoming connections. The server can accept them using the system call accept.

When the server calls accept, a new socket is created, distinct from the named socket. This new socket is used
solely for communication with this particular client. The named socket remains for further connections from
other clients. If the server is written appropriately, it can take advantage of multiple connections. For a simple
server, further clients wait on the listen queue until the server is ready again.

The client side of a socket−based system is more straightforward. The client creates an unnamed socket by
calling socket. It then calls connect to establish a connection with the server by using the server's named
socket as an address.

Once established, sockets can be used like low−level file descriptors, providing two−way data
communications.

Here's an example of a very simple socket client program, client1.c. It creates an unnamed socket and
connects it to a server socket called server_socket. We'll cover the details of the socket system call a little later
after we've discussed some addressing issues.

Try It Out − A Simple Local Client

Make the necessary includes and set up the variables.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <sys/un.h>
#include <unistd.h>

int main()
{
 int sockfd;
 int len;
 struct sockaddr_un address;
 int result;
 char ch = 'A';

1.

Create a socket for the client.

 sockfd = socket(AF_UNIX, SOCK_STREAM, 0);

2.

Name the socket as agreed with the server.

 address.sun_family = AF_UNIX;
 strcpy(address.sun_path, "server_socket");
 len = sizeof(address);

3.

Now connect our socket to the server's socket.

 result = connect(sockfd, (struct sockaddr *)&address, len);

4.

Try It Out − A Simple Local Client

436

 if(result == −1) {
 perror("oops: client1");
 exit(1);
 }

We can now read and write via sockfd.

 write(sockfd, &ch, 1);
 read(sockfd, &ch, 1);
 printf("char from server = %c\n", ch);
 close(sockfd);
 exit(0);
}

When we run this program it fails, because we haven't yet created the server side named socket. (The
exact error message may differ from system to system.)

$ client1
oops: client1: Connection refused
$

5.

Here's a very simple server program, server1.c, which accepts connections from our client. It creates the
server socket, binds it to a name, creates a listen queue and accepts connections.

Try It Out − A Simple Local Server

Make the necessary includes and set up the variables.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <sys/un.h>
#include <unistd.h>

int main()
{
 int server_sockfd, client_sockfd;
 int server_len, client_len;
 struct sockaddr_un server_address;
 struct sockaddr_un client_address;

1.

Remove any old socket and create an unnamed socket for the server.

 unlink("server_socket");
 server_sockfd = socket(AF_UNIX, SOCK_STREAM, 0);

2.

Name the socket.

 server_address.sun_family = AF_UNIX;
 strcpy(server_address.sun_path, "server_socket");
 server_len = sizeof(server_address);
 bind(server_sockfd, (struct sockaddr *)&server_address, server_len);

3.

Create a connection queue and wait for clients.

 listen(server_sockfd, 5);
 while(1) {
 char ch;

 printf("server waiting\n");

4.

Accept a connection.5.

 Try It Out − A Simple Local Server

437

 client_len = sizeof(client_address);
 client_sockfd = accept(server_sockfd,
 (struct sockaddr *)&client_address, &client_len);

Read and write to client on client_sockfd.

 read(client_sockfd, &ch, 1);
 ch++;
 write(client_sockfd, &ch, 1);
 close(client_sockfd);
 }
}

6.

The server program in this example can serve only one client at a time. It just reads a character from the
client, increments it and writes it back. In more sophisticated systems, where the server has to perform rather
more work on the client's behalf, this wouldn't be acceptable, as other clients would be unable to connect until
the server had finished. We'll see a couple of ways to allow multiple connections later.

When we run the server program, it creates a socket and waits for connections. If we start it in the background
so that it runs independently, we can then start clients in the foreground.

$ server1 &
[1] 1094
$ server waiting

As it waits for connections, the server prints a message. In the above example, the server waits for a file
system socket and we can see it with the normal ls command. Remember that it's polite to remove a socket
when you've finished with it, even if the program terminates abnormally via a signal.

$ ls −lF server_socket
srwxr−xr−x 1 neil users 0 Jan 14 08:28 server_socket=

The device type is socket, shown by the s at the front of the permission and the = at the end. The socket has
been created just as an ordinary file would be, with permissions modified by the current umask. If we use the
ps command, we can see the server running in the background. It's shown sleeping (STAT is S) and therefore
not consuming CPU resources.

$ ps −lx
 F UID PID PPID PRI NI SIZE RSS WCHAN STAT TTY TIME COMMAND
 0 501 1094 116 1 0 34 164 116976 S pp0 0:00 server1

Now, when we run the client program, we are more successful. Since the server socket exists, we can connect
to it and communicate with the server.

$ client1
server waiting
char from server = B
$

The output from the server and the client get mixed on our terminal, but you can see that the server has
received a character from the client, incremented it and returned it. The server then continues and waits for the
next client. If we run several clients together, they will be served in sequence.

$ client1 & client1 & client1 &
[2] 1106
[3] 1107

 Try It Out − A Simple Local Server

438

[4] 1108
server waiting
char from server = B
server waiting
char from server = B
server waiting
char from server = B
server waiting
[2] Done client1
[3]− Done client1
[4]+ Done client1
$

Socket Attributes

To fully understand the system calls used in this example, we need to learn a little about UNIX networking.

A socket is characterized by three attributes, domain, type and protocol. They also have an address that is
used as their name. The formats of the addresses vary depending on the domain, also known as the protocol
family. Each protocol family can use one or more address families to define the address format.

Socket Domains

Domains specify the network medium that the socket communication will use. The most common socket
domain is AF_INET, which refers to Internet networking, used on many UNIX local area networks and, of
course, the Internet itself. The underlying protocol, Internet Protocol (IP), which only has one address
family, imposes a particular way of specifying computers on a network. This is the IP address.

Although names are almost always refer to networked machines on the Internet, these are translated into
lower−level IP addresses. An example IP address is 192.168.1.99. All IP addresses are represented by four
numbers, each less than 256, a so−called dotted quad. When a client connects across a network via sockets, it
needs the IP address of the server computer.

There may be several services available at the server computer. A client can address a particular service on a
networked machine by using an IP port. A port is identified within the system by assigning a unique 16−bit
integer and externally by the combination of IP address and port number. The sockets are communication 'end
points' which must be bound to ports before communication is possible.

Servers wait for connections on particular ports. Well known services have allocated port numbers which are
used by all UNIX machines. These are usually, but not always, numbers less than 1024. Examples are the
printer spooler (515), rlogin (513), ftp (21) and httpd (80). The last of these is the server for the World Wide
Web, (WWW). Usually, ports less than 1024 are reserved for system services and may only be served by
processes with superuser privileges. X/Open defines a constant in netdb.h, IPPORT_RESERVED, to stand for
the highest reserved port number.

Because there is a standard set of port numbers for standard services, computers can easily connect to each
other without having to establish the correct port. Local services may use non−standard port addresses. The
domain in our first example is the UNIX file system domain, AF_UNIX, which can be used by sockets based
on a single computer that perhaps isn't networked. When this is so, the underlying protocol is file input/output
and the addresses are absolute file names. The address which we used for the server socket was server_socket,
which we saw appear in the current directory when we ran the server application.

 Socket Attributes

439

Other domains that might be used include AF_ISO for networks based on ISO standard protocols and AF_NS
for the Xerox Network System. We won't cover these here.

Socket Types

A socket domain may have a number of different ways of communicating, each of which might have
different characteristics. This isn't an issue with AF_UNIX domain sockets, which provide a reliable,
two−way communication path. However, in networked domains, we need to be aware of the characteristics of
the underlying network.

Internet protocols provide two distinct levels of service, streams and datagrams.

The first of these, streams (in some ways similar to standard input/output streams), provide a connection that
is a sequenced and reliable two−way byte stream. Thus data sent is guaranteed not to be lost, duplicated or
re−ordered without an indication that an error has occurred. Large messages are fragmented, transmitted and
re−assembled. This is like a file stream as it accepts large amounts of data and writes it to the low−level disk
in smaller blocks. Stream sockets have predictable behavior.

Stream sockets, specified by the type SOCK_STREAM, are implemented in the AF_INET domain by
TCP/IP connections. They are also the usual type in the AF_UNIX domain. We'll concentrate on
SOCK_STREAM sockets in this chapter, since they are more commonly used in programming network
applications.

Important TCP/IP stands for Transmission Control Protocol/Internet Protocol. IP is the low−level protocol
for packets. It provides routing through the network from one computer to another. TCP provides
sequencing, flow control and retransmission to ensure that large data transfers arrive as they
should.

In contrast, a datagram socket, specified by the type SOCK_DGRAM, doesn't establish and maintain a
connection. There is also a limit on the size of a datagram that can be sent. It's transmitted as a single network
message that may get lost, duplicated or arrive out of sequence.

Datagram sockets are implemented in the AF_INET domain by UDP/IP connections and provide an
unsequenced, unreliable service. However, they are relatively inexpensive in terms of resources, since
network connections need not be maintained. They're fast because there is no associated connection setup
time. UDP stands for User Datagram Protocol.

Datagrams are useful for 'single−shot' inquiries to information services, for providing regular status
information or for performing low priority logging. They have the advantage that the 'death' of a server doesn't
necessarily require a client restart. Because datagram−based servers usually retain no connection information,
they can be stopped and restarted without unduly disturbing their clients.

Socket Protocols

Where the underlying transport mechanism allows for more than one protocol to provide the requested socket
type, you can select a specific protocol for a socket. In this chapter, we'll concentrate on UNIX network and
file system sockets, which don't require you to choose a protocol other than the default.

Socket Attributes

440

Creating a Socket

The socket system call creates a socket and returns a descriptor that can be used for accessing the socket.

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

The socket created is one end−point of a communication channel. The domain parameter specifies the
address family, the type parameter specifies the type of communication to be used with this socket and
protocol specifies the protocol to be employed.

Domains include:

AF_UNIX UNIX internal (file system sockets)

AF_INET ARPA Internet protocols (UNIX network sockets)

AF_ISO ISO standard protocols

AF_NS Xerox Network Systems protocols

AF_IPX Novell IPX protocol

AF_APPLETALK Appletalk DDS
The most common socket domains are AF_UNIX, which is used for local sockets implemented via the UNIX
file system, and AF_INET, which is used for UNIX network sockets. The AF_INET sockets may be used by
programs communicating across a TCP/IP network including the Internet. The Microsoft Windows Winsock
interface also provides access to this socket domain.

The socket parameter type specifies the communication characteristics to be used for the new socket. Possible
values include SOCK_STREAM and SOCK_DGRAM.

SOCK_STREAM is a sequenced, reliable, connection−based, two−way byte stream. For an AF_INET domain
socket, this is provided by default by a TCP connection that is established between the two end−points of the
stream socket when it's connected. Data may be passed in both directions along the socket connection. The
TCP protocols include facilities to fragment and re−assemble long messages and to retransmit any parts that
may be lost in the network.

SOCK_DGRAM is a datagram service. You can use this socket to send messages of a fixed (usually small)
maximum size, but there's no guarantee that the message will be delivered or that messages won't be
re−ordered in the network. For AF_INET sockets, this type of communication is provided by UDP datagrams.

The protocol used for communication is usually determined by the socket type and domain. There is normally
no choice. The protocol parameter is used where there is a choice. 0 selects the default protocol, which we'll
use in all our examples.

The socket system call returns a descriptor that is, in many ways, similar to a low−level file descriptor. When
the socket has been connected to another end−point socket, you may use the read and write system calls with
the descriptor to send and receive data on the socket. The close system call is used to end a socket connection.

 Creating a Socket

441

Socket Addresses

Each socket domain requires its own address format. For an AF_UNIX socket, the address is described by a
structure, sockaddr_un, defined in the include file, sys/un.h.

struct sockaddr_un {
 sa_family_t sun_family; /* AF_UNIX */
 char sun_path[]; /* pathname */
};

So that addresses of different types may be passed to socket handling system calls, each address format is
described by a similar structure that begins with a field (in this case, sun_family) that specifies the address
type (the socket domain). In the AF_UNIX domain, the address is specified by a file name in the sun_path
field of the structure.

On current Linux systems, the type, sa_family_t, defined by X/Open as being declared in sys/un.h is taken to
be a short. Also, the pathname specified in sun_path is limited in size (Linux specifies 108 characters, others
may use a manifest constant such as UNIX_MAX_PATH). Because address structures may vary in size, many
socket calls require or provide as an output a length to be used for copying the particular address structure.

In the AF_INET domain, the address is specified using a structure called sockaddr_in, defined in netinet/in.h,
which contains at least these members.

struct sockaddr_in {
 short int sin_family; /* AF_INET */
 unsigned short int sin_port; /* Port number */
 struct in_addr sin_addr; /* Internet address */
};

The IP address structure, in_addr, is defined as:

struct in_addr {
 unsigned long int s_addr;
};

The four bytes of an IP address constitute a single 32−bit value. An AF_INET socket is fully described by its
domain, IP address and port number. From an application's point of view, all sockets act like file descriptors
and are addressed by a unique integer value.

Naming a Socket

To make a socket (as created by a call to socket) available for use by other processes, a server program needs
to give the socket a name. Thus AF_UNIX sockets are associated with a file system path name, as we saw in
our server1 example. AF_INET sockets areassociated with an IP port number.

#include <sys/socket.h>

int bind(int socket, const struct sockaddr *address, size_t address_len);

The bind system call assigns the address specified in the parameter, address, to the unnamed socket
associated with the file descriptor socket. The length of the address structure is passed as address_len.

 Socket Addresses

442

The length and format of the address depend on the address family. A particular address structure pointer will
need to be cast to the generic address type (struct sockaddr *) in the call to bind.

On successful completion, bind returns 0. If it fails, it returns −1 and set errno to one of the following.

EBADF The file descriptor is invalid.

ENOTSOCK The file descriptor doesn't refer to a socket.

EINVAL The file descriptor refers to an already named socket.

EADDRNOTAVAIL The address is unavailable.

EADDRINUSE The address has a socket bound to it already.
There are some more values for AF_UNIX sockets.

EACCESS Can't create the file system name due to permissions.

ENOTDIR,ENAMETOOLONG Indicates a poor choice of filename.

Creating a Socket Queue

To accept incoming connections on a socket, a server program must create a queue to store pending requests.
It does this using the listen system call.

#include <sys/socket.h>

int listen(int socket, int backlog);

A UNIX system may limit the maximum number of pending connections that may be held in a queue. Subject
to this maximum, listen sets the queue length to backlog. Incoming connections up to this queue length are
held pending on the socket, further connections will be refused and the client's connection will fail. This
mechanism is provided by listen to allow incoming connections to be held pending while a server program is
busy dealing with a previous client. A value of 5 for backlog is very common.

The listen function will return 0 on success, or −1 on error. Errors include EBADF, EINVAL and
ENOTSOCK, as for the bind system call.

Accepting Connections

Once a server program has created and named a socket, it can wait for connections to be made to the socket
by using the accept system call.

#include <sys/socket.h>

int accept(int socket, struct sockaddr *address, size_t *address_len);

The accept system call returns when a client program attempts to connect to the socket specified by the
parameter socket. The client is the first pending connection from that socket's queue. The accept function
creates a new socket to communicate with the client and returns its descriptor. The new socket will have the
same type as the server listen socket.

The socket must have previously been named by a call to bind and had a connection queue allocated by listen.
The address of the calling client will be placed in the sockaddr structure pointed to by address. A null pointer
may be used here if the client address isn't of interest.

 Creating a Socket Queue

443

The parameter address_len specifies the length of the client structure. If the client address is longer than this
value, it will be truncated. Before calling accept address_len must be set to the expected address length. On
return, address_len will be set to the actual length of the calling client's address structure.

If there are no connections pending on the socket's queue, accept will block (so that the program won't
continue) until a client makes a connection. You may change this behavior by using the O_NONBLOCK flag
on the socket file descriptor, using the fcntl function like this:

int flags = fcntl(socket, F_GETFL, 0);

fcntl(socket, F_SETFL, O_NONBLOCK|flags);

The accept function returns a new socket file descriptor when there is a client connection pending or −1 on
error. Possible errors are similar to those for bind and listen, with the addition of EWOULDBLOCK, where
O_NONBLOCK has been specified and there are no pending connections. The error, EINTR, will occur if the
process is interrupted while blocked in accept.

Requesting Connections

Client programs connect to servers by establishing a connection between an unnamed socket and the server
listen socket. They do this by calling connect.

#include <sys/socket.h>

int connect(int socket, const struct sockaddr *address, size_t address_len);

The socket specified by the parameter, socket, is connected to the server socket specified by the parameter,
address, which is of length address_len. The socket must be a valid file descriptor obtained by a call to socket.

If it succeeds, connect returns 0, and −1 on error. Possible errors this time include:

EBADF An invalid file descriptor was passed in socket.

EALREADY A connection is already in progress for this socket.

ETIMEDOUT A connection time has occurred.

ECONNREFUSED The requested connection is refused by the server.
If the connection can't be set up immediately, connect will block for an unspecified timeout period. Once this
timeout has expired, the connection will be aborted and connect will fail. However, if the call to connect is
interrupted by a signal that is handled, the connect call will fail (with errno set to EINTR), but the connection
attempt won't be aborted, but rather set up asynchronously.

As with accept, the blocking nature of connect may be altered by setting the O_NONBLOCK flag on the file
descriptor. In this case, if the connection can't be made immediately, connect will fail with errno set to
EINPROGRESS and the connection will be made asynchronously.

While asynchronous connections can be tricky to handle, you can use a call to select on the socket file
descriptor to indicate that the socket is ready for writing. We'll cover select later in this chapter.

 Requesting Connections

444

Closing a Socket

You can terminate a socket connection at the server and client by calling close, just as you would for
low−level file descriptors. You should always close the socket at both ends. For the server, you should do this
when read returns zero, but the close call could block if the socket has untransmitted data, is of a
connection−oriented type and has the SOCK_LINGER option set. We'll learn about setting socket options
later in the chapter.

Socket Communications

Now that we have covered the basic system calls associated with sockets, we can take a closer look at the
example programs.

We'll try to convert them to use a network socket rather than a file system socket. The file system socket has
the disadvantage that, unless the author uses an absolute path name, it's created in the server program's current
directory. To make it more generally useful, we need to create it in a globally accessible directory (such as
/tmp) that is agreed between the server and its clients. For network sockets, we need only choose an unused
port number.

For our example, we'll choose port number 9734. This is an arbitrary choice that avoids the standard services.
We can't use port numbers below 1024 as they are reserved for system use. Other port numbers are often
listed, with the services provided on them, in the system file /etc/services. When you're writing socket−based
applications, always choose a port number not listed in this configuration file.

We'll run our client and server across a network, but network sockets are not only useful on a network. Any
machine with an Internet connection (even a modem dial−up) can use network sockets to communicate with
others. You can even use a network−based program on an a stand−alone UNIX computer, because a UNIX
computer is usually configured to use a loopback network that contains only itself. For illustration purposes,
we'll use this loopback network, which can also be useful for debugging network applications as it eliminates
any external network problems.

The loopback network consists of a single computer, conventionally called localhost, with a standard IP
address of 127.0.0.1. This is the local machine. You'll find its address listed in the network hosts file,
/etc/hosts, with the names and addresses of other hosts on shared networks.

Each network with which a computer communicates has a hardware interface associated with it. A computer
may have different network names on each network and certainly will have different IP addresses. For
example, my machine, tilde, has three network interfaces and therefore three addresses. These are recorded in
/etc/hosts as:

127.0.0.1 localhost # Loopback
192.168.1.1 tilde.localnet # Local, private Ethernet
158.152.X.X tilde.demon.co.uk # Modem dial−up

The first is the simple loopback network, the second a local area network accessed via an Ethernet adapter and
the third is the modem link to an Internet service provider. You can write a network socket−based program to
communicate with servers accessed via any of these interfaces without alteration.

Here's a modified client program, client2.c, to connect to a network socket via the loopback network. It
contains a subtle bug concerned with hardware dependency, but we'll discuss that later.

 Closing a Socket

445

Try It Out − Network Client

Make the necessary includes and set up the variables.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>

int main()
{
 int sockfd;
 int len;
 struct sockaddr_in address;
 int result;
 char ch = 'A';

1.

Create a socket for the client.

 sockfd = socket(AF_INET, SOCK_STREAM, 0);

2.

Name the socket, as agreed with the server:

 address.sin_family = AF_INET;
 address.sin_addr.s_addr = inet_addr("127.0.0.1");
 address.sin_port = 9734;
 len = sizeof(address);

The rest of this program is the same as client1.c, from earlier in this chapter. When we run this
version, it fails to connect because there isn't a server running on port 9734 on this machine.

$ client2
oops: client2: Connection refused
$

3.

How It Works

The client program used the sockaddr_in structure from the include file netinet/in.h to specify an AF_INET
address. It tries to connect to a server on the host with IP address, 127.0.0.1. It uses a function, inet_addr, to
convert the text representation of an IP address into a form suitable for socket addressing. The manual page
for inet has more information on other address translation functions.

We also need to modify the server program to wait for connections on our chosen port number. Here's a
modified server, server2.c.

Try It Out − Network Server

Make the necessary includes and set up the variables.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>

1.

Try It Out − Network Client

446

int main()
{
 int server_sockfd, client_sockfd;
 int server_len, client_len;
 struct sockaddr_in server_address;
 struct sockaddr_in client_address;

Create an unnamed socket for the server.

 server_sockfd = socket(AF_INET, SOCK_STREAM, 0);

2.

Name the socket.

 server_address.sin_family = AF_INET;
 server_address.sin_addr.s_addr = inet_addr("127.0.0.1");
 server_address.sin_port = 9734;
 server_len = sizeof(server_address);
 bind(server_sockfd, (struct sockaddr *)&server_address, server_len);

3.

From here on, the listing follows server1.c exactly.

How It Works

The server program creates an AF_INET domain socket and arranges to accept connections on it. The socket
is bound to our chosen port. The address specified determines which computers are allowed to connect. By
specifying the loopback address, as in the client program, we are restricting communications to the local
machine.

If we want to allow the server to communicate with remote clients, we must specify a set of IP addresses that
we are willing to allow. We can use the special value, INADDR_ANY, to specify that we'll accept
connections from all of the interfaces our computer may have. If we chose to, we could distinguish between
different network interfaces to separate, for example, internal Local Area and external Wide Area Network
connections. INADDR_ANY is a 32−bit integer value that we could use in the sin_addr.s_addr field of the
address structure. However, we have a problem to resolve first.

Host and Network Byte Ordering

When I run these versions of the server and client programs on my computer, an Intel processor−based Linux
machine, I can see the network connections by using the netstat command. This command will also be
available on most UNIX systems configured for networking. It shows the client/server connection waiting to
close down. The connection closes down after a small timeout. (Again, the exact output may vary between
different versions of Linux.)

$ server2 &
[4] 1225
$ server waiting
client2
server waiting
char from server = B
$ netstat
Active Internet connections
Proto Recv−Q Send−Q Local Address Foreign Address (State) User
tcp 1 0 localhost:1574 localhost:1174 TIME_WAIT root

How It Works

447

Important Before you try out further examples in this book, be sure to terminate running example server
programs as they will compete to accept connections from clients and you'll see confusing
results. You can kill them all with

kill −1 <processid.>
You can see the port numbers that have been assigned to the connection between the server and the client.
The Local Address shows the server and the Foreign Address is the remote client. (Even though it's on the
same machine, it's still connected over a network). To ensure that all sockets are distinct, these client ports are
typically different to the server listen socket and unique to the computer.

However, the local address (the server socket) is given as 1574, but we chose the port 9734. Why are they
different? The answer is that port numbers and addresses are communicated over socket interfaces as binary
numbers. Different computers use different byte ordering for integers. For example, an Intel processor stores
the 32−bit integer as four consecutive bytes in memory in the order 1−2−3−4, where 1 is the most significant
byte. Motorola processors would store the integer in the byte order 4−3−2−1. If the memory used for integers
is simply copied byte−by−byte, the two different computers would not be able to agree on integer values.

To enable computers of different types to agree on values for multibyte integers transmitted over a network,
you need to define a network ordering. Client and server programs must convert their internal integer
representation to the network ordering before transmission. They do this by using functions defined in
netinet/in.h.

These are:

#include <netinet/in.h>

unsigned long int htonl(unsigned long int hostlong);
unsigned short int htons(unsigned short int hostshort);
unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned short int netshort);

These functions convert 16−bit and 32−bit integers between native host format and the standard network
ordering. Their names are abbreviations for conversions. For example, 'host to network, long' (htonl) and 'host
to network, short' (htons). For computers where the native ordering is the same as network ordering, these
represent null operations.

To ensure correct byte ordering of the 16−bit port number, our server and client need to apply these functions
to the port address. The change to server3.c is:

 server_address.sin_addr.s_addr = htonl(INADDR_ANY);
 server_address.sin_port = htons(9734);

We don't need to convert the function call, inet_addr("127.0.0.1"), because inet_addr is defined to produce a
result in network order. The change to client3.c is:

 address.sin_port = htons(9734);

The server has also been changed to allow connections from any IP address by using INADDR_ANY.

Now, when we run server3 and client3, we see the correct port being used for the local connection.

$ netstat
Active Internet connections

How It Works

448

Proto Recv−Q Send−Q Local Address Foreign Address (State) User
tcp 1 0 localhost:9734 localhost:1175 TIME_WAIT root

Remember that if you're using a computer that has the same native and network byte ordering, you won't see
any difference. It's still important to always use the conversion functions to allow correct operation with
clients and servers on computers with a different architecture.

Network Information

So far, our client and server programs have had addresses and port numbers compiled into them. For a more
general server and client program, we can use network information functions to determine addresses and ports
to use.

If we have permission to do so, we can add our server to the list of known services in /etc/services, which
assigns a name to port numbers so that clients can use symbolic services rather than numbers.

Similarly, given a computer's name, we can determine the IP address by calling host database functions that
resolve addresses for us. They do this by consulting network configuration files, such as /etc/hosts, or network
information services, such as NIS (Network Information Services, formerly known as Yellow Pages) and
DNS (Domain Name Service).

Host database functions are declared in the interface header file netdb.h.

#include <netdb.h>

struct hostent *gethostbyaddr(const void *addr, size_t len, int type);
struct hostent *gethostbyname(const char *name);

The structure returned by these functions must contain at least these members.

struct hostent {
 char *h_name; /* name of the host */
 char **h_aliases; /* list of aliases (nicknames) */
 int h_addrtype; /* address type */
 int h_length; /* length in bytes of the address */
 char **h_addr_list /* list of address (network order) */
};

If there is no database entry for the specified host or address, the information functions return a null pointer.

Similarly, information concerning services and associated port numbers is available through some service
information functions.

#include <netdb.h>

struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);

The proto parameter specifies the protocol to be used to connect to the service, either "tcp" for
SOCK_STREAM TCP connections or "udp" for SOCK_DGRAM UDP datagrams.

The structure servent contains at least these members:

 Network Information

449

struct servent {
 char *s_name; /* name of the service */
 char **s_aliases; /* list of aliases (alternative names) */
 int s_port; /* The IP port number */
 char *s_proto; /* The service type, usually "tcp" or "udp" */
};

We can gather host database information about a computer by calling gethostbyname and printing the results.
Note that the address list needs to be cast to the appropriate address type and converted from network ordering
to a printable string, using the inet_ntoa conversion, which has the following definition:

#include <arpa/inet.h>

char *inet_ntoa(struct in_addr in)

The function converts an Internet host address to a string in dotted quad format. It returns −1 on error, but
POSIX doesn't define any errors. The other new function we use is gethostname.

#include <unistd.h>

int gethostname(char *name, int namelength);

This function writes the name of the current host into the string given by name. The hostname will be
null−terminated. The argument namelength indicates the length of the string name and the returned hostname
will be truncated if it's too long to fit. gethostname returns 0 on success and −1 on error, but again no errors
are defined in POSIX.

This program, getname.c, gets information about a host computer.

Try It Out − Network Information

As usual, make the appropriate includes and declare the variables.

#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <netdb.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
 char *host, **names, **addrs;
 struct hostent *hostinfo;

1.

Set the host to the argument supplied with the getname call, or by default to the user's machine.

 if(argc == 1) {
 char myname[256];
 gethostname(myname, 255);
 host = myname;
 }
 else
 host = argv[1];

2.

Call gethostbyname and report an error if no information is found.

 hostinfo = gethostbyname(host);
 if(!hostinfo) {

3.

 Try It Out − Network Information

450

 fprintf(stderr, "cannot get info for host: %s\n", host);
 exit(1);
 }

Display the hostname and any aliases that it may have.

 printf("results for host %s:\n", host);
 printf("Name: %s\n", hostinfo −> h_name);
 printf("Aliases:");
 names = hostinfo −> h_aliases;
 while(*names) {
 printf(" %s", *names);
 names++;
 }
 printf("\n");

4.

Warn and exit if the host in question isn't an IP host.

 if(hostinfo −> h_addrtype != AF_INET) {
 fprintf(stderr, "not an IP host!\n");
 exit(1);
 }

5.

Otherwise, display the IP address(es).

 addrs = hostinfo −> h_addr_list;
 while(*addrs) {
 printf(" %s", inet_ntoa(*(struct in_addr *)*addrs));
 addrs++;
 }
 printf("\n");
 exit(0);
}

6.

Alternatively, you could use the function, gethostbyaddr, to determine which host has a given IP address.
You might use this in a server to find out where the client is calling from.

How It Works

The getname program calls gethostbyname to extract the host information from the host database. It prints out
the hostname, its aliases (other names the computer is known by) and the IP addresses that the host uses on its
network interfaces. When I ran the example, specifying tilde gave the two interfaces, Ethernet and modem.

$ getname tilde
results for host tilde:
Name: tilde.demon.co.uk
Aliases: tilde
192.9.200.4 158.152.38.110

When we use the hostname, localhost, the loopback network is given.

$ getname localhost
results for host localhost:
Name: localhost
Aliases:
127.0.0.1

We could now modify our client to connect to any named host. Instead of connecting to our example server,
we'll connect to a standard service so that we can also demonstrate extracting the port number.

How It Works

451

Most UNIX systems make their system time and date available as a standard service called daytime. Clients
may connect to this service to discover the server's idea of the current time and date. Here's a client program,
getdate.c, that does just that.

Try It Out − Connecting to a Standard Service

Start with the usual includes and declarations.

#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <stdio.h>
#include <unistd.h>

int main(int argc, char *argv[])
{
 char *host;
 int sockfd;
 int len, result;
 struct sockaddr_in address;
 struct hostent *hostinfo;
 struct servent *servinfo;
 char buffer[128];

 if(argc == 1)
 host = "localhost";
 else
 host = argv[1];

1.

Find the host address and report an error if none is found.

 hostinfo = gethostbyname(host);
 if(!hostinfo) {
 fprintf(stderr, "no host: %s\n", host);
 exit(1);
 }

2.

Check that the daytime service exists on the host.

 servinfo = getservbyname("daytime", "tcp");
 if(!servinfo) {
 fprintf(stderr,"no daytime service\n");
 exit(1);
 }
 printf("daytime port is %d\n", ntohs(servinfo −> s_port));

3.

Create a socket.

 sockfd = socket(AF_INET, SOCK_STREAM, 0);

4.

Construct the address for use with connect...

 address.sin_family = AF_INET;
 address.sin_port = servinfo −> s_port;
 address.sin_addr = *(struct in_addr *)*hostinfo −> h_addr_list;
 len = sizeof(address);

5.

then connect and get the information.

 result = connect(sockfd, (struct sockaddr *)&address, len);
 if(result == −1) {
 perror("oops: getdate");

6.

 Try It Out − Connecting to a Standard Service

452

 exit(1);
 }

 result = read(sockfd, buffer, sizeof(buffer));
 buffer[result] = '\0';
 printf("read %d bytes: %s", result, buffer);

 close(sockfd);
 exit(0);
}

We can use getdate to get the time of day from any known host.

$ getdate tilde
daytime port is 13
read 26 bytes: Sun Aug 1 11:29:53 1999
$

If you receive an error message such as

oops: getdate: Connection refused

It may be because the computer you are connecting to has not enabled the daytime service. This is the default
behavior in recent Linux systems. In the next section we will see how to enable this and other services.

How It Works

When we run this program, we can specify a host to connect to. The daytime service port number is
determined from the network database function getservbyname, which returns information about network
services in a similar way to host information. The program getdate tries to connect to the address given first in
the list of alternate addresses for the specified host. If successful, it reads the information returned by the
daytime service, a character string representing the UNIX time and date.

The Internet Daemon

UNIX systems providing a number of network services often do so by way of a super−server. This program
(the Internet Daemon, inetd) listens for connections on many port addresses at once. When a client connects to
a service, the inetd program runs the appropriate server. This cuts down on the need for servers to be running
all the time; they can be started by inetd as required. Here's an extract from the inetd configuration file,
/etc/inetd.conf, that is used to decide which servers to run:

#
<service_name> <sock_type> <proto> <flags> <user> <server_path> <args>
#
Echo, discard, daytime, and chargen are used primarily for testing.
#
daytime stream tcp nowait root internal
daytime dgram udp wait root internal
#
These are standard services.
#
ftp stream tcp nowait root /usr/sbin/tcpd /usr/sbin/wu.ftpd
telnet stream tcp nowait root /usr/sbin/tcpd /usr/sbin/in.telnetd
#
End of inetd.conf.

How It Works

453

The daytime service that our getdate program connects to is actually handled by inetd itself (marked as
internal) and is available using both SOCK_STREAM (tcp) and SOCK_DGRAM (udp) sockets.

The file transfer service, ftp, is available only via SOCK_STREAM sockets and is provided by an external
program, in this case wu.ftpd, which inetd will start when a client connects to the ftp port.

You can change the services provided via inetd by editing /etc/inetd.conf (a # at the start of a line indicates
that the line is a comment) and restarting the inetd process. This can be done by sending it a hangup signal
using kill. To make this easier some systems are configured so that inetd writes its process id to a file (on
RedHat 6.0 it is /var/run/inetd.pid). Alternatively killall can be used:

killall HUP inetd

Socket Options

There are many options that you can use to control the behavior of socket connections too many to detail
here. The setsockopt function is used to manipulate options.

#include <sys/socket.h>

int setsockopt(int socket, int level, int option_name,
 const void *option_value, size_t option_len);

You can set options at various levels in the protocol hierarchy. To set options at the socket level, you must set
level to SOL_SOCKET. To set options at the underlying protocol level (TCP, UDP, etc.), set level to the
number of the protocol (from either the header file netinet/in.h or as obtained by the function
getprotobyname).

The option_name parameter selects an option to set, the option_value is an arbitrary value of length
option_len bytes passed unchanged to the underlying protocol handler.

Socket level options defined in sys/socket.h include:

SO_DEBUG Turn on debugging information.

SO_KEEPALIVE Keep connections active with periodic transmissions.

SO_LINGER Complete transmission before close.
SO_DEBUG and SO_KEEPALIVE take an integer option_value used to set the option on (1) or off (0).
SO_LINGER requires a linger structure defined in sys/socket.h to define the state of the option and the linger
interval.

setsockopt returns 0 if successful, −1 otherwise. The manual pages describe further options and errors.

Multiple Clients

So far in this chapter, we've seen how we can use sockets to implement client/server systems, both locally
and across networks. Once established, socket connections behave like low−level open file descriptors and in
many ways like bi−directional pipes.

We might need to consider the case of multiple, simultaneous clients connecting to a server. We've seen that
when a server program accepts a new connection from a client, a new socket is created and the original listen

 Socket Options

454

socket remains available for further connections. If the server doesn't immediately accept further connections,
they will be held pending in a queue.

The fact that the original socket is still available and that sockets behave as file descriptors gives us a method
of serving multiple clients at the same time. If the server calls fork to create a second copy of itself, the open
socket will be inherited by the new child process. It can then communicate with the connecting client while
the main server continues to accept further client connections. This is, in fact, a fairly easy change to make to
our server program, which is shown here.

Since we're creating child processes but not waiting for them to complete, we must arrange for the server to
ignore SIG_CHLD signals to prevent zombie processes.

Try It Out − A Server for Multiple Clients

This program, server4.c, begins in similar vein to our last server, with the notable addition of an
include for the signal.h header file. The variables and the procedure of creating and naming a socket
are the same.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>
#include <signal.h>
#include <unistd.h>

int main()
{
 int server_sockfd, client_sockfd;
 int server_len, client_len;
 struct sockaddr_in server_address;
 struct sockaddr_in client_address;

 server_sockfd = socket(AF_INET, SOCK_STREAM, 0);

 server_address.sin_family = AF_INET;
 server_address.sin_addr.s_addr = htonl(INADDR_ANY);
 server_address.sin_port = htons(9734);
 server_len = sizeof(server_address);
 bind(server_sockfd, (struct sockaddr *)&server_address, server_len);

1.

Create a connection queue, ignore child exit details and wait for clients.

 listen(server_sockfd, 5);

 signal(SIGCHLD, SIG_IGN);

 while(1) {
 char ch;

 printf("server waiting\n");

2.

Accept connection.

 client_len = sizeof(client_address);
 client_sockfd = accept(server_sockfd,
 (struct sockaddr *)&client_address, &client_len);

3.

Fork to create a process for this client and perform a test to see whether we're the parent or the child.4.

Try It Out − A Server for Multiple Clients

455

 if(fork() == 0) {

If we're the child, we can now read/write to the client on client_sockfd. The five second delay is just
for this demonstration.

 read(client_sockfd, &ch, 1);
 sleep(5);
 ch++;
 write(client_sockfd, &ch, 1);
 close(client_sockfd);
 exit(0);
 }

5.

Otherwise, we must be the parent and our work for this client is finished.

 else {
 close(client_sockfd);
 }
 }
}

6.

We have inserted a five second delay in the processing of the client's request to simulate server calculation or
database access. If we had done this with the previous server, each run of client3 would have taken five
seconds. With the new server, we can handle multiple client3 programs concurrently, with an overall elapsed
time of just over five seconds.

$ server4&
[7] 1571
$server waiting
client3 & client3 & client3 & ps −ax
[8] 1572
[9] 1573
[10] 1574
server waiting
server waiting
server waiting
PID TTY STAT TIME COMMAND
 1557 pp0 S 0:00 server4
 1572 pp0 S 0:00 client3
 1573 pp0 S 0:00 client3
 1574 pp0 S 0:00 client3
 1575 pp0 R 0:00 ps −ax
 1576 pp0 S 0:00 server4
 1577 pp0 S 0:00 server4
 1578 pp0 S 0:00 server4
$ char from server = B
char from server = B
char from server = B
ps −ax
PID TTY STAT TIME COMMAND
 1557 pp0 S 0:00 server4
 1580 pp0 R 0:00 ps −ax
[8] Done client3
[9]− Done client3
[10]+ Done client3
$

Try It Out − A Server for Multiple Clients

456

How It Works

The server program now creates a new child process to handle each client, so we see several server waiting
messages as the main program continues to wait for new connections. The ps output (edited here) shows the
main server4 process, PID 1557, waiting for new clients while the three client3 processes are being served by
three children of the server. After a five second pause, all of the clients get their results and finish. The child
server processes exit to leave just the main server alone again.

The server program uses fork to handle multiple clients. In a database application, this may not be the best
solution, since the server program may be quite large and there is still the problem of coordinating database
accesses from multiple server copies. In fact, what we really need is a way for a single server to handle
multiple clients without blocking, waiting on client requests to arrive. The solution to this problem involves
handling multiple open file descriptors at once and isn't limited to socket applications. Enter select.

select

Quite often when you're writing UNIX applications you may need to examine the state of a number of inputs
to determine the next action to take. For example, a communication program, such as a terminal emulator,
needs to read the keyboard and the serial port effectively at the same time. In a single−user system, it might be
acceptable to run in a 'busy wait' loop, repeatedly scanning the input for data and reading it if it arrives. This
behavior is expensive in terms of CPU time.

The select system call allows a program to wait for input to arrive (or output to complete) on a number of
low−level file descriptors at once. This means that the terminal emulator program can block until there is
something to do. Similarly, a server can deal with multiple clients by waiting for a request on many open
sockets at the same time.

The select function operates on data structures, fd_set, that are sets of open file descriptors. A number of
macros are defined for manipulating these sets:

#include <sys/types.h>
#include <sys/time.h>

void FD_ZERO(fd_set *fdset);
void FD_CLR(int fd, fd_set *fdset);
void FD_SET(int fd, fd_set *fdset);
int FD_ISSET(int fd, fd_set *fdset);

As suggested by their names, FD_ZERO initializes an fd_set to the empty set, FD_SET and FD_CLR set and
clear elements of the set corresponding to the file descriptor passed as fd and FD_ISSET returns non−zero if
the file descriptor referred to by fd is an element of the fd_set pointed to by fdset. The maximum number of
file descriptors in an fd_set structure is given by the constant FD_SETSIZE.

The select function can also use a timeout value to prevent indefinite blocking. The timeout value is given
using a struct timeval. This structure, defined in sys/time.h, has the following members:

struct timeval {
 time_t tv_sec; /* seconds */
 long tv_usec; /* microseconds */
}

The time_t type is defined in sys/types.h as an integral type.

How It Works

457

The select system call has the following prototype:

#include <sys/types.h>
#include <sys/time.h>

int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *errorfds, struct timeval *timeout);

A call to select is used to test whether any one of a set of file descriptors is ready for reading or writing, or has
an error condition pending and optionally block until one is ready.

The nfds argument specifies the number of file descriptors to be tested and descriptors from 0 to nfds−1 are
considered. Each of the three descriptor sets may be a null pointer, in which case the associated test isn't
carried out.

The select function will return if any of the descriptors in the readfds set are ready for reading, if any in the
writefds set are ready for writing, or any in errorfds have an error condition. If none of these conditions apply,
select will return after an interval specified by timeout. If the timeout parameter is a null pointer and there is
no activity on the sockets, then the call will block forever.

When select returns, the descriptor sets will have been modified to indicate which descriptors are ready for
reading or writing or have errors. You should use FD_ISSET to test them, to determine the descriptor(s)
needing attention. You can modify the timeout value to indicate the time remaining to the next timeout, but
this behavior isn't specified by X/Open. In the case of a timeout occurring, all descriptor sets will be empty.

The select call returns the total number of descriptors in the modified sets. It returns −1 on failure, setting
errno to describe the error. Possible errors are EBADF for invalid descriptors, EINTR for return due to
interrupt and EINVAL for bad values for nfds or timeout.

Important Although Linux modifies the structure pointed to by timeout to indicate the time remaining, most
versions of UNIX do not. Much existing code that uses the select function initializes a timeval
structure and then continues to use it without ever re−initializing the contents. On Linux, this
code may operate incorrectly, since Linux is modifying the timeval structure every time a
timeout occurs. If you're writing or porting, code that uses the select function, you should watch
out for this difference and always re−initialize the timeout. Note that both behaviors are correct;
they're just different!

Here is a program, select.c, to illustrate the use of select. We'll see and discuss a more complete example a
little later. This program reads the keyboard (standard inputfile descriptor 0) with a time−out of 2.5 seconds. It
reads the keyboard only when input is ready. It's quite straightforward to extend it to include other descriptors,
such as serial lines or pipes and sockets, depending on the application.

Try It Out − select

Begin as usual with the includes and declarations and then initialize inputs to handle input from the
keyboard.

#include <sys/types.h>
#include <sys/time.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h>

1.

Try It Out − select

458

int main()
{
 char buffer[128];
 int result, nread;

 fd_set inputs, testfds;
 struct timeval timeout;

 FD_ZERO(&inputs);
 FD_SET(0,&inputs);

Wait for input on stdin for a maximum of 2.5 seconds.

 while(1) {
 testfds = inputs;
 timeout.tv_sec = 2;
 timeout.tv_usec = 500000;

 result = select(FD_SETSIZE, &testfds, (fd_set *)NULL, (fd_set *)NULL,
 &timeout);

2.

After this time, we test result. If there has been no input, the program loops again. If there has been an
error, the program exits.

 switch(result) {
 case 0:
 printf("timeout\n");
 break;
 case −1:
 perror("select");
 exit(1);

3.

If, during the wait, we have some action on the file descriptor, we read the input on stdin and echo it
whenever an <end of line> character is received, until that input is Ctrl−D.

 default:
 if(FD_ISSET(0,&testfds)) {
 ioctl(0,FIONREAD,&nread);
 if(nread == 0) {
 printf("keyboard done\n");
 exit(0);
 }
 nread = read(0,buffer,nread);
 buffer[nread] = 0;
 printf("read %d from keyboard: %s", nread, buffer);
 }
 break;
 }
 }
}

4.

When we run this program, it prints timeout every two and a half seconds. If we type at the keyboard, it reads
the standard input and reports what was typed. With most shells, the input will be sent to the program when
the user presses the Return key or keys in a control sequence, so our program will print the input whenever we
press Return. Note that the Return itself is read and processed like any other character (try this by not pressing
Return, but a number of characters followed by Ctrl−D).

$./select
timeout
hello

Try It Out − select

459

read 6 from keyboard: hello
fred
read 5 from keyboard: fred
timeout
^D
keyboard done
$

How It Works

The program uses the select call to examine the state of the standard input. By arranging a timeout value, the
program resumes every 2.5 seconds to print a timeout message. This is indicated by select returning zero. On
end of file, the standard input descriptor is flagged as ready for input, but there are no characters to be read.

Multiple Clients

Our simple server program can benefit by using select to handle multiple clients simultaneously, without
resorting to child processes. For real applications using this technique we must take care that we do not make
other clients wait too long while we deal with the first to connect.

The server can use select on both the listen socket and the clients' connection sockets at the same time. Once
activity has been indicated, we can use FD_ISSET to cycle through all the possible file descriptors to discover
which one the activity is on.

If the listen socket is ready for input, this will mean that a client is attempting to connect and we can call
accept without risk of blocking. If a client descriptor is indicated ready, this means that there's a client request
pending that we can read and deal with. A read of zero bytes will indicate that a client process has ended and
we can close the socket and remove it from our descriptor set.

Try It Out − An Improved Multiple Client/Server

For our final example, server5.c, we include the sys/time.h and sys/ioctl.h headers instead of signal.h
in our last program and declare some extra variables to deal with select.

#include <sys/types.h>
#include <sys/socket.h>
#include <stdio.h>
#include <netinet/in.h>
#include <sys/time.h>
#include <sys/ioctl.h>
#include <unistd.h>

int main()
{
 int server_sockfd, client_sockfd;
 int server_len, client_len;
 struct sockaddr_in server_address;
 struct sockaddr_in client_address;
 int result;
 fd_set readfds, testfds;

1.

Create and name a socket for the server.

 server_sockfd = socket(AF_INET, SOCK_STREAM, 0);

 server_address.sin_family = AF_INET;

2.

How It Works

460

 server_address.sin_addr.s_addr = htonl(INADDR_ANY);
 server_address.sin_port = htons(9734);
 server_len = sizeof(server_address);

 bind(server_sockfd, (struct sockaddr *)&server_address, server_len);

Create a connection queue and initialize readfds to handle input from server_sockfd.

 listen(server_sockfd, 5);

 FD_ZERO(&readfds);
 FD_SET(server_sockfd, &readfds);

3.

Now wait for clients and requests. Since we have passed a null pointer as the timeout parameter, no
timeout will occur. The program will exit and report an error if select returns a value of less than 1.

while(1) {
 char ch;
 int fd;
 int nread;

 testfds = readfds;

 printf("server waiting\n");
 result = select(FD_SETSIZE, &testfds, (fd_set *)0,
 (fd_set *)0, (struct timeval *) 0);

 if(result < 1) {
 perror("server5");
 exit(1);
 }

4.

Once we know we've got activity, we find which descriptor it's on by checking each in turn using
FD_ISSET:

 for(fd = 0; fd < FD_SETSIZE; fd++) {
 if(FD_ISSET(fd,&testfds)) {

5.

If the activity is on server_sockfd, it must be a request for a new connection and we add the associated
client_sockfd to the descriptor set:

 if(fd == server_sockfd) {
 client_len = sizeof(client_address);
 client_sockfd = accept(server_sockfd,
 (struct sockaddr *)&client_address, &client_len);
 FD_SET(client_sockfd, &readfds);
 printf("adding client on fd %d\n", client_sockfd);
 }

6.

If it isn't the server, it must be client activity. If close is received, the client has gone away and we
remove it from the descriptor set. Otherwise, we 'serve' the client as in the previous examples.

 else {
 ioctl(fd, FIONREAD, &nread);

 if(nread == 0) {
 close(fd);
 FD_CLR(fd, &readfds);
 printf("removing client on fd %d\n", fd);
 }

 else {
 read(fd, &ch, 1);

7.

How It Works

461

 sleep(5);
 printf("serving client on fd %d\n", fd);
 ch++;
 write(fd, &ch, 1);
 }
 }
 }
 }
 }
}

Important In a real−world program, it would be advisable to include a variable holding the largest
fd number connected (not necessarily the most recent fd number connected). This would
prevent looping through potentially 1000s of fds which aren't even connected and
couldn't possibly be ready for reading. We've omitted it here simply for brevity's sake
and to make the code simpler.

When we run this version of the server, it deals with multiple clients sequentially in a single process.

$ server5 &
[7] 1670
$ server waiting
client3 & client3 & client3 & ps −ax
[8] 1671
[9] 1672
[10] 1673
adding client on fd 4
server waiting
adding client on fd 5
server waiting
adding client on fd 6
server waiting
PID TTY STAT TIME COMMAND
 1670 pp0 S 0:00 ./server5
 1671 pp0 S 0:00 client3
 1672 pp0 S 0:00 client3
 1673 pp0 S 0:00 client3
 1674 pp0 R 0:00 ps −ax
$ serving client on fd 4
server waiting
char from server = B
serving client on fd 5
char from server = B
serving client on fd 6
server waiting
removing client on fd 4
removing client on fd 5
server waiting
char from server = B
removing client on fd 6
server waiting

[8] Done client3
[9]− Done client3
[10]+ Done client3
$

How It Works

462

Summary

In this chapter, we've covered another method of inter−process communication: sockets. These allow us to
develop true distributed client/server applications to run across networks. We briefly covered some of the host
database information functions and how UNIX handles standard system services with the Internet Daemon.
We developed a number of client/server example programs that demonstrate networking and multiple client
handling.

Finally, we learned about the select system call that allows a program to be advised of input and output
activity on several open file descriptors and sockets at once.

To complete the analogy at the start of the chapter, this table shows the parallels between socket connections
and a telephone exchange.

Telephone Network Sockets

Call company on 555−0828 Connect to IP address 127.0.0.1

Call answered by reception Connection established to remote host

Ask for finance department Route using specified port (9734)

Call answered by finance administration Server returns from select

Call put through to free account manager Server calls accept, creating new socket on extension 456

 Summary

463

Chapter 15: Tcl: Tool Command Language

Overview

In this chapter, we'll take a look at an exciting development in the UNIX world, that of an extensible,
embeddable programming language that is taking the community by storm. Tcl (pronounced tickle) has been
developed by John Ousterhout and others over a number of years and is now maintained by Scriptics
(http://www.scriptics.com). It has become a popular choice of programming language for a diverse range of
applications, ranging from fast prototype tools through extension languages to industrial control applications.
Tcl is also available on other platforms, including Microsoft Windows and Apple MacOS.

We'll take a look at some of the key features of Tcl, including its extensibility and its use as the interactive
interface to new applications and also see some of the extensions and applications that have been created.
Some of the things we'll be covering in this chapter are:

Tcl commands and control structures•
Quoting and substitution•
Strings and lists in Tcl•
Input and output•
Tcl extensions and applications•

A Tcl Overview

We begin our look at Tcl with the basics: how to write and execute Tcl programs and the features of the
language.

Our First Tcl Program

To see how Tcl programs are created and executed, let's write a very simple "Hello World" program,
hello.tcl. Here's the source of such a program:

set s "Hello World"
puts $s

Tcl is an interpreted language and Tcl programs are often referred to as scripts. In this respect, Tcl and the
UNIX shell have a lot in common. In fact, Tcl scripts need to be executed by a Tcl shell, called tclsh.

Let's run our sample script using tclsh. Note that running a Tcl program this way only requires file read
permission.

$ tclsh hello.tcl
Hello World
$

Like other UNIX command interpreters, we can run tclsh and it will prompt us for Tcl commands to execute
immediately. We could have just as well typed in the two lines directly:

$ tclsh
% set s "Hello World"
Hello World
% puts $s

464

Hello World

Notice that tclsh prompts with % and executes our commands immediately they are typed. It keeps reading
lines until it gets a complete command. We can use the source command to make tclsh take commands from a
file. Let's make Tcl read our program again:

% source hello.tcl
Hello World
% exit
$

The exit command causes the Tcl shell to end and returns us to the UNIX shell. We can turn our script into a
UNIX program by specifying the interpreter to use on the first line, just as we did for the UNIX shell. Save
the program in a file, hello2.tcl:

#!/usr/bin/tclsh

set s "Hello World − 2"
puts $s

Now, if we make this script executable, we can run it in the usual way. The location of the Tcl shell, tclsh,
may vary from system to system. In this case, it has been installed in /usr/bin.

Important Generally, you can use the whereis or which commands to show where tclsh is located within the
search path.

$ chmod +x hello2.tcl
$./hello2.tcl
Hello World − 2
$

Tcl Commands

In general, all Tcl commands take the same form. They begin with a keyword and are followed by zero or
more arguments. A command is usually terminated by the end of the line, although you can use a backslash (\)
at the end of the line to extend a long command over multiple lines.

Quoting and variable substitution (to which we'll come shortly) take place first. Then the resulting command
is executed. Some of these commands cause a result to be produced; others cause further commands to be
stored for later execution, such as when procedures are defined or loops are encountered.

Because of the fairly simple syntax, Tcl is easy to learn and simple to extend. However, it does mean that
some operations, such as assignment and calculations, can seem a little awkward at first.

You can place multiple Tcl commands on the same line if you separate them with semi colons.

In this chapter, when we look at the syntax of Tcl commands, we'll use a notation like this:

command argument1 argument2 ?option1? ?option2?

This means that the (fictitious) Tcl command, command, takes two mandatory arguments, plus some optional
arguments that may be used to change its behavior. You'll find this type of syntax used in the official Tcl/Tk

 Tcl Commands

465

documentation.

Variables and Values

Tcl deals essentially with strings and groups of strings. Most values can be dealt with as strings and, where
necessary, Tcl will automatically convert between types, for example to perform arithmetic on numbers. To
assign to a variable, creating the variable if necessary, we use the set command. You can follow the rest of
this section as a walk−through example in the Tcl shell.

$ tclsh
% set a 123
123
% set hello there
there
%

Variable names are case−sensitive and can be any length. Special characters (such as whitespace) in variable
names and values need to be quoted, which you do by enclosing the name or value in double quotes. As in the
UNIX shell, you need to take care with quoting. We'll learn more about different quoting methods in Tcl
shortly.

% set "hello there" "fare well"
fare well
%

To examine the current value of a variable, use the set command again, but this time don't give it a value
argument.

% set hello
there
% set "hello there"
fare well
%

When using Tcl interactively like this, the interpreter prints the result of each command. In the case of the set
command, we see the variable's new value printed after an assignment, or the variable's present value if no
new value is given. This is because the set command itself returns the current value of the variable.

To use the value of a variable in another command we prefix its name with a $, just as we do in the UNIX
shell. In our example program, we assigned a string to the variable s and then used it in the puts command,
which wrote it to the screen, by referring to it as $s. You can use braces to quote variable names that contain
spaces.

% puts $a
123
% puts [expr $a + $a]
246
% puts ${hello there}
fare well
%

To use the result of one command in another, we place the command in square brackets, as in the second
example above. This causes the Tcl interpreter to execute the command and return a result that is used in its
place. This is very like the way we use $(command) in the UNIX shell. In the same example, we use the expr

 Variables and Values

466

command that evaluates a Tcl expression and returns the result.

We can remove a variable from the Tcl interpreter by using unset.

% unset a
% puts $a
can't read "a": no such variable

Quoting and Substitution

As it is in the UNIX shell, quoting is crucial in Tcl and there are a number of different quoting and
substitution mechanisms in Tcl that you need to understand.

Variable Substitution

In a Tcl command, a variable is replaced with its value whenever its name appears preceded by a dollar sign,
$. This is the mechanism we would use to pass parameters to commands and store or use general purpose
values.

% set apple 5
5
% set orange $apple
5
%

Command Substitution

A command contained within square brackets, [], is executed and replaced with its result.

% set pear [expr $orange + 1]
6
%

Backslash Substitution

We use a backslash, \, to turn off the special meaning of the following character. We can use it to create
variables and values with unusual characters (say, dollar signs) in them.

A backslash at the end of a line is used as a continuation marker. (It negates the special meaning of the
newline character.)

% set fred \$apple
$apple
% set lemon [expr $pear \
+ 1]
7
%

String Quoting

We use double quotes to create strings containing white space and other special characters. However, as it
does in the UNIX shell, this type of quoting allows substitutions to take place. Variables will be substituted
with their values when referenced inside double quoted strings.

 Quoting and Substitution

467

% set joe "Our fruits are orange: $orange, and pear: $pear"
Our fruits are orange: 5, and pear: 6
%

Brace Quoting

Another form of quoting, using braces, {}, doesn't allow variable substitutions and creates a verbatim group
of strings. Similar to the use of single quotes in the UNIX shell, braces prevent substitution.

We can also use braces for storing procedure bodies. We want any variable and command substitutions to be
performed when the procedure is executed, not when it is defined.

% set moe {Our fruits are orange: $orange, and pear: $pear}
Our fruits are orange: $orange, and pear: $pear
%

The difference between joe and moe is clear. The variable substitutions in moe have been prevented by the
braces.

When a group surrounded by braces is evaluated, the outermost set of braces are effectively removed. If
further evaluated, the resulting group will have substitutions performed. Braces can be nested. For example:

% set fred 1234
1234
% set cmd1 [puts $fred]
1234
% set cmd2 {[puts $fred]}
[puts $fred]
% set cmd1
% set cmd2
[puts $fred]

The variable cmd1 takes a null value, the result of printing the variable fred. The variable cmd2 takes the
value of the command itself, not the result. Here, the braces prevent the evaluation of puts and the expansion
of $fred.

This can all seem quite confusing, so lets look at what the Tcl shell is actually doing when it encounters
different types of quoting.

Tcl Interpreter Substitution

Tcl always performs a single round of substitutions. When a command is executed, the line is broken up into
a series of 'words' by separating on white spaces (except new lines, which are command separators). Anything
contained by two double quotes "...", two square brackets [...], or two braces {...} is viewed as a single 'word'.
Each 'word' is then processed by the interpreter as follows:

If the 'word' starts with a $, Tcl performs variable substitution.•
If the 'word' starts with an open square bracket ([), Tcl performs 'command substitution', invoking the
Tcl interpreter again and processing this 'word' as a new Tcl script. The results replace the original
'word'.

•

If the 'word' starts with an open brace ({), everything within the word (minus the opening and closing
braces) is left as is. This includes white space, $, etc.

•

If the 'word' contains a back slash \, Tcl performs 'backslash substitution'.•

Quoting and Substitution

468

So to summarize:

Word Substitution Result

$a variable value of a

[commands] command result of interpreting commands

{the formatted text} none the formatted text

\$word backslash $word
If the results contain further variable references or nested commands, these are not expanded. This
consistency means that the execution of a Tcl command is predictable. However, you do need to carefully
consider your choice of quoting method. Let's try to make it clearer with an example or two.

% set age 35
35
% set str {I'm $age years old}
I'm $age years old
% set cmd {puts "$str"}
puts "$str"
%

These assignments set up two levels of indirection. The variable cmd refers to the variable str, which, in turn,
refers to the variable age which has the value 35. If we wish to use cmd to get at the value of age, we must
arrange for additional substitutions.

We can gain additional rounds of substitutions using eval or explicitly by calling the subst command, which
is implemented in Tcl versions 7.4 and above. The eval command takes its arguments, gathers them together
as a single string and then passes this to the Tcl interpreter which executes it.

% eval $cmd
I'm $age years old
%

The value of cmd, the command puts "$str", is executed. The string, str, has the value I'm $age years old. If
we want to expand this string before performing the puts command, we need to use subst. The subst command
performs variable, command and backslash substitutions on strings and then returns the newly formed string.
The difference is that the argument to eval must be a command, which is executed. subst performs substitution
but doesn't evaluate the result.

% subst $cmd
puts "I'm $age years old"
%

Here, the subst command returns a valid command, which will output a string containing the current value of
age at the time it is evaluated.

% eval [subst $cmd]
I'm 35 years old
%

The control of substitution and execution makes Tcl a very powerful tool. Because the eval command can
execute an arbitrary string, Tcl programs can communicate and pass commands for execution to one another.
You could use this technique to develop Tcl debuggers in Tcl itself which control the execution of other Tcl
programs. You could also use it in Internet programming, where a server application may wish to send a

Quoting and Substitution

469

program to the client for execution, or may generate a Tcl script on the fly.

Comments

Tcl programs may contain comments. Comments act almost as if they were a Tcl command with the name #,
which has no effect. This means that, unlike some other similar languages, we can continue across many lines
by ending each line with a trailing backslash. One peculiarity is that semi colons are not significant in
comments, so they can continue after one.

This is a comment
set a 123 ; # This is a trailing comment, note the semi−colon is needed to separate it \
but the comment continues onto this line; and this is still comment

Calculation

Tcl provides a command, expr, to perform arithmetic calculations. This is because the Tcl interpreter itself
doesn't contain mathematical functions, rather it relies on additional functionality provided by commands.
Although Tcl can perform limited arithmetic, such as that required for loop termination, the bulk of
calculation is carried out by expr.

The expr command takes one or more arguments and calculates a result. The arguments may be operands,
operators and parentheses. Operands may be specified as numbers (integers or floating point), logical
expressions, strings that will be converted to numeric values (including substitutions), variable references and
nested commands.

Examples are:

% expr 5 + 5
10
% set a 5
5
% set b 6
6
% expr $a+$b
11
% expr 2*"$a.$b"
11.2
% expr 3*(1+[string length "hello"])
18
%

Valid operators for expr are listed below, in decreasing order of precedence. Comparison operators produce 1
for true, 0 for false.

Operator Precedence Description

− + ~ ! Unary minus and plus, bitwise NOT, logical NOT.

* / % Multiply, divide, remainder.

+ − Add, subtract.

<< >> Shift left, shift right (both signed).

< > <= >= Less than, greater than, less than or equal, greater than or
equal.

== != Equal, not equal.

Quoting and Substitution

470

& Bit−wise AND.

^ Bit−wise XOR.

| Bit−wise OR.

&& Logical AND.

|| Logical OR.

cond?yes:no Ternary conditional, as in C. If cond is non−zero return the
value of yes, else return the value of no.

As an example of the last operator, consider the following:

% set k "foo"
foo
% set result [expr {($k == "foo") ? "pass" : "fail"}]
pass
%

Tcl also supports the following mathematical functions in expressions, each of which invokes the math
library function of the same name:

acos asin atan atan2

ceil cos cosh exp

floor fmod hypot log

log10 pow sin sinh

sqrt tan tanh
Because the construct,

set a [expr $a + 1]

occurs so often, the incr command was introduced. By default, it increments a variable's value by 1. It can also
be given an explicit increment.

% set a 5
5
% incr a
6
% incr a 5
11
% set a
11
%

Control Structures

Tcl supports a wide range of control structures for program flow, including conditionals, loops and selections.

if

if expr1 ?then? body1
if expr1 ?then? body1 ?else? body2
if expr1 ?then? body1 elseif expr2 ?then? body2 ?elseif? ... ?else? ?bodyN?

 Control Structures

471

The if command evaluates expr1 in the same way as expr. If the result is a Boolean true (a non−zero numeric
value, or a string with the value true or yes), body1 is executed and its value returned. Otherwise, the process
repeats with the next elseif clause if there is one (there may be zero). If none of the expressions evaluate to a
Boolean true, the else clause (if present) is executed and its result returned. If no body is executed, the if
command returns an empty string. A Boolean false would be represented by numeric zero or the string values
false or no.

The body sections need to be single items: a single 'word' or a bracketed command. Note that the then and else
keywords are not necessary, but make things easier to read. It's recommended practice to build the construct
like this:

if {expr1} {
 body1
} else {
 body2
}

The reason for the odd layout of braces, especially having the brace and else on the same line, is to make sure
the interpreter knows that there's more coming. Without it, we have a complete if statement. Tcl would
execute it, assume the next line started with the command else, and give you a syntax error.

switch

switch ?options? string pattern body ?pattern body ...?
switch ?options? string {pattern body ?pattern body ...?}

The Tcl switch command is the direct analog of the UNIX shell case statement and the C switch (which only
works on integer values). The given string is compared in turn with each of the patterns. (See the later sections
on matching.) When a match is found, the associated body is executed and its result returned. A pattern of
default acts as a 'catch all', matching all strings not matched by any other pattern.

Options control the matching technique to be used. These may be:

switch option Description

−exact Match the string to the pattern exactly.

−glob Use glob (shell−style) matching (as in UNIX file name matching).

−regexp Use regular expression matching as in the UNIX egrep utility.

−− An option used to mark the end of options, in case a string starts with a hyphen.
You can use the two different ways of specifying the patterns and bodies to gain fine control over
substitutions in the arguments to switch. Placing patterns and bodies in braces {} has two effects: it prevents
substitutions and it allows you to spread the patterns and bodies over several lines without having to quote the
end of lines with backslashes.

Here's an example we'll meet again later that illustrates how switch can be used to process program
arguments:

foreach arg $argv {
 switch −glob −− $arg {
 −v {set VerboseFlag true}
 −f* {set FileToRead [string range $arg 2 end]}
 −h {puts stderr $Usage; exit 1}

Control Structures

472

 default {error "bad argument: $arg\n$Usage"; exit 1}
 }
}

for

for start test next body

The Tcl for statement is very similar to the for statement in C. The start, next and body arguments must be
Tcl command strings and test must yield a Boolean expression. The for command executes the start string and
then repeatedly evaluates the test expression. If it yields a Boolean true value, the body string is executed. If a
break command is encountered in the body, the loop is terminated immediately. A continue command in the
body causes the for loop to be restarted. Each time the loop is completed, the next expression is evaluated.

% set n 5
5
% set result 1
1
% for {set i $n} {$i} {incr i −1} {

set result [expr $result * $i]
}
% set result
120

You may recognize this as calculating a factorial. We'll see a little later how to create a Tcl procedure to
perform this function.

while

while test body

The while command acts in a similar way to the while statement in C. It repeatedly evaluates the test string
and executes the Tcl command body until test yields a Boolean false value. As with the for command, a break
or continue command causes the loop to be terminated or restarted respectively. As an example, this code
emulates the UNIX cat command on the file foo. See the section on input and output for more about file
handling.

% set fd [open "foo" "r"]
file3
% while {[gets $fd line] != −1} {

puts "$line"
}

<The file "foo" is displayed at this point>

% close $fd

Error Handling

When the Tcl interpreter encounters an error, it usually prints a message and halts. This is not always the
desired result from within a program, so Tcl provides a facility to raise and trap errors and to recover from
them.

Control Structures

473

error

error message ?info? ?code?

The error command generates an error and terminates execution unless the error is caught or trapped. The
message, message, is provided as an indication to the application as to what went wrong. It is printed if the
interpreter default error action is taken.

If present, the info argument is added to the global variable errorInfo. This variable accumulates information
about command nesting when errors occur. As each Tcl command unwinds, it adds to errorInfo to provide a
stack trace. Similarly, the code argument is intended to add machine readable information to the global
variable errorCode. Refer to the Tcl documentation for further details.

catch

catch script ?varname?

The catch command evaluates the given script, trapping any errors that occur. If present, the variable varname
will be set to the return value of the script or any error message returned.

Here's an example taken from the Tcl program, concord, that we'll see later:

if [catch {set Input [open $FileToRead r]} res] {
 puts stderr "$res"

If the attempt to open the input file fails, the program can carry on, rather than stopping with an error. catch is
extremely useful in this regard, as there are many instances of programs that would not run successfully
without trapping the error in this fashion.

String Operations

As Tcl is essentially a string−based language interpreter, it's no surprise that it provides a rich set of
commands for manipulating strings and string values.

The main string manipulation command is string. It takes one option and a number of arguments, depending
on the operation required.

string

string option arg ?arg?

The options (and associated arguments) to string are given below. Where a string index is used or returned, it
is always base zero, that is, the first character is given an index of 0, the second an index of 1, and so on.

first, last, compare

string first string1 string2
string last string1 string2
string compare string1 string2

Error Handling

474

first and last search for the appropriate occurrence of string1 in string2 and return the index into string2 of the
start of the match found, or −1 if string1 doesn't occur in string2.

% string first "o" "foobar"
1
% string last "o" "foobar"
2

compare performs a character−by−character comparison. Returns −1, 0 or 1 if string1 is less than, equal to, or
greater than string2, in the same way as strcmp in C.

% string compare "foo" "bar"
1

index

string index string num

index returns a single character from string. The character at index position num is returned, where the first
character is deemed to be index 0.

% string index "ABC" 1
B

length

string length string

length returns the length of string.

% string length "ABC"
3

match

string match pattern string

match returns 1 if string matches pattern, 0 otherwise. The matching performed is similar to that of the UNIX
shell, where so−called glob matching is used in filename expansion.

% string match "*B*" "ABC"
1
% string match "*B*" "ZZZ"
0

range

string range string first last

range returns a substring of string from index position first (starting at zero) to last, which may be the
keyword end to specify the end of the string.

% string range "ABCDEF" 3 end

String Operations

475

DEF

tolower, toupper

string tolower string
string toupper string

These arguments return a string made from the characters of string converted to the appropriate case.

% string tolower "ABC"
abc
% string toupper "abc"
ABC

trim, trimleft, trimright

string trim string ?chars?
string trimleft string ?chars?
string trimright string ?chars?

These arguments return a substring of string, but with certain characters from the set chars removed. trim
removes leading and trailing characters, while trimleft and trimright remove leading and trailing characters,
respectively. If chars is not specified, white space is removed.

% string trim "foobar" "for"
ba
% string trimleft "foobar" "for"
bar
% string trimright "foobar" "for"
fooba

wordstart, wordend

string wordstart string index
string wordend string index

These return the index in string of the first character of/after the word containing the position index.

% string wordstart "Tcl is Cool" 5
4
% string wordend "Tcl is Cool" 5
6

Glob Matching

In the string match and the switch −glob commands, a form of pattern matching is used. This involves wild
cards that will be familiar to you if you've used the UNIX shell, as they are the same as those used for the
shell case statement and for matching file names.

For a string to match a pattern, they must be identical, except for special sequences that may appear in the
pattern. These are:

String Operations

476

* Matches any sequence of characters.

? Matches any single character.

[] Matches any character in a set.

\<char> Matches the otherwise special character <char>, e.g. * matches a *.
regexp and regsub Matching

In the regexp and regsub commands that we'll meet a little later and the −regexp option of the switch
command, patterns are used to match strings. These patterns may contain complex matches, specified by
regular expressions, which will be familiar to you if you've used the egrep utility and the ed/vi/emacs editors.

For a string to match a regular expression, they must be identical, with the exception of special sequences that
may occur in the pattern specifier. These are:

. Matches any character.

* Indicates zero or more matches of the previous item.

+ Indicates one or more matches of the previous item.

| Indicates a choice between two expressions.

[] Matches any character in a set.

^ Matches the start of the string.

$ Matches the end of the string.

\<char> matches the otherwise special character <char>, e.g. * matches a *.
You can identify submatches in the regular expression by surrounding them in parentheses, (). You can use
these for extracting submatches in a match or for substitutions in regsub.

append

append varname ?value value ?

The append command adds the value arguments to the end of the current value of the variable varname. This
is more efficient than an equivalent assignment if the argument values are longwhy copy a string and throw
the original away when you can just add to the original?

Given,

% set a "This is: "
This is:
% set b "a long string"
a long string

the following two Tcl fragments are equivalent (giving "This is: a long string"), but the second can be more
efficient:

% set a ab
% append a $b

String Operations

477

regexp

regexp ?options? expression string ?match? ?submatch submatch ?

The regexp command uses regular expressions to look for a match in string. It returns 1 if it finds a match, 0
otherwise. The expression is of a form given above for regexp matching. If the regular expression is found in
the string, the variable match is set to that part of the string that matches the expression. The optional
submatch variables are set to those parts of the string that match parenthesized submatches in the expression.
This example looks for a number starting with a 3:

% regexp {3[0−9]*} 3112
1
% regexp {3[0−9]*} 5112
0

or

% regexp 3\[0−9]* 3112
1
% regexp 3\[0−9]* 5112
0

Note we have to use braces or backslashes to prevent Tcl interpreting the square bracket as the start of a
command. Options that may be used to control the matching are:

−nocase Causes the match to be case−insensitive.

−indices Causes the submatch variables to be set to pairs of indices delimiting the match
substrings.

regsub

regsub ?options? expression string subst varname

The regsub command matches string against a given regular expression and writes a new string to the variable
varname. The new string is a copy of the subst argument with substitutions carried out. These are as follows:

& or \0 is replaced by the matching string.•
\1, \9 is replaced by the first, ninth submatch (parenthesized subexpression).•

This example changes a leading 3 to a 5:

 % regsub {3([0−9]*)} 3112 {5\1} res
 1
 % set res
 5112

Try It Out − String Matching and Substitution

Here's an example of string matching and substitution:

% set date1 "Wednesday August 11 1999"
Wednesday August 11 1999

String Operations

478

% set date2 "Saturday April 1 2000"
Saturday April 1 2000
% set weekend "(Saturday|Sunday)"
(Saturday|Sunday)
% regexp $weekend $date1
0
% regexp $weekend $date2 day
1
% puts $day
Saturday
% set parsedate "(\[A−Z]\[a−z]+) +(\[A−Z]\[a−z]+) +(\[0−9]+) +(\[0−9]+)"
([A−Z][a−z]+) +([A−Z][a−z]+) +([0−9]+) +([0−9]+)
% regexp $parsedate $date2 date day month dom year
1
% puts "$date breaks into $day, $month, $dom, $year"
Saturday April 1 2000 breaks into Saturday, April, 1, 2000
% regsub $parsedate $date2 {\4 \2 \3} newdate
1
% puts $newdate
2000 April 1
%

How It Works

Several calls to regexp are shown matching dates to days in the weekend and extracting information from a
date. A substitution is used to reorder the format of the date. The variable parsedate is set to an expression that
describes a value date. It uses several key forms:

[A−Z][a−z]+ matches a capitalized word of two or more letters, such as the day or month name.•
<space>+ matches a sequence of one or more spaces, as occurs between date elements.•
[0−9]+ matches a decimal number, such as the date of year number.•

Note that when you use backslashes or square brackets in matches or substitutions, you need to protect them
against expansion when they're inside double quotes. Alternatively, using braces prevents all expansions.

Arrays

Arrays are special variables accessed with an index in parentheses following the array name. You can't
manipulate arrays as an entity by using their name alone.

Tcl supports a form of array known as an associative array. This powerful concept is implemented by
allowing arrays with arbitrary indices, i.e. arrays can use strings to address their elements. This allows us to
store information about general objects in an array, using the object itself as the array index. An example will
make things clearer.

Important When we're dealing with associative arrays, indices and elements are often referred to instead as
keys and values.

% set myarray(0) 123
123
% puts $myarray
can't read "myarray": variable is array
% puts $myarray(0)
123
%

String Operations

479

Array indices are not limited to numeric values, but it's sensible to limit them to either numbers or a string
without spaces or special characters, as quoting and variable substitution can become difficult. A common
technique is to employ a variable to contain the value of the index and set the variable to the desired value.
This eliminates the difficulties with special characters.

% set myarray(orange) 1
1
% set myarray(apple) jim
jim
%

array

array option arrayname ?arg arg ?

Arrays may be manipulated by the array command, which takes a number of options. The options to array
(and associated arguments are):

exists

array exists arrayname

This returns 1 if arrayname is an array, 0 otherwise.

get

array get arrayname ?pattern?

This returns a list of pairs of elements containing array indices and associated values. If the optional pattern is
given, it returns only those array elements whose indices match the (glob style) pattern.

names

array names arrayname ?pattern?

This returns a lists of array index names, optionally only those that match pattern.

set

array set arrayname list

This sets the elements of the array arrayname. The list must be like the one returned by get, with a series of
indices and their values.

size

array size arrayname

This returns the size of an array.

Arrays

480

% array exists myarray
1
% array size myarray
3
% array names myarray
orange 0 apple
% array get myarray
orange 1 0 123 apple jim
%

We can also perform a search of arrays element−by−element with array command options startsearch,
anymore, nextelement and donesearch. See the Tcl documentation for further details.

Lists

In addition to strings and arrays, Tcl also has full support for lists. These are groups of Tcl objects, numbers,
strings and other lists that can be grouped together and manipulated. Tcl allows lists to be created, added to,
converted to and from strings and used for controlling loops. We'll outline a number of list manipulation
commands below.

The syntax for Tcl lists is the brace group. In fact, we've already seen lists in action with the bodies for loops.

% set mylist {bob {1 2 3 {4 5}} fred}
bob {1 2 3 {4 5}} fred

This assignment has created a list of three elements. The second element is itself a list of four elements.
Notice that Tcl displays braces around lists only when necessary, to show the correct structure. As with arrays
and strings, list elements can be accessed by position with an index, starting from zero.

If you have a need for an array, but will only be using numeric indices you should consider using a list
instead. They can often prove to be more efficient than the more general arrays.

list

list ?arg arg arg ?

We can create lists programmatically in a number of ways, but perhaps the easiest is with the list command.
list takes all of its arguments and creates a list, each element of which is a copy of an argument. If no
arguments are given, list produces an empty list.

We need to add braces and backslashes as necessary, so that the original arguments may be extracted using
lindex (see below) and the list can be evaluated by eval (if the first argument is the name of a command).

% set elist [list puts "Hello World"]
puts {Hello World}
% eval $elist
Hello World

 Lists

481

split

split string ?delimiters?

The split command is used to create a list from a string. By default, split creates a list containing the distinct
words (delimited by white space) in string. The optional delimiters argument is a list of characters used to
determine the places to split the string. If the delimiters list is empty, rather than omitted altogether, all
characters in the string are individually included as list elements.

% split "hello there jim"
hello there jim
% split "hi there everyone" {e}
{hi th} r { } v ryon {}

Notice that the delimiters don't appear in the list, but that empty elements will be created if there are adjacent
delimiters in the string.

When you're using split, you should take care with backslash substitutions. \$ will be converted to a $, not a \
and a $. In other words, to get \ included as an element in a list, you'd have to use \\. To include the literal
$foo, you'd need to use \$foo.

join

join list ?delimiter?

The join command is the opposite of split. It creates a string by recursively joining together elements of a list.
It uses the optional delimiter string (if there is one) to separate elements. It defaults to a space.

% join {1 2 fred {bill bob} 37} ","
1,2,fred,bill bob,37
%

concat

concat ?arg arg arg ?

The concat command takes several arguments, treats them as lists and concatenates them. If you supply no
arguments, you'll get an empty result, not an error. When it joins lists, concat will effectively strip off one
level of braces so that top level members of list arguments become top level members of the resulting list.

Arguments have leading and trailing spaces removed. Each list element is separated by a single space.

% concat {1 2} {3 {4 5} 6} 7 8
1 2 3 {4 5} 6 7 8

lappend

lappend listvar ?arg arg arg ?

We can use the lappend command to add further elements to a list. It's more efficient than creating a new list
with, for example, concat.

Lists

482

Each of the arguments to lappend is added as a list element to the existing list listvar. Each element added is
separated by a single space. Note that, unlike concat, no level of braces is removed; each argument is added as
is.

% set alist {1 2 3 {4 5}}
1 2 3 {4 5}
% lappend alist 6 {7 8}
1 2 3 {4 5} 6 {7 8}
%

lindex

lindex list index

We use the lindex command to retrieve an element at position index from a list. The list elements are
numbered starting from zero. If the requested element is not in the list, an empty string is returned. We can
use the keyword end in place of an index to refer to the last element in the list.

% set alist {1 2 3 {4 5}}
1 2 3 {4 5}
% lindex $alist 3
4 5
%

linsert

linsert list index arg ?arg arg ?

We can use the linsert command to insert elements into a list. The new list created by linsert comprises list,
with the arg arguments inserted just after the element referred to by index. If index is zero (or negative), the
new elements are placed at the beginning of the new list. If the index is greater than or equal to the length of
the list, or is the keyword end, the new elements are added at the end of the list. Notice that the original list is
not itself affected by the linsert command.

% set alist {{4 5}}
{4 5}
% linsert $alist 0 1 2 3
1 2 3 {4 5}
% linsert [linsert $alist 0 1 2 3] end {6 7 8}
1 2 3 {4 5} {6 7 8}
%

llength

llength list

We can obtain the length of a list by the llength command, which returns a string containing a decimal
number corresponding to the length of the list list. An empty list returns a length of zero.

% llength hello
1
% llength "1 2 3"
3

Lists

483

% llength {a b {c d}}
3

Note that Tcl will try to interpret many different arguments as lists automatically, in which case, quoted and
unquoted strings and brace groups are all treated as lists. Each 'word' within a string is interpreted as an
individual element.

lrange

lrange list first last

A consecutive subset of a list may be extracted by the lrange command. The elements in positions first
through last in the list list are extracted and a new list with just those elements is returned.

% set alist {1 2 3 {4 5} 6 7 8}
1 2 3 {4 5} 6 7 8
% lrange $alist 2 4
3 {4 5} 6
%

lreplace

lreplace list first last ?arg arg arg ?

We can replace elements in a list by the lreplace command. The elements in positions first through last in the
list list are replaced with the given arguments. Elements are deleted and new ones inserted. The element in
position first must exist, although the number of elements to be deleted and the number to be inserted need not
be the same. We can use the keyword end for first or last to specify the last element in the list.

% set alist {1 2 3 {4 5} 6 7 8}
1 2 3 {4 5} 6 7 8
% lreplace $alist 2 end bill {bob joe}
1 2 bill {bob joe}
%

lsearch

lsearch ?option? list pattern

We can use lsearch to search a list for elements that match a pattern. The options are −exact, −glob (the
default), and −regexp, which determine the type of matching to be undertaken. See the section on strings
above for more details of Tcl matching.

The given list is searched for elements that match the specified pattern. The index of the first matching
element is returned, or −1 if no such element is found.

% lsearch {apple pear banana orange} b*
2

Lists

484

lsort

lsort ?option? list

We can use the lsort command to sort a list according to a number of criteria. The default action is for the
elements of the list to be sorted into ascending alphabetical order by ASCII collating sequence, which is the
order of alphanumeric characters, plus punctuation. As far as the computer's concerned, it's the numerical
order of the byte values of the characters. For example:

% lsort {apple pear banana orange}
apple banana orange pear

The options to lsort that change the type of sort performed include:

lsort option Description

−ascii Normal string comparison, the default.

−integer Elements are converted to integers and compared.

−real Elements are converted to floating point and compared.

−increasing Sorts in ascending order.

−decreasing Sorts in descending order.

−command Use command as a sort function. This must be a procedure taking two list
elements as arguments and returning an integer less than zero, zero, or greater
than zero depending on whether the first element is to be considered smaller,
equal or larger than the second.

foreach

foreach varname list body

We can use foreach to separately evaluate or use each element in a list. The command assigns to varname
each element of the list argument in turn and executes body. Here's an example:

% foreach i {1 2 3 bill bob joe} {
puts "i is $i "

}
i is 1
i is 2
i is 3
i is bill
i is bob
i is joe
%

This is a simplification of the foreach command; in the general case, foreach can take a list of variable names
and a number of lists. In this case, the lists are traversed at the same time. Each time around the loop, each of
the variables is assigned for the next element in the corresponding list.

% foreach {a b} {1 2 3 4 5 6} {puts "a is $a, b is $b"}
a is 1, b is 2
a is 3, b is 4
a is 5, b is 6

Lists

485

% foreach a {1 2 3} b {4 5 6} {puts "a is $a, b is $b"}
a is 1, b is 4
a is 2, b is 5
a is 3, b is 6
%

A break or continue command in a foreach body has the same effect as in a for command. If a break
command is encountered in the body, the loop is terminated immediately. A continue command in the body
skips the remainder of the loop for the present iteration.

A foreach loop in conjunction with array names can make a useful way to scan an array:

% set myarray(orange) 1
1
% set myarray(apple) 2
2
% set myarray(banana) 3
3
% foreach fruit [array names myarray] { puts "fruit is $fruit" }
fruit is orange
fruit is apple
fruit is banana
%

Procedures

Procedures in Tcl are similar to those of other languages, but with some interesting differences. Procedures
are introduced to the Tcl interpreter with the proc command. We must define all procedures with proc before
they can be called.

proc name args body

The proc command defines the procedure name. It stores the body (a list of executable commands) to be run
when the procedure is called. Arguments passed to the procedure when it is executed are substituted for the
list of variables, args.

Procedures exit when the last command in the body is executed. The value of a procedure is the value of the
last command executed. We can prematurely terminate procedures with the return command.

return ?option? ?string?

The optional value string is returned as the value of the enclosing procedure. If string is omitted, an empty
string is returned. We can specify the action taken when a procedure needs to return an error by one of several
options to return. See the Tcl documentation for details.

Try It Out − Procedures

Here's a simple procedure for calculating a factorial:

% proc fact {n} {
set result 1
while {$n > 1} {

set result [expr $result * $n]
set n [expr $n − 1]

1.

 Procedures

486

}
return $result

}
% fact 7
5040

How It Works

The procedure fact builds up the required factorial by iteration. Note that the procedure uses a local variable:
result. As we don't need to declare variables before they are first used in Tcl, all new variables encountered in
Tcl procedures are assumed to be local, i.e. new variables created inside a Tcl procedure don't exist outside of
the procedure.

upvar

upvar ?level? oldname newname

To gain access to a global variable, we must use the command upvar, which allows access to variables at a
higher level in the call stack. At its simplest, it allows a procedure to use a variable declared in an enclosing
scope (possibly the procedure that called it), or a global variable.

The upvar command creates a new variable, newname, within the procedure. Accesses and assignments to it
are equivalent to using the variable oldname, which exists outside the procedure. We can use the level
argument to determine precisely which stack frame the oldname variable is from.

The most common case is simply to provide access to global variables with:

upvar variable variable

Below is an example of the proper usage of upvar:

% set result 1
1
% proc badset2 {} {

set result 2
}
% badset2
2
% set result
1
% proc goodset2 {} {

upvar result result
set result 2

}
% goodset2
2
% set result
2
%

Input and Output

Tcl provides a sophisticated system for input and output. In this section, we'll cover some of the basic
facilities. Refer to the Tcl documentation for further details.

How It Works

487

open

open filename ?access? ?permissions?

The open command establishes a connection to a file or a command pipeline. It combines the functionality of
fopen and popen in C.

open returns a channel identifier (the Tcl equivalent of a file stream) that can be used in future calls to other
input and output commands like gets, puts and close. Standard streams are automatically available to Tcl
programs as stdin, stdout and stderr.

If present, the access argument determines how the file is to be opened. It's a string value and takes the same
values as the modes used by fopen in C. These are:

access modes Description

r Opens filename for reading. The file must exist. This is the default.

r+ Opens filename for reading and writing. The file must exist.

w Opens filename for writing. The file will be created or truncated.

w+ Opens filename for writing and reading. The file will be created or truncated.

a Opens filename for writing. New data will be written at the end of the file.

a+ Opens filename for reading and writing. The initial file position is set to the end of the
file.

Alternatively, we can set the access modes using a Tcl list of POSIX flags, including RDONLY, WRONLY,
RDWR, APPEND, CREAT, EXCL, NOCTTY, NONBLOCK, TRUNC.

The permissions argument, if present, is an integer value (default octal 666) used to set the initial permissions
on any file created by the call to open.

If the filename argument has a pipe symbol (|) as its first character, it's treated as a command pipeline. The
UNIX command is executed and its output made available for reading via the returned channel identifier.

close

close channelID

The close command closes the channel given by channelID, which must have been obtained from a previous
call to open (or in Tcl 7.5 or later, socket). The channel is the equivalent of a C file descriptor.

read

read ?−nonewline? channel ?bytes?

The read command reads all of the input available (or, if bytes is set, a specified number of bytes) on a
channel identifier.

If the −nonewline option is specified, read doesn't return the last character in the input if it's a newline. The
read command translates end of line sequences into single newlines.

Input and Output

488

gets

gets channel ?varname?

The gets command reads the first line of input and stores it in a variable varname if this has been specified.
Each subsequent use of gets on a channel results in the next line of data being read, stopping when an end of
file character is found. The value returned by gets is the number of characters read into varname, −1 on error,
or the string itself if varname is not specified.

% set myfile [open "|date" r]
file3
% gets $myfile fred
28
% close $myfile
% set fred
Wed Aug 11 15:03:35 BST 1999

puts

puts ?−nonewline? ?channel? string

The puts command writes output to a channel (defaults to the standard output). The string is written to the
channel followed by a newline, unless the option −nonewline is specified. New lines are translated to end of
line sequences automatically.

Note that Tcl performs internal buffering so output from puts may not appear in an output file immediately.
We can force output with the flush command. Refer to the Tcl documentation for information beyond this
simple example:

% open "fred.txt" w
file3
% puts file3 "Hello World"
% close file3
% open "fred.txt" r
file3
% gets file3
Hello World
% close file3
%

format

format formatstring ?arg arg arg ?

The format command is the Tcl equivalent of the C library function sprintf and shares many conversion
specifiers. In fact, sprintf is used in the implementation of format.

The format command generates a formatted string. Refer to the Tcl manual page (man format) or the C library
documentation for printf/sprintf for details of conversion specifiers.

Input and Output

489

scan

scan string formatstring var ?var var ?

The scan command is the Tcl equivalent of the C library function sscanf. The variables specified as
arguments are set to values extracted from string, according to conversion specifiers given in formatstring. As
with format above, the implementation of scan is very similar to ANSI C sscanf and readers are directed to the
C library documentation for further details of conversion specifiers.

file

file option name ?arg arg ?

File manipulations are carried out in Tcl by the file command. It accepts a number of options for changing and
inspecting file characteristics. Options used by the file command include:

atime, mtime

file atime name
file mtime name

This returns a string describing the last access time/modified time of the file name.

dirname

file dirname name

This returns the directory part of the file name, i.e. all the characters before the last / character.

% file dirname "/bin/fred.txt"
/bin

exists, executable

file executable name
file exists name

This returns 1 if the file exists/is executable, 0 otherwise.

% file exists "fred.txt"
1
% file executable "fred.txt"
0

extension, rootname

file extension name
file rootname name

This returns the file extension (part of name after last dot) / file root name (part up to last dot).

% file extension "fred.txt"

Input and Output

490

.txt

isdirectory, isfile

file isdirectory name
file isfile name

Returns 1 if name refers to a directory/regular file, 0 otherwise.

owned

file owned name

This returns 1 if the file is owned by the current user, 0 otherwise.

readable, writeable

file readable name
file writeable name

This returns 1 if the file is readable/writeable, 0 otherwise.

size

file size name

This returns the file size, in bytes.

Depending on the operating system that you're using, you have other options available. These include options
to retrieve the result of a stat or lstat system call in a Tcl array. Refer to the system specific Tcl documentation
for details.

A Tcl Program

Here's a sample program to demonstrate some Tcl features. It generates a list of the frequencies of word
usage in a text file. This might form part of a concordance.

Try It Out − A Concordance Program

Type in the listing, concord.tcl, below. We begin by specifying the shell to run under and initializing
some variables.

#!/usr/bin/tclsh

set VerboseFlag false
set FileToRead "−"
set Usage "Usage: concord \[−v] \[−f<filename>]"

1.

Remembering that argv is the program arguments array, parse the command line arguments. Set
FileToRead and give help.

2.

Input and Output

491

foreach arg $argv {
 switch −glob −− $arg {
 −v {set VerboseFlag true}
 −f* {set FileToRead [string range $arg 2 end]}
 −h {puts stderr $Usage; exit 1}
 default {error "bad argument: $arg\n$Usage"; exit 1}
 }
}

Set the default input source to the standard input. If a file has been specified, open it 'safely'.

set Input stdin

if {$FileToRead != "−"} {
 if [catch {set Input [open $FileToRead r]} res] {
 puts stderr "$res"
 exit 1
 }
}

3.

Initialize the word and line counters, then read each line in the input, split the line according to
punctuation and increment a concordance array.

set NumberOfLines 0
set NumberOfWords 0

while {[gets $Input line] >= 0} {
 incr NumberOfLines
 set words [split $line " \t.,\{\}\(\)\[\]\;\""]
 foreach word $words {
 if {[info exists concord("$word")]} {
 incr concord("$word")
 } else {
 set concord("$word") 1
 }
 incr NumberOfWords
 }
}

4.

Output a summary, then all the words found, then each word accompanied by its count.

puts stdout [format "File contained %d/%d words/lines\n" \
 $NumberOfWords $NumberOfLines]

puts stdout [array names concord]

foreach word [array names concord] {
 puts "$word: $concord($word)"
}

5.

Let's try this program out on a text file, such as its own source code. When we run the program with the
commands,

$ chmod +x concord.tcl
$./concord.tcl −fconcord.tcl

we get output like this (edited for brevity):

File contained 404/48 words/lines

{"$Input"} {"if"} {"exists"} {"%d/%d"} {"$word:"} {"−−"} {"error"} {"$words"} {"$FileToRead"} {"info"} {"set"} {"$argv"} {"contained"} {"NumberOfWords"} {"range"} {"argument:"} {"!="} {"bad"} {"VerboseFlag"} {"Input"} {"catch"} {"cannot"} {"$concord"} {"words"} {"File"} {""} {"0"} {"else"} {"while"} {"−v"} {"word"} {"split"} {"−h"} {"−f<filename>"} {"line"} {"concord"} {"format"} {"1"} {"switch"} {"exit"} {"stdin"} {"stdout"} {"\"} {"stderr"} {"$NumberOfLines"} {"default"} {"$arg"} {"\t"} {"$Usage"} {"#!/usr/bin/tclsh"} {"2"} {"open"} {"r"} {"names"} {"−f*"} {"string"} {"$word"} {"$arg\n$Usage"}

Input and Output

492

...

"names": 2
"−f*": 1
"string": 1
"$word": 4
"$arg\n$Usage": 1
"NumberOfLines": 2
"arg": 1
"$line": 1
"incr": 3
"puts": 5
"Usage": 1
"array": 2
"Usage:": 1
"FileToRead": 2
"end": 1
"foreach": 3
"oops": 1
">=": 1
"gets": 1
"false": 1
"−": 2
"true": 1
"$NumberOfWords": 1
"−glob": 1
"words/lines\n": 1

How It Works

For demonstration purposes, the program prints out the list of words that it found before the frequency listing.
The order of the words in the array is undefined; it depends on the Tcl implementation of associative arrays. If
we had wanted the output sorted, we could have copied the array elements into a list and used lsort, or we
could have piped the output through the UNIX sort program.

The program works by splitting input lines into individual words, excluding punctuation, and using these
words as indices to an associative array. This array, concord, is used to collect the word frequencies. We used
a quoted string as an index to the array to prevent possible problems with special characters occurring in the
words.

Network Support

With Tcl 7.5 and later, Tcl has direct support for networking, where previously third party add−ons were
required. The flexibility and concise nature of Tcl combined with a network programming paradigm gives Tcl
an exceptionally wide range of uses. In fact, there are even World Wide Web browsers written entirely in Tcl.
The key command is socket.

socket host port

By default, the socket command opens a SOCK_STREAM connection to the specified computer, host, and
service number, port. It returns a channel identifier that can be used in the normal Tcl input/output commands.

How It Works

493

Try It Out − socket

To demonstrate the use of sockets with Tcl, let's revisit a small example from Chapter 14 to compare. Here's a
complete program, socket.c, in Tcl to display the time of day from a networked computer.

Important To get this to work properly, replace the hostname tilde with an appropriate system name on your
internal network, or alternatively use localhost .

#!/usr/bin/tclsh

set sockid [socket tilde 13]
gets $sockid date
puts "Tilde says the date is: $date"

How It Works

Tcl (from Version 7.5) has built−in support for UNIX networking. This program uses the socket command to
create a communication path to the host tilde, port 13, which is the daytime service. It reads a string from the
socket connection and prints it.

Compare this three line solution with the program from Chapter 14!

Important Using gets here reveals a potential pitfall. An unscrupulous system administrator might configure
their daytime service to return an extremely long string that could give your machine problems.
These kinds of antics have been known to occur on the Internet and are known as Denial of
Service attacks.

Creating a New Tcl

One of the design objectives of the Tcl language was that it should be embeddable, so that we can include
scripts written in Tcl in other command line programs, and even in C. Indeed, that is how Tcl got started, and
why it is called Tool Command Language. And, in this respect, it is very similar to Perl.

It's quite easy to incorporate Tcl into your own command line programs by writing one simple function that
initializes the Tcl interpreter. You can link your own functions with the Tcl library to create your own Tcl
interpreter that is tailored to your specific needs.

The precise mechanism for this is beyond the scope of this chapter. In fact, many Tcl programmers never have
to create their own interpreters. They find that the basic Tcl system, together with Tcl extensions provided by
third parties, satisfies all their needs.

Tcl Extensions

Over the years, there have been a large number of extensions to Tcl. These most often take the form of
versions of Tcl with additional functionality to serve a particular purpose. We'll cover just a few of them here.

expect

The expect program is a Tcl interpreter extended with additional functions aimed particularly at automatic
control of interactive programs. We can use it for testing software, because we can write expect scripts to send

 Try It Out − socket

494

commands to a program, wait for responses and then react to those responses. It has built−in capabilities for
time−outs and error recovery. It can run Tcl functions on receipt of a number of different events.

Important expect was created by Don Libes of NIST (National Institute of Standards and Technology)
shortly after the release of Tcl on the Internet. It is the first major program built around Tcl.

The extension gets its name from the two principal functions it adds. These are send, for sending interactive
input to a program under test, and expect for arranging for actions to be taken on receipt of different
responses, or lack of them.

[incr Tcl]

This extension, the name of which is a pun on C++, adds object oriented features to Tcl.

TclX

TclX is 'extended Tcl'. It's a commonly used extension in the UNIX environment as it contains many
additional functions that mirror the UNIX system calls. TclX programs enjoy greater low−level access to the
operating system at the expensive of a certain amount of portability.

Graphics

Many Tcl extensions have been developed to support graphics and additional operations.

Tk

A major Tcl extension, also developed by John Ousterhout, is Tk (for Tool Kit). It bestows on Tcl the ability
to create and manipulate graphical user interface objects. Using Tk makes it easy for us to write sophisticated
graphical programs.

Initially developed for The X Window System, there are now versions of Tk (and of course Tcl) for Microsoft
Windows and Apple MacOS, so a Tcl/Tk program has the potential to run unchanged on several different
hardware platforms.

We'll cover the subject of programming with Tk in the next chapter.

Summary

In this chapter, we've taken a look at the Tool Command Language, Tcl. We've seen that it's an extensive and
extensible interpreted programming language with support for many high−level programming language
features, such as associative arrays and lists.

We've briefly covered the fact that Tcl has been extended in many ways to create new interpreters tailored for
specific application areas.

In the next chapter we will take a look at Tk, the graphical toolkit for Tcl that has resulted in many
applications being developed and distributed among the UNIX community.

 [incr Tcl]

495

Chapter 16: Programming for X

Overview

In this chapter and the next, we'll take a look at writing programs to run in the usual UNIX graphical
environment, the X Window System, or X. Modern UNIX systems and nearly all Linux distributions are
shipped with a version of X.

We'll be concentrating on the programmer's view of X and we'll assume that you are already comfortable with
configuring, running and using X on your system.

We'll cover:

X Concepts•
X Windows managers•
X programming model•
Tk; its widgets, bindings and geometry managers•

In the next chapter, we'll move on to the GTK+ toolkit, which will allow us to program user interfaces in C for
the GNOME system.

What is X?

X was created at MIT as a way of providing a uniform environment for graphical programs. It should
nowadays be fair to assume that if you've used computers, you've come across either Microsoft Windows, X,
or Apple MacOS before, so you'll be familiar with the general concepts underlying a graphical user interface,
or GUI. Unfortunately, although a Windows user might be able to navigate around the Mac interface, it's a
different story for programmers.

Each windowing environment on each system is programmed differently. The ways that the display is handled
and the programs communicate with the user are different. Although each system provides the programmer
with the ability to open and manipulate windows on the screen, the functions used will be different. Writing
applications that can run on more than one system (without using additional toolkits) is a daunting task.

To overcome the problems associated with proprietary interface systems on mainframes, mini−computers and
workstations, the X Windows system was made publicly available and has been implemented on many
systems. It defines a programming style based on a client/server model with a clean separation of
hardware−dependent components and application programs.

The X Windows system comprises four major components that we'll briefly mention in turn. These are:

X Server Interacting with the user

X Protocol Client/server communications

X Library The programming interface

X Clients The applications

496

X Server

The X server, or X display server, is a program that runs on the application user's computer and is responsible
for controlling the graphical display hardware and looking after input and output. The X server responds to
requests from X client applications to draw on the screen or read from the keyboard or mouse. It passes input
and indications of things like mouse movements and button presses to the client programs.

Typically, there will be a different X server for each distinct hardware combination that X can run on. The
most common implementation of X for Linux and other PC−based systems is XFree86
(http://www.xfree86.org). This package ships with X servers specially created for the many different video
cards that can be used in PCs, for instance the XF86_S3 version for S3−based cards. Linux users have much
to thank these guys for.

X Protocol

All interactions between X client applications and the X display server take place via message exchanges. The
types and uses of the messages form the X protocol. One particularly useful feature of the X Windows system
is that the X protocol can be carried across a network as well as between clients and a server running on the
same machine. This means that a user with a fairly low−powered personal computer or an X terminal (a
machine dedicated to running just an X server) can run X client programs on more powerful networked
computers, but conduct the interaction and display the output on his/her own local machine.

Xlib

The X protocol is really only of interest to the programmers that actually implement X servers. Most X
applications ultimately use a C function library as a programming interface. This is Xlib, which provides an
API for X protocol exchanges. Xlib doesn't add very much on its own it can just about draw on the screen and
respond to a mouse. If you want menus, buttons, scrollbars and all the other goodies, you have to write them
yourself.

On the other hand, neither does Xlib impose any particular GUI style. It acts as a medium through which you
can create any style you choose.

X Clients

X clients are application programs that use the display and input resources of a computer that may not be the
one they're running on. They do this by requesting access to these resources from the X server that manages
them. The server can typically handle requests from many clients at once and it must arbitrate use of the
keyboard and mouse between clients. The client programs communicate with the server using X protocol
messages which are sent and received using Xlib functions.

X Toolkits

We won't linger in the Xlib programming interface, as it's not the best tool for creating programs quickly and
easily. Because of its low−level interface, like the Microsoft Windows SDK, it can make for some very
complex programs that apparently achieve very little. One book on the author's shelves contains a version of
the 'Hello World' program written for Xlib. It does nothing other than display 'Hello World' in a window,
together with a button marked 'Exit', which does the obvious thing when you press it. The program listing runs
to five pages!

X Server

497

Any programmer who has written an Xlib program like this will surely have wondered if there's a better way.
Of course there is! Common user interface elements like buttons, scrollbars and menus have been
implemented many times. Collections of these elements, also known as widgets, are generally called X
toolkits. Of these, the best known are the Xt Intrinsics suite that comes with X and two commercial products:
Sun's OpenLook and OSF/Motif.

Xt is a free library written on top of X to give it some functionality: an intermediate layer that
simplifies application programming.

•

OpenLook is a free toolkit from Sun that enforces a different look and feel. It's built on top of library
called Xview which is similar to Xt.

•

Motif is an OSF standard designed to bring a common look and feel to the UNIX desktop. It's built on
top of Xt. Motif has two main components: a set of include files that define constants used in Xt
functions and a library of convenient functions to simplify the creation of elements like dialogs and
menus. Motif also defines a programming style that any programmer can follow, whether they are
actually using the Motif toolkit or not.

•

Qt is a library built by trolltech which forms the basis of the KDE Desktop environment, which is
found with most Linux distributions.

•

GTK+ is the GIMP toolkit, and the basis of the GNOME system. We'll look at how to program this
high level environment in the next chapter.

Important Along with all the other commercial UNIX vendors, Sun has adopted the CDE
(Common Desktop Environment) which uses Motif. This has spelled the end of
OpenLook, which will disappear slowly. Parts of OpenLook have been made
available for free and can be seen in Linux distributions.

•

Each X toolkit implements a set of widgets, usually with a distinctive look and feel. Display elements might
have a flat, plain implementation (as with Xt) or a sculpted, 3D effect (like Motif).

To illustrate the difference a toolkit can make, take a look at two different text editors available for Linux,
xedit and textedit. The first, xedit, is a very simple editor with hardly any user interface sophistication. To
load a file, you need to type a file name into a box and press a button marked Load.

In contrast, the textedit editor provided by Sun's OpenWindows and written with the OpenLook toolkit
provides a dialog box for opening files. This allows the user to browse the file system for the appropriate file
to open. The toolkit also provides the familiar look and feel of 3D buttons.

X Window Manager

Another important element of any X system is the window manager. This is a special X client that is
responsible for dealing with other clients. It looks after the placement of client windows on the display and
handles management tasks like moving and resizing windows. It also imposes a distinctive look and feel,
depending on the X toolkit it uses.

Examples of window managers are:

Window Manager Description

twm Tom's (or Tabbed) Window Manager, a small, fast manager that comes with X.

fvwm An alternative window manager by Robert Nation. The favorite under Linux. It
supports virtual desktops and has configuration files that allow it to emulate other

 X Window Manager

498

window managers.

Fvwm95 A version of fvwm that emulates the Windows 95 interface.

Gwm The generic window manager, programmable in a LISP dialect.

Olwm The OpenLook window manager.

Mwm The Motif window manager.
All of these are available for most UNIX and Linux systems, although mwm requires a license.

The X Programming Model

We've seen that the X Windows system separates responsibilities between client applications and X display
servers using a communications protocol. This method of programming gives rise to a typical structure for an
X application which we'll outline briefly below.

Start Up

A typical X application will start by initializing any resources it may need. It will establish a connection with
the X display server, choose which colors and fonts to use and then create a window on the display.

XOpenDisplay and XCloseDisplay are used by client programs for connecting to and disconnecting from an
X server.

Display *XOpenDisplay(char *display_name);
void XCloseDisplay(Display *display);

The display_name specifies the display to which we want to connect. If it's null, the environment variable
DISPLAY is used. This is of the form hostname:server[.display], allowing one or more X servers on a host,
each of which can control more than one display. The default display is normally :0.0, the first available
server on the local machine. To specify a second screen, for a truly awesome desktop, you would use :0.1.

XOpenDisplay returns a Display structure containing information about the X server selected, or null if no X
server could be opened. After a successful return from XOpenDisplay, the client program may start using the
X server.

When the client program has finished using the X server, it must call XCloseDisplay with the display
structure returned from the XOpenDisplay call. This will destroy all windows and other resources that the
client has created on the display, unless (unusually) XSetCloseDownMode has been called to modify the
shutdown behavior. Programs should always call XCloseDisplay before exiting to allow any pending errors to
be reported.

The user can control most of the activities at start−up. Many X applications respond to command line
arguments, environment variables and configuration file entries to allow the user to customize the application.
We'll give you some examples.

As we've seen, the environment variable DISPLAY is used to direct the application to a particular display
server, which may be on a different networked computer. The following command would cause the xedit
program to run, but to open its display on the machine called alex.

$ DISPLAY=alex:0.0 xedit &

 The X Programming Model

499

The file .Xresources (or sometimes .Xdefaults) is used to configure the X application. Each application will
use configuration entries in the X resources database, typically created when an X system starts up and
including the user's own, local preferences. A typical entry in a user's .Xresources file, stored in his or her
home directory might be:

xedit*enableBackups: on

This entry changes the behavior of edit with respect to making backup files while editing. Each entry has the
general format:

Class*Resource: Value

The command line,

$ xedit −geometry 400x200

causes xedit to start in a window 400 pixels wide by 200 high. Note that other programs may use the geometry
differently. For example,

$ xterm −geometry 80x50

starts a terminal emulator that has 50 lines, each with 80 columns. Refer to your system documentation and
application manual pages for more details on ways to affect X application behavior.

Main Loop

The bulk of an X application is made up of a main loop and code written to react to events. After starting, a
typical X program waits for the X display server to which it's connected to send it events. It does this by
calling XNextEvent in a loop.

There are over 30 events that an application may have to deal with. We won't cover them here because there
are many (very fat) books on the topic of X Windows programming that cover the topic in great depth.
However, we'll get a flavor of the kinds of events that X uses from this partial list:

Keyboard events Key pressed, key released.

Mouse events Button pressed, button released, mouse moving, mouse entering/leaving a
window.

Window events Window created/destroyed, window gained/lost focus, window exposed.
A low−level X program must respond to these events and more. A program that uses an advanced toolkit or
application framework will be able to concentrate on the main business of the application and use
sophisticated interface elements like dialog boxes without needing to deal with low−level events like these
explicitly. Of course, that doesn't mean that the events aren't still taking place.

Clean Up

When it exits, a well−behaved X program will free up any X display resources it has allocated while it was
running. It's often sufficient to simply break the connection with the server, but this can result in the server
consuming more memory than required. Also, it's considered a little rude not to say goodbye!

 Main Loop

500

Fast Track X Programming

In the rest of this chapter, we'll leave the low−level considerations of X programming to those who need to
squeeze the ultimate performance from and have the finest control over their applications.

For the rest of us who are simply keen to see immediate results and to produce good−looking highly
functional X applications, we'll concentrate on a couple of recent innovations in the X programming world.

With the rise of very fast personal computers and workstations, it has become feasible to write at least the user
interface part of programs in an interpreted language. We've seen a couple of these already in the shell and
Tcl. We've got the power of Perl to look forward to in chapter eighteen.

We'll now take a look at Tk (for Tool Kit), an extension to Tcl for graphical programming, and in the next
chapter, GTK+, developed originally as a toolkit for controlling the GIMP (GNU Image Processor), but which
forms the underlying graphical language in the GNOME desktop.

The Tk approach to X programming also brings a benefit of portability. It is available for non−X graphical
environments (including Microsoft Windows) and is hardware−independent. Tk programs written for one
machine should run unchanged on another.

If you are interested in the benefits of a platform independent programming system, and are also looking for
the power of a compiled language, then Java provides an interesting solution. The topic of Java programming
is too vast to cover here, but Ivor Horton's "Beginning Java 2", also from Wrox (ISBN 1−861002−23−8), is an
excellent place to start.

ks24x7.com − Referenceware for Professionals

Chapter 16 Contents

Overview

What is X?

X Window Manager

The X Programming
Model

Fast Track X
Programming

The Tk Toolkit

Windows
Programming

Configuration Files

Chapter 16 − Programming for X

Beginning Linux Programming, 2nd Edition

byRichard StonesandNeil Matthew

Wrox Press 2003

Print

The Tk Toolkit

Tk, created by John Ousterhout to be the companion of Tcl, is a rich collection of graphical user interface (GUI) abstractions (widgets), designed to simplify the essential components
of graphical front−end programming under X, Microsoft Windows and Apple MacOS.

Tk is an action−oriented, composition−based, embeddable, extensible, highly portable, event−based toolkit whose widgets are written in C and use Tcl bindings for event handlers. Tk
has already been ported to use many other languages like Perl and Python for command bindings.

The current releases of Tk 8.1 and Tk 8.2 work consistently on all the three platforms: Unix, Windows and Macintosh.

By default, Tk's widgets have the native look and feel of the widgets of the platform they run on, but they are highly−configurable. You can operate Tk's widgets in strict Motif mode
by checking one of toolkit's global variables. Because Tk's interface is consistent, most scripts written for one platform will run without any modifications on the other two platforms.

 Fast Track X Programming

501

More Commands

Tk Widgets

Tk's Built−in Dialogs

Color Schemes

Fonts

Bindings

BindTags

Geometry
Management

Focus and Navigation

Option Database

Inter−application
Communication

Selection

Clipboard

Window Manager

Dynamic/Static
Loading

Safe Tk

A Mega−Widget

An Application Using the
Tree Mega−Widget

Tk Process Log Viewer

Summary

Important All the examples in this section need at least version 8.0 of Tcl and 8.0 of Tk to work. You can download the latest versions of the software from . Most of the
programs in this section are written using Tcl8.0 and Tk8.0 because the latest releases of Jacl and Tcl Blend work only with Tcl8.0 version. Jacl is the complete
rewrite of Tcl interpreter in pure Java and Tcl Blend is a dynamically loadable C extension to Tcl to interact with a Java Virtual Machine.

Before we dive into Tk programming, you need to make sure that the Tk windowing shell, wish, is installed on your system with the executable in your PATH. If Tk is not installed at
the default location, you'll need to set the environment variables TK_LIBRARY and TCL_LIBRARY to point to the right locations. If you have multiple versions of Tcl installed on
your machine, you might want to make sure that you point the above−mentioned environmental variables correctly. For example, here is the shell script I use to invoke wishf for
version 8.2b3 of Tk.

#!/bin/sh
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/tcl8.2b3/unix:/usr/local/tk8.2b3/uni
x:
PATH=$PATH:/usr/local/bin:/usr/local/tcl8.2b3/unix:/usr/local/tk8.2b3/unix:
TCL_LIBRARY=/usr/local/tcl8.2b3/library
TK_LIBRARY=/usr/local/tk8.2b3/library
export LD_LIBRARY_PATH PATH TCL_LIBRARY TK_LIBRARY
/usr/local/tk8.2b3/unix/wish $*

Important When you type wish at the shell prompt, a small and, by default, gray window should pop up. To suppress this interactive wish window, for example when running
scripts, invoke Tk using wish −f. wish is basically tclsh with the Tk functions built in.

Over the next few sections, we'll take a look at:

Basic concepts of Windows programming•
Writing our first Tk program•
Touring the Tk widget set, with some of their configuration options•
Bindings•
Geometry managers•
Application resource management•
Inter−application communication•
Window management and application embedding•
A mega−widget completely wrtten in Tcl using existing Tk components•
A real Tk example for every day use using Tcl events•

Though by no means extensive, these pages should show you how to get started with Tk, how to program using its built−in widget set and where to find out more about Tk, as you
need it.

Windows Programming

Using Tk, you can quickly create a graphical interface, using the widgets provided to deal with the underlying window system. You then attach event handlers to these widgets (usually
using the Tcl language), so that they react as required to the user's commands. This fits in with usual visual programming practice.

First, create the look of your program, adding in components to access the functionality you eventually want to include. Select a widget from the Tk toolkit, initialize its look and then
use Tk's geometry manager to arrange it in relation to other widgets within the screen window. Then, code the response of each GUI component to user commands. What will clicking
the load button do? How will clicking it load an image into the canvas widget?

This is rather different from the procedural programming we've been looking at throughout the rest of the book. As a programmer, you can never control the order in which the user
interacts with the program; the whole point of GUIs is to provide a more natural and intuitive user interface. The program must wait for and then act on user−initiated events.

Every time you create a widget in Tk using its class command, the GUI primitive known as the widget is created, as is a new Tcl command, whose name is the name of the widget.
You can then invoke methods (Tk calls them configuration options) on this newly created widget using its widget command. Widget commands are like objects in an object−oriented
system − when the widget is deleted, the widget command is also deleted.

 Windows Programming

502

For example, the widget command,

button .b

creates a new widget and a widget command named .b. You can use this new command to communicate with the widget, so,

.b configure −text "Hello"

will set the title of the button .b to Hello. If you think of .b as an object, you are invoking the configure method on the object to set its text attribute to Hello.

Important Tk widgets are not completely object−oriented as they don't support inheritance, polymorphism etc. Their only similarity to OOP principles is the way methods are
invoked.

The widget creation and initialization parts of a Tk program will contain Tcl commands to create and arrange the widgets on the user screen. Once you've created and arranged the
widgets, they interact with the user using Tcl scripts known as event handlers.

We'll try to present all the examples using this approach, although it's sometimes difficult to separate the two stages completely, because event handlers are sometimes bound when you
create the widget. For example, most widgets in Tk support the command widget handler, which is usually set immediately. Also, it sometimes makes sense to bind the event handlers
as soon as you create the widget and manage the screen layout of the widgets later. No single approach is the best. To manage your design, use whichever is appropriate or is easier to
understand.

To get us started and make more sense of this introduction, let's look at a program, hello1.tk, probably the smallest multiline label program ever created!

Try It Out − Saying Hello

Type in the following script file:

#!/usr/bin/wish −f

pack [button .b −text "Hello\nWorld!!!" \
 −justify center \
 −width 20 \
 −command {puts "Hi"}]

Make the script executable and run the hello1.tk program:

$./hello1.tk

This program creates the window shown in the figure and outputs the string Hi each time you click on the button.

How It Works

Let's dissect the program and see what's going on in this ubiquitous masterpiece.

After invoking wish −f, we get to the single line that does all the work. It's remarkably terse and we've expanded it to make the specified options more obvious. Ignoring the pack
command for now, we see that button... creates a button named .b whose multiline label Hello World is centered. The button is set to a width of twenty characters. The −command
option attaches an event handler to the button to output the string "Hi" in the parent window when the user clicks on the button. Note the backslashes that allow you to write the
command over several lines.

Try It Out − Saying Hello

503

The pack command packs the widget .b into the default top−level window created by the application, so that it occupies the window. Note that pack [button .b ...] would work just as
well if we initialized the button .b first and then called pack .b.

There's no particular reason for calling the widget .b. You can name it .foo, or anything else, provided the name begins with a full−stop. An application's widgets are arranged in a
hierarchy and the default, top−level, 'application' widget and its corresponding widget command are named '.'. Each widget's name is a dot−separated list describing its position in the
application's hierarchy. For example, the path name .a.b.c implies that widget .c is a child of .a.b, a grandchild of .a, and a great−grandchild of the application widget. Currently, all the
widgets in Tk can have any number of children provided all the path names are listed in this way.

Configuration Files

Now let's add one more line before the widget's creation:

option add *b.activeForeground brown

The program creates the widget .b and sets up its default activeForeground color to brown. The asterisk before b means that any widget called b should have the option set, no matter
what its parentage.

We can also make it into a more realistic X application by saving the line,

*b.activeForeground: brown

into a file called hello.def, and then adding the following line into the hello3.tk script before we create the widget:

option readfile hello.def

This line reads the application defaults from the file hello.def before creating the widget.

More Commands

You might be thinking, "Can't I create more user interactions to the widget than −command?" We'll go right ahead and create one such simple event binding. If the user presses Ctrl
along with the mouse button, the widget will output the string "Help!".

Here's how to do this:

bind .b <Control−Button−1> {puts "Help!"}

Our final Hello World program, hello4.tk, with all these modifications, reads:

#!wish −f

option readfile hello.def
pack [button .b −text "Hello\nWorld!!!" \
 −justify center \
 −width 20 \
 −command {puts "Hi"}]
bind .b <Control−Button−1> {puts "Help!"}

This is a simple three line program which can do the same job as a 500 line Xlib program or 100+ lines of Motif code. It has all the features of a basic X application and is still very
simple. That's what Tk is all about. It removes all the complexity and fear involved in graphical user interface programming.

 Configuration Files

504

Tk Widgets

It's time to look more closely at the set of widgets Tk provides. Before we review the widgets Tk supports, though, here's a simple way to find out all the methods and arguments a
widget provides. Note that the symbol % denotes Tk's wish command shell prompt.

Try It Out − Learning More

First, interactively create a scale widget .s:

$ wish
% scale .s
.s

Call the config method of the widget and see its output to check out what the widget offers:

% .s config

You should see this output:

{−activebackground activeBackground Foreground SystemButtonFace SystemButtonFace}
{−background background Background SystemButtonFace SystemButtonFace} {−bigincrement bigIncrement
BigIncrement 0 0.0} {−bd −borderwidth} {−bg −background} {−borderwidth borderWidth BorderWidth 2 2}
{−command command Command {} {}} {−cursor cursor Cursor {} {}} {−digits digits Digits 0 0}
{−fg −foreground} {−font font Font {{MS Sans Serif} 8} {{MS Sans Serif} 8}} {−foreground foreground
Foreground SystemButtonText SystemButtonText} {−from from From 0 0.0} {−highlightbackground
highlightBackground HighlightBackground SystemButtonFace SystemButtonFace} {−highlightcolor
highlightColor HighlightColor SystemWindowFrame SystemWindowFrame} {−highlightthickness highlightThickness
HighlightThickness 2 2} {−label label Label {} {}} {−length length Length 100 100} {−orient orient Orient
vertical vertical} {−relief relief Relief flat flat} {−repeatdelay repeatDelay RepeatDelay 300 300}
{−repeatinterval repeatInterval RepeatInterval 100 100} {−resolution resolution Resolution 1 1.0}
{−showvalue showValue ShowValue 1 1} {−sliderlength sliderLength SliderLength 30 30} {−sliderrelief
sliderRelief SliderRelief raised raised} {−state state State normal normal} {−takefocus takeFocus
TakeFocus {} {}} {−tickinterval tickInterval TickInterval 0 0.0} {−to to To 100 100.0} {−troughcolor
troughColor Background SystemScrollbar SystemScrollbar} {−variable variable Variable {} {}} {−width
width Width 15 15}

Each list pair follows this combination:

option−switch option−name option−class option−default−value option−actual−value.

You can interactively experiment and learn about the widget's options and their default values. There is, however, no easy way to learn a widget's methods without perusing its manual
page.

Frames

Frames are the simplest of all the Tk widgets. They are only used as containers, as you can see in the following example:

#!usr/bin/wish −f

. config −bg steelblue

foreach frame {sunken raised flat ridge groove} {
 frame .$frame −width 0.5i −height 0.5i −relief $frame −bd 2
 pack .$frame −side left −padx 10 −pady 10
}

 Tk Widgets

505

This script creates five frames with different 3D borders:

Frames are often invisible and are almost always used to create nested layouts.

How It Works

In the above example, the −relief option is used to set the border relief of the frame, while the −bd 2 option sets the widget border width to two pixels. This option is supported by all
the Tk widgets and gives the 3D effect.

As for the rest of the code, you can see the use of a Tcl list to create the five frames. The frames are sized by setting the −height and −width options to 0.5i (half an inch), they're
packed to the left and padded ten pixels on each side by the −padx and −pady options.

Toplevel

Toplevel widgets are like frames, except they have their own toplevel windows, whereas frames are internal windows within a toplevel.

% toplevel .t −width 1.5i −height 1i −relief ridge −bd 4

Labels

A label is simple widget which can display multiline text. We can create a label using the label command:

% label .l −wraplength 1i −justify right −text "Hello Tk World!"

This creates a multiline label widget with a text length of one inch for each line. Once you pack the label using,

% pack .l

it will create a widget which looks like this:

When you've created the label, you can use the widget command to communicate with it. For example, the following command will query the foreground color of the label widget:

% .l cget −fg
Black

All the Tk widgets support the cget widget command, which retrieves any widget configuration option. We can also use the configure method of the Tk widgets to set configuration
options interactively. For example,

How It Works

506

% .l configure −fg yellow −bg blue

will set the label's foreground to yellow and background to blue.

Buttons

Tk provides three kinds of buttons, ordinary push buttons, check boxes and radio buttons.

Pressing a push button performs an action. We use check boxes to select or deselect a number of options. Radio buttons are similar, but they exclusively select one choice from a group
of options. You'll most likely be familiar with the widgets, if not the terminology.

Let's look at the following example, which illustrates most of the uses of Tk buttons.

Try It Out − A Choice of Buttons

After the script header and a couple of global variables, we create a check button to control the selection of a favorite programming language.

#!/usr/bin/wish −f

set lang tcl
set state 1

checkbutton .lan −text "Language" −command {changeState} −relief flat \
 −variable state −onvalue 1 −offvalue 0

1.

Next, we create a radio button panel, with one button for each language:

radiobutton .c −text "C" −variable lang −value c −justify left
radiobutton .tcl −text "Tcl" −variable lang −value tcl −justify left
radiobutton .perl −text "Perl" −variable lang −value perl −justify left

2.

We need two push buttons to control the output:

button .show −text "Show Value" −command showVars
button .exit −text "Exit" −command {exit}

3.

Having configured the buttons, we need to arrange them on screen. It's time for a bit of geometry management.

grid .lan −row 1 −column 0 −sticky "w"
grid .c −row 0 −column 1 −sticky "w"
grid .tcl −row 1 −column 1 −sticky "w"
grid .perl −row 2 −column 1 −sticky "w"
grid .show −row 3 −column 0 −sticky "w"
grid .exit −row 3 −column 1 −sticky "w"

4.

The check button needs a callback procedure, changeState. This is registered by the check button's −command option.

proc changeState args {
 global state
 if {$state == "0"} {
 catch {
 .c config −state disabled
 .tcl config −state disabled
 .perl config −state disabled
 }
 } else {
 .c config −state normal
 .tcl config −state normal
 .perl config −state normal
 }

5.

How It Works

507

}

The push buttons need a similar procedure, showVars:

proc showVars args {
 global state lang
 if {$state == "0"} {
 puts "No Language is selected"
 } else {
 puts "The Language selected is $lang"
 }
}

6.

When you run the program, you should see this:

How It Works

The program starts off by setting up two global variables, lang and state, to serve as the initial values of the check boxes and radio buttons.

A check box is declared to select/deselect the 'language' option. Every time it's invoked, its command will call the changeState procedure. It also sets the global variable state to 1 or 0,
depending upon the selection before executing the command.

Then the program composes the radio button, which is there to select just one of three languages (C, Tcl, Perl). If you look at the code, these buttons all share the same global variable,
lang, which holds the value of the current selection. This makes sure that the user can only select one radio button at a time.

Lastly, we declare two push buttons, one of which exits the application when the user presses it, while the other will output the selection by calling the procedure showVars.

The command changeState is used by the check box to change the state of all three radio buttons between active and inactive, depending upon whether it's selected or deselected.
showVars is used by the Show Value push button to output the value of the current selection.

Buttons also support many other options, like flash invoke methods. For more information, look at the button, checkbutton, radiobutton and options man pages. Labels and buttons also
support bitmaps and images as their labels. We'll learn about images later.

Important The lines in the example which start with grid... are used for geometry management of the created widgets. We'll cover geometry management later in this
chapter.

Messages

Messages are similar to labels and are used to display multiline text. They differ from labels in that they will automatically break up text to display it in a multiline format, using word
boundaries and aspect ratio. Message widgets can justify the text displayed and they can also handle non−printable characters.

#!/usr/bin/wish −f

message .m −aspect 400 −justify center \
 −text "This is a message widget with aspect ratio 400 and \
 center justification. Message widgets can also to \
 display control characters \240 \241 \242 \243 \251 \
 \256 \257 \258 and tabs \t etc..."

How It Works

508

pack .m

This example will create a simple message widget containing control characters.

Entrys

Entrys (sic) are single line text widgets which we can use to type in and display a single line of text. Entrys also support many key bindings for text editing. For example, here's a small
program, login.tk, to handle user logins, though it lacks code to verify the user's password.

Try It Out − Gaining Entry

First, set up the look of the login window. We also define a global loginName variable:

#!/usr/bin/wish −f

set loginName "timB"

label .name −text "Login:"
entry .nameEntry −textvariable loginName
label .passwd −text "Password:"
entry .passwdEntry −textvariable passwd −show *

1.

Then we select all the text from .nameEntry:

.nameEntry selection from 1

.nameEntry selection to end

2.

Lastly, we arrange the widgets on the screen − we'll explain it later!

grid .name −row 0 −column 0 −sticky "w"
grid .passwd −row 1 −column 0 −sticky "w"
grid .nameEntry −row 0 −column 1 −columnspan 2 −sticky "W"
grid .passwdEntry −row 1 −column 1 −columnspan 2 −sticky "W"

3.

If you run the program, you'll see this:

How It Works

After the first five lines, which create two label and two entry widgets, the next two lines show how to select the text inside the entry. The selection command is Tk's method for
moving information between widgets. The last four lines arrange the created widgets on the screen in a grid.

Important X defines a standard mechanism for supplying and retrieving the selection and the selection command is Tk's way of managing Inter−Client−Communication. It obeys X's
Inter−Client Communication Conventions Manual (ICCCM) rules. The reason we introduce selection here is to show that you can programmatically set the selection so
that another, non−Tk, X client can retrieve the selection using normal X Windows conventions.

Entry widgets use key bindings for internal navigation through the text. If you read the man page, you'll find that the entry widget supports lots of EMACS bindings, along with all the
Motif bindings dictated by the OSF Motif style guide. Meanwhile, here are a few of the more common ones:

Key Binding Description

Ctrl−a Moves the insertion cursor to the beginning of the entry text.

How It Works

509

Ctrl−e Moves the cursor to the end of the entry text.

Ctrl−/ Selects all the text in the entry.
List Boxes

A list box widget can display a collection of strings and allows the user to select one or more items. The following program shows a way to use a list box to design a Motif−like prompt
dialog.

Try It Out − Lists

First we create the user−interface elements:

#!/usr/bin/wish −f

scrollbar .h −orient horizontal −command ".list xview"
scrollbar .v −command ".list yview"
listbox .list −selectmode single −width 20 −height 10 \
 −setgrid 1 −xscroll ".h set" −yscroll ".v set"
label .label −text "File Selected:" −justify left
entry .e −textvariable fileSelected

1.

To give widgets that Motif−ish look and feel, we use the grid geometry manager:

grid .list −row 0 −column 0 −columnspan 2 −sticky "news"
grid .v −row 0 −column 2 −sticky "ns"
grid .h −row 1 −column 0 −columnspan 2 −sticky "we"
grid .label −row 2 −column 0
grid .e −row 3 −column 0 −columnspan 3 −sticky "we"

grid columnconfigure . 0 −weight 1
grid rowconfigure . 0 −weight 1

2.

We initialize the list box with the contents of the current directory:

foreach file [glob *] {
 .list insert end $file
}

3.

Lastly, we bind an event handler to the list box to make it react to the release of the mouse−button 1. This corresponds to the left mouse−button for right−handed users, and
vice versa for left−handed users. We'll continue to call it mouse button 1 in this section as this is the convention used in the code.

bind .list <ButtonRelease−1> \
 {global fileSelected;set fileSelected [%W get [%W curselection]]}

4.

If you run the program, you'll see this:

How It Works

510

How It Works

The program first creates two scrollbars and then attaches them to the list box it creates. The widgets are inter−connected using −command for the scrollbars and −xview and −yview
commands for the list box. This is the way we tell two widgets how to communicate and react to one another's geometry or state. We'll explore more interconnection later in the
chapter.

Next, we initialize the list box with the contents of the current directory using the foreach loop. The Tcl command glob performs pattern matching to return these filenames.

The list box provides many more configuration methods such as delete, get, index, insert and scan to manipulate the displayed contents.

Scrollbars

As we saw in the previous example, scrollbars are usually connected to other widgets, so that the widget's viewing area will be expanded. In the list box example, the viewing area is
controlled by the two scrollbars, .h and .v, like this:

scrollbar .h −orient horizontal −command ".list xview"
scrollbar .v −command ".list yview"

.h controls the horizontal viewing area of the list box using the command .list xview, and similarly for the vertical scrollbar, .v. The list box is also informed about the interconnection
using the command:

listbox .list ... −xscroll ".h set" −yscroll ".v set"

That, then, is how we make two widgets communicate with each other by binding them together and informing each of them about the other's behavior. You can also use implicit
interconnection, as we'll see in the next section.

Scales

Scales display an integer value and allow the user to select that value by moving a slider. Let's look at a simple example:

#!/usr/bin/wish −f

set foo 100
label .l −text "Choose a Value:" −justify left
scale .s −orient horizontal −from 0 −to 2000 −tickinterval 500 \
 −showvalue true −length 3i −variable foo
entry .e −width 6 −justify left −textvariable foo

How It Works

511

pack .l −side top −anchor nw
pack .s .e −side left −padx 4m −fill x

When you run this program, you'll see this screen:

Here, the scale and the entry share an implicit interconnection through the global variable foo. If you update the value of the scale, the value in the entry is automatically updated.

Important All the variables used explicitly in Tk's widget event handlers are of global scope. If the bound variable doesn't exist, Tk will automatically create one for you.
So, in the above example the variable foo is a global variable and both scale and entry share the same variable, creating an implicit interconnection in their
behavior.

Text

Tk's very versatile text widgets are used to create multiline, editable text. They support three types of annotations, tags, marks and embedded windows, which affect what is
displayed.

Tags allow different portions of text to be displayed with different fonts, colors and reliefs. Tcl commands can be associated with tags to make them react to user actions.•
Marks are used to keep track of various interesting positions in the text as it's edited.•
Embedded window annotations are used to insert widgets (windows) at particular points in the text. You can have any number of embedded windows in the text. All the
embedded windows in the text require the text to be the parent of embedded windows.

•

Let's look at a demonstration of some of the text widget features.

Important Tk's text widget is so powerful that we can use it as an HTML widget without much effort. The well known hypertext man page viewer TkMan uses Tk's text
widget to display normal UNIX man pages in hyper−linked form.

Try It Out − Manipulating Text

First of all, we create a vertical scrollbar which we attach to the text widget. Then we pack them side by side and tell the text window to expand to fill the available window
space.

We make sure that the text window continues to fill the window even when resizing occurs by telling the packer, if there's extra vertical space, to expand both the widgets to
occupy that space. However, if some extra horizontal space is made available, only the text widget will be expanded.

#!/usr/bin/wish −f

scrollbar .y −command ".t yview"
text .t −wrap word −width 80 −spacing1 1m −spacing2 0.5m −spacing3 1m \
 −height 25 −yscrollcommand ".y set"

pack .t −side left −fill both −expand yes
pack .y −side left −fill y

1.

Next, we want to create embedded windows. We don't have to worry about managing them because the text widget will look after them internally.

set image [image create photo −file mickey.gif −width 200 −height 200]
label .t.l −image $image
button .t.b −text "Hello World!" −command "puts Hi"

2.

How It Works

512

Then we configure all the tags that we're going to associate with the text window:

.t tag configure bold −font −*−Courier−Bold−O−Normal−−*−120−*−*−*−*−*−*

.t tag configure yellowBg −background yellow

.t tag configure blueFg −foreground blue

.t tag configure yellowBgBlueFg −background yellow −foreground red

.t tag configure underline −underline 1

.t tag configure raised −relief raised −borderwidth 2

.t tag configure sunken −relief sunken −borderwidth 2

.t tag configure center −justify center

.t tag configure left −justify left

.t tag configure right −justify right

.t tag configure super −offset 4p

.t tag configure sub −offset −2p

.t tag bind colorOnEnter <Any−Enter> ".t tag configure colorOnEnter \
 −background yellow"
.t tag bind colorOnEnter <Any−Leave> ".t tag configure colorOnEnter \
 −background {}"

3.

Having configured the tags, we now insert text with those tags to show off the widget's potential, if not our graphic design.

.t insert end "Tk text widget is so versatile that it can support many \
 display styles:\n"
.t insert end "Background: " bold
.t insert end " You can change the "
.t insert end "background" yellowBg
.t insert end " or "
.t insert end "foreground" blueFg
.t insert end " or "
.t insert end "both" yellowBgBlueFg
.t insert end "\nUnderlining. " bold
.t insert end "You can "
.t insert end "underline" underline
.t insert end "\n3−D effects: " bold
.t insert end "You can make the text appear "
.t insert end "raised" raised
.t insert end " or "
.t insert end "sunken" sunken
.t insert end " Text"
.t insert end "\nJustification" bold
.t insert end "\nright justification" right
.t insert end "\n center justification " center
.t insert end "\nleft justification " left
.t insert end "\nSuper and Subscripts: " bold
.t insert end "Text can be "
.t insert end "super" super
.t insert end " or "
.t insert end "sub" sub
.t insert end " scripted"
.t insert end "\nBindings: " bold
.t insert end "Text can be made to react to the user interactions" colorOnEnter
.t insert end "\nEmbedded Windows: " bold
.t insert end "You can insert labels "
.t window create end −window .t.l
.t insert end " or any kind of windows "
.t window create end −window .t.b

4.

If you run this program, this is what you'll see:

How It Works

513

How It Works

In this example, the first text window and a scrollbar are created and managed to create the basic interface. All the internal windows (.t.l and .t.b) are created, but not explicitly
managed, because we're going to insert them into the text widget. Next, all the binding tags that we're going to use are configured using various configuration options. For example,

.t tag configure bold −font −*−Courier−Bold−O−Normal−−*−120−*−*−*−*−*−*

will create a tag called bold. The characters inserted with the tag will have the font −*−Courier−Bold−O−Normal−−*−120−*−*−*−*−*−*. We'll look at the way Tk handles fonts later
on. Similarly, characters inserted with blueFg will be displayed in blue.

Important We don't need to create the text tag explicitly. When we insert a piece of text with tag foo, foo will be created automatically. Here, we've configured the tags beforehand
and the program has created them.

We then insert text using tags with the following format:

text_widget insert index chars taglist chars taglist...

An index is a string used to indicate a particular place within a text, such as a place to insert characters, or one endpoint of a range of characters with blue background. Indices have the
syntax:

base modifier modifier modifier...

base gives the starting point and the modifiers shift or adjust the index from the starting point. Modifiers can move the index in either direction from the starting point.

The base for the index must have one of the following forms:

Index Base Description

line.char Indicates the charth character of the line line.

@x,y Indicates the character that covers the pixel within the text window whose co−ordinates are x and y.

mark Indicates the character just after the mark.

tag.first Indicates the first character in the text that has been tagged tag. Similarly for tag.last.

pathname Indicated the position of the embedded window whose path name is pathname.
Modifiers can have these forms:

Modifier Description

How It Works

514

+count chars Adjusts the index forward by count chars.

−count chars Adjusts the index backward by count chars.

+count lines Adjusts the index forward by count lines.

−count lines Adjusts the index backward by count lines.

Linestart Adjusts the index to refer to the first char on the line.

Lineend Adjusts the index to refer to the last char on the line.

Wordstart Adjusts the index to first char of the word containing the current index.

Wordend Adjusts the index to last char of the word containing the current index.
We can associate a particular piece of text with more than one tag. For example, text can be bold and italic at the same time. When you insert text, you need to specify the location. In
our last example, end means 'insert after the last character displayed'. In text, indices can also be tags and marks, so the text command:

.t insert end "right justification" right

will insert the text right justification at the end of all the text in text widget and will right justify it.

Important Text supports lots of features and we recommend that you read the text man page and take a look at the text demos that come with Tk distribution. Before we finish text,
though, think about what it takes to implement the last example in Motif or Xlib. In Motif, it would take a couple of hundred lines and, in Xlib, perhaps several thousand.
The power of Tk can be pretty Mind boggling!

Canvases

Tk's canvas widget is used to implement structured graphics. Canvases can display any number of items, including rectangles, circles, lines, text and embedded windows, which can be
manipulated (moved or colored) and bound to user interactions. For example, we can make a particular item change its background color when the user clicks the mouse button over it.

Before we play with the canvas widget, we need to cover some theory: identifiers and tags.

When we create each item in the canvas, it's assigned a unique integer identifier. Items can have any number of tags associated with them. A tag is a string of characters, which can
take any form except an integer. Tags are used for item grouping, identifying and manipulating purposes. The same tag can be associated with many items to group them under one
category. Every item inside the canvas can be identified by its ID, or a tag associated with it. The tag all is implicitly associated with every item in the canvas. The tag current is
automatically managed by Tk. It refers to the topmost item whose drawn area lies at the position of the mouse cursor.

When we're specifying items in canvas widget commands, if the specifier is an integer, we assume that it refers to a single item with that ID. If the specifier isn't an integer, we assume
that it refers to all the items in the canvas that have the tag matching the specifier. In the next example, we use the tagOrId symbol to specify either an ID that selects a single item or a
tag that selects zero or more items.

When we create any item on the canvas, we specify its location. The locations are floating point numbers optionally suffixed with one of the letters m, c, i, p:

m stands for millimeters.•
c stands for centimeters.•
i stands for inches.•
p stands for points.•

If we don't follow the coordinate with one of these letters, the program assumes that the item is in pixels. Let's look at some of the canvas commands and see what they do. In the
following commands, the pathName identifier refers to the canvas path name:

pathName create arc x1 y1 x2 y2 ?option value option value ...?

This creates an arc item on the canvas, with x1 y1 x2 y2 specifying the coordinates of a rectangular region enclosing the oval that defines the arc. Command options in the above
include −extent, −fill and −outline. For example, the command,

How It Works

515

% set k [.c create arc 10 10 50 50 −fill red −outline blue −tags redArc]

creates an arc item inside canvas .c with $k giving the value of the ID. Its outline is drawn in blue. This arc is enclosed inside a rectangle with canvas coordinates 10 10 50 50 and is
filled in with red. A tag, redArc, is also associated with the arc.

pathName itemconfigure tagOrId ?option value option value ...?

This command is similar to the −configure widget command, except that we can use it to modify only item−specific options for the item denoted by tagOrId, instead of modifying the
whole canvas widget. For example,

% .c itemconfigure redArc −fill yellow

will change all the fill colors of items associated with tag redArc to yellow.

pathName type tagOrId

This will return the type of first item in the list of items referred to by tagOrId. For example:

% .c type redArc
arc
pathName bind tagOrId ?sequence? ?command?

This is just like the bind command, but instead of applying the sequence to the whole canvas, it just applies to the item specified by tagOrId. If command isn't given, it returns all the
commands associated with the binding sequence sequence for canvas item tagOrId. If neither sequence nor command is given, all the sequences bound to the item are returned. For
example,

% .c bind $k <Enter> ".c itemconfigure redArc −fill blue"
% .c bind redArc <Leave> ".c itemconfigure redArc −fill red"

The first binding will fill in the item associated with tagOrId $k with blue, when the mouse enters the item. The second binding fills in all the items associated with tag redArc with red
when the mouse leaves them.

Text and canvasses support so many commands that it would take much more than one chapter to explain them all. We strongly advise that you refer to the canvas and text man pages
for the mastery of these two widgets. Here's a small example that shows a few of their features:

Try It Out − Text on Canvas

First we create the canvas and then some objects to display on it: an image of a teapot, a line of text over the image, another text object to exhort users to move the items
around, and a rectangle. We pack the canvas so it will fill the window.

#!/usr/bin/wish −f

set c [canvas .c −width 300 −height 300 −relief sunken −bd 2]

set image [image create photo −file teapot.ppm −width 200 −height 200]
$c create image 150 150 −anchor center −image $image −tags item

$c create text 150 150 −text " Image Object" −fill white

$c create text 10 10 −text " Move any Item \n using Mouse " −justify center \
 −anchor nw −tags item −fill red
$c create rectangle 200 10 250 40 −fill yellow −outline blue −tags item

pack .c

1.

Next, we bind the canvas so that we can operate on the items shown on it. We'll define the itemDragStart and dragItem procedures next:2.

How It Works

516

bind $c <1> "itemDragStart $c %x %y"
bind $c <B1−Motion> "dragItem $c %x %y"

For the procedure's benefit, we need to define two global variables, lastX and lastY.

global lastX lastY

event handler for the <1> event
proc itemDragStart {c x y} {
 global lastX lastY
 set lastX [$c canvasx $x]
 set lastY [$c canvasy $y]
}
event handler for the <B1−Motion> event
proc dragItem {c x y} {
 global lastX lastY
 set x [$c canvasx $x]
 set y [$c canvasy $y]
 $c move current [expr $x−$lastX] [expr $y−$lastY]
 set lastX $x
 set lastY $y
}

3.

The program produces this output:

How It Works

It's really a very simple example. We created a few canvas item types and bound the mouse buttons so that the user could move them with the mouse. For example, the line,

$c create image 150 150 −anchor center −image $image −tags item

creates an image on the canvas at the canvas location (150, 150). This image is an object in its own right, so you can move it and make it react to the user by binding event handlers to
the tag associated with the item. Like text, canvas supports many features, so it's very difficult to explain them comprehensively in a simple twenty−line example. We'll look at some
more of canvas's features in the final applications.

Before we leave canvas objects, we'll mention a few of their properties:

How It Works

517

Canvas items can have event handlers attached to them.•
An item can have many tags associated with it, but will have one unique ID.•
If an item is a widget, it should be the child of the canvas that contains it.•
If items are widgets, you can configure them just as you would had they been outside the canvas. Embedding them within the canvas doesn't change their methods.•
As you place items on the canvas, you can stack them on top of one another, obscuring some of the items beneath them. You can change the stacking order using canvas raise
and lower commands.

•

Finally, to make things simpler in the last example, we don't bind the procedures to the objects through tags, but directly through the canvas. If you look at the dragItem procedure, the
line,

set x [$c canvasx $x]

sets the values of x to canvasx coordinate from the real screen coordinate x. The line,

$c move current [expr $x−$lastX] [expr $y−$lastY]

moves the current object under the mouse cursor (denoted by the index current) to a new location, from lastX to x. lastX was saved when the user event handler itemDragStart was
invoked, through the binding:

bind $c <1> "itemDragStart $c %x %y"

Here, the bind means that when the user clicks on the canvas with mouse button 1 the itemDragStart event handler is invoked with arguments canvas, %x (the value of x at the mouse
click) and %y (the value of y at the mouse click). We'll discuss bindings later in the chapter.

Images

Tk can display images of two built in types: photo and bitmap. The photo type can display gif and ppm / pgm files, while the bitmap format can display xbm files. The image command
can be used to create images. The general format of the image command is,

image option ?arg arg ...?

where option can be used to create, delete and set such options as height, names, image type and so on. To explore the image command, we are going to develop an example based on
the sliding block example that comes with the Tk distribution, but we are going to jazz−up the original example by using the image command.

Try It Out − Manipulating Images

First we create the image. Then we configure the frame which will hold the pieces of the image that will form the puzzle. This we pack with a little padding:

#!/usr/bin/wish −f

set image [image create photo −file mickey.gif −width 160 −height 160]

frame .frame −width 120 −height 120 −borderwidth 2 −relief sunken \
−bg grey
pack .frame −side top −pady 1c −padx 1c

1.

Now we create the individual pieces of the puzzle. This involves fifteen loops of the code, which crops portions of the original image to fit on the buttons.

set order {3 1 6 2 5 7 15 13 4 11 8 9 14 10 12}
for {set i 0} {$i < 15} {set i [expr $i+1]} {
 set num [lindex $order $i]
 set xpos($num) [expr ($i%4)*.25]
 set ypos($num) [expr ($i/4)*.25]

 set x [expr $i%4]

2.

How It Works

518

 set y [expr $i/4]

 set butImage [image create photo image−${num} −width 40 −height 40]
 $butImage copy $image −from [expr round($x*40)] \
 [expr round($y*40)] \
 [expr round($x*40+40)] \
 [expr round($y*40+40)]
 button .frame.$num −relief raised −image $butImage \
 −command "puzzleSwitch $num" \
 −highlightthickness 0
 place .frame.$num −relx $xpos($num) −rely $ypos($num) \
 −relwidth .25 −relheight .25
}

Finally, we have the event handler that deals with the user's input. The two global variables are set to show that the initial space in the puzzle is at the bottom right−hand corner

set xpos(space) .75
set ypos(space) .75

proc puzzleSwitch { num} {
 global xpos ypos
 if {(($ypos($num) >= ($ypos(space) − .01))
 && ($ypos($num) <= ($ypos(space) + .01))
 && ($xpos($num) >= ($xpos(space) − .26))
 && ($xpos($num) <= ($xpos(space) + .26)))
 || (($xpos($num) >= ($xpos(space) − .01))
 && ($xpos($num) <= ($xpos(space) + .01))
 && ($ypos($num) >= ($ypos(space) − .26))
 && ($ypos($num) <= ($ypos(space) + .26)))} {
 set tmp $xpos(space)
 set xpos(space) $xpos($num)
 set xpos($num) $tmp
 set tmp $ypos(space)
 set ypos(space) $ypos($num)
 set ypos($num) $tmp
 place .frame.$num −relx $xpos($num) −rely $ypos($num)
 }
}

3.

When you run the program, you'll get this fifteen piece image puzzle output:

How It Works

The first line in the program creates a photo image, using the mickey.gif file and assigns it to the variable image. Portions of this image are then copied on to the buttons with the set
butImage line and those following in a for loop. The result is fifteen buttons with fifteen associated images, taken from the big image held in $image. The rest of the program deals
with event handlers to arrange the buttons when the user clicks on them. We'll return to that part when we deal with geometry management.

How It Works

519

The gist of the puzzleSwitch algorithm logic is based on the fact that: when the user clicks on a button, if the button is next to an empty space, the button and empty space will be
swapped with each other. If you play with the 15−puzzle, you will notice that the piece that can take the place of the empty space will obey one of the following rules.

It will have the same x position as that of empty space and its y position will be 0.25 units away (up or down) from the empty space. (The piece is on the same column as that
of the empty space and it is directly above or below the empty space.)

•

It will have the same y position as that of empty space and its x position is 0.25 units away (left or right) from the empty space. (The piece is on the same row as that of the
empty space and it is directly to the left or right of the emtpy space.)

•

The algorithm above makes use of these properties to decide whether to switch the pieces with the empty space.

Buttons and labels support images as labels. Also, these labels can be embedded inside canvas and text widgets. Refer to the bitmap, photo and image man pages for more information
on Tk's image support.

Menu

Traditionally, menus are used to provide users a set of choices in an application without changing much of the application's appearance. Menus give users convenient access to various
features of the application without the user having to move away from the main window. Tk's menu command creates a widget that displays a list of entries in a separate toplevel
window. Menu is not a container widget; it is a single widget with different objects embedded in it.

Menus can have 3 types of entries embedded inside them:

command entries, to run commands•
radio entries, to select one of many choices•
option entries, to select one or more choices from a group of options•

Menus can also hold other menus in a recursive way, by using cascade entries.

Menu entries can be displayed with up to three separate fields. One of these may be a label (in the form of text), a bitmap, or an image using the �label, �bitmap or �image options
respectively. A second field may use the �accelerator option to specify an accelerator sequence next to the label. The accelerator describes a key sequence that is used to invoke a
particular entry associated with a menu entry. A third option is an indicator that radio and option entries display to the left of the label. Note that Tk does not automatically create a key
binding when the �accelerator option is specified. The binding should be explicitly set using the bind command for the sequence to take effect − setting the −accellerator simply
displays the key combination in the menu.

Menu entries can be configured with different options, such as foreground and background colors, and fonts using the entryconfigure option of the widget command. Entries can also
be disabled using the �state option. If a menu entry is disabled, it will not respond to the user action.

Tk menus are very flexible. You can enable the �tearoff option of the menu so that the user can tear the menu off from the menu bar and use it as a toplevel window. You can also
specify commands that can get called when a menu gets posted or torn off.

Menus are indexed using either their position numerically in the menu, their label , or "last" and "end" tags. Menus can be posted programmatically by calling the post and unpost
menu commands. Tk's documentation refers to menus as being posted, as to say 'pulled down' or 'popped up' only describes the behaviour of certain menus on certain platforms.
Posting is a more generic term.

Each toplevel widget in Tk can have one menu widget act as the default menu bar for that window. A menu bar is a list of menus arranged side by side in a frame. Menu bars can be
attached using the �menu widget option associated with toplevel windows.

The Tk library provides a <<MenuSelect>> virtual event that will get triggered whenever a menu or one of its entries become active. The menu command provides lots of options; for
a complete list of options, please refer to the menu command manual page.

Important

How It Works

520

The menu system was overhauled in Tk version 4.0, and many improvements were made in Tk version 8.0. Prior to Tk 8.0, users had to use
functions such as:

tk_menuBar frame ?menu menu ...

tk_bindForTraversal arg arg ..

to create menu bars. These functions are deprecated and have no effect in Tk versions greater than 4.0
Try It Out − Menus

Let's look at an example that illustrates most of the menu command features. This example will make use of the text widget features. Using the menus, we will change background
color and the properties of the font that is being used to display the text. We will also create a menu to insert bitmap images inside the text widget.

First, we will create the main window components, including a text widget, with an associated scrollbar, and a status widget, to display menu traversal and error messages. We
arrange these widgets on the screen using the grid command. We will also create a new font named myFont. We will use the menu to manipulate the font attributes so that the
text in the text widget will change its appearance.

wm title . "Menu demonstration"
wm iconname . "Menu demo"

create the basic UI
scrollbar .yscroll −orient vertical −command ".text yview"
font create myfont −family Courier −size 10 −weight bold −slant italic \
 −underline 1
text .text −height 10 −width 40 −bg white −yscrollcommand ".yscroll set" −font myfont
label .msg −relief sunken −bd 2 −textvariable message −anchor w −font "Helvetica 10"
.text insert end "Menu Demonstration!"

manage the widgets using the grid geometry manager.
grid .text −row 0 −column 0 −sticky "news"
grid .yscroll −row 0 −column 1 −sticky "ns"
grid .msg −row 1 −columnspan 2 −sticky "ew"

grid columnconfigure . 0 −weight 1
grid rowconfigure . 0 −weight 1

1.

Next, we will develop callback functions, which will be associated with the menu entries. The SetBg procedure will change the background color of the text. ConfigureFont
will change the attributes of myFont. InsertImage will insert the named bitmap into the text buffer. The InsertImage procedure has a side effect: If the named bitmap already
exists in the text buffer, it will get deleted and a new bitmap will be inserted. The OpenFile procedure will prompt the user for a file and if the user selects a file, its contents
will be displayed in the text widget.

procedure to set text background color
proc SetBg {} {
 global background
 .text configure −bg $background
}

procedure to configure the previously created font.

proc ConfigureFont {} {
 global bold italic underline
 expr {$bold ? [set weight bold]: [set weight normal]}
 expr {$italic? [set slant italic]: [set slant roman]}
 expr {$underline? [set underline 1]: [set underline 0]}
 font configure myfont −weight $weight −slant $slant −underline $underline
}

Procedure to insert images in the text widget

2.

How It Works

521

proc InsertImage {image} {
 catch {destroy .text.$image}
 label .text.$image −bitmap $image
 .text window create end −window .text.$image
}

Callback for open menubutton

proc OpenFile {} {
 global message
 set file [tk_getOpenFile]
 if {$file == ""} {
 set message "No file selected..."
 return;
 }
 .text delete 0.0 end
 set fd [open $file "r"]
 while {[eof $fd] != 1} {
 gets $fd line
 .text insert end $line
 puts $line
 update idletasks
 }
 close $fd
}

Next, we will focus on the menu widget and its components. First, we will create a menu that will become the menu bar for the toplevel window.

create toplevel menu

menu .menu −tearoff 0 −type menubar

Create File menu

set m .menu.file

3.

We will add a File submenu with open and exit entries. The open entry will prompt the user with an open file dialog. If the user chooses a file, that file will be displayed in the
text widget using the OpenFile procedure. The exit menu entry is used to exit the application. As you can see, Tk does not create a default global binding for the menu entry
just by using the �accelerator menu entry option. We have to explicitly create the binding in order for the accelerator to take effect.

menu $m −tearoff 0
.menu add cascade −label "File" −menu $m −underline 0
set modifier Meta
$m add command −label "Open..." −accelerator $modifier+o −command "OpenFile" −underline 0 −command OpenFile
bind . <$modifier−o> "OpenFile"
$m add separator
$m add command −label "Exit..." −accelerator $modifier+x −command "exit" −underline 0
bind . <$modifier−x> "exit"

4.

We next add an Option submenu to the main menu. This submenu contains background and font cascade menus. A background cascaded menu contains a group of radio
buttons to change the background color of the text widget. The Font cascade menu provides a group of check buttons to manipulate myfont menu attributes:

#
Create options menu
#
set m .menu.options
menu $m −tearoff 1
.menu add cascade −label "Options" −menu $m −underline 0
$m add cascade −label "Background" −menu .menu.options.bg −underline 0
$m add cascade −label "Font" −menu .menu.options.font −underline 0

5.

How It Works

522

#
create Radio button cascade menu
#

set m .menu.options.bg
menu $m −tearoff 0
$m add radio −label "Red" −background red −variable background −value red \
 −command SetBg
$m add radio −label "Yellow" −background yellow −variable background \
 −value yellow −command SetBg
$m add radio −label "Blue" −background blue −variable background −value blue \
 −command SetBg
$m add radio −label "White" −background white −variable background −value white \
 −command SetBg
$m invoke 3

#
Insert option button cascade Menu
#

set m .menu.options.font
menu $m −tearoff 0
$m add check −label "Bold" −variable bold −command ConfigureFont
$m add check −label "Italic" −variable italic −command ConfigureFont
$m add check −label "underline" −variable underline −command ConfigureFont
$m invoke 3

As you can see from the above code, the entries in a menu can be configured to have different backgrounds and foregrounds, as well as other standard widget options.
Next, we will proceed to add yet another cascade entry to the main menu to insert bitmaps into the text widget. As explained earlier, these bitmap entry commands have a side
effect − that only one instance of these bitmaps can be present in the text widget at any given time.

#
Create insert menu option
#
set m .menu.insert
menu $m −tearoff 0
.menu add cascade −label "Insert" −menu $m −underline 0
foreach i {info questhead error} {
 $m add command −bitmap $i −command "puts {You invoked the $i bitmap}"\
 −hidemargin 1 −command "InsertImage $i"
}
$m entryconfigure 2 −columnbreak 1

One thing to observe from the above code snippet is that entries in a menu can be arranged in a tabular fashion using the entryconfigure command with the �columnbreak
option.

6.

Finally, we will attach the menu to the toplevel widget to make it the default menu bar. We also make use of the <<MenuSelect>> virtual event, which gets fired when any
menu or its entries are selected. The <<MenuSelect>> virtual event will display a message in the message label, which indicates that a particular entry has been selected:

#
Attach the menu to the toplevel menu
#
. configure −menu .menu

#
Bind global tags
#

bind Menu <<MenuSelect>> {

7.

How It Works

523

 global message
 if {[catch {%W entrycget active −label} label]} {
 set label " "
 }
 set message "You have selected $label..."
}

When you run the above example using the following command:

$ wish menu.tcl

you will see:

8.

MenuButton

Menu buttons are like normal buttons with menus associated with them. They are very useful in graphical user interfaces to provide a set of choices grouped together by one button.
Unlike menu bars, which usually have more than one cascade menu associated with them, menu buttons have only one menu associated. There is only one menu bar associated with a
top level window but menu buttons can be embedded anywhere in the user interface.

Menu buttons can also be organized into groups to make menu bars, which can be placed anywhere inside a user interface (unlike top level menus). These can be used to build toolbars
and similar functionality into your user interfaces. Usually, menu buttons can also be configured to behave like an option menu by setting the �indicator option. The menu button
command syntax is as follows:

menubutton pathName ?options?

Try It Out − MenuButtons

To illustrate MenuButtons' features, we will create a simple application that draws circles and rectangles on a canvas with a specified fill color. First, we will develop a utility
procedure that will draw a circle or a rectangle on the canvas. It uses 3 global variables: x, y and sqsize. x − y co−ordinates are used to specify where on the canvas the object needs to
be drawn. Sqsize is used either as the diameter or the side of the square.

Let's start off with the basics needed to draw circles and squares.

wm title . "Menubutton demonstration"
wm iconname . "Menubutton demo"
#
Initial parameters to draw circles and squares
#
set x 50
set y 50
set sqsize 30

1.

How It Works

524

#
procedure to draw canvas objects
#
proc AddObject {type} {
 global x y sqsize sqsize fillc
 if {$type == "circle"} {
 .c create oval $x $y [expr $x+$sqsize] [expr $y+$sqsize] \
 −tags item −fill $fillc
 } elseif {$type == "square"} {
 .c create rectangle $x $y [expr $x+$sqsize] [expr $y+$sqsize] \
 −tags item −fill $fillc
 }
 incr x 10
 incr y 10
}

Next, we create a canvas with a frame, menu button and a dismiss button. The frame widget will hold the menu and dismiss buttons. We pack all the elements to create the
main user interface.

create the basic User Interface canvas, 2 menu buttons and a dismiss button
set c [canvas .c −width 200 −height 200 −bd 2 −relief ridge]

frame .f −bd 2

menubutton .f.m1 −menu .f.m1.menu −text "Draw" −relief raised −underline 0 \
 −direction left
button .f.exit −text "Dismiss" −command "exit"

manage the widgets using the grid geometry manager.
pack .c −side top −fill both −expand yes
pack .f −side top −fill x −expand yes

pack .f.m1 .f.exit −side left −expand 1

2.

Finally, we add a menu to the menu button. We create a menu and add three entries to it: two command entries to draw circle and square objects, and a cascade widget for fill
color selection.

set m .f.m1.menu
menu $m −tearoff 0

$m add command −label "Circle" −command "AddObject circle" −accelerator "Meta−c"
bind . <Meta−c> "AddObject circle"
$m add command −label "Square" −command "AddObject square" −accelerator "Meta−s"
bind . <Meta−s> "AddObject square"
$m add separator
$m add cascade −label "Fill Color.." −menu .f.m1.cascade

set m .f.m1.cascade
menu $m −tearoff 0
$m add radio −label "Red" −background red −variable background −value red \
 −command "set fillc red"
$m add radio −label "Yellow" −background yellow −variable background \
 −value yellow −command "set fillc yellow"
$m add radio −label "Blue" −background blue −variable background −value blue \
 −command "set fillc blue"
$m add radio −label "White" −background white −variable background −value white \
 −command "set fillc white"
$m invoke 1

3.

As you can see from the above code, we have not only added the accelerators to the menu entries, we also have created the bindings explicitly using the bind command.

How It Works

525

Popup Menu

Tk also supports popup menus. Unlike menubuttons and menubars, which provide static menus, popup menus are used to provide context sensitive menu system. For example, if you
are designing a text editor, when the user selects a block of text and clicks the right mouse button, you can programmatically create a menu with items such as: "Spell...", "Format...",
"Copy", "Delete" etc. Popup menus help facilitate such tasks. Popup menus are very helpful in associating menus to any type of widgets, such as text and canvas widgets. Popup menus
don't have any menubuttons associated with them. They are plain menus that get posted programmatically by associating a binding to a specific widget and invoking the tk_popup
command in the event handler of that binding. Since the menus are posted dynamically, the entries inside a popup menu can be created dynamically to display only relevant items.

The general creation format of an popup menu is

tk_popup menu x y ?entry?

where menu is the menu that needs to be posted, x and y specify the co−ordinates, and entry gives the index of an entry in menu. The menu will be positioned so that the entry is
positioned over the given point. Let's build some popup menus.

Try It Out − Popup Menus

First, create a menu and add a binding to the toplevel window associated with the menu so that the menu will get posted when the user clicks on the window using the third
mouse button.

set w .menu
catch {destroy $w}
menu $w
bind . <Button−3> {
 tk_popup .menu %X %Y
}

1.

The rest of the example creates menu entries to show that popup menus have exactly the same capabilities as those of regular menus.

Add menu entries

$w add command −label "Print hello" \
 −command {puts stdout "Hello"} −underline 6

$w add command −label "Red" −background red

Add a Cascade menu

set m $w.cascade

$w add cascade −label "Cascades" −menu $m −underline 0
menu $m −tearoff 0
$m add cascade −label "Check buttons" \
 −menu $w.cascade.check −underline 0
set m $w.cascade.check
menu $m −tearoff 0
$m add check −label "Oil checked" −variable oil
$m add check −label "Transmission checked" −variable trans
$m add check −label "Brakes checked" −variable brakes
$m add check −label "Lights checked" −variable lights
$m add separator
$m invoke 1
$m invoke 3

$m add cascade −label "Radio buttons" \
 −menu $w.cascade.radio −underline 0
set m $w.cascade.radio

2.

How It Works

526

menu $m −tearoff 0
$m add radio −label "10 point" −variable pointSize −value 10
$m add radio −label "14 point" −variable pointSize −value 14
$m add radio −label "18 point" −variable pointSize −value 18
$m add radio −label "24 point" −variable pointSize −value 24
$m add radio −label "32 point" −variable pointSize −value 32
$m add sep
$m add radio −label "Roman" −variable style −value roman
$m add radio −label "Bold" −variable style −value bold
$m add radio −label "Italic" −variable style −value italic
$m invoke 1
$m invoke 7

When you run the above example, using the command "wish popup.tk". You will see:

Option Menus

Tk's option menu is written completely in Tk to emulate the Motif option button and has the following syntax:

tk_optionMenu w varName value ?value value...?

The tk_optionMenu command creates an options menu button w and associates a menu with it. Together, the menu button and the menu allow the user to select one of the values given
by the value arguments. The current value will be stored in the global variable varName, which users can use to manipulate the options button. Calling tk_optionMenu returns the
menu associated with the options button.

Let's use option buttons to re−implement our earlier buttons example:

Try It Out − Menu Options

We set the global variable state equal to 1, create a check button and an options menu. These are packed side by side:

#!/usr/bin/wish −f

set state 1

checkbutton .lan −text "Language" −command {changeState} −relief flat \
 −variable state −onvalue 1 −offvalue 0
set optMenu [tk_optionMenu .opt lang Tcl C Lisp C++]

pack .lan .opt −side left

now make C As the default using lang variable

1.

How It Works

527

set lang C++

We need a procedure to handle the application's event:

proc changeState {} {
 global state
 if $state {
 .opt config −state normal
 } else {
 .opt config −state disabled
 }
}

2.

In this example, we've used an options menu instead of three radio buttons. This example works the same way as buttons.tk, but is much more terse. It also reduces the amount of space
needed to display the options on the screen. When you run this example, it will look like this:

If you wanted to, as before, you could add two push buttons, to output the value of the selection. This example also shows that we can control option menus using the global variable
with which they are associated. The line,

set lang C++

sets the selection to C++ by setting the variable.

Dialogs

Dialogs are used extensively in a user interface design cycle. Tk provides a custom dialog called tk_dialog. It's very simple, but can be used in many clever ways to implement most
tasks. tk_dialog has the syntax.

tk_dialog window title text bitmap default string string ..

This will create a modal dialog with title title, message text text and with the specified bitmap inside. It will also create buttons with titles given by the string arguments. When the user
presses one of the buttons, tk_dialog will return that button number and then destroy itself.

Let's look at a simple example:

#!/usr/bin/wish −f

wm withdraw .

set i [tk_dialog .info "Info" "Simple Info Dialog" info 0 Ok Cancel]
if {$i==0} {
 puts "Ok Button Pressed"
} else {
 puts "Cancel Button Pressed"
}
exit

The first line unmaps the default toplevel window, created by wish. This was necessary because tk_dialog creates a toplevel window itself and we don't want to have two windows
popping up in this simple example. The next line creates a modal dialog .info with title Info, message Simple Info Dialog and adds in a built in info bitmap. It also creates two buttons,
Ok and Cancel, and makes button number 0 (Ok) the default.

Just now, while we were explaining the dialog, we used the word modal. What's that? It means that the user's range of choices is restricted. The user won't be able to do anything with
the application unless they first respond to the dialog by clicking either Ok or Cancel. Once the user has clicked on one of these buttons, control passes back to the application, where i
is set depending upon the button the user invoked.

How It Works

528

We can achieve modal interactions using the grab and tkwait commands. Take a look at the man pages or Tk books for more information on these topics.

Tk's Built−in Dialogs

In addition to providing the tk_dialog command, Tk also provides many utility dialog procedures. Most GUI−based applications have lots of common functionality, such as prompting
users for input or output files, color choices, etc. Tk provides utility dialog boxes for these operations. Also, these built−in dialogues are written in such a way that they have the native
look and feel of whichever operating system the Tcl script is run on. We will explore the utility dialogs in this section. These utility dialogs are not Tk's built−in commands, but rather
utility scripts that provide a specific dialog functionality

Color Chooser

tk_chooseColor ?option value ...?

Most GUI−based applications provide their users ways to customize the look feel of the application using color and font choices. Humans are used to using descriptive names for
colors, but underneath, most graphic systems deal with color using different schemes such as RGB or CMYK. RGB is a Red, Green and Blue color scheme. Any color in the system
can be represented using a combination of these three colors.

Tk describes colors in a similar way to HTML − if you've programmed web pages before, you may be familiar with the notation. There is also a large number of valid color names
which directly refer to specific color values. However, if you want to control Tk's colors more precisely, you'll have to become familiar with the way it represents them internally.

All colors in Tk are represented as hexadecimal integers. You can use various lengths of hex number, either three digits, six digits, nine or twelve. For example, you could use six digit
hex numbers between #000000 and #ffffff. Each pair of digits represents the level of red, green, or blue, in that order. So #ff9900, for example, would represent a red value of #ff, a
green value of #99, and a blue value of #00. In fact, the resulting color would be a shade of orange. In this system, #000000 is black and #ffffff is white. Values such as #a5a5a5, where
all three components are the same, will lead to shades of gray. Any other value will be a color of some sort.

The other lengths of hex number acceptable to Tk are of course divided into three equal length hex numbers to form the three components, in exactly the same way as for the six digit
example.

tk_chooseColor dialog provides a simple way to choose a color using the RGB color scheme. This dialog also provides a way to inquire about the RGB values for a given color by
name. The procedure tk_chooseColor pops up a dialog box for the user to select a color. The following option−value pairs are possible as command line arguments:

−initialcolor color Specifies the color to display in the color dialog when it pops up. color must be in a form acceptable to the Tk_GetColor
function, for example red or #ff0000. (#ff0000 is the RGB equivalent of red.)

−parent window Makes window the logical parent of the color dialog. The color dialog is displayed on top of its parent window.

−title titleString Specifies a string to display as the title of the dialog box. If this option is not specified, a default title will be displayed.
If the user selects a color, tk_chooseColor will return the name of the color in a form acceptable to Tk widget commands. If the user cancels the operation, both commands will return
the empty string.

The following scripts illustrate the use of tk_chooseColor dialog box:

#
tk_chooseColor demo
#

label .l −text "Set my background color:"
button .b −text "Choose Color..." −command ".l config −bg \[tk_chooseColor\]"
pack .l .b −side left −padx 10

When you run the above script and click on the "Choose Color&" button you will see:

 Tk's Built−in Dialogs

529

Get Open/Save Files

tk_getOpenFile and tk_getSaveFile are convenience functions to prompt the user for input or output file selection, respectively. In most GUI−based operating systems, all applications
provide same dialog boxes for selecting input and output files. Tk makes this functionality available to all Tk−based applications by providing these convenience functions. These
dialog boxes have native look, feel and behavior. The dialog boxes handle most the error conditions so that the programmer does not have to do much other than create and initialize
these dialogs. They provide interfaces so that developers can specify filters to select only those files matching certain patterns. Tk_getOpenFile command is usually associated with the
"Open" command in the File menu and tk_getSaveFile is usually associated with the "Save as&" command.

If the user enters a file that already exists, the dialog box prompts the user for confirmation as to whether or not the existing file should be overwritten. The syntax of these commands
is as follows:

tk_getOpenFile ?option value ...?
tk_getSaveFile ?option value ...?

For a complete list of options to these commands, refer to the tk_getOpenFile manual page.

The following example illustrates the use of these commands:

tk_getOpenFile demo
tk_getSaveFile demo

label .o −text "File to open:"
entry .oe −textvariable open
set types {
 {{Text Files} {.txt} }
 {{TCL Scripts} {.tcl} }
 {{C Source Files} {.c} TEXT}
 {{GIF Files} {.gif} }
 {{GIF Files} {} GIFF}
 {{All Files} * }}

button .ob −text "Open..." −command "set open \[tk_getOpenFile −filetypes \$types \]"

label .s −text "File to save:"
entry .se −textvariable save
button .sb −text "Save..." −command "set save \[tk_getSaveFile\]"

Create a dismiss button

button .b −text "Dismiss" −command "exit"

Manage the widgets

grid .o −row 0 −column 0 −sticky e −padx 10
grid .oe −row 0 −column 1 −padx 10
grid .ob −row 0 −column 2 −padx 10
grid .s −row 1 −column 0 −sticky e −padx 10

Get Open/Save Files

530

grid .se −row 1 −column 1 −padx 10
grid .sb −row 1 −column 2 −padx 10
grid .b −row 2 −pady 10

As you can see from the code, these dialog routines have a way of specifying file filters using patterns. When you run the above example and click on Open, you will see:

Color Schemes

When you create new widgets using Tk widget commands in Tk4.0 and later, all the widgets have a black foreground color and a gray background. So, if you create a complete
application (like most of the examples above) that application will have a gray background and a black foreground. What if you wanted to create an application with a light blue
background? One way to accomplish this is to configure all the created widgets' backgrounds to light blue. This will make the application code bloated and unreadable, however, since
most of the commands in the code will be configuration commands � obscuring the application logic. To solve this problem, Tk provides a convenient way of globally changing the
color scheme of the application. The following commands are used to set overall color scheme for any application

tk_setPalette background
tk_setPalette name value ?name value ...?
tk_bisque

If tk_setPalette is invoked with one argument, then that argument is taken as the default background color for all widgets and Tk_setPalette will compute the color palette using this
color. For example, the following commands

tk_setPalette steelblue
button .b −text "Linux is cool!"
pack .b

will create a button and display it in a steel blue background. It will also set the background color of any future widgets in the same application to steel blue.

Alternatively, the arguments to tk_setPalette may consist of any number of name−value pairs, where the first argument of the pair is the name of an option in the Tk option database
and the second argument is the new value to use for that option. The following option database names can be specified currently.

activeBackground disabledForeground foreground

highlightColor highlightBackground insertBackground

selectBackground
background

selectColoractiveForeground selectForeground

troughColor
Refer to the options(n) manual page on the option database description. tk_setPalette tries to compute reasonable defaults for any options that you don't specify. You can specify
options other than the above ones and Tk will change those options on widgets as well.

 Color Schemes

531

The procedure tk_bisque is provided for backward compatibility: it restores the application's colors to the light brown ("bisque") color scheme used in Tk 3.6 and earlier versions.

Fonts

If you have ever programmed using Xlib or Motif on an X window system you know fonts are one of the murkier areas of X. You have to specify font names in X Logical Font
Description (XLFD) structures. For example, in applications created with pre−Tk8.0 versions, if a button had to be created with a specific font, the command would look something
like this:

Button .b �text "Hello" �font −font −*−Courier−Bold−O−Normal−−*−120−*−*−*−*−*−*

We actually met this notation earlier, but we're going to see how we can get around this ugly format now. The reason X was designed this way was to adhere to the requirement that X
client applications must be portable across server implementations, with very different file systems, naming conventions and font libraries. X clients must also be able to dynamically
determine the fonts available on any given server, so that understandable information can be presented to the user and intelligent fallbacks can be chosen. XLFD provides an adequate
set of typographic font properties, such as FOUNDRY, FAMILY_NAME, WEIGH_NAME, SLANT, etc. To learn more about XLFD refer to its specification in the X Window
System documentation or play with the xfontsel command on your Linux box.

Even though XLFD is extremely powerful and flexible, it is not simple and intuitive. As in the case of colors, humans tend to associate simple names with fonts such as "Helvetica 12
point italic". Porting Tk to other non−X platforms introduced another complexity because other windowing systems do not use XLFD, so the users were forced to learn XLFD. In
addition, XLFD does not support a way of creating fonts by name.

Tk 8.0 introduced a new mechanism to deal with fonts, using the font command. New named fonts can be created using human readable metrics. Tk internally will take care of
translating these fonts to system−specific interfaces. One advantage of the new font command is that it gives a platform−independent way of specifying fonts. It also provides a way to
associate names with created fonts. Font command syntax is as follows:

font create ?fontname? ?option value ...?
font configure fontname ?option? ?value option value ...?

The font command takes options such as �family, −size �slant, etc. For a complete list of font command options, take a look at the font manual page.

For example, you can create a font called myfont using this command:

font create myfont −family Courier −size 20 −weight bold −slant italic\
 −underline 1 −overstrike 1

Once the font is created, you can use that font name to specify a value for a �font widget option. After creating the font, if you run the following code using wish,

button .b −text "Hello World!" −font myfont

pack .b

You should see:

Bindings

We've said that once we've created widgets, we can attach event handlers to them to make them respond to the user. For example, in the final 'Hello World' program, we attached an
event handler to the button:

bind .b <Control−Button−1> {puts "Help!"}

 Fonts

532

We use the bind command to attach all these event interactions with the widgets. The bind command associates Tcl scripts with X events and is very powerful. Its general syntax is:

bind tag
bind tag sequence
bind tag sequence script
bind tag sequence +script

The tag argument determines which window(s) the binding applies to. If tag begins with a dot, as in .a.b.c, then it must be the path name for a window; otherwise, it may be an
arbitrary string. Each window has an associated list of tags, and a binding applies to a particular window. If its tag is among those specified for the window, the default binding tags
provide the following behavior:

If tag is the name of an internal window, the binding applies to that window.•
If tag is the name of a top level window, the binding applies to the top level window and all its internal windows.•
If tag is the name of a class of widgets, such as button, the binding applies to all widgets in that class.•
If tag has the value all, the binding applies to all windows in the application.•

For example, let's see what happens if we invoke bind on the button class:

% bind Button
<Key−space> <ButtonRelease−1> <Button−1> <Leave> <Enter>

The result says that there are bindings for these five event sequences in the button class. Let's experiment further and see what happens when we invoke the second form of bind
command on one of these bindings:

% bind Button <Key−space>

 tkButtonInvoke %W

The result says that <Key−space> binding on the button widget class (all the push buttons belong to this button class) will invoke the Tcl script tkButtonInvoke with the button path as
the argument.

We can also use class names when we associate the binding. For example:

% bind Button <Control−Button−1> {puts "Help!"}

This will set the <Control−Button−1> binding on all the button widgets in the application. It's possible for several bindings to match a given X event. If the bindings are associated
with different tags, each of the bindings will be executed in order. By default, a widget class binding will be executed first if it exists, followed by a binding for the widget, a binding
for its top level and, finally, an all binding if one exists for that event. We can use the bindtags command to change this order for a particular window, or to associate additional binding
tags with the window.

When a binding matches particular sequence, the script associated with that binding will be invoked. While we're invoking the script, we can inform the bind command to pass some
arguments to that script from the X event that invoked the binding. For this, we use special modifiers. For example, in the canvas example, we had a binding:

bind $c <1> "itemDragStart $c %x %y"

There, we informed bind that, while invoking the itemDragStart command, it should pass $c, %x and %y, which bind replaces with the x and y coordinates of the X event structure.
The bind command supports lots of substitution parameters; for a complete listing, refer to the bind man page.

BindTags

As described above, the bind command is used to associate an action with a binding. When creating an association with the bind command, a tag is specified. The tag argument
specifies which windows the binding applies to. Usually, tag is the name of the widget, the name of the widget class, the keyword all or any other text string. Each window has an

 BindTags

533

associated list of tags, and a binding applies to a particular window if its tag is among those specified for the window. When an event occurs in a window, it is applied to each of the
window's tags in order; for each tag, the most specific binding that matches the given tag and event is executed. For example, after executing the following code snippet in the wish
shell:

bind . <F1> "puts Toplevel"

entry .e

pack .e

bind .e <F1> "puts Entry"

If you press the F1 key inside the entry widget, you will see the strings "Entry" and "Toplevel" printed in that order, because if you invoke the bindtags command on .e the result will
be: .e Entry . all, meaning that when an event is triggered on .e, first it is checked in the .e tag and later in the toplevel that includes the entry. What if you want to make the toplevel
binding fire before the entry's? You can use the bindtags command to change the order:

Bindtags .e {. .e Entry all}

By default, each window has four binding tags consisting of the following, in order:

the name of the window•
the window's class name•
the name of the window's nearest top level ancestor•
all•

Toplevel windows have only three tags by default, since the toplevel name is the same as that of the window.

The bindtags command can be used to introduce arbitrary additional binding tags for a window. In fact this function of bindtags accomplishes many things. It aids in creating a binding
once and and associating with as many widgets as needed by simply inserting the binding tag in the widget's bind tags list. Second it allows widgets to have more than the standard 4
binding tags. Tags aid in identifying an action by name rather than a key sequence. The following example illustrates a practical use for bindtags.

set count 0
button .b −text "Tick(ms)"
label .ticker −textvariable count
pack .b .ticker

bind timer <ButtonPress−1> {
 set count 0
 StartTimer %W
}

bind timer <ButtonRelease−1> {
 StopTimer %W
}

proc StartTimer { widget } {
 global pending count
 incr count 200
 set pending [after 200 [list StartTimer $widget]]
}

proc StopTimer { widget } {
 global pending
 after cancel $pending
}

 BindTags

534

bindtags .b [linsert [bindtags .b] 0 timer]

In the above example we have first created a simple user interface with a button and a label to display timer ticks. Next we have created a binding with a tag timer. We have added two
key sequences to the tag timer. The first sequence <ButtonPress−1>, starts the timer and <ButtonRelease−1> stops the timer. The code is pretty simple to understand. The point to
observe here is the use of bindtags. We have easily added these key−sequences to the button .b in a single line. Without the bindtag command, we would have to do something like:

bind .b <ButtonPress−1> "+{set count 0; StartTimer %W}"

And the same for the binding <ButtonRelease−1>. Also these bindings do not really imply what we are trying to achieve. Using the bindtag command we have identified these
sequences with a name timer. If we create another button to do another timer, all we have to do is to invoke bindtags command on that button and insert the binding.

Geometry Management

After we've created the widgets and bound the event handlers using bind, we need to arrange the widgets on the screen in a way that makes the GUI meaningful and useful. Geometry
managers perform this job. Tk currently supports three explicit geometry managers:

Packer, using the pack command•
Placer, using the place command•
Table or grid manager, using the grid command•

Packer

We use the pack command to arrange the slave widgets of a master window or widget in order around the edges of the master. The syntax of the pack command is one of these forms:

pack option arg ?arg ...?
pack slave ?slave ...? ?options?
pack configure slave ?slave ...? ?options?

Let's look at an example and explore some of the pack options:

#!/usr/bin/wish −f

foreach i {1 2 3 4 } {
 button .b$i −text "Btn $i"
 pack .b$i −side left −padx 2m −pady 1m
}

This will produce the following output:

Here, all the buttons are packed to the left of each other, with a horizontal space of two millimeters between each of them and with a space of one millimeter vertically with the
master's boundary.

One more pack sequence:

#!/usr/bin/wish −f

foreach i {1 2 3 4 } {
 button .b$i −text "Btn $i"
 pack .b$i −side left −ipadx 2m −ipady 1m

 Geometry Management

535

}

In the examples, −ipadx specifies that the slaves be internally padded with two millimeters horizontally. Internal padding causes the slave (button) to expand to fill the extra space
created.

Important There are many more combinations of the pack command. Refer to the pack man page and Ousterhout's Tcl and the Tk Toolkit, Addison−Wesley
(ISBN−0−201−63337−X) for more information.

Placer

Placer geometry manager is used for fixed placement of windows, where you specify the exact size and location of one window, the slave, within another window, the master. We'll
use the image example to explain the placer geometry manager. The following code fragment shows how the buttons are created in the puzzle.

set order {3 1 6 2 5 7 15 13 4 11 8 9 14 10 12}
for {set i 0} {$i < 15} {set i [expr $i+1]} {
 set num [lindex $order $i]
 set xpos($num) [expr ($i%4)*.25]
 set ypos($num) [expr ($i/4)*.25]

 set x [expr $i%4]
 set y [expr $i/4]

 set butImage [image create photo image−${num} −width 40 −height 40]
 $butImage copy $image −from [expr round($x*40)] \
 [expr round($y*40)] \
 [expr round($x*40+40)] \
 [expr round($y*40+40)]
 button .frame.$num −relief raised −image $butImage \
 −command "puzzleSwitch $num" \
 −highlightthickness 0
 place .frame.$num −relx $xpos($num) −rely $ypos($num) \
 −relwidth .25 −relheight .25
}

This loop creates buttons and places them relative to the master, .frame. Here, −relx 0 is the left edge of the master, while −relx 1 is the right edge of the master and similarly for −rely
0 and −rely 1. Now if you decipher the loop code, you'll see how all the buttons are arranged to form the puzzle.

Grid

The grid geometry manager arranges widgets (slaves) in rows and columns inside another window, called the geometry master. grid is a very powerful geometry manager; using it,
we can create complex layouts with ease. Let's see just see how simple it is to create an entry for personnel information using ten lines of Tk code:

#!/usr/bin/wish −f

set row 0
foreach item {name email address phone} {
 label .$item−label −text "${item}:"
 entry .$item−entry −width 20
 grid .$item−label −row $row −column 0 −sticky e
 grid .$item−entry −row $row −column 1 −columnspan 2 −sticky "ew"
 incr row
}

grid columnconfigure . 1 −weight 1

If you run this program, you'll see the output like this:

Geometry Management

536

Here the slaves .$item−label and .$item−entry are arranged in the master, using the −row $row and −column options. You can also specify row and column span options for the slave
using −rowspan and −columnspan options. These options will span the slaves to occupy span number of rows or columns or both. The line,

grid .$item−entry −row $row −column 1 −columnspan 2 −sticky "ew"

specifies that the entry widget will occupy two columns and −sticky "ew" implies that the slave will stretch from east to west in the parcel space available for it. If you just specify one
letter in the −sticky option, it behaves as an anchoring option. The last line,

grid columnconfigure . 1 −weight 1

specifies that if the master (.) is resized horizontally, then column 1 should get the resized portion.

Important As we've developed these examples, we've made much use of the grid geometry manager. This is because it makes it so much easier to design and understand layouts. It's
been in Tk since version 4.1.

Focus and Navigation

When you have multiple toplevel windows on your computer screen and you press a key, which one of the windows will receive the KeyPress event? The answer is the toplevel
window with the focus. So focus determines the target of the keyboard input. Toplevel window focus management is done automatically by the window manager. For example, some
window managers automatically set the input focus to a toplevel window whenever the mouse enters it; others redirect the input focus only when the user clicks on a window. Usually,
the window manager will set the focus only to toplevel windows, leaving it up to the application to redirect the focus among the children of the toplevel.

Tk provides two application level focus models. Implicit, which sets the focus to the widget the mouse is currently on, and explicit, where the user must either explicitly click on the
widget or navigate to that widget using the keyboard. By default, tab keys are used to navigate focus between widgets in an explicit model.

Tk remembers one focus window for each toplevel (the most recent descendant of that toplevel to receive the focus); when the window manager gives the focus to a toplevel, Tk
automatically redirects it to the remembered window. Within a toplevel, by default, Tk uses an explicit focus model. Moving the mouse within a toplevel does not normally change the
focus; the focus changes only when a widget decides explicitly to claim the focus (e.g., because of a button click), or when the user types a key, such as Tab, that moves the focus.

The focus command syntax is as follows:

focus
focus window
focus option ?arg arg ...?

For a complete list of the focus command's usage, refer to focus manual page.

Once the application or any of its toplevel windows gets focus, the Tcl procedure tk_focusFollowsMouse may be invoked to create an implicit focus model. It reconfigures Tk so that
the focus is set to a window whenever the mouse enters it. For example, the following example will instruct the window manager to give focus to whichever component the mouse is
on, once the application toplevel gets the focus. If you run the following example, you will notice the buttons get focus as soon as the mouse is moved over them without a mouse
click.

tk_focusFollowsMouse

button .b1 −text "Button 1"

 Focus and Navigation

537

button .b2 −text "button 2"
button .b3 −text "button 3"

pack .b1 .b2 .b3 −side left −padx 10

The Tcl procedures tk_focusNext and tk_focusPrev implement a focus order among the children of a toplevel; among other things, these are used in the default bindings for Tab and
Shift−Tab.

The syntax of the tk_focusNext and tk_focusPrev commands is as follows:

tk_focusNext window
tk_focusPrev window

tk_focusNext is a utility procedure used for keyboard traversal. It returns the "next" window after window in focus order. The focus order is determined by the stacking order of
windows and the structure of the window hierarchy. Among siblings, the focus order is the same as the stacking order, with the lowest window being first. If a window has children,
the window is visited first, followed by its children (recursively), and then by its next sibling. Toplevel windows other than window are skipped, so that tk_focusNext never returns a
window in a different toplevel from window.

After computing the next window, tk_focusNext examines the window's −takefocus option, to see whether it should be skipped. If so, tk_focusNext continues on to the next window in
the focus order, until it eventually finds a window that will accept the focus or returns back to window.

The tk_focusPrev command is similar to tk_focusNext, except that it returns the window just before the window in the focus order. The following example illustrates how a widget can
avoid the focus by specifying the �takefocus 0 option. When you run the example, the "skip focus" button does not take focus, even though the mouse is on it.

tk_focusFollowsMouse

button .b1 −text "Button 1"
button .b2 −text "skip focus" −takefocus 0
button .b3 −text "button 3"

pack .b1 .b2 .b3 −side left −padx 10

Option Database

Just as in Motif or Xt, every widget in Tk has a class which can be retrieved using the command:

winfo class widget−path−name

These class names are used to specify application defaults and class bindings for the widget. Tk uses a special database, called the option database, to store and retrieve application
resources. For example, in the very first program, we used the line:

option add *b.activeForeground brown

This informed the option database that buttons with names .b (it can have any parent) should have a brown activeForeground color. We could have specified the button class instead
and still had the same effect:

option add *Button.activeForeground brown

The reason these commands change activeForeground is that, when Tk creates a widget, after setting the command line it searches the option database to set the appropriate resources.
If it finds a match to the resource, it will use that option, otherwise it will use a default value.

The option command does the same things as an X resource file. In fact, we can store all the resources in a file and let the option command read the file, just as we did with hello4.tk
program. We can also use the option command to query the options stored, using the syntax:

 Option Database

538

option get window name class

The option database is very versatile, much more so than the simple .Xdefaults file. We can use it to simulate the same application default loading mechanism that is supported by any
Xt−based application. For example, before the application is loaded, the defaults file can be located in the directories specified by X Windows environment variables, like
XFILESEARCHPATH, XAPPLRESDIR, XUSERFILESEARCHPATH and XENVIRONMENT.

We can now assign priorities to the application defaults file found in those directories while reading them into the application using the option readfile ... command. The code for this
emulation would look something like this:

global env

if [info exists env(XFILESEARCHPATH)] {
 look for the app−defaults file in XFILESEARCHPATH dir
 load the file with priority 1
 } else {
 look in one of {/usr/lib/X11/app−defaults, /usr/openwin/lib/app−defaults, /usr/lib/app−defaults..} directories and load the file with priority 1
 }
 if [info exists env(XUSERFILESEARCHPATH)] {
 look for the app−defaults file in XUSERFILESEARCHPATH dir
 load the file with priority 2 over riding XFILESEARCHPATH priority
 } elseif [info exists env(XAPPLRESDIR)] {
 look for the app−defaults file in XAPPLRESDIR dir
 load the file with priority 2 over riding XFILESEARCHPATH priority
 } elseif
 load app defaults file if exists from current dir with priority 2
 }
 if [the defaults exist in .Xdefaults] {
 load them with priority 3 }
 if [info exists env(XENVIRONMENT)] {
 load the file XENVIRONMENT as the app defaults file with second−highest priority
 }
 finally load command−line options with the highest priority

Inter−application Communication

Tk provides a very powerful mechanism for two applications which share the same display server (though they can be on different screens) to communicate with each other, using the
send command. For example, application A can send application B (i.e. with Tcl interpreter name B) a command to output the string "hello":

send B [list puts "hello"]

Application B will receive this command and executes the puts "hello" command. For more information on this, refer to the send man page.

Selection

Imagine the scenario where a user is operating on a desktop with multiple xterms. The user highlights a selection of text in one xterm, using the left mouse button, and then pastes the
selection in another xterm, using the middle button. There are a lot of things going on under the covers during this transaction:

When the user decides to select something in an xterm, the xterm must first of all figure out what information is being selected and then it should become the selection owner. Being
the selection owner means that when another application decides to request the selection, the owner should convert the selection to the type specified by the requested application. A
client wishing to obtain the selection in a particular format requests the selection from the selection owner. All of these co−operative interactions between X clients is described in the
X Inter−Client Communication Conventions Manual (ICCCM)..

Selection can be of many types. PRIMARY, SECONDARY and CLIPBOARD. by default, the PRIMARY selection named XA_PRIMARY, is used by all the clients. A
SECONDARY selection named XA_SECONDARY is used when applications need more than one selection. The CLIPBOARD selection is usually used to hold deleted data.

 Inter−application Communication

539

Selection command provides a Tcl interface to the X selection mechanism and implements the full selection functionality described in the X Inter−Client Communication Conventions
Manual (ICCCM). The following example shows selection manipulation. It creates a new slave Tk interpreter, with a text widget. It automatically selects the text inside the text using
the sel tag of text. Using the sel tag of the text command will make the selection by default PRIMARY. So, when the slave interpreter calls the selection own, it is owning the primary
selection. The master interpreter then retrieves the selection and outputs it to the stdout.

#!wish
interp create foo

foo eval {
 load {} Tk
 text .t
 pack .t
 .t insert end "Hello World!"
 .t tag add sel 0.0 end
 selection own
 .t insert end "\n"
.t insert end "[selection get −selection SECONDARY]"
 .t insert end "[selection get]"

}
puts "[selection get]"

If the commented line in the above example is uncommented, the application will output an error because there is no secondary selection. A selection owner can also reject selection
retrievals by any other application or component.

Clipboard

In X, CLIPBOARD is another type of selection mechanism. The CLIPBOARD selection can be used to hold deleted data. For example, a client can place deleted data to the clipboard
and exit. Another client can still retrieve the deleted selection from the clipboard, even thought the original client no longer exists. This is not possible with PRIMARY and
SECONDARY selection types, because when a client requests PRIMARY or SECONDARY selection, the owner will be sent a request. If the owner no longer exists, then the
selection request will fail.

The clipboard command provides a Tcl interface to the Tk clipboard, which stores data for later retrieval, using the selection mechanism. Tk_clipboard is not the same as the system
clipboard that you see on various operating systems. Tk_clipboard is designed to hold deleted data between applications developed using Tk toolkit. In order to copy data into the
clipboard, clipboard clear must be called, followed by a sequence of one or more calls to clipboard append. The following command illustrates the use of the clipboard command

#!wish
interp create foo

foo eval {
 load {} Tk
 clipboard clear
 clipboard append −type STRING "Clipboard Data"

}
 interp delete foo
puts "[selection get −selection CLIPBOARD]"

The above example creates a new Tk interpreter called foo. foo appends data to the clipboard. The master interpreter deletes the slave interpreter and retrieves the data from the
clipboard. As you can see, even though the slave does not exist, the selection can still be retrieved.

 Clipboard

540

Window Manager

Tk provides the wm command so that windows can communicate with the window manager. Window manager functions typically include, managing the keyboard focus between
application windows, setting up toplevel window properties, allocating colormaps to windows, positioning toplevel windows on the screen, etc. Since window manager only deals with
the toplevel windows of any application and leaves the internal window management to the application, wm command arguments must be toplevel windows. The kinds of functions
that a client can request from the window manager include the following:

iconifying and de−iconifying of a toplevel windows;•
positioning toplevel windows at a particular point on the screen;•
requesting the initial sizes of toplevel windows;•
setting the titles of toplevel windows;•
setting the focus model of an application;•
requesting the height and width of a toplevel window;•
overriding the default window manager decorations, etc. For example:•

Using the wm command, one can query the state of a toplevel window in an application as follows:

% wm iconify .
% puts "[wm state .]"
iconic

Users can also set up window manager protocols on a toplevel window. For example, we can set up a handler on a toplevel window that will get called when the window receives focus
or when the window gets deleted.

% wm protocol . WM_TAKE_FOCUS {puts "window . got foucs"}
% wm protocol . WM_DELETE_WINDOW {puts "window . is being deleted"; exit}

When run, the above code snippet will output "window . got focus" when the toplevel window "." gets focus and the string "window . is being deleted" when the toplevel window "." is
deleted using the window manager delete button.

wm commands can also be used to set or query the title of a toplevel window using the command

wm title ?newtitle?.

A client can also request that a window manager not decorate a toplevel window. When the client makes such a request, the window manager will not display the iconify, deiconify or
resize buttons on the window manager frame of the requested toplevel. The following code snippet requests the window manager to not add any decorations to the toplevel window .t

toplevel .t
wm withdraw .t
wm transient .t .
wm deiconify .t

When run, you will see the following output:

 Window Manager

541

Actually the above code snippet shows more than one functionality of the window manager command. The application first requests the window manager to withdraw the toplevel
window, it then asks the window manager to remove the minimize/maximize decorations for the toplevel window and finally it asks the window manager to map the window back to
screen.

Dynamic/Static Loading

In the previous sections, we created new interpreters and loaded Tk statically. There are two ways in which interpreters can load the Tk toolkit�statically and dynamically, using the
load command. For static loading, the executable should be preloaded with Tk. For example, the following code:

interp create debugInterp

debugInterp eval {
 load {} Tk
 text .t
 pack .t
 update
}

proc debug {interp args} {
 debugInterp eval [list .t insert end "$args"]
}

debug . "hello world!"

statically loads the Tk executable to a newly created interpreter. The example also shows how to communicate between interpreters. The master interpreter creates a debug routine,
which communicates with debugInterp to display debugging information.

So, how do we load a Tk interpreter dynamically into a tclsh application? The following examples illustrate how:

interp create debugInterp

debugInterp eval {
 load /usr/local/tk8.2b3/unix/libtk8.2.so Tk
 text .t
 pack .t
 update
}

proc debug {interp args} {
 debugInterp eval [list .t insert end "$args"]
}

debug . "hello world!"

 Dynamic/Static Loading

542

vwait foob

The above code assumes that you have compiled the Tcl/Tk distributions so that they are dynamically−loadable and the Tk dynamic library libtk8.2.so is located in
/usr/local/tk8.2b3/unix/ directory. As you can see from the above code, tclsh creates a new interpreter and loads Tk dynamically into the newly−created interpreter and the master
interpreter enters the event loop using the vwait command. If the master interpreter did not enter the event loop, the application exits without warning. If you run the above code using
this command:

Tclsh8.0 dynamicLoad.tk

the Tk interpreter will get loaded dynamically!

Safe Tk

Suppose you download a Tcl script from the network and execute it. If the script is malicious, it can do a lot of damage to your system. For example, it can delete all of your files, or
transfer files to another computer. How do you ensure that these untrusted scripts do not do any damage? In 1994, Marshall and Rose created Safe−Tcl, which was originally conceived
as a mechanism to allow email messages to contain Tcl scripts that would execute on the receiver's computer. Safe−Tcl was incorporated into the core code in Tcl version 7.5.

The goal of Safe−Tcl is to create a sandbox that allows users to safely execute untrusted Tcl scripts in the sandbox without having to worry about any side effects

Safe interpreters have a restricted command set. The following commands are hidden in a safe interpreter.

cd exec exit fconfigure

glob load open socket

source vwait pwd file
The safe base Tcl manual page will describe how to create these safe interpreters. Sometimes, it might be necessary to give the newly−created safe interpreter some restricted access;
for example, it might be allowed to open files in a particular directory. Safe−Tcl provides mechanisms for allowing such restricted access. Interpreters created with the
::safe::interpCreate command give mediated access to potentially dangerous functionality through untrusted scripts by using the alias mechanism. Thus, Safe−Tcl is a mechanism for
executing untrusted Tcl scripts safely and for providing mediated access by such scripts to potentially dangerous functionality.

Just like Safe−Tcl, it is necessary to create sandboxes to execute untrusted Tk scripts. For example, you don't want the Tk applet to delete all of your toplevel windows or to steal your
X selection. Safe Tk adds the ability to configure the interpreter for safe Tk operations and load the Tk into safe interpreters. By default, you can't load Tk into a safe interpreter,
because the safe interpreter does not allow load commands. Safe Tk also isolates the untrusted Tk scripts to be executed in a sandbox so that no damage can be done

The ::safe::loadTk command initializes the required data structures in the named safe interpreter and then loads Tk into it. The command returns the name of the safe interpreter.
::safe::loadTk adds the value of tk_library taken from the master interpreter to the virtual access path of the safe interpreter, so that auto−loading will work in the safe interpreter.

The following examples illustrate that you cannot load Tk into a safe interpreter unless you use the ::safe::loadTk command

::safe::interpCreate safeInterp

::safe::interpAddToAccessPath safeInterp /tmp

::safe::loadTk safeInterp

interp create −safe safeInterp2

puts " 1 −> [interp hidden safeInterp]"
puts " 2 −> [interp hidden safeInterp2]"

puts " 1 −> [interp aliases safeInterp]"
puts " 2 −> [interp aliases safeInterp2]"

safeInterp eval {

 Safe Tk

543

 text .t
 pack .t
 update
}

safeInterp2 eval {
 load {} Tk
 }

When you run the above script, you will see the following error message,

$ wish safeInterp.tk
 1 −> file socket send open pwd glob exec encoding clipboard load fconfigure source exit toplevel wm grab menu selection tk bell cd
 2 −> file socket open pwd glob exec encoding load fconfigure source exit cd
 1 −> file load source exit encoding
 2 −>
Error in startup script: invalid command name "safeInterp2"
 while executing
"safeInterp2 eval {
 load {} Tk
 }"
 (file "safeInterp.tk" line 26)

informing you that you cannot load Tk into a safe interpreter, which is not created using the ::safe::createInterp command. If you want to see how safe interpreters are used, take a look
at the safeDebug.tk example in the distribution.

A Mega−Widget

We have now seen how to use various widget commands to create applications. Sometimes, people find a
need to display their information in ways that require new types of widgets, such as panes, spreadsheets,
notebooks, spinboxes, etc. Although the Tk team at Scriptics is planning to add these widgets to the core, as of
this writing, they have not been added. So the question is: How does one go about creating custom widgets?

There are two ways to do this. One way is to use Tcl and Tk's C extension API, also known as TEA. The other
way to do it is to use pure Tcl and existing Tk widgets. Since we have not yet discussed Tcl and Tk's C API,
and it would in fact merit far more coverage than we can give it here, let's just go ahead and use pure Tcl and
existing Tk widgets to create a MegaWidget. The MegaWidget that we are going to create is a tree widget. As
of now, Tk does not have a built−in tree widget. This widget example is by no means complete, but it is quite
useful and will steer you in the right direction

Important The rendering algorithm and some of the interface ideas in this example are
taken from GPLed comp.lang.tcl posts. None of the other implementations that
I have encountered have the flexibility of this package/namespace−based
implementation.

We will use Tcl's package and namespace mechanisms to encapsulate our tree widget into an abstract data
structure. Next, the question is what kind of widget and configuration commands should we provide for this
tree widget? Configuration−wise, we should provide most of the standard configuration options such as font,
backgroundcolor, and some more tree−specific configuration options. Since tree widget supports hierarchies,
we should provide methods such as additem, delitem, config, setselection, getselection, etc. So, let's just go
ahead and define the tree widget package as follows.

#

Sample tree mega−widget.Can be used to display hierachies. The clients

 A Mega−Widget

544

who use this package need to specify parent and tail procedures for any
element of the tree hierarchy. All the nodes that get stored inside the
tree are complete path names separated by '/'. The toplevel node is
always /
#

package provide tree 1.0

namespace eval tree {
 variable tree

 #
 # default font setup
 #

 switch $tcl_platform(platform) {
 unix {
 set tree(font) \
 −adobe−helvetica−medium−r−normal−*−11−80−100−100−p−56−iso8859−1
 }
 windows {
 set tree(font) \
 −adobe−helvetica−medium−r−normal−*−14−100−100−100−p−76−iso8859−1
 }
 }

 #
 # Bitmaps used to show which parts of the tree can be opened/closed
 #

 set maskdata "#define solid_width 9\n#define solid_height 9"
 append maskdata {
 static unsigned char solid_bits[] = {
 0xff, 0x01, 0xff, 0x01, 0xff, 0x01, 0xff, 0x01, 0xff, 0x01, 0xff, 0x01,
 0xff, 0x01, 0xff, 0x01, 0xff, 0x01
 };
 }
 set data "#define open_width 9\n#define open_height 9"
 append data {
 static unsigned char open_bits[] = {
 0xff, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x7d, 0x01, 0x01, 0x01,
 0x01, 0x01, 0x01, 0x01, 0xff, 0x01
 };
 }

 set tree(openbm) [image create bitmap openbm −data $data \
 −maskdata $maskdata \
 −foreground black −background white]

 set data "#define closed_width 9\n#define closed_height 9"
 append data {
 static unsigned char closed_bits[] = {
 0xff, 0x01, 0x01, 0x01, 0x11, 0x01, 0x11, 0x01, 0x7d, 0x01, 0x11, 0x01,
 0x11, 0x01, 0x01, 0x01, 0xff, 0x01
 };
 }
 set tree(closedbm) [image create bitmap closedbm −data $data \
 −maskdata $maskdata \
 −foreground black −background white]

 A Mega−Widget

545

 namespace export create additem delitem config setselection getselection
 namespace export openbranch closebranch labelat
}

As shown above, tree widget exports one package variable called tree, as well as methods, such as additem,
delitem, config, setselection etc. a tree package variable is used to hold instance information of all the trees
created. As you can see from the above code, tree also creates some images to display open and closed
branches and stores them inside the tree data structure.

Our next step is to define the widget commands. First, we will define the tree::create command. This
command basically parses the configuration options and creates a canvas with the pathname specified by the
create command. The create command also looks for parent and tail widget creation options. These options
are procedures specified by the client, so that the tree command can determine the parent and tail of any of its
nodes. Tail is basically the end part of the node name. For example, suppose the node is named a/b/c. The tail
on this command will return c (presuming the character '/' is used as a path separator). The parent command
will return /a/b. The tree mega−widget enforces '/' to be the path separator and all nodes are represented with
absolute paths.

The philosophy behind these parent and tail option commands is to allow the tree to display any hierarchical
information, and not just directory structures. The create command also initializes variables, such as selection
and selidx which are the currently the selected node and its tag. The create command arranges the tree to be
redrawn at a later time.

tree::create −−
#
Create a new tree widget. Canvas is used to emulate a tree
widget. Initialized all the tree specific data structures. $args become
the configuration arguments to the canvas widget from which the tree is
constructed.

Arguments:
−paren proc
#
sets the parent procedure provided by the application. tree
widget will use this procedure to determine the parent of an
element. This procedure will be called with the node as an
argument
#
−tail proc [Given a complete path this proc will give the end−element
name]
#
Results: A tree widget with the path $w is created.
#

proc tree::create {w args} {
 variable tree
 set newArgs {}

 for {set i 0} {$i < [llength $args]} {incr i} {
 set arg [lindex $args $i]
 switch −glob −− $arg {
 −paren* {set tree($w:parenproc) [lindex $args [expr $i +1]]; incr i}
 −tail* {set tree($w:tailproc) [lindex $args [expr $i +1]]; incr i}
 default {lappend newArgs $arg}
 }
 }

 A Mega−Widget

546

 if ![info exists tree($w:parenproc)] {
 set tree($w:parenproc) parent
 }

 if ![info exists tree($w:tailproc)] {
 set tree($w:tailproc) tail
 }

 eval canvas $w −bg white $newArgs
 bind $w <Destroy> "tree::delitem $w /"
 tree::DfltConfig $w /
 tree::BuildWhenIdle $w
 set tree($w:selection) {}
 set tree($w:selidx) {}
}

When the tree is created, a root node by the name of / is automatically created. Every time a new node is
added, the nodes are initialized with some default configuration, including, for example, the children
associated with the node, whether the node should be displayed open, the icon and tags associated with the
node. tree::DfltConfig is for node initialization.

tree::DfltConfig −−

Internal fuction used to initial the attributes associated with an item/node. Usually called when an item is added into the tree
#
Arguments:
wid tree widget
node complete path of the new node
#
Results:
Initializes the attributes associated with a node.

proc tree::DfltConfig {wid node} {
 variable tree
 set tree($wid:$node:children) {}
 set tree($wid:$node:open) 0
 set tree($wid:$node:icon) {}
 set tree($wid:$node:tags) {}

}

Just like any other Tk widget, tree widget should support the config widget method. Tree widget supports this
using the tree::config class method.

tree::config −−

Fuction to set tree widget configuration options.
#
Arguments:
args any valid configuration option a canvas widget takes

Results:
Configures the underlying canvas widget with the options
#

proc tree::config {wid args} {
variable tree

 A Mega−Widget

547

 set newArgs {}
 for {set i 0} {$i < [llength $args]} {incr i} {
 set arg [lindex $args $i]
 switch −glob −− $arg {
 −paren* {set tree($w:parenproc) [lindex $args [expr $i +1]]; incr i}
 −tail* {set tree($w:tailproc) [lindex $args [expr $i +1]]; incr i}
 default {lappend newArgs $arg}
 }
 }
 eval $wid config $newArgs
}

Now that we are done with the creation and configuration of tree widget, the next step is to add an item. This
routine makes sure that a duplicate item is not added to the tree. It finds out the parent of the new item and
adds it into its children. The routine also parses the item tags, such as image and tags and sets the attributes of
the item. The image option is used to display an icon next to the item while rendering. The tags option
attaches tags to the newly added item. The additem routine also arranges the tree widget to be drawn when the
application is not busy:

tree::additem −−

Called to add a new node to the tree.
#
Arguments:
wid tree widget
node complete path name of the node (path is separated by /)
args can be −image val, −tags {taglist} to identify the item
#
Results:
Adds the new item and configures the new item
#

proc tree::additem {wid node args} {
 variable tree
 set parent [$tree($wid:parenproc) $node]
 set n [eval $tree($wid:tailproc) $node]
 if {![info exists tree($wid:$parent:open)]} {
 error "parent item \"$parent\" is missing"
 }
 set i [lsearch −exact $tree($wid:$parent:children) $n]
 if {$i>=0} {
 return
 }
 lappend tree($wid:$parent:children) $n
 set tree($wid:$parent:children) [lsort $tree($wid:$parent:children)]
 tree::DfltConfig $wid $node
 foreach {op arg} $args {
 switch −exact −− $op {
 −image {set tree($wid:$node:icon) $arg}
 −tags {set tree($wid:$node:tags) $arg}
 }
 }
 tree::BuildWhenIdle $wid
}

Deleting an item does the opposite of additem and removes the item from the tree data structure and from its
parent's children list. It also arranges the tree widget to be drawn at a later time:

tree::delitem −−

 A Mega−Widget

548

Deletes the specified item from the widget
#
Arguments:
wid tree widget
node complete path of the node
#
Results:
If the node exists, it will be deleted.
#

proc tree::delitem {wid node} {
 variable tree
 if {![info exists tree($wid:$node:open)]} return
 if {[string compare $node /]==0} {
 # delete the whole widget
 catch {destroy $wid}
 foreach t [array names tree $wid:*] {
 unset tree($t)
 }
 }
 foreach c $tree($wid:$node:children) {
 catch {tree::delitem $wid $node/$c}
 }
 unset tree($wid:$node:open)
 unset tree($wid:$node:children)
 unset tree($wid:$node:icon)
 set parent [$tree($wid:parenproc) $node]
 set n [eval $tree($wid:tailproc) $node]
 set i [lsearch −exact $tree($wid:$parent:children) $n]
 if {$i>=0} {
 set tree($wid:$parent:children) [lreplace $tree($wid:$parent:children) $i $i]
 }
 tree::BuildWhenIdle $wid
}

The user has control over which node in the item can be assigned as a selection. setselection and getselection
routines are used to accomplish the job. The selection object is drawn with a highlighted background:

 tree::setselection −−

Makes the given node as the currently selected node.
#
Arguments:
wid − tree widget
node − complete path of the one of nodes
#
Results:
The given node will be selected
#

proc tree::setselection {wid node} {
 variable tree
 set tree($wid:selection) $node
 tree::DrawSelection $wid
}
tree::getselection −−

Get the currently selected tree node
#

 A Mega−Widget

549

Arguments:
wid − tree widget

Results:
If a node is currently selected it will be returned otherwise NULL
#

proc tree::getselection wid {
 variable tree
 return $tree($wid:selection)
}

The next task is building/rendering the tree. The algorithm recursively calls each node to draw itself and its
children. After the tree is drawn, it will set the scroll region so that when the tree widget is associated with
scrollbars it will behave properly. It also draws the current selection:

tree::Build −−

Internal function to rebuild the tree
#
Arguments:
wid − tree widgets

Results:
#
This routine has no complex logic in it. Deletes all the current items
on the canvas associated with the tree and re−builds the tree.
#

proc tree::Build wid {
 variable tree
 $wid delete all
 catch {unset tree($wid:buildpending)}
 set tree($wid:y) 30
 tree::BuildNode $wid / 10
 $wid config −scrollregion [$wid bbox all]
 tree::DrawSelection $wid
}

The meat of the tree drawing algorithm is BuildNode. It is a basic tree−drawing algorithm that draws the
parent and each of its children if the open attribute of the parent node is set. If the open attribute of any of the
child nodes is set, BuildNode will be called recursively to display its children. The rendering algorithm should
be pretty self−explanatory:

tree::BuildNode −−

Function called by tree::build to incrementally build each node
#
Arguments:
wid − tree widget
node − complete path of the node
in − the starting x−cordinate
#
Results:
The node gets drawn
#
proc tree::BuildNode {wid node in} {
 variable tree

 A Mega−Widget

550

 if {$node=="/"} {
 set vx {}
 } else {
 set vx $node
 }
 set start [expr $tree($wid:y)−10]
 foreach c $tree($wid:$node:children) {
 set y $tree($wid:y)
 incr tree($wid:y) 17
 $wid create line $in $y [expr $in+10] $y −fill gray50
 set icon $tree($wid:$vx/$c:icon)
 set taglist x
 foreach tag $tree($wid:$vx/$c:tags) {
 lappend taglist $tag
 }
 set x [expr $in+12]
 if {[string length $icon]>0} {
 set k [$wid create image $x $y −image $icon −anchor w −tags $taglist]
 incr x 20
 set tree($wid:tag:$k) $vx/$c
 }
 set j [$wid create text $x $y −text $c −font $tree(font) \
 −anchor w −tags $taglist]
 set tree($wid:tag:$j) $vx/$c
 set tree($wid:$vx/$c:tag) $j
 if {[string length $tree($wid:$vx/$c:children)]} {
 if {$tree($wid:$vx/$c:open)} {
 set j [$wid create image $in $y −image $tree(openbm)]
 $wid bind $j <1> "set tree::tree($wid:$vx/$c:open) 0; tree::Build $wid"
 tree::BuildLayer $wid $vx/$c [expr $in+18]
 } else {
 set j [$wid create image $in $y −image $tree(closedbm)]
 $wid bind $j <1> "set tree::tree($wid:$vx/$c:open) 1; tree::Build $wid"
 }
 }
 }
 set j [$wid create line $in $start $in [expr $y+1] −fill gray50]
 $wid lower $j
}

Now, after the tree gets displayed, if the user chooses to open any of the branches by clicking the '+' image
next to a node then the following openbranch routine will arrange to redraw the tree by displaying the node's
children:

tree::openbranch −−

A callback that gets called to open a node to show its children
#
Arguments:
wid − tree widget
node − the node whose children should be shown

Results:
The children of the node will be drawn
#

proc tree::openbranch {wid node} {
 variable tree
 if {[info exists tree($wid:$node:open)] && $tree($wid:$node:open)==0
 && [info exists tree($wid:$node:children)]

 A Mega−Widget

551

 && [string length $tree($wid:$node:children)]>0} {
 set tree($wid:$node:open) 1
 tree::Build $wid
 }
}

Similarly, when the user clicks on the '−' image next to a node, the closebranch routine will arrange the tree to
be redrawn by closing the branch and undisplaying the children:

tree::closebranch −−

The opposite of open branch, see above
#
Arguments:

Results:

proc tree::closebranch {wid node} {
 variable tree
 if {[info exists tree($wid:$node:open)] && $tree($wid:$node:open)==1} {
 set tree($wid:$node:open) 0
 tree::Build $wid
 }
}

The DrawSelection routine will highlight the currently selected node.

tree::DrawSelection −−

Highlights the current selection
#
Arguments:
wid − tree widget

Results:
The current selection will be high−lighted with skyblue
#

proc tree::DrawSelection wid {
 variable tree
 if {[string length $tree($wid:selidx)]} {
 $wid delete $tree($wid:selidx)
 }
 set node $tree($wid:selection)
 if {[string length $node]==0} return
 if {![info exists tree($wid:$node:tag)]} return
 set bbox [$wid bbox $tree($wid:$node:tag)]
 if {[llength $bbox]==4} {
 set i [eval $wid create rectangle $bbox −fill skyblue −outline {{}}]
 set tree($wid:selidx) $i
 $wid lower $i
 } else {
 set tree($wid:selidx) {}
 }
}

 A Mega−Widget

552

The BuildWhenIdle routine is used to minimize the drawing refreshes by collecting all the redraw routines
and arranging an event handler to draw the tree.

tree::BuildWhenIdle −−

Function to reduce the number redraws of the tree. When a redraw is not
immediately warranted this function gets called
#
Arguments:
wid − tree wiget

Results:
Set the tree widget to be redrawn in future.
#

proc tree::BuildWhenIdle wid {
 variable tree
 if {![info exists tree($wid:buildpending)]} {
 set tree($wid:buildpending) 1
 after idle "tree::Build $wid"
 }
}

Finally, the tree::labelat routine will return the node at a given x and y widget position. The magic is to use the
canvas built−in commands:

tree::labelat −−

Returns the tree node closest to x,y co−ordinates
#
Arguments:
wid tree widget
x,y co−ordinates
#
Results:
The node closest to x,y will be returned.

proc tree::labelat {wid x y} {
 set x [$wid canvasx $x]
 set y [$wid canvasy $y]
 variable tree
 foreach m [$wid find overlapping $x $y $x $y] {
 if {[info exists tree($wid:tag:$m)]} {
 return $tree($wid:tag:$m)
 }
 }
 return ""
}

Since the underlying widget for the tree is canvas, this tree widget will support all the canvas binding
commands with the same syntax.

Package File Generation

Now that we have defined and tree mega−widget, how do we use it? Before we dive into developing a new
application using the tree widget, we have to generate a pkgIndex file for the tree widget. To do this, copy the
tree.tcl file into /usr/local/lib/tcl and run the following command in a wish shell:

Package File Generation

553

$ wish
% cd /usr/local/lib/tcl
% pkg_mkIndex . tree.tcl

This command will create a pkgIndex.tcl file in the /usr/local/lib/tcl directory. Make sure that there is no prior
pkgIndex.tcl file before you create it, because tcl will clobber it.

Once you have generated pkgIndex.tcl file, you need to instruct your application that you want to use the tree
widget by appending /usr/local/lib/tcl to the auto_loadpath by adding the following lines:

Lappend auto_path /usr/local/lib/tcl
Package require tree

An Application Using the Tree Mega−Widget

Let's use our tree package and develop a simple application. The application we are going to develop will
display the root system file hierarchy.

We first inform the application of the location of the package file and use it to load the tree package:

#!/usr/local/bin/wish
#
Simple application showing the use of tree mega widget
#
lappend auto_path /usr/local/lib/tk
package require tree

Now we have to inform the tree widget on parent and tail routines. By default, they are normal file dirname
and tail routines, because we are displaying a root file system:

#
Create utility procs that tree wiget uses to query parent
and tail components of a node
#
proc parent {item} {
 return [file dirname $item]
}
proc tail {item} {
 return [file tail $item]
}

We create images to display directory and file images:

Create imanges that we use to display directory and a normal file
#

image create photo idir −data {
 R0lGODdhEAAQAPIAAAAAAHh4eLi4uPj4APj4+P///wAAAAAAACwAAAAAEAAQAAADPVi63P4w
 LkKCtTTnUsXwQqBtAfh910UU4ugGAEucpgnLNY3Gop7folwNOBOeiEYQ0acDpp6pGAFArVqt
 hQQAO///
}
image create photo ifile −data {
 R0lGODdhEAAQAPIAAAAAAHh4eLi4uPj4+P///wAAAAAAAAAAACwAAAAAEAAQAAADPkixzPOD
 yADrWE8qC8WN0+BZAmBq1GMOqwigXFXCrGk/cxjjr27fLtout6n9eMIYMTXsFZsogXRKJf6u
 P0kCADv/
}

 An Application Using the Tree Mega−Widget

554

Next, we create a routine that dynamically adds the children of the node if the node happens to be the
directory when the user double clicks on the item

#
Dynamically add entries to the tree widget
#
proc AddDir {wid dir} {
 if ![file isdirectory $dir] {
 return;
 }
 foreach file [exec ls $dir] {
 set file [file join $dir $file]
 if [file isdirectory $file] {
 tree::additem $wid [file join $dir $file] −image idir
 } else {
 tree::additem $wid [file join $dir $file] −image ifile
 }
 }
}

The main process creates the tree and sets up the double click bindings for the tree widget. It also adds the
toplevel node to the tree.

#
main proc
#
#
Create tree wiget and set up bindings
#
tree::create .t −width 150 −height 400

#
open a node when gets double clicked.

.t bind x <Double−1> {
 puts "Callled"
 set child [tree::labelat %W %x %y]
 AddDir %W $child
 tree::openbranch %W $child
}

AddDir .t /

mange the wiget

pack .t −fill both −expand 1
update

When you run the program you should see something similar to the following:

 An Application Using the Tree Mega−Widget

555

Tk Process Log Viewer

Now that we have seen how to create a mega−widget, how about creating an application using Tcl 8.0's new
features, such as the event mechanism? More often than not, Linux users find themselves running the 'tail f' or
'find / −print' command every day. So why don't we develop an application to display the outputs of those
commands in a text window? We will also create shortcuts (nicks) to the commands they run, so that they can
re−run them by clicking on the shortcut.

This application supports two types of logs file logs and command logs. File logs are 'tail f filename' type
commands and command logs are 'find / −print'. For file log outputs, the user will specify a filename and a
nick (shortcut). A command of the type tail f filename will be constructed and associated with the given nick.
For command logs, the user has to specify the entire command name and nickname.

Let's call this application "Tk Process Log Viewer". So, what do we need to build such an application? User
interface wise, we need a menu bar for process commands, a text widget to display the output, a status bar to
display error messages, a couple of entry boxes to specify commands and their nicknames, and an option
button to display currently−available nicks. We also need a stop button to stop the current view process, and a
delete button in the menu bar to delete any unwanted shortcuts (nicks).

Let's just start by declaring the global variables that we will use to build the application. We store all these
global variables in an array called tailOpts.

#!/usr/local/bin/wish8.0
logView.tk −−

Essentially a general purpose GUI wrapper to tail, gui and any commands
that will output data continuosly. This GUI has the ability to record
the commands as smart buttons, so that you can re−run the same commands
again and again without having to retype

set tailRc "~/.tailrc"

 Tk Process Log Viewer

556

wm title . "Process Log Viewer"
wm iconname . "Log Viewer"

global tailSize textw fileName tailFd curNick tailOpts statusImgWin

tailSize −−> size in lines of tail output to display
fileName −−> File name: variable
tailFd −−> proc fd or file fd of current tail process
curNick −−> current nick being shown; nick essentially a shortcut to a cmd.
tailOpts −−> saved options
statusImgWin −−> window showing what kind of error it is!

set tailSize 20
set fileName "/usr/local/processlog/logView.tk"; #include your own path here

file types for the file selection dialog box.
#

set tailOpts(types) {
 {"All files" *}
 {"Text files" {.txt .doc} }
 {"Text files" {} TEXT}

 {"Tcl Scripts" {.tcl} TEXT}
 {"C Source Files" {.c .h} }
 {"All Source Files" {.tcl .c .h} }
 {"Image Files" {.gif} }
 {"Image Files" {.jpeg .jpg} }
 {"Image Files" "" {GIFF JPEG}}
}
set tailOpts(wins) {}

Next, we will build the user interface. First, the menu bar with File and Edit commands. The File menu will
support the addition of new command nicks through an "Add New" command button. The File menu will also
contain an exit button to exit the application. The Edit menu will contain "Delete Nicks" button to edit the
current nicks.

proc BuildTailGui {w} {
 global tailSize textw fileName tailFd curNick tailOpts statusImgWin
 global viewOptMenu

 if {$w == "."} {
 set w "";
 }

 #
 # Build Menu for file
 #

 menu $w.menu −tearoff 0
 # File menu
 set m $w.menu.file
 menu $m −tearoff 0
 $w.menu add cascade −label "File" −menu $m −underline 0
 $m add command −label "Add New ..." −command {AddNew} −underline 0
 $m add command −label "Exit" −command {exit} −underline 0

 # Edit Menu

 Tk Process Log Viewer

557

 set m $w.menu.edit
 menu $m −tearoff 0
 $w.menu add cascade −label "Edit" −menu $m −underline 0
 $m add command −label "Delete Nicks.." −command {DeleteNicks} −underline 0

 # Help Menu
 set m $w.menu.help
 menu $m −tearoff 0
 $w.menu add cascade −label "Help" −menu $m −underline 0
 $m add command −label "About..." −underline 0 −command {
 tk_messageBox −parent . −title "Process Log Viewer" −type \
 ok −message "Tk Tail Tool \nby Krishna Vedati(kvedati@yahoo.com)"
 }

The routine then adds a text widget to display the output of any log process and a status bar to display error
and informational messages.

Next, the routine builds rows of widgets. The first row will enable users to add file type nicks to the
application. The second row will enable users to add command−type nicks. The last row contains a stop
button to stop the current log process and an option button to quickly choose a short cut.

 #
 # Create status/error message window
 #

 frame $w.status −relief sunken −bd 2
 set statusImgWin [label $w.status.flag −bitmap info]
 label $w.status.lab −textvariable statusText −anchor w −bg "wheat"
 pack $w.status.flag −side left
 pack $w.status.lab −side left −fill both −expand 1

 #
 # File name: entry panel
 #

 frame $w.file
 label $w.file.label −text "File name:" −width 13 −anchor w
 entry $w.file.entry −width 30 −textvariable fileName
 button $w.file.choose −text "..." −command \
 "set fileName \[tk_getOpenFile −filetypes \$tailOpts(types) \
 −parent \[winfo toplevel $w.file\]\];"

 button $w.file.button −text "Tail File" \
 −command "AddToView file \$fileName"
 pack $w.file.label $w.file.entry −side left
 pack $w.file.choose −side left −pady 5 −padx 10
 pack $w.file.button −side left −pady 5 −padx 10
 bind $w.file.entry <Return> " AddToView file \$fileName"
 focus $w.file.entry

 #
 # Command entry panel
 #
 frame $w.fileC
 label $w.fileC.cLabel −text "Command:" −width 13 −anchor w
 entry $w.fileC.cEntry −width 40 −textvariable command
 label $w.fileC.nLabel −text "Nick:" −anchor w
 entry $w.fileC.nEntry −width 15 −textvariable nick
 button $w.fileC.add −text "Add" −command "AddToView \"command\"\
 \$command \$nick;"

 Tk Process Log Viewer

558

 pack $w.fileC.cLabel $w.fileC.cEntry −side left
 pack $w.fileC.nLabel −side left −pady 5 −padx 10
 pack $w.fileC.nEntry −side left −pady 5 −padx 5
 pack $w.fileC.add −side left −pady 5 −padx 5

 # Option Menu command panel

 frame $w.optF
 label $w.optF.label −text "View:" −width 12 −anchor w
 set viewOptMenu [tk_optionMenu $w.optF.optB curNick " "]
 button $w.optF.stop −text "Stop" −command Stop

 pack $w.optF.label −side left
 pack $w.optF.optB −side left −pady 5
 pack $w.optF.stop −side left −pady 5

 # create text widget
 frame $w.textf −bg red
 text $w.textf.text −height [expr $tailSize] −xscrollcommand \
 "$w.textf.scrollh set" −yscrollcommand "$w.textf.scrollv set" −bg lightblue
 set textw $w.textf.text
 scrollbar $w.textf.scrollh −orient horizontal −command "$w.textf.text xview"
 scrollbar $w.textf.scrollv −orient vertical −command "$w.textf.text yview"

 pack $w.textf.scrollv −side right −fill y −expand 1
 pack $w.textf.scrollh −side bottom −fill x −expand 1
 pack $w.textf.text −fill x −fill y −expand 1

 # pack all the frames
 [winfo toplevel $w.textf] configure −menu $w.menu
 pack $w.status −side bottom −fill x −pady 2m
 pack $w.file −side top −fill x −expand 1
 pack $w.fileC −side top −fill x −expand 1
 pack $w.optF −side top −fill x −expand 1
 pack $w.textf −side top −fill x −fill y −expand 1

}

Once the user sets up a command or a file−type nick, the TailFile method will get called. This method makes
sure that the specified file exists. It creates the command and opens it as a process. Then, it binds a read event
to the file descriptor and returns. The read event will call TailUpdate every time the file identifier associated
with the process is readable:

TailFile −−

Show the tail of the request file.
#
Arguments:
file name to be tailed.

Results:
The tail of the file is shown in the window.
#

proc TailFile { type file {nick ""}} {
 global tailSize tailFd textw curNick
 set w $textw
 catch {
 fileevent $tailFd readable {}

 Tk Process Log Viewer

559

 close $tailFd
 update
 }
 $w delete 1.0 end

 if {$type == ""} {
 $w insert end "Illegal type...";
 return
 }
 if {$type == "file"} {
 if {$file == ""} {
 $w insert end "please specify a valid filename..."
 return
 }
 if ![file exists $file] {
 DeleteFromView $file
 $w insert end "file $file does not exist..."
 return
 }
 set nick $file
 } elseif {$type == "command"} {
 if {$file == ""} {
 $w insert end "please specify a command..."
 return
 }
 }

 if {$type == "file"} {
 set tailFd [open "|tail −f $file" r]
 wm title [winfo toplevel $w] "Tail tool \[tail −f $file\]"
 } elseif {$type == "command"} {
 if [catch {set tailFd [open "|$file" r]}] {
 SetStatus error "can't execute command $file..."
 DeleteFromView $nick
 set curNick ""
 return
 }

 wm title [winfo toplevel $w] "Tail tool \[tail |$file\]"
 }
 fconfigure $tailFd −blocking 0
 set lines 0
 fileevent $tailFd readable "TailUpdate \$tailFd"
}

The TailUpdate procedure gets called as part of the event handler on the current log process read status. When
this procedure gets called, it collects the output from the process and inserts it into the text widget. It also
makes sure that at any given time, no more than $tailSize lines are shown in the text window:

proc TailUpdate {fileFd} {
 global textw curNick
 global tailSize tailFd

 set w $textw
 if [eof $tailFd] {
 fileevent $tailFd readable {}
 $w insert end "Tailing \"$curNick\" done..."
 return
 }

 Tk Process Log Viewer

560

 set line [gets $tailFd]

 $w insert end $line
 $w insert end "\n"

 set lines [lindex [split [$w index end] .] 0]
 if {$lines == [expr $tailSize+1]} {
 $w delete 1.0 2.0
 }
 $w yview moveto 1.0

}

The Stop call−back is used to stop the current logProcess.

#
Stop the current tailing process
#

proc Stop {} {
 global tailFd
 set pid [pid $tailFd]
 catch {exec kill −9 $pid}
}

The AddNew procedure gets called every time the user adds a new shortcut through the File menu's Add
New.. menu command. It creates a simple GUI for the user to create a new command nick.

AddNew −−
Add a new tail file to the system

Arguments:
none.

Results:

proc AddNew {args} {
 toplevel .addnew
 set w .addnew
 wm title $w "Add new tail file..."

 frame $w.top
 frame $w.sep −bd 2 −relief ridge
 frame $w.bot

 set k $w.top

 label $k.name −text "Nickname for item:"
 label $k.command −text "Command:"

 grid $k.name −row 0 −column 0 −sticky e
 grid $k.command −row 1 −column 0 −sticky e

 entry $k.nameE −textvariable nameE −width 40

 Tk Process Log Viewer

561

 entry $k.commandE −textvariable commandE −width 50

 grid $k.nameE −row 0 −column 1 −sticky ew
 grid $k.commandE −row 1 −column 1 −sticky ew

 grid columnconfigure $k 1 −weight 1
 grid propagate $k 1

 pack $w.top −side top −fill both −expand 1
 pack $w.sep −side top −fill x −expand 1 −pady 5
 pack $w.bot −side top −fill x −expand 1

 button $w.bot.apply −text "Add" −command "AddToView \"command\" \"\$commandE\" \"\$nameE\""
 button $w.bot.dismiss −text "Dismiss" −command {destroy .addnew}
 pack $w.bot.apply $w.bot.dismiss −side left −expand 1
 PositionWindow $w
}

The SetStatus procedure is used to set GUI status messages in the status window. It's a general purpose
routine to display both error and informational messages. If a type error occurs, then an error bitmap will be
displayed in the status window:

proc SetStatus {type text {timer 5000}} {
 global statusText statusImgWin
 set statusText $text
 after $timer "set statusText \"\""
 $statusImgWin config −bitmap $type
 after $timer "$statusImgWin config −bitmap \"\""
}

The AddToView command will add a nick to the option button. Before it adds the item to the option menu, it
makes sure that the user had supplied the required information:

proc AddToView {type command {nick ""}} {
 global tailOpts viewOptMenu

 catch {Stop}
 if {$type == "file"} {
 set nick $command
 if {$command == ""} {
 SetStatus error "Please supply File name..."
 }
 } elseif {$type == "command"} {
 if {($nick == "") || ($command == "") } {
 SetStatus error "Please supply both nick and command names..."
 return
 }
 }
 set l [list "$type" "$nick" "$command"]
 if ![info exists tailOpts(wins)] {
 set tailOpts $l
 return
 } else {
 foreach item $tailOpts(wins) {
 if {$nick == [lindex $item 1]} {
 if {$type == "file"} {
 SetStatus info "File $nick is all ready in the tail list...."

 Tk Process Log Viewer

562

 } else {
 SetStatus info "Nick $nick is all ready in the tail list...."
 }
 return;
 }
 }
 lappend tailOpts(wins) $l
 }

 UpdateOptionMenu
 $viewOptMenu invoke end
}

The DeleteNicks routine will create a simple listbox−based user interface for the user to delete the nicks.

proc DeleteNicks {} {
 global tailOpts

 if ![info exists tailOpts(wins)] {
 SetStatus info "No entries to delete..."
 return;
 }
 if {$tailOpts(wins) == {}} {
 SetStatus info "No entries to delete..."
 return;
 }
 catch {destroy .delent}
 toplevel .delent
 set w .delent
 wm title $w "Delete Entry"

 scrollbar $w.h −orient horizontal −command "$w.list xview"
 scrollbar $w.v −orient vertical −command "$w.list yview"
 listbox $w.l −selectmode single −width 20 −height 10 \
 −setgrid 1 −xscroll "$w.h set" −yscroll "$w.v set"

 frame $w.buts
 button $w.buts.d −text "Delete" −command {
 set index [.delent.l curselection];
 if {$index == ""} {return}
 set sel [.delent.l get $index];
 puts "sel $sel ; index $index"
 DeleteFromView $sel;
 .delent.l delete $index
 }

 Tk Process Log Viewer

563

 button $w.buts.dismiss −text "Dismiss" −command "destroy $w"

 grid $w.l −row 0 −column 0 −columnspan 2 −sticky "news"
 grid $w.v −row 0 −column 2 −sticky "ns"
 grid $w.h −row 1 −column 0 −columnspan 2 −sticky "we"
 grid $w.buts −row 2 −column 0 −columnspan 3

 pack $w.buts.d $w.buts.dismiss −side left −padx 10

 foreach ent $tailOpts(wins) {
 $w.l insert end [lindex $ent 1]
 }

 PositionWindow $w
}

The DeleteFromView routine is an internal routine that removes the specified nick from the data structures
and updates the optionbutton:

proc DeleteFromView {nick} {
 global tailOpts

 if {$nick == ""} {
 return
 }
 set newList {}
 if ![info exists tailOpts(wins)] {
 return
 }
 foreach item $tailOpts(wins) {
 if {$nick != [lindex $item 1]} {
 lappend newList $item
 }
 }
 set tailOpts(wins) $newList
 UpdateOptionMenu
}

The PositionWindow routine centers a toplevel dialogue box around its parent. It is used to map dialog boxes
on the main window, instead of some far−away corner of the screen:

#
PositionWindow −−

Position the toplevel window centered to its parent.
#
Arguments:
toplevel window.

Results:
Positions the window
#
proc PositionWindow {w} {
 set paren [winfo parent $w]
 wm iconify $w
 set parenConf [wm geometry $paren]
 set parenConf [split $parenConf {+ − x}]
 set winConf [split [wm geometry $w] {+ − x}]
 set X [expr [lindex $parenConf 2] + [lindex $parenConf 0]/2 − \
 [winfo reqwidth $w]/2]

 Tk Process Log Viewer

564

 set Y [expr [lindex $parenConf 3] + [lindex $parenConf 1]/2 − \
 [winfo reqheigh $w]/2]
 wm geometry $w +$X+$Y
 wm deiconify $w
}

The UpdateOptionMenu command updates the nicks option menu widget with the current set of active nicks:

UpdateOptionMenu −−
#
#
#
Arguments:
#
#
Results:
#

proc UpdateOptionMenu {} {
 global tailOpts curNick viewOptMenu

 $viewOptMenu delete 0 end
 if ![info exists tailOpts(wins)] {
 return
 }
 if {$tailOpts(wins) == {}} {
 set curNick ""
 return
 }
 foreach item $tailOpts(wins) {
 $viewOptMenu add command −label [lindex $item 1] −command "catch Stop; TailFile \"[lindex $item 0]\" \"[lindex $item 2]\" \"[lindex $item 1]\" "
 set curNick [lindex $item 1]
 }
}

Finally, we map the main window:

wm withdraw .

toplevel .t

BuildTailGui .t

When you run this application, you should see the following:

 Tk Process Log Viewer

565

Internationalization

One thing we have not covered in this survey of Tk widgets is internationalization. Tcl8.1 has lots of new
features such as Unicode support, functions to create and access message catalogs (so you can store the text of
all your dialog boxes in multiple languages), support for different language encodings and generalized string
manipulation. Beginning in Tcl 8.1, all Tcl string manipulation functions expect and return Unicode strings
encoded in UTF−8 format. Because the use of Unicode/UTF−8 encoding is internal to Tcl, you should see no
difference in Tcl 8.0 and 8.1 string handling in your scripts. In fact all the commands in Tcl8.1 onwards
handle Unicode seemlessly. For example you can read a file that is encoded in shiftjis encoding into Tcl and
the file read command automatically converts the shiftjis encoding to its UTF−8 encoding automatically.

set fd [open $file r]
fconfigure $fd −encoding shiftjis
set jstring [read $fd] close $fd
close $fd

Furthermore, the new regular expression implementation introduced in Tcl 8.1 handles the full range of
Unicode characters.

Since all strings in Tcl are encoded in Unicode Tk widgets automatically handle any encoding conversions
necessary to display the characters in a particular font. For example the following code snippet:

set str "\u592a\u9177"
??
% button .b −text $str
.b
% pack .b

should display Chinese transliteration of "Tcl" (TAI−KU) as the button label provided you have the correct X
fonts installed to display this text. If the master font that you set for a widget doesn't contain a glyph for a
particular Unicode character that you want to display, Tk attempts to locate a font that does. Where possible,
Tk attempts to locate a font that matches as many characteristics of the widget's master font as possible (for
example, weight, slant, etc.). Once Tk finds a suitable font, it displays the character in that font. In other
words, the widget uses the master font for all characters it is capable of displaying, and alternative fonts only
as needed.

 Internationalization

566

Internationalization is a fascinating topic to cover. Unfortunately it requires more space than we have in this
chapter. For an excellent introduction to internationalization in Tcl/Tk, read:

http://www.scriptics.com/services/support/howto/i18n.html

Where Now?

If you ever get stuck with Tk, as well as the man pages, there's always the Tk Widget Tour with its examples
of how to use the Tk widget set. Run the program by typing widget.

Some notable programs written in Tk include Xadmin, Exmh, ical, TkMan, TkElm, TkWWW and SurfIT.
tkWWW is an HTML editor, so you can use it to prepare pages for the World Wide Web, while SurfIT is a
web browser written in Tcl which has the distinction of being able to download and execute Tcl programs
directly from web pages. This, of course, can be a dangerous facility to allow with unknown hosts! Ical is an
X based calendar program

At the time of writing this chapter, there are many things happening within the Tk community, so we'll round
off with a brief survey of some notable projects.

Tix

Tix extends Tk with over 40 professional Motif look−and−feel widgets. Tix widgets are so powerful that they
even give Motif 2.0 a run for its money. Check out Tix at http://www.xpi.com/tix/.

[incr Tk]

[incr Tcl] and [incr Tk] form an objected oriented extension to Tcl/Tk. Version 3.0 has recently been
announced and is available at http://www.tcltk.com/itcl/. From their web pages:

"[incr Tcl] provides the extra language support needed to build large Tcl/Tk applications. It introduces the
notion of objects, which act as building blocks for an application. Each object is a bag of data with a set of
procedures or 'methods' that are used to manipulate it. Objects are organized into 'classes' with identical
characteristics, and classes can inherit functionality from one another. This object−oriented paradigm adds
another level of organization on top of the basic variable/procedure elements, and the resulting code is easier
to understand and maintain.

[incr Tk] is a framework for building 'mega−widgets' using the [incr Tcl] object system. Mega−widgets are
high−level widgets like a file browser or a tab notebook that act like simple Tk widgets but are themselves
constructed using Tk widgets as component parts, without having to write any C code. In effect, a
mega−widget looks and acts exactly like a Tk widget, but is considerably easier to implement."

BLT

The BLT−2.1 toolkit extends Tk by providing many new widgets, for example blt_graph, which is used to
plot line and bar graphs and blt_htext, a hypertext widget and widgets for background execution. BLT
homepage is http://www.tcltk.com/blt

Finally, comp.lang.tcl and comp.lang.tcl.announce are the best places to post Tk questions. Usually, people
are quite friendly and somebody will always answer your questions. Before posting your questions to
comp.lang.tcl, though, please read its frequently asked questions (FAQ) list, which is posted regularly to the

 Where Now?

567

news group.

Lots of Tk resources can be found on the web at Tcl's new home, scriptics corporation web page:
http://www.scriptics.com/resource.

That about completes our survey of Tk. There is far more to Tk than this brief survey can do justice, as John
Ousterhout intended Tcl/Tk to be an extensible and embeddable tool. Tcl commands and Tk widgets are
written in C and you can code your own and add them in, or take advantage of the widget extensions available
on the Internet. This is an advanced topic and space prevents us from covering it here, but it would be the way
in which you would access a C program from your graphical Tcl/Tk front end. Please refer to John
Ousterhout's book for details and, in the meantime, happy Tcl/Tk'ing!

Summary

In this chapter, we've rushed through the world of X windows programming.

After an overview of the thinking behind X Windows and the different ways in which this was implemented,
we learned enough Tk to complement the Tcl that we learned in Chapter 15 and enable us to rapidly develop
GUI front ends to our applications using Tk's rich widget set.

Next we're going to look at an exciting new way to program graphical applications in C − the GTK+ GNOME
toolkit.

 Summary

568

Chapter 17: Programming GNOME using GTK+

Overview

This chapter is an introduction to an exciting development in the Linux world: GNOME. GNOME stands for
the GNU Network Object Model Environment, which despite its complicated name, is a software project with
a simple aim to provide a user friendly, powerful user and development desktop environment that is based
entirely on free, open source software. You'll find this chapter purposefully brief in its coverage, but you
should be able to use the following pages as a starting point to program GNOME and then use the online
documentation to fill in the details. In this chapter, we'll be looking at:

An introduction to GNOME.•
The GNOME architecture.•
The GNOME desktop.•
The GTK+ widget set.•
GNOME widgets.•
An application for GNOME.•

The GNOME project home page is at www.gnome.org where you can find out the latest news, browse
complete online documentation and find a wealth of programming resources for GNOME.

GNOME is currently the default desktop system installed with the latest releases of the Red Hat and Debian
distributions of Linux, but you can download the binaries and source code of GNOME compatible with most
Linux and Unix systems from www.gnome.org.

An Introduction to GNOME

Perhaps the greatest difficulty with GNOME is understanding exactly what it is and what it does. To the
average user it's easy to think of GNOME as just a collection of desktop tools, but as its name suggests,
GNOME is a complete programming environment as well as a desktop, and its innovations go much further
than an attractive user interface.

GNOME is a programming layer that sits between the low level X Window system and the high level
Window Manager software, which gives the GUI programmer a wealth of powerful tools that Linux
historically has been missing. Compatibility with programs not written for GNOME is not an issue as
GNOME only adds resources. Specifically, GNOME addresses four key areas of problems encountered by
UNIX developers:

Lack of an integrated framework for building applications with a consistent user interface.•
Lack of inter−application communication.•
Lack of a standard for printing.•
Lack of a standard for session−management.•

Before we look at how GNOME solves these problems, let's learn a little about the history of the project.

The GNOME project began in August 1997, initiated by amongst others, Peter Mattis and Spencer Kimball
(programmers who worked on the GNU Image Manipulation Program, a.k.a The GIMP), Richard Stallman of
the Free Software Foundation (FSF) and Erik Troan and Mark Ewing of Red Hat.

569

The impetus behind GNOME originally stemmed from frustrations over licensing problems in KDE, another
Linux desktop project. KDE (the K Desktop Environment) is based on a widget toolkit called Qt written by
TrollTech. Qt is not licensed under the GPL, and some felt that building a Linux desktop using a toolkit that
was anything but GPL was a backward step for Linux whose tradition lies in non−proprietary, free (in the
sense of 'with the freedom to use the software as you like') open source software.

Distancing themselves from KDE, the team of programmers began GNOME basing it around GTK+, a GPL
toolkit having none of the restrictions of Qt. Within 18 months, GNOME version 1.0 was released.

KDE continues to grow with a large following in competition to GNOME. It's entirely a matter of personal
taste which you prefer. If you're a hardened C++ hacker, then since it's Qt's native language, you might like
KDE better. You can install both GNOME and KDE on a system − they happily coexist − and swap which
one loads up by editing your X startup script. Find out more about KDE from the project's home page,
www.kde.org.

The GNOME Architecture

The base toolkit in GNOME is GTK+ (the GIMP toolkit) originally written to simplify work on the GIMP.
GTK+ is a well featured, object oriented, cross platform, language neutral toolkit used widely to create
applications independently of GNOME. One of the reasons GTK+ was chosen as GNOME's toolkit was its
support for many programming languages, including C, C++, TOM, PERL, Python, GUILE, ADA and many
others. We'll stick to using C in this chapter, which is also the most popular language. GTK+ and GNOME are
both written in C for many positive reasons, but object orientation has had to be forced into the
implementation. The repercussions are small, but code is slightly less tidy than say, in a C++ implementation.

Note Toolkits like GTK+, Qt or Tk are collections of widgets GUI objects like buttons, menus, dialog
boxes etc and general support functions.

GTK+ uses the GLIB (GIMP library) and GDK (GIMP Drawing Kit) set of libraries. GLIB defines datatypes
and provides functions that deal with error handling and memory routines, and GDK is the platform
dependent layer that sits between the native graphics API and GTK+. Thus porting GTK+ to other platforms
should only require re−writing the GDK.

GNOME extends GTK+ by adding a separate layer of GNOME specific libraries and widgets which replace
and enhance some of those provided by GTK+ in order to provide greater ease of programming and to
encourage the developer into writing consistent user interfaces.

As an example, GNOME provides ready made dialog boxes, to which we simply add our text and specify
which feedback buttons to provide. Thus, it's quick and easy to code any dialog box, and they have a uniform
design across all GNOME applications.

Where both GTK+ and GNOME offer us routes for creating widgets, such as menus or toolbars, we'll only
discuss the GNOME method, since it'll be invariably a more powerful option.

Let's summarize the major features of the GNOME architecture:

Powerful, extensive widget set.•
GNOME Desktop front end featuring friendly, easy to use applications such as the panel, control
center, file manager... etc.

•

A custom implementation of the CORBA system called ORBit which allows software objects to
communicate effectively.

•

 The GNOME Architecture

570

A framework called Bonobo allowing embedding of documents within applications, similar to
Microsoft's Object Linking and Embedding (OLE). This would allow, for example, a spreadsheet to
be embedded into a text document.

•

A complete Internationalization system, including support for Unicode and Complex Text Processing
necessary to display languages of the Middle East and South Asia.

•

Printing framework.•

GNOME is certainly comprehensive! Let's leave the complexities behind now and take a look at what we
actually see the desktop.

The GNOME Desktop

With GNOME and all the necessary libraries installed correctly (with exec gnome−session at the end of your
X startup script, which may be called ~/.xinitrc, .xsession, or .Xclients depending on your platform and
configuration), we start up the desktop with the familiar command:

$ startx

By far the best way to familiarize yourself with the desktop is, of course, to use it! You'll soon see how well
designed and user friendly it is, and how drastically it improves the usability of Linux.

At the heart of the GNOME desktop is the panel, a highly configurable taskbar. Independent panels can be
placed on every edge of the screen, into which program shortcuts, menu shortcuts and small applications
(applets) can be docked. Panels can be hidden by clicking on the outer arrows which slide the panel off the
screen in a smooth, almost hypnotic animated fashion − guaranteed to provide hours of entertainment!

You are of course free to choose any window manager to use with GNOME, which controls the placement
and appearance of windows on the screen, but several are more GNOME compliant than others. The most
popular choices are "Enlightenment" and "IceWM". They are both fully GNOME compliant and have endless
configuration options to customize the look of your desktop.

The file manager is a GNOME version of "mc", the midnight commander program. MS Windows users will
feel at home with a tree display and full drag and drop functionality. We can easily copy, move, rename and
change file ownerships and privileges.

 The GNOME Desktop

571

Programming in GNOME using GTK+

Let's now move on to the exciting stuff programming using GTK+! We'll build up our knowledge by looking
at examples of the basic GTK+ widgets and then progress to the more complex widgets and finally use them
to build a GNOME application.

Before we dive straight in, we should say a few things about data types we'll be using and the concept of
widget hierarchy.

Datatypes

GLIB defines its own set of basic types, most of which are directly equivalent to the standard C types. This
makes porting code to different platforms easier and in some cases, such as using gpointer instead of void*, it
improves readability and understanding. Making sure we use these new types guarantees that our code will
work even if the underlying implementation changes.

GLIB type C type

gchar char

gshort short

glong long

gint int

gboolean char

gpointer void*
Widget Hierarchy

Widgets in GNOME/GTK+ are all members of a hierarchy, so that functions common to a set of widgets,
such as gtk_widget_show need only be implemented once. To remove the need to duplicate code, new
widgets are usually derived from existing widgets so that only the new features of the widget need to be
written. Let's look at the widget hierarchy for the GnomeApp widget, the top level window widget, taken from
the Gnome User Interface Library Reference Manual:

GtkObject
 +−−−−−−GtkWidget
 +−−−−−−GtkContainer
 +−−−−−GtkBin
 +−−−−−GtkWindow
 +−−−−−GnomeApp

This tells us that the GnomeApp widget is derived from the GtkWindow widget, which itself is derived from
the GtkBin widget and so on. Thus we can apply GtkWindow, GtkBin, GtkContainer, GtkWidget and
GtkObject functions to a GnomeApp widget because of its inheritance.

All widget creation functions, such as gnome_app_new return a GtkWidget pointer, the generic widget. This
means that, if we want to call a GnomeApp specific function such as gnome_app_set_menus(GnomeApp
*app, GtkMenuBar *menubar), then we use a macro (in this case GNOME_APP) to perform the cast from a
GtkWidget type to a GnomeApp type. We can only do this because GnomeApp is derived from GtkWidget. In
the case of an invalid cast, the compiler won't complain, but the GTK+ library will dump the error to the
console when the program is run. GTK+ is very good at returning useful errors, to aid debugging. We'll see
many examples of using macros for typecasting.

 Programming in GNOME using GTK+

572

Let's put widgets aside for a moment and write our first GNOME program which will display a window.

Try It Out Creating Windows

#include <gnome.h>

int main (int argc, char *argv[])
{
 GtkWidget *app;
 gnome_init ("example", "0.1", argc, argv);
 app = gnome_app_new ("example", "Window Title");
 gtk_widget_show (app);
 gtk_main ();
 return 0;
}

It is important to make sure that all of the GNOME and GTK+ libraries are correctly installed, and that the
library path's correctly set before trying to compile any example code.

To make life easy, GNOME comes with a shell script called gnome−config that supplies the compiler with the
correct flags required for compilation, and we append its output using single back quotes.

To compile the program gnome1.c you should type. (Note the back quotes and double dashes!)

$ gcc gnome1.c −o example1 `gnome−config −cflags −libs gnomeui`

Then run it from a terminal window within GNOME.

If you're having problems compiling, you can find details as well as solutions to common problems at
www.gnome.org.

Up should pop an empty window, 200x200 pixels in size:

You can move, resize and close the window, but it doesn't return us to the shell prompt, because we haven't
yet set up an exit handler.

How it works

Let's run through the code line by line. First we #include gnome.h, which takes care of all the necessary
GNOME and GTK+ library definitions. In main, we declare a GtkWidget pointer app that will point to our

Programming in GNOME using GTK+

573

window object and then we call gnome_init, the function that initializes the libraries, sets up session
management and loads any user preferences. We pass to gnome_init the application id, in this case "example",
its version number, "0.1", and the command line arguments as received by main. These are all used internally
by GNOME.

Next we create our window by calling gnome_app_new. This function takes as arguments an application
name, which can be different from the string supplied to gnome_init (also used internally) and the window
title which in this case we imaginatively call "window title", but can be left NULL. Don't be confused by the
function's name; its purpose is to create a top level window not a 'new application', and we call
gnome_app_new every time we want to create a new window. To make our window visible after creation, we
call gtk_widget_show, and finally we relinquish control to GNOME using gtk_main, so that events, mouse
clicks, button presses and so on, can be processed.

Once we've called gtk_main there's no way back we have to use callbacks linking user events to functions in
our program to perform any further actions. We'll see a couple of callbacks in action in the next example.

Try It Out The Ubiquitous "Hello world"

Make the highlighted additions and changes to the first example:

#include <gnome.h>

static void button_clicked(GtkWidget *button, gpointer data)
 {
 char *string = data;
 g_print(string);
 }

int main (int argc, char *argv[])
{
 GtkWidget *app;
 GtkWidget *button;

 gnome_init ("example", "0.1", argc, argv);
 app = gnome_app_new ("example", "Window Title");

 button = gtk_button_new_with_label ("Hello,\n GNOME world!");

 gtk_signal_connect (GTK_OBJECT (app), "delete_event",
 GTK_SIGNAL_FUNC (gtk_main_quit),
 NULL);

 gtk_signal_connect (GTK_OBJECT (button), "clicked",
 GTK_SIGNAL_FUNC (button_clicked),
 "Ouch!\n");

 gnome_app_set_contents (GNOME_APP (app), button);
 gtk_widget_show_all (app);
 gtk_main ();
 return 0;
}

When you run the program, you'll see something similar to this:

Programming in GNOME using GTK+

574

How it works

We've created a button widget with an embedded label widget using gtk_button_new_with_label and placed it
in the window using gnome_app_set_contents, making use of the GNOME_APP macro to cast our GtkWidget
pointer to a GnomeApp type.

We've also registered two callbacks, to output "Ouch!" each time the button is clicked, using the GLIB g_print
function (generally used for debugging, as its output can be overridden unlike printf) and to call
gtk_main_quit when the window is closed so that our program exits neatly.

We're ignoring return results from the GNOME functions here. In a production environment, 'industrial
strength' applications would take care to check them!

Let's now look at these signal handlers in more detail.

Dealing With Signals and Callbacks

Every time the mouse moves, enters and leaves widgets, buttons are pressed, toggle buttons are toggled,
menu items are selected and so on, a signal is sent to an application which can be passed to a callback
function. (GNOME signals are quite distinct from the UNIX signals discussed in Chapter 10.) Applications
aren't interested in most of these events, but sometimes they need to take action. A paint package might have
to draw a line when the user clicks a mouse button, or a sound player might increase the output volume when
a scale widget is adjusted. In GNOME/GTK+ we call gtk_signal_connect to connect signals with handler
functions:

guint gtk_signal_connect (GtkObject *object , const gchar *name, GtkSignalFunc func, gpointer data)

It has four parameters which tell GNOME/GTK+ which widget the callback is associated with, the signal to
be handled, the function to be called when the signal is sent and any arbitrary data to be given to the signal
handling function. If we look back to the previous example, we can now understand the call:

gtk_signal_connect (GTK_OBJECT (button), "clicked",
 GTK_SIGNAL_FUNC (button_clicked),

 "Ouch!\n");

Which calls button_clicked every time the "clicked" signal occurs for the button widget, sending "Ouch!" as
an argument. Notice that signals are referenced by strings in GTK+, not by constants as in normal signal
handling, so that misspellings are caught at run−time in GTK+

Different widgets emit different signals, but signals emitted by buttons are:

Programming in GNOME using GTK+

575

Signal Action

clicked The button was clicked (both pressed and released).

pressed The button was pressed down by the mouse.

released The button was released.

enter The mouse has moved over the button area.

leave The mouse has moved out of the button area.
These are all the basics of programming the GNOME user interface. For the rest of the chapter we'll just be
looking at more complicated widgets.

Don't be surprised to find many similarities between GTK+ and Tk. This is not a coincidence!

In the 'Hello world' example, the window shrank to enclose the button widget as you might expect. In fact,
windows can only have one child widget and, if you tried to create and add a second button to the window, it
would displace the first. You're probably thinking then, "How can I put more than one widget in a window?"
This brings us to containers.

Containers

GTK+ is a container based toolkit, which means that widgets are positioned in windows only by specifying
their parent container. Windows are single widget containers, and so GTK+ employs invisible packing boxes,
which can hold multiple widgets to create window layouts. Packing boxes are simple beasts, come in
horizontal and vertical form and are created with gtk_hbox_new and gtk_vbox_new respectively. To place
widgets in these packing boxes, all we need to do is call gtk_box_pack_start for each widget and specify
several formatting options.

This code fragment illustrates creating a vertical packing box and placing two label widgets inside:

GtkWidget *vbox, *label;
gboolean expand = FALSE;
gboolean fill = TRUE;
gint padding = 2;

vbox = gtk_vbox_new (homogeneous, spacing);

label = gtk_label_new ("This is the top label widget");
gtk_box_pack_start (GTK_BOX (vbox), label, expand, fill, padding);

label = gtk_label_new ("This is the bottom label widget");
gtk_box_pack_start (GTK_BOX (vbox), label, FALSE, TRUE, 2);

For the second label, we've used typical values for the expand, fill and padding attributes. This table explains
their meanings.

Parameter Type Description

homogeneous gboolean Forces all widgets in the box to occupy the same area as the
largest widget in the box.

spacing gint Determines the space between adjacent widgets.

Programming in GNOME using GTK+

576

expand gboolean Allows the packing box to expand to fill the remaining space.
Ignored if homogenous flag is set.

Fill gboolean Allows that particular widget to expand to fill the remaining
space.

padding gint Determines the width of a frame surrounding the widget.
We'll now be using packing boxes in all our examples, starting with the next program to introduce some more
button widgets:

Buttons

GTK+ provides four kinds of buttons, simple push buttons, toggle buttons, check boxes and radio buttons.

Button functionality in GNOME is essentially the same as in other GUIs. Push buttons are used to perform an
action on clicking, toggle buttons and check boxes are buttons with an associated state up or down and radio
buttons form a group of options from which only one can be selected.

Let's try out check boxes and radio buttons in the next example.

Try It Out More Choices

First we declare the widgets and create an empty radio group using GSList:

#include <gnome.h>

int main (int argc, char *argv[])
{
GtkWidget *app;
 GtkWidget *button1, *button2;
 GtkWidget *radio1, *radio2, *radio3, *radio4;
 GtkWidget *vbox1, *vbox2;
 GtkWidget *hbox;
 GSList *group = NULL;

gnome_init ("example", "0.1", argc, argv);
 app = gnome_app_new ("example", "Music choices");

We give the window a border and create our packing boxes:

gtk_container_border_width (GTK_CONTAINER (app), 20);

 vbox1 = gtk_vbox_new (FALSE, 0);
 vbox2 = gtk_vbox_new (FALSE, 0);
 hbox = gtk_hbox_new (FALSE, 0);

We add two check buttons to the first vertical packing box:

 button1 = gtk_check_button_new_with_label("Orchestra");
 gtk_box_pack_start (GTK_BOX (vbox1), button1, FALSE, FALSE, 0);

 button2 = gtk_check_button_new_with_label ("Conductor");
 gtk_box_pack_start (GTK_BOX (vbox1), button2, FALSE, FALSE, 0);

And add four radio buttons to the second box, adding each new button to the group list:

Programming in GNOME using GTK+

577

 radio1 = gtk_radio_button_new_with_label (group, "Strings");
 gtk_box_pack_start (GTK_BOX (vbox2), radio1, FALSE, FALSE, 0);
 group = gtk_radio_button_group (GTK_RADIO_BUTTON (radio1));

 radio2 = gtk_radio_button_new_with_label (group, "Wind");
 gtk_box_pack_start (GTK_BOX (vbox2), radio2, FALSE, FALSE, 0);
 group = gtk_radio_button_group (GTK_RADIO_BUTTON (radio2));

 radio3 = gtk_radio_button_new_with_label (group, "Brass");
 gtk_box_pack_start (GTK_BOX (vbox2), radio3, FALSE, FALSE, 0);
 group = gtk_radio_button_group (GTK_RADIO_BUTTON (radio3));

 radio4 = gtk_radio_button_new_with_label (group, "Percussion");
 gtk_box_pack_start (GTK_BOX (vbox2), radio4, FALSE, FALSE, 0);
 group = gtk_radio_button_group (GTK_RADIO_BUTTON (radio4));

Lastly, we add an exit handler and put the packing boxes together:

 gtk_signal_connect (GTK_OBJECT (app), "delete_event",
 GTK_SIGNAL_FUNC (gtk_main_quit),
 NULL);

gtk_container_add (GTK_CONTAINER (hbox), vbox1);
 gtk_container_add (GTK_CONTAINER (hbox), vbox2);

 gnome_app_set_contents (GNOME_APP (app), hbox);

 gtk_widget_show_all (app);
 gtk_main ();
 return 0;
}

The packing box structure is shown in this diagram:

When run, the program displays this window:

Programming in GNOME using GTK+

578

How it works

This is an unashamedly contrived example so that we can demonstrate new widgets and a nested packing box
structure to create a window layout. We create two check boxes and add them to the first vertical packing box,
vbox1. Their current state can be read by calling gtk_toggle_get_state(button1), which returns a gboolean,
indicating TRUE for pressed.

Creating radio buttons is very similar to check boxes, and all that we need to do extra is to specify a group the
radio button belongs to and to update the group using gtk_radio_button_group after every new button
creation. The first time a button is added to a group, the group should be NULL, as the group does not yet
exist.

Radio buttons are derived from check buttons, which are derived from toggle buttons, so that we can use the
same set of functions to read and modify their state and also use the same events. A full definition of relevant
functions can be found in the GTK+ reference documentation available at www.gtk.org.

Entry Widgets

Entry widgets are single line text widgets created using gtk_entry_new and are commonly used to enter small
amounts of information. Here's a simple program that creates a login window, sets the visibility flag of the
entry widget to false, and outputs the password field when the activate signal occurs, when the return button is
pressed:

Try It Out Login GNOME Style

We first define enter_pressed, a callback function that gets called every time return is pressed:

#include <gnome.h>

static void enter_pressed(GtkWidget *button, gpointer data)
 {
 GtkWidget *text_entry = data;
 char *string = gtk_entry_get_text(GTK_ENTRY (text_entry));
 g_print(string);
 }

1.

Next we define variables, initialize GNOME and create a horizontal packing box:

int main (int argc, char *argv[])
{
GtkWidget *app;
 GtkWidget *text_entry;
 GtkWidget *label;
 GtkWidget *hbox;
 gchar *text;

gnome_init ("example", "0.1", argc, argv);

2.

Programming in GNOME using GTK+

579

 app = gnome_app_new ("example", "entry widget");

 gtk_container_border_width (GTK_CONTAINER (app), 5);

 hbox = gtk_hbox_new (FALSE, 0);

Now we create a label, set its alignment and add it to the packing box:

label = gtk_label_new("Password: ");
 gtk_misc_set_alignment (GTK_MISC (label), 0, 1.0);
 gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, FALSE, 0);

3.

Next we create the entry box and set its visibility to false, which makes its contents appear as
asterisks:

 text_entry = gtk_entry_new();
 gtk_entry_set_visibility (GTK_ENTRY (text_entry), FALSE);
 gtk_box_pack_start (GTK_BOX (hbox), text_entry, FALSE, FALSE, 0);

4.

Finally we set up the signal handlers, and place the packing box in the window:

 gtk_signal_connect (GTK_OBJECT (app), "delete_event",
 GTK_SIGNAL_FUNC (gtk_main_quit),
 NULL);

 gtk_signal_connect (GTK_OBJECT (text_entry), "activate",
 GTK_SIGNAL_FUNC (enter_pressed),
 text_entry);
gnome_app_set_contents(GNOME_APP (app), hbox);
 gtk_widget_show_all (app);
 gtk_main ();
 return 0;
}

5.

When compiled and run, a window like this should appear:

List Boxes and Combo Boxes

List box widgets hold a list of strings from which the user can select one or more, depending on the box's
configuration. Combo boxes are entry widgets with an added pull down menu from which the user can select.
Again, selection may be restricted to the items in the list depending on the widget's settings.

Here's a code fragment showing how to use them. The completed code is included in the source code bundle
available from the Wrox web site.

listbox = gtk_list_new ();
gtk_list_set_selection_mode (GTK_LIST (listbox),
 GTK_SELECTION_MULTIPLE);

item = gtk_list_item_new_with_label ("Beethoven");
gtk_container_add (GTK_CONTAINER (listbox),item);

item = gtk_list_item_new_with_label ("Brahms");
gtk_container_add (GTK_CONTAINER (listbox),item);

item = gtk_list_item_new_with_label ("Bach");
gtk_container_add (GTK_CONTAINER (listbox),item);

Programming in GNOME using GTK+

580

gtk_box_pack_start (GTK_BOX (vbox), listbox, FALSE, FALSE, 0);

/* add items ad infintum */

label = gtk_label_new("Choose an era:");
gtk_misc_set_alignment (GTK_MISC (label), 0, 1.0);
gtk_box_pack_start (GTK_BOX (vbox), label, FALSE, FALSE, 0);
combolist = NULL;

combolist = g_list_append (combolist, "Renaissance");
combolist = g_list_append (combolist, "Baroque");
combolist = g_list_append (combolist, "Classical");
combolist = g_list_append (combolist, "Romantic");
combolist = g_list_append (combolist, "Impressionism");

combo = gtk_combo_new ();
gtk_combo_set_popdown_strings (GTK_COMBO(combo), combolist);
gtk_box_pack_start (GTK_BOX (vbox), combo, FALSE, FALSE, 0);

We have now arrived at describing the GNOME specific libraries that contain more complicated widgets that
make the programmer's life easy. With plain GTK+ there is often a great deal of repetition in code, and it
offers different approaches to common tasks like building menus, toolbars and dialog boxes. It's not that
GTK+ is deficient in any way; it's just this flexibility that ensures its platform independence. As we'll see, if
we use the GNOME libraries, then this gives our applications a great deal of extra functionality for low
programming overheads.

Menus and Toolbars

GNOME lets us create menus and toolbars for our GnomeApp widgets that can be docked and undocked
from the window. We just fill in arrays with the necessary information and call gnome_app_create_menus or
gnome_app_create_toolbar.

The arrays are a list of structures that define the properties (type, string, callback pointer, accelerator key...
etc) of each of the menu or toolbar items. For the details of this structure, consult the libgnomeui API
reference manual. Most of the time, menu entries are very simple, and we can just use one of a set of macros
provided by GNOME to create the structure for us. All common menu and toolbar options have a
corresponding macro. Let's take a look at these.

Firstly there are the top level macros that create top level menus when passed an array that can contain any or
all of the following GnomeUIInfo structures.

Programming in GNOME using GTK+

581

Menu Macro

File

Edit

View

Settings

Windows

Help

Game

GNOMEUIINFO_MENU_FILE_TREE (tree)

GNOMEUIINFO_MENU_EDIT_TREE (tree)

GNOMEUIINFO_MENU_VIEW_TREE (tree)

GNOMEUIINFO_MENU_SETTINGS_TREE (tree)

GNOMEUIINFO_MENU_WINDOWS_TREE (tree)

GNOMEUIINFO_MENU_HELP_TREE (tree)

GNOMEUIINFO_MENU_GAME_TREE (tree)
Within the top level menu there are defined over thirty macros to create common menu items. The macros
associate small images (pixmaps) and accelerator keys with each menu item. All we need to do is specify a
callback function to be called when the item is selected and a data pointer to be passed to that function (cb,
data). We'll list just a few here for later reference.

Top level menu Menu Item Macro

File New GNOMEUIINFO_MENU_NEW_ITEM(label, hint, cb,
data)

Open GNOMEUIINFO_MENU_OPEN_ITEM (cb, data)

Save GNOMEUIINFO_MENU_SAVE_ITEM (cb, data)

Print GNOMEUIINFO_MENU_PRINT_ITEM (cb, data)

Exit GNOMEUIINFO_MENU_EXIT_ITEM (cb, data)

Edit Cut GNOMEUIINFO_MENU_CUT_ITEM (cb, data)

Copy GNOMEUIINFO_MENU_COPY_ITEM (cb, data)

Paste GNOMEUIINFO_MENU_PASTE_ITEM (cb, data)

Settings Preferences GNOMEUIINFO_MENU_PREFERENCES_ITEM (cb,
data)

Help About GNOMEUIINFO_MENU_ABOUT_ITEM (cb, data)
Similarly for toolbars, we create an array using the GNOMEUIINFO_ITEM_STOCK (label, tooltip, callback,
stock_id) macro, where stock_id is the id of a predefined icon that we want to use for that item. Again, the
complete list of stock icons are listed in the libgnomeui reference pages.

There are also several special macros, including GNOMEUIINFO_SEPARATOR which creates a line that
physically separates items and GNOMEUIINFO_END which denotes the end of the array.

Let's see how these arrays and macros work in practice.

Try It Out Menus and Toolbars

We create a callback function to output text when an item is selected:

#include <gnome.h>

static void callback (GtkWidget *button, gpointer data)
{

1.

Programming in GNOME using GTK+

582

 g_print ("Item Selected");
}

Now we create an array of two items to be placed in the file menu, an option that calls callback and an
exit option:

GnomeUIInfo file_menu[] = {
 GNOMEUIINFO_ITEM_NONE ("A Menu Item","This is the statusbar info",
 callback),
 GNOMEUIINFO_MENU_EXIT_ITEM(gtk_main_quit, NULL),
 GNOMEUIINFO_END
};

2.

Then we create the menu structure with one top level menu, the file menu, that points to the array
we've just created:

GnomeUIInfo menubar[] = {
 GNOMEUIINFO_MENU_FILE_TREE(file_menu),
 GNOMEUIINFO_END
};

3.

Similarly for the toolbar, we create an array that holds two items, a print button and an exit button:

GnomeUIInfo toolbar[] = {
 GNOMEUIINFO_ITEM_STOCK("Print", "This is another tooltip",
 callback,
 GNOME_STOCK_PIXMAP_PRINT),
 GNOMEUIINFO_ITEM_STOCK("Exit", "Exit the application",
 gtk_main_quit,
 GNOME_STOCK_PIXMAP_EXIT),
 GNOMEUIINFO_END
};

4.

Finally we create the menus and toolbar and add them to the window:

int main(int argc, char *argv[])
{
 GtkWidget *app;

 gnome_init ("example", "0.1", argc, argv);
 app = gnome_app_new ("example", "simple toolbar and menu");

 gnome_app_create_menus (GNOME_APP (app), menubar);
 gnome_app_create_toolbar (GNOME_APP (app), toolbar);

 gtk_widget_show_all (app);
 gtk_main ();
 return 0;
}

5.

We'll see a small window with an embedded menu and toolbar which we can click, undock and drag around
the screen. If we exit and reload, GNOME remembers their positions!

Programming in GNOME using GTK+

583

Dialog Boxes

When we need to create dialog boxes that display textual information to the user in GNOME, we call
gnome_message_box_new and pass it the message text, type of dialog box we require and the buttons we
want in the dialog box, all in a NULL terminated list. Next we bind the clicked signal of the dialog widget that
we've just created to a handling function which is passed the button that the user pressed as an integer. Then
all we need to do is call gtk_widget_show to display a non−modal box.

static void messagebox_clicked(GnomeDialog *dlg, gint button, gpointer data)
{
 switch (button)
 {
 case 1: /* user pressed apply*/
 return;
 case 0: /*user presser ok*/
 case 2: /*user pressed close */
 gnome_dialog_close(dlg);
 }
}

GtkWidget *dlg;

dlg = gnome_message_box_new ("This is the message text that appears in the dialog box",
 GNOME_MESSAGE_BOX_QUESTION,
 GNOME_STOCK_BUTTON_OK,
 GNOME_STOCK_BUTTON_APPLY,
 GNOME_STOCK_BUTTON_CLOSE,
 NULL);

gtk_signal_connect (GTK_OBJECT(dlg), "clicked",
 GTK_SIGNAL_FUNC(messagebox_clicked),
 NULL);

gtk_widget_show (dlg);

This creates a simple question message box, adds three buttons and responds to the user's clicks.

The Canvas Widget

The canvas widget is the most complicated and versatile of GNOME widgets and almost deserves a chapter
to itself! The GNOME canvas is a high specification drawing widget designed to be a general purpose display
engine for applications. It supports simple graphical objects such as lines and rectangles, and applications can
define their own canvas items to provide greater sophistication.

The canvas supports two rendering back−ends, one based on Xlib for speed and efficiency and another based
on Libart for a high quality, anti−aliased engine.

The canvas handles all drawing and redrawing of its items, so we never have to worry about buffering to
prevent flicker. Best of all, since canvas items are widgets themselves, we can dynamically redefine their
properties.

Programming in GNOME using GTK+

584

To create a canvas based on the Xlib engine, we write:

GtkWidget *canvas;

gtk_widget_push_visual(gdk_imlib_get_visual());
gtk_widget_push_colormap(gdk_imlib_get_colormap());
canvas = gnome_canvas_new();
gtk_widget_pop_visual();
gtk_widget_pop_colormap();

The visual and colormap functions must be called if we wish to place images in the canvas.
gnome_canvas_new then creates our canvas.

Then we will need to call gnome_canvas_pixels_per_unit to set the conversion setting between canvas units
and pixels.

When we create canvas items, we specify a group to which it becomes a member, so that we can apply global
changes to a group, such as moving or hiding the entire group.

Creating canvas items involves calling gnome_canvas_item with a NULL terminated list of arguments. First
in the list is its parent group, then a macro that defines the type of object we want to create (rectangle, line,
ellipse... etc) and then its object dependent properties.

Let's see how to create a red rectangle, 100 x 100 canvas units in size

GnomeCanvasItem *item;

Item = gnome_canvas_item_new(gnome_canvas_root(canvas),
 GNOME_TYPE_CANVAS_RECT,
 "x1", 0.0,
 "y1", 0.0,
 "x2", 100.0,
 "y2", 100.0,
 "fill_color", "red",
 NULL);

We precede each property of the rectangle with a string of that property. Let's look at some of the common
arguments of both rectangles and ellipses (GNOME_TYPE_CANVAS_RECT and
GNOME_TYPE_CANVAS_ELLIPSE).

Argument Type Description

x1 double Leftmost coordinate of rectangle or ellipse.

y1 double Topmost coordinate of rectangle or ellipse.

x2 double Rightmost coordinate of rectangle or ellipse.

y2 double Bottommost coordinate of rectangle or ellipse.

fill_color string X color specification for fill color.

outline_color string X color specification for outline color.

width_pixels uint Width of outline in pixels. (Outline will not scaled when the
canvas scale factor is changed.)

width_units double Width of outline in canvas units. (Outline will be scaled
when the canvas scale factor is changed.)

Programming in GNOME using GTK+

585

We can use the same structure for both rectangles and ellipses, because ellipses are placed inside an invisible
rectangular bounding box specified by the coordinates

An Application in GNOME

We've touched briefly on the main building blocks of a GNOME application, so let's consolidate our
knowledge by bringing widgets together to create a small application.

Probably the most flexible and impressive widget in GNOME is the canvas, so let's create a graphical clock
that demonstrates its power.

Requirements

We'll design a traditional analogue clock, so we'll need to read the machine's local time and convert that into
coordinates for the clock hands. The hands will be canvas items that we'll update with new coordinates every
second. We'll also put in a circular clock outline and dots that show the hour and minute positions around the
clock.

Naturally we'll put in some appropriate menus and a toolbar and also a preference dialog box where we'll be
able to hide the second hand and change the zoom factor of the canvas.

What do we Need to Code?

We need to code functions to perform:

The creation of the user interface with a window, menus and toolbar.•
A redrawing routine for the clock hands.•
Preference box creation and handling.•

Let's go ahead and start coding.

Try It Out A GNOME Clock

As usual, we start out with #include files. We'll need functions from the time and math libraries for
determining the coordinates of the clock hands:

#include <gnome.h>
#include <time.h>
#include <math.h>

1.

Now we #define some constants for our clock:

#define CANVAS_SIZE 100.0
#define MIDDLE (CANVAS_SIZE/2.0)
#define SECOND_HAND_LENGTH 40.0
#define MINUTE_HAND_LENGTH 45.0
#define HOUR_HAND_LENGTH 20.0
#define DOT_RADIUS 45.0 /* distance from center of the clock to dots */

2.

Next we initialize our global variables:

GtkWidget *canvas = NULL;
GnomeCanvasItem *second_hand = NULL;
GnomeCanvasItem *hand = NULL;
gboolean secondhand_is_visible = TRUE;

3.

 An Application in GNOME

586

GnomeCanvasPoints *points, *second_hand_points; /* the arrays that hold the hand coordinates */
GtkWidget *clock_app;

Now the prototypes for our functions:

static void create_dots (int dots, GtkWidget *canvas);
static void change_canvas_scale (GtkAdjustment *adj, gfloat *value);
static void show_preference_dlg (void);
static void show_about_dlg (void);
static void apply_preferences (GnomePropertyBox *property_box, gint page_num,
 GtkWidget *sh_checkbox);
static gint redraw (gpointer data);

4.

Here we define three top level menus, file, settings and help, which hold an 'exit', 'preferences' and
'about' option respectively. We link the 'preferences' and 'about' items to functions in our program to
bring up the appropriate dialog box.

GnomeUIInfo file_menu[] = {
 GNOMEUIINFO_MENU_EXIT_ITEM(gtk_main_quit, NULL),
 GNOMEUIINFO_END
};

GnomeUIInfo help_menu[] = {
 GNOMEUIINFO_MENU_ABOUT_ITEM(show_about_dlg, NULL),
 GNOMEUIINFO_END
};

GnomeUIInfo settings_menu[] = {
 GNOMEUIINFO_MENU_PREFERENCES_ITEM(show_preference_dlg, NULL),
 GNOMEUIINFO_END
};

GnomeUIInfo menubar[] = {
 GNOMEUIINFO_MENU_FILE_TREE(file_menu),
 GNOMEUIINFO_MENU_SETTINGS_TREE(settings_menu),
 GNOMEUIINFO_MENU_HELP_TREE(help_menu),
 GNOMEUIINFO_END
};

5.

Next we define the toolbar, which holds a single item, an Exit button:

GnomeUIInfo toolbar[] = {
 GNOMEUIINFO_ITEM_STOCK("Exit", "Exit the application",
 gtk_main_quit,
 GNOME_STOCK_PIXMAP_EXIT),
GNOMEUIINFO_END
};

6.

Now we define a function that creates the dots that go round the outside of the clock. We'll call it
sixty times, one for each minute, and this function will calculate that dot's position around the clock
and create the CanvasItem:

static void create_dot(int dots, GtkWidget* canvas)
{
 double angle = dots * M_PI / (360.0/12);
 double x1, y1, x2, y2;
 double size;
 GnomeCanvasItem *dot;

7.

Here we select the size of the dot based on where it appears in the clock. We make the dots that
appear at the 12, 3, 6 and 9 o'clock positions the largest, followed by the multiples of five minutes:

if ((dots % 15) == 0) {

8.

 An Application in GNOME

587

 size = 2.0;
 }
 else if ((dots % 5) == 0) {
 size = 1.0;
 }
 else size = 0.5;

 x1 = MIDDLE − size + (DOT_RADIUS * sin (angle));
 y1 = MIDDLE − size + (DOT_RADIUS * cos (angle));
 x2 = MIDDLE + size + (DOT_RADIUS * sin (angle));
 y2 = MIDDLE + size + (DOT_RADIUS * cos (angle));

 dot = gnome_canvas_item_new(gnome_canvas_root (GNOME_CANVAS(canvas)),
 GNOME_TYPE_CANVAS_ELLIPSE,
 "x1", x1,
 "y1", y1,
 "x2", x2,
 "y2", y2,
 "fill_color", "red",
 NULL);

}

Next is the heart of the application, the function that redraws, or more accurately, redefines the
coordinates of the clock hands based on the current local time. For the minute and hour hand we
actually use a single line object, defined with three points, so that we only need to redraw two canvas
items every second, the second hand and the hour/minute hand:

static gint redraw (gpointer data)
{
 struct tm *tm_ptr;
 time_t the_time;
 float second_angle;
 float minute_angle;
 float hour_angle;

 time(&the_time);
 tm_ptr = localtime (&the_time); /* See chapter 4 for an explanation of the time function */
 second_angle = tm_ptr−>tm_sec * M_PI / 30.0; /* The angle the second hand makes with the vertical */

9.

We set up the second hand coordinate array to draw a line from the middle to the point on the clock:

 second_hand_points−>coords[0] = MIDDLE;
 second_hand_points−>coords[1] = MIDDLE;
 second_hand_points−>coords[2] = MIDDLE + (SECOND_HAND_LENGTH*sin(second_angle));
 second_hand_points−>coords[3] = MIDDLE (SECOND_HAND_LENGTH * cos (second_angle));

10.

Next we calculate the appropriate angles for the hour and minute hands and use these to fill the
coordinate array:

 minute_angle = tm_ptr−>tm_min * M_PI / 30.0;
 hour_angle = (tm_ptr−>tm_hour % 12) * M_PI / 6.0 + (M_PI * tm_ptr−>tm_min / 360.0);

 points−>coords[0] = MIDDLE + (HOUR_HAND_LENGTH * sin (hour_angle));
 points−>coords[1] = MIDDLE − (HOUR_HAND_LENGTH * cos (hour_angle));
 points−>coords[2] = MIDDLE;
 points−>coords[3] = MIDDLE;
 points−>coords[4] = MIDDLE + (MINUTE_HAND_LENGTH * sin (minute_angle));
 points−>coords[5] = MIDDLE − (MINUTE_HAND_LENGTH * cos (minute_angle));

11.

We check if the hands have been created. If not, we create them, otherwise we give them their new set
of coordinates:

12.

 An Application in GNOME

588

if (hand == NULL) {

 hand = (gnome_canvas_item_new(gnome_canvas_root (GNOME_CANVAS (canvas)),
 GNOME_TYPE_CANVAS_LINE,
 "points",points,
 "fill_color", "blue",
 "width_units", 3.5,
 "cap_style", GDK_CAP_ROUND,
 "join_style", GDK_JOIN_ROUND,
 NULL));

 second_hand = (gnome_canvas_item_new(gnome_canvas_root (GNOME_CANVAS (canvas)),
 GNOME_TYPE_CANVAS_LINE,
 "points",second_hand_points,
 "fill_color", "white",
 "width_pixels", 2,
 NULL));
 }
 else
 gnome_canvas_item_set (hand, "points", points, NULL);
 gnome_canvas_item_set (second_hand, "points", second_hand_points, NULL);
 }

This function creates an about dialog box which appears when we click on about in the help menu:

static void show_about_dlg(void)
{
 GtkWidget *about;
 const gchar *authors[] = { "Andrew Froggatt", NULL };

 about = gnome_about_new("Gnome Clock", "0.1",
 "Released under the GNU Public License",
 authors,
 ("A simple graphical clock for GNOME"),
 NULL);
 gtk_widget_show (about);
}

13.

Here we create our preference box in which we place a check box and slider widget. The
GnomePropertyBox widget is derived from the GnomeDialog widget and has the extra functionality
of an embedded notebook widget that provides separate 'pages' each with a tab that we can use to
separate groups of widgets. GnomePropertyBox also defines two new signals: apply and help. apply is
sent whenever the user clicks on ok or apply, and help is sent when the help button is clicked. We use
the signals to provide a non−modal box.

static void show_preference_dlg(void)
{
 GtkWidget *preferencebox;
 GtkWidget *vbox, *hbox;
 GtkWidget *sh_checkbox;
 GtkObject *adj;
 GtkWidget *hscale;
 GtkWidget *label;

 preferencebox = gnome_property_box_new();

 vbox = gtk_vbox_new(FALSE, 2);
 hbox = gtk_hbox_new(FALSE, 0);

 sh_checkbox = gtk_check_button_new_with_label("Second hand visible");
 gtk_toggle_button_set_state(GTK_TOGGLE_BUTTON (sh_checkbox), secondhand_is_visible);

14.

 An Application in GNOME

589

 gtk_box_pack_start (GTK_BOX (vbox), sh_checkbox, FALSE, FALSE, 0);

We set up a signal handlers for the check box so that the ok and apply buttons become 'sensitive'
(unshaded) when the check box is toggled:

 gtk_signal_connect_object (GTK_OBJECT(sh_checkbox), "toggled",
 GTK_SIGNAL_FUNC(gnome_property_box_changed),
 GTK_OBJECT(preferencebox));

 label = gtk_label_new("Clock zoom factor: ");
 gtk_misc_set_alignment (GTK_MISC (label), 1.0, 1.0);
 gtk_box_pack_start (GTK_BOX (hbox), label, FALSE, FALSE, 0);

15.

Next we create a scale widget that will zoom our canvas and link two signal handlers to the
value_changed signal called when a user has moved the scale widget:

 adj = gtk_adjustment_new (2.0, 0.1, 7.0, 1.0, 1.0, 1.0); /* (default, min, max, step, page, page size) */
 hscale = gtk_hscale_new (GTK_ADJUSTMENT (adj));

 gtk_signal_connect_object (GTK_OBJECT (adj), "value_changed",
 GTK_SIGNAL_FUNC(gnome_property_box_changed),
 GTK_OBJECT(preferencebox));

 gtk_signal_connect_object (GTK_OBJECT (adj), "value_changed",
 GTK_SIGNAL_FUNC (change_canvas_scale),
 &(GTK_ADJUSTMENT (adj)−>value));

 gtk_signal_connect (GTK_OBJECT (preferencebox), "apply",
 GTK_SIGNAL_FUNC(apply_preferences), sh_checkbox);

 gtk_box_pack_start (GTK_BOX (hbox), hscale, TRUE, TRUE, 0);
 gtk_box_pack_start (GTK_BOX (vbox), hbox, FALSE, FALSE, 0);

 gnome_dialog_set_parent(GNOME_DIALOG(preferencebox), GTK_WINDOW(clock_app));

 gnome_property_box_append_page(GNOME_PROPERTY_BOX(preferencebox),
 vbox,
 gtk_label_new("General"));

 gtk_widget_show_all(preferencebox);

}

16.

Next is the function that gets called whenever the ok or apply buttons in the preference window are
clicked. page_num refers to the current notebook page, to provide future support for a per−page apply
button. The idea is that the apply signal is sent once for each notebook page, and once with a −1
page_num. We just reject any page other than −1. When we receive the −1 page, we make the second
hand visible or invisible according to the status of the check box in the preferences dialog box. We
update the global variable secondhand_is_visible so that the check box displays the correct state if the
property box is closed and re−created. Note that the GnomePropertyBox widget takes care of closing
the property window for us, when ok or close are clicked:

static void apply_preferences (GnomePropertyBox *property_box, gint page_num, GtkWidget *sh_checkbox)
{
 if (page_num != −1)
 return;
 if (gtk_toggle_button_get_active(GTK_TOGGLE_BUTTON (sh_checkbox)) == FALSE) {
 gnome_canvas_item_hide(second_hand);
 secondhand_is_visible = FALSE;

17.

 An Application in GNOME

590

 }
 else {
 gnome_canvas_item_show(second_hand);
 secondhand_is_visible = TRUE;
 }

When the scale widget is moved, we update the canvas scale factor and adjust the size of the window
so that the clock fits:

static void change_canvas_scale (GtkAdjustment *adj, gfloat *value)
{
 gnome_canvas_set_pixels_per_unit (GNOME_CANVAS (canvas),
 (double) *value);
 gtk_widget_set_usize(GTK_WIDGET (clock_app),
 110 * (double) *value,
 125 * (double) *value);
}

18.

Finally we get to main where we do the usual initialization and creation of our widgets:

int main (int argc, char *argv[])
{

 GnomeCanvasItem *clock_outline;
 gint dots;

 gnome_init ("clock", "0.1", argc, argv);
 clock_app = gnome_app_new ("clock", "Gnome Clock");

 gtk_widget_set_usize (clock_app, CANVAS_SIZE, CANVAS_SIZE);
 gtk_widget_push_visual(gdk_imlib_get_visual());
 gtk_widget_push_colormap(gdk_imlib_get_colormap());
 canvas = gnome_canvas_new();
 gtk_widget_pop_visual();
 gtk_widget_pop_colormap();

 gnome_canvas_set_pixels_per_unit (GNOME_CANVAS (canvas), 2);
 second_hand_points = gnome_canvas_points_new(2);
 points = gnome_canvas_points_new(3);

 gtk_signal_connect (GTK_OBJECT (clock_app), "delete_event",
 GTK_SIGNAL_FUNC (gtk_main_quit),
 NULL);

 gtk_widget_set_usize(clock_app, 220, 300);

 gnome_app_set_contents (GNOME_APP (clock_app), canvas);
 gnome_app_create_menus (GNOME_APP (clock_app), menubar);
 gnome_app_create_toolbar (GNOME_APP (clock_app), toolbar);

 clock_outline = gnome_canvas_item_new (gnome_canvas_root(GNOME_CANVAS (canvas)),
 GNOME_TYPE_CANVAS_ELLIPSE,
 "x1", 0.0,
 "y1", 0.0,
 "x2", CANVAS_SIZE,
 "y2", CANVAS_SIZE,
 "outline_color", "yellow",
 "width_units", 4.0,
 NULL);

19.

Here we create the sixty dots to mark out the minutes on our clock:20.

 An Application in GNOME

591

 for (dots = 0; dots < 60; dots++) {
 create_dot (dots, canvas);
 }

This is the crucial function that calls redraw every 1000 milliseconds to update our clock:

 gtk_timeout_add(1000, redraw, canvas);

 redraw(canvas); /* make sure our hands are created before we display the clock */
 gtk_widget_show_all(clock_app);
 gtk_main();
 return 0;
}

21.

That completes the code for creating the clock. When we've compiled and run the example, we should see our
clock appear and start ticking:

How it works

It may be lengthy, but it's essentially quite a simple example. The key to making the clock function is the
gtk_timeout_add function, which calls redraw every second. In redraw, we calculate where the hands should
point, set up the coordinate arrays and call gnome_canvas_item_set to update the canvas items.

The property dialog function takes a little explaining. We create a check box widget to toggle the visibility of
the second hand and a scale widget that we link to the scale of the canvas. We handle changes in the state of
the check box and scale widget in different ways. We wait until either the ok or apply buttons are pressed to
update the visibility of the second hand, based on the check box state, but the canvas scale is changed
immediately on alteration of the scale widget via the value_changed signal associated with scale widgets. This
has the effect of instant zooming in and out as the scale widget is adjusted.

You might like to create an anti−aliased canvas instead to give a high quality clock, but beware! It can be
resource intensive. All you need to do is change the canvas creation lines to read:

 gtk_widget_push_visual(gdk_rgb_get_visual());
gtk_widget_push_colormap(gdk_rgb_get_cmap());

 canvas = gnome_canvas_new_aa(); /* create an anti−aliased canvas */

Canvas lines are created by specifying an array of points, which we must create and initialize using:

An Application in GNOME

592

GnomeCanvasPoints points = gnome_canvas_points_new (gint num_of_points)

where num_of_points is the number of points on the canvas we want to join up, so the array size is twice this
size to hold the x coordinates in the even numbered elements and y in the odd elements.

Instead of having separate hour and minute hands, we use a single line that joins up the hour hand position to
the center, then to the minute hand position, so we pass 3 to gnome_canvas_points. There is no real advantage
in doing this, as opposed to creating a separate minute and hour hand, but it does demonstrates the join style
between two lines, which we set to GDK_JOIN_ROUND here.

Before we finish, let's mention a few more of the canvas properties.

Canvas items and groups obey a stacking arrangement. Items created last are always on top, and to change
the stacking order, you use the gnome_canvas_item_lower / gnome_canvas_raise functions. The canvas
support text and images as well as simple items like lines, rectangles, ellipses and polygons Canvas items can
have signal handlers attached to them

Ok, so what's next? We've reached the end of our whirlwind tour of GNOME now, and hopefully we've learnt
enough about using widgets and programming methods in GNOME to be able to use the reference material on
the web to create our own applications. Some of the most useful information can be found by examining the
well documented header files usually found in /usr/include/.

CD Application in GNOME

You can find the source code to a GNOME front end to the CD database, where more widgets are used and
explained, together with all the examples in this chapter on the Wrox web site, www.wrox.com.

Of course there's never enough room to cover everything, and there's no question that we've only scratched the
surface of GNOME. In some respects, a book should only cover the basics, because any detailed printed
manuals at the current stage in GNOME's development will be soon out of date.

The GNOME community is busy and thriving. Currently around 300 programmers worldwide are regularly
contributing to the cause. Maybe this chapter has fired your imagination enough for you to become one of
them. Good luck, and happy GNOMEing!

An Application in GNOME

593

Summary

In this chapter we've learnt what GNOME is and the basics of writing applications that take advantage of what
GNOME has to offer.

We've seen the base toolkit, GTK+, and learnt how to use several of its widgets and also seen how to use the
GNOME canvas.

 Summary

594

Chapter 18: The Perl Programming Language

Overview

Sitting in between shell and C, and influenced by many of the standard UNIX tools, Larry Wall's Perl
programming language is ideally suited to text manipulation, CGI scripting and system administration tasks.
However, as we will see, Perl is very extensible (you can even write graphical user interfaces in it using the
PerlTk extensions). It would be fair to say that anything you can do in C, you can do in Perl, and probably
much easier, too. Perl is particularly easy to learn, since it borrows elements from a whole host of
programming languages and utilities which will probably be already familiar to you; C and shell programmers
will feel particularly at home with it. sed, awk, Basic and Tcl programmers will not feel left out either.

One of the nicest features of Perl is that it provides a platform−independent UNIX−like abstraction layer on
top of your operating system. What does this mean? Perl runs on a huge variety of platforms, including
Windows, the Apple Macintosh, and, of course, anything that looks like UNIX. You can bring over all of the
ideas about Linux programming we've seen so far, and Perl will implement them as well as it can on whatever
we're running on. In effect, you can pretend any target operating system looks and behaves exactly like Linux
does, which, as I'm sure you'll agree, is such a pleasant way of looking at things.

In this chapter, we'll be looking at how to write basic Perl scripts, carrying over what we've learnt so far into
Perl. We can't deal with the whole of the Perl language in this chapter, but we'll examine the most useful and
most commonly used areas, as well as how we'd implement our familiar CD database application in Perl.

An Introduction to Perl

Let's start off by looking at the basic features of the Perl language: variables, operators and functions, regular
expressions and file input and output. There's a lot of information coming over the next few pages, and we
won't really put it all together until the end. However, you should be familiar with all of the concepts coming
up, so hopefully, it shouldn't be too heavy reading.

First , I suppose, we ought to check to make sure you've got a copy of Perl on your system. Most Linux
distributions come with Perl these days, so you should be able to just type perl v and get something like the
following:

This is perl, version 5.005_03 built for i386−linux

Copyright 1987−1999, Larry Wall
Perl may be copied only under the terms of either the Artistic License or the GNU General Public License, which may be found in the Perl 5.0 source kit.

Complete documentation for Perl, including FAQ lists, should be found on this system using 'man perl' or 'perldoc perl'. If you have access to the Internet, point your browser at http://www.perl.com/, the Perl Home Page.

If that doesn't happen, check your path and your Linux package manager, if you have one, to see if you've
actually got Perl installed; if not, you can get a recent copy from your Linux CD, the contrib or main sections
of your Linux distributor's FTP site, or in source form from CPAN. (Which we'll describe later.) As it says,
http://www.perl.com/ is the Perl Home Page, and contains a wealth of documentation, news and generally
useful information about Perl.

595

Hello, Perl

First of all, let's see what a simple Perl program looks like, and how we run it. Here's our script, which we'll
call hello.pl:

print "Hello, World\n";

Now, we could run this through the perl interpreter from the command line:

$ perl hello.pl
Hello, World
$

As expected, Perl says 'hello' and returns us to our shell prompt. Just like when we were writing shell scripts,
we can use the #! convention to tell Linux where the interpreter is installed. Let's change hello.pl so that it
looks like this:

#!/usr/bin/perl −w
hello.pl, version 2
print "Hello, World\n";

(You might need to change the #!/usr/bin/perl to the actual location of your perl binary. Use which perl, or
your shell's equivalent, to find out where it resides.)

Next, we need to make the file executable before we can run it:

$ chmod 755 hello.pl

Now we can run the file as we did with shell scripts:

$./hello.pl

Some things to note from this example:

Perl statements, like C statements, end with a semicolon. Also as in C, newlines in strings are
represented by \n. All of the other string 'metacharacters' are borrowed wholesale from C.

1.

Just like shell and Tcl, we're allowed to have comments starting with hashes. (Although, just like
shell, #! has a special meaning.)

2.

The "−w" in the first line is an option to the perl interpreter, which turns on extra warnings. This is
highly recommended; although Perl allows us to get away with a lot of sloppy coding, our scripts will
usually run more reliably if they pass the "−w" test.

3.

Perl Variables

Perl has three variable types: scalars, arrays and hashes.

Scalars

Scalar variables are ordinary strings and numbers; these look and operate a lot like shell variables − we could
rewrite our script, should we want to, like this:

$message = "Hello, World\n";
print $message;

An Introduction to Perl

596

C programmers might feel happier saying print($message), and you can do that too. Perl is very relaxed about
the need for braces around functions like print. Use this to increase readability, not decrease it. Similarly,
unlike shell but like C, we can have spaces around the equals sign of an assignment statement if we want
them. Note that unlike C, however, we don't need to allocate and deallocate space for our variables, nor do we
need to declare them in advance; Perl takes care of all that, leaving you free to concentrate on getting the
program written efficiently.

C programmers may also be happier using printf instead of print; Perl provides you with a printf function
which works just like the C and shell functions of the same name. However, print is more efficient, so unless
you need the formatting capabilities of printf, use print where you can.

Arrays

Arrays are the variable incarnation of lists, just like in Tcl. Instead of starting with a $, array variables are
denoted by an @. Here's a simple list:

(1, 2, 3, 4)

and here's how we put it into a variable:

@mylist = (1, 2, 3, 4);

Now, what if we want to get things out of it again? Let's have a look at a simple list in operation, then we'll
explain what's going on.

@message = ("\n", " ", "World", "Hello,");
print $message[3], $message[1], $message[2], $message[0];

OK, you know exactly what it's going to say, but how does it do it? The first thing to note is that we can have
multiple parameters to print separated by commas. These actually form a list, but that's not the important part.
(It'll get important later.)

Next, you'll have noted that our array is called @message but we referenced it with $message[element] This
makes sense if you think about it from the point of view of ''what you want'' not ''what you've got'' − when
we're pulling elements out one−by−one, we actually "want" scalar values from it, not arrays. (Don't be tricked
into thinking that $message and @message refer to the same variable, though − they're independent; $message
on its own doesn't refer to any elements in the array.)

Finally, the first array element is 0; fine if you're used to C, but possibly disturbing if you program BASIC,
Pascal or sed/awk. You can change the number of the first array element array to 1 if you want, but the effects
can be quite horrific, so it's best to leave it alone.

You may not want to grab individual elements, but rather a range or array slice. You can do this by giving a
range of elements, and remembering that this time we do want a list, not a scalar:

@a = ("zero", "one", "two", "three", "four");
@b = @a[0,2..3]; # @b is ("zero", "two", three");

Reducing it to one statement:
@b = ("zero", "one", "two", "three", "four")[0,2..3];

Perl automatically flattens lists; that is to say, lists cannot contain other lists, nor can arrays be

An Introduction to Perl

597

multi−dimensional. (You can do that with references, but that's beyond the scope of this chapter; see the
perlref and perllol manpages for more on how to do that.) This means that the following statements are
equivalent:

@a = ("zero", "one", "two", "three", "four");

@a = ("zero", "one", ("two", "three"), "four");

@half = ("zero", "one", "two"); @half2 = ("three", "four");
@a = (@half, @half2);

You're also allowed to have lists on the left−hand side of an assignment, and in fact, this is a very useful thing
to do:

($first, $last) = ("alpha", "omega");

@a = ("alpha", "omega") ; ($first, $last) = @a; # Same thing.

Things that are put on the left−hand side of an assignment are called "lvalues"; we say lists are 'lvaluable'.
One really flash use of this is to swap the values of two variables without using a temporary variable. Here's
the C programmer's way to do it:

$temp = $last;
$last = $first;
$first = $temp;

Whereas a native would say:

($first, $last) = ($last, $first);

Hashes

The final variable type we can have are hashes, also known as associative arrays. These allow you to store
and retrieve data by keys, and the symbol for a hash is %. Hashes are very handy for representing
relationships between data. Here's a simple hash in use to store and retrieve phone numbers:

%phonebook = ("Bob" => "247305",
 "Phil" => "205832",
 "Sara" => "226010");

We created our hash just like a list, but used the => operator (which is equivalent to a comma in most cases)
to separate our key−value pairs. Now let's get at an entry:

print "Sara's phone number is ", $phonebook{"Sara"}, "\n";
print "Bob's phone number is ", $phonebook{Bob}, "\n";

Again we want a scalar, so we use the dollar sign. To signify which key we want to reference, we use braces
rather than square brackets, and the second line illustrates the fact that we don't need to put quotes around the
key. Be careful, though: hash keys, just like variable names, are case sensitive: $phonebook{Bob} is the same
as $phonebook{"Bob"} but not the same as $phonebook{bob}.

Once we've got this far, changing an entry in the hash is easy enough:

$phonebook{Bob} = "293028";

An Introduction to Perl

598

print "Bob's new number is ", $phonebook{Bob}, "\n";

Quoting and Substitution

Just like in shell scripting, variables inside double−quoted strings are substituted unless escaped with
backslashes. We could rewrite our phonebook example like this:

%phonebook = ("Bob" => "247305",
 "Phil" => "205832",
 "Sara" => "226010");
print "Sara's phone number is $phonebook{Sara}\n";
print "Bob's phone number is $phonebook{Bob}\n";

(Don't put double−quoted strings inside double−quoted strings, obviously.)

As you might expect, as in the shell, single quotes don't cause substitution to happen or special characters like
\n to work:

$myvar = "quoting";
print 'Take care when $myvar strings\n';
print "Take care when $myvar strings\n";

gives the following output:

Take care when $myvar strings\nTake care when quoting strings

As in Tcl, Perl converts between numbers and strings on demand:

print "4 bananas"+1; # Gives "5"
print "123" + "456"; # Gives "579"

Special Variables

Perl has a huge number of special variables, and we'll come across a few of them as we continue, but the most
important three are these: $_ is the default scalar for a lot of operations and functions. For instance, print with
no arguments prints the value of $_. This can be really useful, but can also lead to code like this:

Strip comment lines.
while (<>) { print unless /^#/ }

The variable $_ was used three times there; once to get a line from standard input, (the <> or readline
operator, which we'll cover later − but for the moment, remember what it does) once as the argument to print,
and once to test against whether it started with a hash sign. (Again, we'll explain the tricky bit /^#/ when we
come to regular expressions later.). To a seasoned Perl programmer, this sort of code is bread−and−butter, but
it can scare off newcomers. Don't omit $_ in your own code unless your intention is clear.

There's also the @ARGV array, which contains the arguments to your program; Unlike in C, you don't get
argv[0] as the name of your script. (That comes from $0.) Instead, $ARGV[0] is the first argument.

Finally, the %ENV hash allows you to inspect and change environment variables, as you would in shell
programming, like this:

print $ENV{PATH}; # /usr/local/bin:/usr/bin...
print $ENV{EDITOR}; # vi

An Introduction to Perl

599

$ENV{EDITOR} = "emacs"; # change to emacs for the rest of the program.

Operators and Functions

In Perl, the ideas of 'function' and 'operator' aren't very clearly separated; some things you might think of as
functions turn out to be operators, and vice versa. Because of this, we're not really going to make the
distinction here. Let's use 'function' and 'operator' interchangeably.

Numeric Operators

What things can we do to numbers? Well, the first four are pretty guessable: +, −, * and / all do what you
would expect, and can be combined with brackets in the usual way. Rules of precedence are pretty much the
same as in C.

$a = (4*5)+3; # 23
$b = 1/(4+4); # 0.125
$c = 1/4+4; # 4.25

We can also use the remainder operator (also known as the modulus operator) %. However, be sure you're
dealing with positive numbers when you use this; if you have $a % −$b the result is ($a % $b) − $a which
might not be what you expected. There's also the exponentiation operator, **.

$a = 17 % 5; # 17 into 5 goes 3 times remainder 2, so $a = 2
$a = 22 % −7; # 22 into 7 goes 3 times remainder 1, so $a = 1−7 = −6
$a = 2 ** 8; # 2 raised to the 8 is 256

For variables, we can use pre− and post−fix decrement and increment, (although these can operate differently
on strings) as in C.

$a = 5; $b = 7;
$c = ++$a + $b; # $c is 6+7 = 13

Then there are the normal scientific functions: trigonometric sin and cos, sqrt, and log for square roots and
natural logarithms, and so on. The 'perlop' and 'perlfunc' manpages will tell you all about these.

String Operators

One of the most common things we'll do to strings is to concatenate them, and we do this with the dot
operator. Auto−conversion between numbers and strings takes place as normal:

$a = "foo" . "bar" . "baz" ; # Gives us "foobarbaz"
$a = "number " . 1 ; # Gives "number 1"
$a = "1" . "2" ; # Gives "12"

We might also want to repeat a string a given number of times. This is done with the cross, or x operator:

$a = "ba".("na"x4) ; # "banananana"
$a = 1 x 3 ; # 111

The second example gives us a good reason not to confuse x and *.

Another common thing to do to a string is to remove the last character. The chop function removes the last
character, no matter what it might be; chomp is more subtle, and removes the input record separator (usually a

An Introduction to Perl

600

newline) from the end of the string. This is superb when you're reading input in from text files, where you
don't want to blindly assume that the last character you read will be a newline. chop and chomp both return
the new string and change the variable you gave them.

$a="bite me\n";
chomp($a); # $a is now "bite me"
chomp($a); # $a is still "bite me" since there's no newline
chop($a) # $a is now "bite m"

If our strings are explicitly alphabetic, incrementing them works as you might expect − the ASCII value of the
last character is increased, wrapping from 'z' or 'Z' to 'a'. If the strings start with a number, however, Perl will
convert them to a numeral and the rest will be lost.

$a = "abc"; print ++$a; # Returns "abd"
$a = "azz"; print ++$a; # Returns "baa"
$a = "0 Goodbye Cruel World"; print ++$a; # Returns 1

As well as joining strings together, it's also very useful to split them up, which is done with the split function.
You can split on a string or on a regular expression; if you give no arguments, it splits $_ on whitespace; you
can give as an optional first argument, a pattern to split on, and as an optional second argument the text to
split. Note that if you give a string to split on, you must also supply a pattern as the first argument; a common
mistake is to omit the pattern but leave the text.

Split $_ on whitespace
$_ = "one two three";
@a = split; # ("one", "two", "three")
$passwd="simon:x:500:500:Simon Cozens,,,:/home/simon:/bin/zsh";

@passwd= split ":", $passwd; # Split on a string.
Can also write it like this:
@passwd= split /:/ $passwd; # Split on a regular expression.(Same thing)
($uid, $gid) = @passwd[2,3];

More idiomatically:

($uid, $gid) = (split ":", $passwd)[2,3];

The exact opposite − converting a list to a string − can be done with join. Again, you can join things together
with delimiters:

@mylist = ("one", "two", "three", "four");
$mystring = join "?", @mylist; # one?two?three?four

Anyone familiar with BASIC will know what substr does; it returns a substring from inside the string. You
must supply two parameters: the string, and the offset. These two alone will get you everything from the offset
to the end of the string. (A negative offset means 'count back from the end of the string': −1 is the last
character, −2 the last but one, and so on.) Supplying another parameter, the length, will get you a maximum of
that many characters.

$string="the glistening trophies";
print substr($string, 15); # trophies
print substr($string, −3); # ies
print substr($string, −18, 9); # listening
print substr($string, 4, 4); # glis

An Introduction to Perl

601

You can also use substr to modify a string, either by giving it another parameter:

substr($string, 7, 4, "tter"); # Returns "sten"
print $string; # the glittering trophies

(Note that this changes the string and returns what was in its place.) or, the more idiomatic way, by the
assignment:

substr($string, 7, 4) ="tter"; # Functions as lvalues.

Let's quickly run through the final few functions since they're simple enough. length does what you expect:
returns the length of a string. (You can't truncate a string by assigning to its length, though.) reverse returns
the string in reverse. However, reverse is usually a list operation; it treats its parameters as a list, and returns
the list in reverse order. If we feed it a string, though, it treats it as a one element list − which is the same in
reverse order. To get what we expect, we need to force it into scalar operation, with the scalar keyword.

$a="Just Another Perl Hacker";
print length $a; # 24
print reverse $a; # list context − "Just Another Perl Hacker"
print scalar reverse $a; # "rekcaH lreP rehtonA tsuJ"

Finally uc and lc convert to upper and lower case, respectively, and ucfirst and lcfirst convert the first letter of
the string to upper and lower case.

$zippy="YOW!! I am having FUN!!";
print uc($zippy); # YOW!! I AM HAVING FUN!!
print lc($zippy); # yow!! i am having fun!!
print ucfirst(lc($zippy)); # Yow!! i am having fun!!
print lcfirst(uc($zippy)); # yOW!! I AM HAVING FUN!!

Logical and Bitwise Operators

The ordinary bitwise operators &, (and) |, (or) ^ (xor) and ~ (not), as well as the bit shift operators >> and <<
all work on integers as you'd expect from C; You can even use the 0x and 0 prefixes for hexadecimal and
octal numbers.

0xF0 | 0x0F = 255 (0xFF)
0xAA ^ 0x10 = 186 (0xBA)

The logical operators &&, || and ! also work as in C, but you can also use the English "and", "or" and "not".
Because of Perl's short−circuit evaluation, these are often used as control structures:

risky_function()
 and print "Worked fine\n"
or print "Function didn't succeed\n";

Also written as:
risky_function() && print "Worked fine\n"
|| print "Function didn't succeed\n";

You can also use if and unless in the same way:

print "Worked fine\n" if risky_function();
$a="Default value" unless $a;

An Introduction to Perl

602

You can obtain your true or false values either from scalars ("0" and undefined are false values − everything
else is true) or from comparisons, of which there are many. You can compare numbers with the standard <, >,
== (= is assignment; don't confuse the two.) and !=, but for strings you have to use a special set of
comparisons: lt for lexicographically less, gt for greater, eq for equality, and ne for inequality.

Array Operations

We've seen most of the things we can do with scalars; that is, strings and numbers. What about arrays and
lists?

One important thing you'll want to do with an array is to find the number of elements in it; you might think
about using length, but this won't work. Instead, we have to evaluate the array in scalar context, like we did
when reversing strings. Notice, however, that Perl doesn't support "sparse arrays"; the array is assumed to be
filled with elements that are undefined.

@array = ("zero","one","two","three");
print scalar @array; # 4 elements in the array

$array[200] = "two hundred";
print scalar @array; # 201 elements; some of them are empty, though.

Perl also allows us to get at the index of the highest−numbered element. This is usually one less than the
number of elements in the array, as we start counting from zero:

@array = ("zero","one","two","three");
print $#array; # 3

Next, we can take elements off the array. We can either think of it as an array in shell programming and shift
the elements off the front of it, or as a stack, and pop elements off the end.

@array = ("zero","one","two","three");

print shift @array; # zero − array is now ("one","two","three")
print pop @array; # three − array is now ("one","two")
print shift @array; # one − array is now ("two")
print pop @array; # two − array is now ()

Similarly, we can put things back; either with unshift or push. We can put things on several elements at a
time.

@array = ();
push @array, "two"; # array is now ("two")
unshift @array, "one"; # array is now ("one","two")
push @array, "three", "four"; # array is now ("one","two","three","four")
unshift @array, "minus one","zero";
print join ",", @array;
minus one,zero,one,two,three,four

Now we can demonstrate the list use of reverse:

print join ",", reverse @array;
four,three,two,one,zero,minus one

We can sort lists into ASCII order with sort;

An Introduction to Perl

603

@a = ("delta","alpha","charlie","bravo");
@b = sort @a; # ("alpha","bravo","charlie","delta");

You can also pick your own sort order by using the special 'BLOCK' form; Perl sets $a and $b to be the two
values under comparison. In this case, for numerical values, we use the special comparison operator <=>
which returns 1 if the left is bigger than the right, 0 if they are equal, and 1 if the right is bigger than the left.

@a = (5, 8, 3, 0, 1);
@b = sort {$a <=> $b} @a; #(0, 1, 3, 5, 8)

Hash Operations

Finally, we can do various things to hashes. The most magical is the reverse operation, which reverses the
lookup tables:

%phonebook = ("Bob" => "247305",
 "Phil" => "205832",
 "Sara" => "226010");
%index = reverse %phonebook;
print $index{"226010"}; # Sara

You must be careful that you do not end up with two keys with the same value − one will get lost.

You can also extract a list of the keys and the values with the keys and values functions:

@names = keys %phonebook; # ("Bob", "Phil", "Sara")
@numbers = values %phonebook; # ("247305", "205832", "226010")

You can also get key−value pairs with each; every call to each returns a two−element list consisting of a new
key and its value, until there are no more left.

while (($key, $value) = each %phonebook) {
 print "$key\'s phone number is $value\n";
}

Don't be fooled into thinking that the order you put items into a hash is the same as the order you'll get them
out. Perl returns items in a seemingly random order − in fact, you can't guarantee that you'll get the same order
twice.

Regular Expressions

Regular expressions (insiders call them "regexps") are one of Perl's greatest strengths. They allow for
extremely powerful pattern matching and substitution, and are probably the biggest weapon in the Perl
programmer's armory. Those familiar with sed and awk or egrep will know the general principles of regular
expressions; Perl's regular expression engine encompasses and extends the sed model.

First, we'll look at how we use regular expressions to match strings, then we'll see how to substitute with
them.

Matching

The most basic regular expression is just a piece of text we want to find inside a string. We traditionally
enclose regexps in forward slashes, like this: /regexp/, and we "apply" a regexp to a variable or scalar using

An Introduction to Perl

604

the syntax $scalar =~ /regexp/ This functions as an operator which returns true if the match was successful.
(There's also !~ which is like =~ only negated − returns true if the match failed.) So, let's see if our string
contains "jaws":

$sea = "water sand Jaws swimmers";
print "Shark alert!" if $sea =~ /jaws/;

Well, that didn't print anything, because regular expressions are case sensitive by default; we can turn this off
with the modifier 'i' like this:

print "Shark alert!" if $sea =~ /jaws/i;

Next, we can have special characters in our regexp: ^ stands for 'beginning of string' − that is, the expression
we're trying to find must be the first thing in the string. Similarly, $ represents the end of the string; It should,
for obvious reasons, come at the end of the regexp. If we tell you that /regexp/ on its own tests the $_ variable,
we're now in a position to explain the confusing code we used to warn against implicit use of $_ a few pages
ago:

Strip lines starting with a hash
while (<>) { print unless /^#/ }

To write it explicitly:

Strip lines starting with a hash.
while ($_ = <>) { print $_ unless $_ =~ /^#/ }

In other words, while $_ is true (i.e. contains something) after being set to the next line of standard input, we
print the line unless the line starts with a hash sign.

Now we come up against the quantifiers: ? matches a character 0 or 1 times, that is, it states that the character
it follows is optional in the match. * matches 0 or more times, just like in the shell. (However, be careful with
that one: /q*/ will always match, even if there are no "q"s in the string; it matched 0 times.) A + will match at
least once. Here are some examples of quantifiers:

/shoo?t/ matches "shot" or "shoot".

/sho+t/ matches "shot" or "shoot" or "shooot" and so on but not "sht".

/sho*t/ matches "sht", "shot", "shoot" and so on.
The next set of special characters match different types of character: As well as all our usual metacharacters, \t
for tab, \n for newline and so on, \s matches anything that looks like whitespace, \w matches a "word"
(alphanumeric or "_") character, and \d matches a digit. These can be negated by capitalizing them: \S is a
non−space, \W is a non−word, and \D is a non−digit. Furthermore, . matches anything at all. So:

/push\s*chair/ matches "push" then zero or more spaces or tabs, then "chair".

/number\s*\d+\s/ matches "number" then some optional whitespace, then one or more digits
followed by a space.

/^e.*d$/ matches an "e" at the beginning of the line, then anything at all, and a "d" at the
end of the line.

/\S/ matches a line that contains something other than just spaces.

/\sPerl\s/ matches the string "Perl" surrounded by space.

An Introduction to Perl

605

The last example is almost always better written as /\bPerl\b/ − the 'word boundary' metacharacter matches
non−word characters (allowing spaces, punctuation and so on) and the beginning or end of the string. Hence,
/\b\w+\b/ matches a 'word'.

What if we want to know what was matched? Well, if we place brackets around the part of the regular
expression we're interested in, Perl will save it away for us. Just like sed, Perl will put the first bracketed
expression into a variable caled $1, the next into $2 and so on. From this we can get an insight into how the
matching process works:

$test = "he said she said";
$test =~ /\b(\w+)\b/; # $1 is set to "he"
$test =~ /(sa.*d)/; # $1 is set to "said she said"

From the first example, Perl returns the first match it finds from the left, always. (This is called ''eagerness''.)
From the second, Perl keeps matching from the first match it finds for as long as it can; it returns the first
match it finds and seeks to make that as big a match as possible. (This is called ''greed''.) You can turn off
greed by adding a ? onto the quantifier − /(sa.*?d)/ would have just matched "said". Helpfully, Perl also
returns all the bracketed matches as a list if we're looking for a list:

$test = "he said she said";
@matches = $test =~ /\s*(\w+)\s*(\w+)\s*(\w+)\s*(\w+)/;
@matches is ("he", "said", "she", "said");
(Now you can see that split() actually splits on /\b/)

(Of course, this gets tedious for large operations; we'll see another way of doing this later.)

We can also use brackets to give options: /(boy|girl)/ matches if the string contains either "boy" or "girl". If
you don't want this match to populate a special variable, write it like this: (?:boy|girl).

Finally, in this brief tour of regular expressions, we can define character classes − these are delimited by
square brackets. For instance, [a−z] matches all lowercase letters, and [aeiou] matches lowercase vowels. You
can put metacharacters inside character classes, and you can also negate character classes by placing a ^ at the
beginning of the class: [^a−zA−Z] matches anything that is not a letter.

As you might expect, if you want to match any of these characters themselves, like ?, ., (, / and so on, they
must be escaped with a backslash. /\.\s*\((.*?)\)/ matches a full stop, then zero or more spaces, then an open
bracket, then copies text into a variable (we call these 'backreferences' for reasons which will very soon
become apparent) until it comes to the next close bracket.

Substitution

After matching a string, we might want to substitute the match with some other text. This is done with the
syntax: s/regexp/replacement/.

$test = "he said she said";
$test =~ s/said/did/; # Gives "he did she said"

As you can see, this finds the first match, replaces it, and then stops. Well, there's another modifier, "g", which
applies the search−and−replace globally. (This goes for sed and even vi and ed too.)

$test = "he said she said";
$test =~ s/said/did/g; # Gives "he did she did"

An Introduction to Perl

606

You can use the "g" modifier in matches too, like this:

$test= "123 456 7 890";
@array = $test =~ /\b(\d+)\b/g; # (123, 456, 7, 890)

Of course, in the replacement text part of the substitution, match meta−characters don't have special meaning.
You can't replace a match with 'any digit' or '0 or more "t"s', for instance. Replacement texts work like
double−quoted strings, with variable substitution and so on. (Actually, so do regexps − you can put
'sub−regexps' in variables to make the expression tidier.) The really nice part about this is that the
backreference variables, $1, $2 and so on, are available here:

$test = "Swap this and that.";
$test =~ s/Swap (.*) and (.*)\./Swap $2 and $1./;
print $test; # "Swap that and this."

As a final example of regular expressions, let's extend our comment−stripper to remove comments in the
middle of lines:

Strip comments, version two.
while (<>) { s/#.*// ; print if /\S/ }

What does this do? Well, again we're bringing in a line and storing it in $_. Next, we replace a hash mark and
everything that follows it with nothing at all. Then, if we've got anything left − that is, if there are is a
non−blank character in there − we print the line. (Don't actually use this to remove comments from your Perl
programs; firstly, it will remove half of any line which uses the $#array syntax or hash signs in strings or
regexps, and, secondly, it's almost always better to leave the comments in.)

There are many, many more things you can do with regular expression matching, but this brief overview
provides most of the common uses. Type perldoc perlre at the shell prompt to read the full documentation
about matching.

Control Structures and Subroutines

We've seen, in passing, a few of the Perl control structures; while, the inline use of if and unless, and so the
rest should be pretty easy:

Tests

Perl has, of course, a C−like if−elsif−else statement; the only difference is that you must wrap blocks in
braces. That is, you can't say this:

if (/y(?:es)?/i)
 $answer = 1;
else
 $answer = 0;

Rather, you have to say

if (/y(?:es)?/i) {
 $answer = 1;
} else {
 $answer = 0
}

An Introduction to Perl

607

(Of course, in reality, you wouldn't write that anyway; you'd write something like $answer = /y(?:es)/i;
instead.) Perl also allows you to use unless as the negative of if if it makes your code clearer.

Loops

We've seen a while loop, and you might have been able to guess that an until loop is available for the negative
of while. There are also two types of for loop − the standard C one:

for ($i=0;$i<10;$i++) { print "Counter: $i\n";}

There's also the foreach loop, which iterates over a list, setting either $_ or a variable, if one is given, to each
element in turn. You can say either foreach or for to get foreach loops.

for $i (0..9) { print "Counter: $i\n"; } # As above.

foreach (@array) { print $_."\n"; } # Print each element of an array.

The interesting part is the way you can control loop flow: a next statement, like a continue in C, will
immediately jump to the next iteration of a while−like or for−like loop. Here's another comment (and blank
line) stripper:

while (<>) { next if /^#/; next unless /\S/; print }

last, on the other hand, finishes a loop altogether like C's break:

Get the Subject of an email, then give up:
while (<>) {
 last if ($subj)=/^Subject: (.*)/;
}
print "Subject was $subj\n";

The little−used redo statement goes to the top of the loop again, without testing the conditional. This is useful
if the input changes under your feet:

while (<>) {
 if (/\\\s*$/) { # Line ends with a backslash − continuation
 $_.=<>;
 redo;
 }
 ...
}

One thing you may miss, though, is the C switch (in other languages, case) statement. This is a common
concern, and there are many ways to address it; the perlsyn and perlfaq7 documentation discuss some
solutions.

Statement Modifiers

As well as the ordinary C−style syntax for control structures, we can also apply a control structure to a single
statement by means of a "statement modifier", or what I call an "inline" control structure. We've seen if and
unless used in this way:

print "Operation successful" if all_ok();

$logfile = "output.log" unless $nologging;

An Introduction to Perl

608

You may also use while, until, and for as statement modifiers:

$input .= $_ while <>; # One (bad) way of concatenating a file

$cowscomehome=0;
main_loop() until $cowscomehome;

 print chr for (74, 117, 115, 116, 32, 65, 110, 111, 116, 104, 101,
 114, 32, 80, 101, 114, 108,32, 72, 97, 99, 107, 101, 114,);

Not many people use for like that, though.

Subroutines

We don't make a distinction between functions and subroutines in Perl; you can return a value from them if
you want. Simple subroutines are declared like this:

sub greeting {
 print "Hello, world\n";
}

You can then use greeting(); (or just greeting; if you know that Perl isn't going to try to interpret this as a
string) to call the subroutine. Parameter passing is done through the @_ array:

sub action {
 ($one, $two, $three) = @_;
 warn "Not enough parameters!"
 unless $one and $two and $three;
 print "The $one $two on the $three\n";
}

action("cat", "sat", "mat");

The warn function prints out an error message but allows your program to continue; there is also a die
function which prints out an error message and stops the program immediately.

Since @_ is the default variable for array operations, as $_ is the default for scalars, it's traditional to use shift
to get parameters:

sub greeting2 {
 $name = shift;
 print "Hello, $name\n";
}

greeting2("Robert");
greeting2("world");

You can return values using, predictably, the return function; you may return a scalar or a list − the wantarray
function tells you what context the caller is expecting.

Sub mysub {
 # Do some stuff
 return unless defined wantarray; # void context, go home early
 if (wantarray) { # Want an array
 return @results;
 } else { # Just want a scalar

An Introduction to Perl

609

 return $summary
 }
 # Can't get here
}

Because of the way Perl scoping takes place, variables are usually 'global' − changes you make in subroutines
affect the caller. If you want private variables, use the my function. Lexically scoped variables (often
abbreviated to lexical variables in the Perl documentation) are declared with my, and cannot even be seen in
subroutines called from the current one; they are truly private. If you want to scope something for the current
subroutine and below, use dynamic global variables.

$myvar = "outside";
sub a { $myvar = "changed by a"; }
a();
print $myvar; # "changed by a";
$myvar = "outside";
sub b { my $myvar = "changed by b";
 print "In b: $myvar";
}
b(); # "In b: changed by b"
print $myvar; # "outside"

File Input and Output

So far the only file input and output we've seen has been grabbing a line at a time from standard input. While
this is fine for writing filters, perhaps, real applications need the ability to read from and write to other files as
well.

File access in Perl is usually done through filehandles. When we said there were three variable types, we
weren't exactly telling the truth; a filehandle is a very special type of variable. When the program starts, as
you'd expect, there are three filehandles open: standard input, STDIN, standard output, STDOUT, and
standard error, STDERR. We can write to these filehandles using a special form of print; indeed, 'print list' is
just shorthand for 'print STDOUT list'

if ($statusok) {
 print STDOUT "Processed successfully.\n";
} else {
 print STDERR "An error occurred...\n";
}

Look carefully at that; there is no comma between the filehandle and the text to be output; the filehandle is not
part of the list. There are two separate syntaxes to print, one with a filehandle and one without. It's very, very
important not to confuse the two.

Now, we've also seen that we can read in a line from standard input, using <> − this is in turn a shorthand for
<STDIN>. What about files from the filesystem, then? We can create a filehandle with the open function; just
as in C, we give a filehandle and the filename, and state whether we're opening it for input or output.
However, instead of assigning a mode number, we use shell−style syntax: "filename" (or "<filename") to read
from the file, ">filename" to truncate or create the file and write to it, ">>filename" to append to the file, and
so on. (You can even open to and from pipes!)

Here we read from a file, noting errors in a log file:

open LOG, ">error.log"

An Introduction to Perl

610

 or die "Can't write on error.log: $!";
$! tells you why not.
print LOG "Error logging started.\n";
open INPUT, $inputfile;
while (<INPUT>) {
 next unless /\S/; # Skip blank lines.
 next if /^#/; # You know what this does.
 chomp;
 if (fictitious_error_generator($_)) {
 print LOG "Error processing $_\n";
 }
 do_something_with($_);
}
close LOG;
close INPUT;

Perl will close filehandles for you at the end of the program, but we close them here with the close function,
just to be polite.

system()/``

Before we finish our tour of Perl, let's have a look at interacting with the system − that is, running external
commands. There are two ways to do this: firstly system() which works in exactly the same way as the C
construct, and backquotes (``) which work in the same way as the shell construct, apart from the way it
handles newlines, keeping both sets of programmers happy.

There are, of course, significant differences between the two methods; system() suspends the running program
and allows user interaction, but does not return the program's STDOUT; backquotes return the program's
STDOUT and don't show it on the screen, so in interactive programs, the user may not be able to see any
prompts. system() allows you to get at the return value of the executed program (divide the return value of
system() by 256 or examine $?) whereas backquotes do not.

Basically, if you just want to run a program, use system() − if you want to know what it returned, use
backquotes. Both of them use the shell to process the command line arguments, pipes, redirection and so on −
with system() you can turn this facility off by splitting the call up into a list, rather than giving one parameter.

There is a temptation amongst some programmers − particularly those coming from shell scripting − to shell
out for nearly everything. On the other hand, there are those who only shell out when absolutely necessary.
Use whichever method keeps your code both tidy and efficient.

system("clear"); # Easiest way to clear screen.

$status = system("sendmail −q"); # Flush mail queue
To avoid shell processing, use
$status = system("sendmail","−q");
print STDERR "Something funny happened to sendmail: $?"
 unless $status==0;

$mail= `frm`;
if ($mail !~ /^You have no mail\./) {
 print "You have new mail:\n";
 print $mail;
 # $mail will contain newlines, so we don't need them.
}

An Introduction to Perl

611

A Full Example

Now we've got everything we need to write real, working Perl programs, let's see how we'd implement the
shell version of the CD database. This is pretty much a straightforward translation of the shell script, with
only one or two perl−like features. This also means we don't tidy up some of the less desirable features of that
script − there's still the limitation that you can't have commas in track names, for instance. We'll see a full
re−implementation of the database utility at the end of the chapter. In the meantime, you might want to
compare this program with the one in chapter two line−by−line.

One thing we do change, however, is, instead of manipulating the data inside files, we'll read the files into
arrays at the beginning of the program, and write them out again at the end. This avoids all that troublesome
messing around with temporary files. (And gets over the Perl problem that we can't easily write to and read
from a file at the same time.)

First, as in the shell script, we tell the kernel this is a Perl script, and we follow with our copyright
notice:

#! /usr/bin/perl −w

Perl translation of chapter 2's shell CD database
Copyright (C) 1999 Wrox Press.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111−#1307 USA

1.

Now the global variables as before. Notice the last line: we're setting the signal handler for an
interrupt (Ctrl−C on the keyboard) to be a reference to a subroutine; we create what's called an
'anonymous subroutine reference' by putting what we want to achieve inside 'sub { }' and taking the
return value. This subroutine reference calls the subroutine tidy_up to dump out the track and title
arrays to files, and then exits. The tidy_up subroutine writes out the files in a similar way to the way
we read them in. The only troublesome bit is the new−line processing; the files should have
new−lines to separate records, but the array elements need not have new−lines in them. So, we chomp
new−lines on the way in, and add them again on the way out.

$menu_choice="";
$title_file="title.cdb";
$tracks_file="tracks.cdb";
$temp_file="/tmp/cdb.$$";
$SIG{INT} = sub { tidy_up(); exit; } ;

sub read_in {
open TITLES, $title_file or die "Couldn't open $title_file : $!\n";
while (<TITLES>) { chomp; push @titles, $_ };
close TITLES;

open TRACKS, $tracks_file or die "Couldn't open $tracks_file : $!\n";

2.

 A Full Example

612

while (<TRACKS>) { chomp; push @tracks, $_ };
close TRACKS;
}

sub tidy_up {
Die aborts with an error, and $! is the error message from open()
open TITLES, ">".$title_file or die "Couldn't write to $title_file : $!\n";
foreach (@titles) { print TITLES "$_\n"; }
close TITLES;

open TRACKS, ">".$tracks_file or die "Couldn't open $tracks_file : $!\n";
foreach (@tracks) { print TRACKS "$_\n"; }
close TRACKS;
}

Now our two little functions for getting keyboard input:

sub get_return {
 print "Press return ";
 <> # Get a line from STDIN, and ignore it.
}

sub get_confirm {
 print "Are you sure? ";
 while (1) {
 $_ = <>; # Get a reply into $_
 return 1 if (/^y(?:es)?$/i); # 1 is true, not 0
 if (/^no?$/i) {
 print "Cancelled!\n";
 return 0;
 }
 print "Please enter yes or no.\n";
 }
}

3.

Now we display the main menu, and get a choice from the user. The <<EOF syntax is called a
here−document and prints until it finds the word EOF or whatever delimiter string you choose.

sub set_menu_choice {
 print `clear`; # Shelling out to clear screen. Yuck.

 print <<EOF;
 a) Add new CD
 f) Find CD
 c) Count the CDs and tracks in the catalog
EOF

 if ($cdcatnum) {
 print " l) List tracks on $cdtitle\n";
 print " r) Remove $cdtitle\n";
 print " u) Update track information for $cdtitle\n";
 }

 print " q) Quit\n\n";
 print "Please enter choice then press return\n";
 chomp($menu_choice=<>);
 return
}

4.

Then the one−liners as before to add new records to the arrays, and the subroutine to add track
information.

sub insert_title {

5.

 A Full Example

613

 push @titles, (join "," , @_);
}

sub insert_track {
 push @tracks, (join "," , @_);
}

sub add_record_tracks {
 print "Enter track information for this CD\n";
 print "When no more tracks enter q\n";
 $cdtrack=1;
 $cdttitle="";
 while ($cdttitle ne "q") {
 print "Track $cdtrack, track title? ";
 chomp($cdttitle=<>);
 if ($cdttitle =~ /,/) {
 print "Sorry, no commas allowed.\n";
 redo;
 }
 if ($cdttitle and $cdttitle ne "q") {
 insert_track($cdcatnum,$cdtrack,$cdttitle);
 $cdtrack++;
 }
 }
}

Now we implement the add_records to add the record of a new CD to the database.

sub add_records {
 print "Enter catalog name ";
 chomp($cdcatnum=<>);
 $cdcatnum=~ s/,.*//; # Drop everything after a comma.

 print "Enter title ";
 chomp($cdtitle=<>);
 $cdtitle =~ s/,.*//;

 print "Enter type ";
 chomp($cdtype=<>);
 $cdtype =~ s/,.*//;

 print "Enter artist/composer ";
 chomp($cdac=<>);
 $cdac =~ s/,.*//;

 print "About to add a new entry\n";
 print "$cdcatnum $cdtitle $cdtype $cdac\n";

 if (get_confirm()) {
 insert_title($cdcatnum,$cdtitle,$cdtype,$cdac);
 add_record_tracks();
 } else {
 remove_records();
 }
}

6.

Since we've got an array of lines, finding the CD is very simple; we could iterate through the array
and pick out the matches. However, it's easier to use Perl's grep function which was intended for this
very purpose.

sub find_cd {
 # $asklist is true if the first member of @_

7.

 A Full Example

614

 # (That is, the first parameter) is not "n"
 $asklist = ($_[0] ne "n");

 $cdcatnum="";
 print "Enter a string to search for in the CD titles ";
 chomp($searchstr=<>);
 return 0 unless $searchstr;

 # The \Q and \E metacharacters stop other metacharacters
 # from working, so question marks, asterisks and so on
 # in titles aren't dangerous.

 @matches = grep /\Q$searchstr\E/, @titles;
 if (scalar @matches == 0) {
 print "Sorry, nothing found.\n";
 get_return();
 return 0;
 } elsif (scalar @matches != 1) {
 print "Sorry, not unique.\n";
 print "Found the following:\n";
 foreach (@matches)
 print "$_\n";
 }
 get_return();
 return 0;
}
($cdcatnum,$cdtitle,$cdtype,$cdac) =
 split "," , $matches[0];
unless ($cdcatnum) {
 print "Sorry, could not extract catalog field\n";
 get_return();
 return 0;
}
print "\nCatalog number: $cdcatnum\n";
print "Title: $cdtitle\n";
print "Type: $cdtype\n";
print "Artist/Composer: $cdac\n\n";
get_return();
if ($asklist) {
 print "View tracks for this CD? ";
 $_ = <>;
 if (/^y(?:es)?$/i) {
 print "\n";
 list_tracks();
 print "\n";
 }
}
return 1;
}

update_cd is nice and easy to implement, apart from the bit where we delete the old tracks from the
array. We'll do this using another grep, but this time, we can negate the regular expression using
!/regexp/.

sub update_cd {
 unless ($cdcatnum) {
 print "You must select a CD first\n";
 find_cd("n");
 }
 if ($cdcatnum) {
 print "Current tracks are :−\n";

8.

 A Full Example

615

 list_tracks();
 print "\nThis will re−enter the tracks for $cdtitle\n";
 if (get_confirm()) {
 @tracks = grep !/^$cdcatnum,/, @tracks;
 add_record_tracks();
 }
 }
}

Since it's all stored in arrays, counting the contents of the database is trivial.

sub count_cds {
 print "Found ".(scalar @titles)." CDs, ";
 print "with a total of ".(scalar @tracks)." tracks.\n";
 get_return();
}

9.

We've seen how to use grep with a negated regexp to remove entries from an array; let's do this again:

sub remove_records {
 unless ($cdcatnum) {
 print "You must select a CD first\n";
 find_cd("n");
 }

 if ($cdcatnum) {
 print "You are about to delete $cdtitle\n";
 if (get_confirm()) {
 @titles = grep !/^$cdcatnum,/, @titles;
 @tracks = grep !/^$cdcatnum,/, @tracks;
 @cdcatnum="";
 print "Entry removed";
 }
 get_return();
 }
}

10.

list_tracks requires a pager, so we need to write out a temporary file and shell out.

sub list_tracks {
 unless ($cdcatnum) {
 print "No CD selected yet.\n";
 return
 }
 open(TEMP, ">$temp_file")
 or die "Can't write to $temp_file: $!\n";
 @temp = grep /^$cdcatnum,/ , @tracks;
 if (scalar @temp == 0) {
 print "No tracks found for $cdtitle\n";
 } else {
 print TEMP "\n$cdtitle :−\n\n";
 foreach (@temp) {
 s/^.*?,//; # Remove the first field
 print TEMP $_."\n";
 }
 close TEMP;
 system("more $temp_file");
 unlink($temp_file); # Delete it.
 }
 get_return();
}

11.

Now the main routine; we must remember to write out the arrays before exiting. We also make sure12.

 A Full Example

616

the files exist before reading from them, by creating them. Of course, we needn't have done it this way
− the alternative is not to complain if the files do not exist, the arrays would be empty, and the files
would be created when we leave.

File tests work like shell
system("touch $title_file") unless (−f $title_file);
system("touch $tracks_file") unless (−f $tracks_file);

read_in();

system("clear");
print "\n\nMini CD manager\n";
sleep(3);
while (1) {
 set_menu_choice();
 if ($menu_choice =~ /a/i) { add_records(); }
 elsif ($menu_choice =~ /r/i) { remove_records(); }
 elsif ($menu_choice =~ /f/i) { find_cd("y"); }
 elsif ($menu_choice =~ /u/i) { update_cd(); }
 elsif ($menu_choice =~ /c/i) { count_cds(); }
 elsif ($menu_choice =~ /l/i) { list_tracks(); }
 elsif ($menu_choice =~ /b/i) {
 print "\n";
 foreach (@titles) {
 print "$_\n";
 }
 print "\n";
 get_return();
 }
 elsif ($menu_choice =~ /q/i) { last; }
 else { print "Sorry, choice not recognized.\n"; }
}

tidy_up();
exit;

Perl on the Command Line

Now we've seen a full−blown Perl program, what about the little everyday uses of Perl? Well, like sed and
awk, it's perfectly possible to use Perl as a filter for housekeeping tasks. Indeed, Perl provides quite a useful
set of command line options to help us do this. Like we did with w right at the beginning of the chapter, we
can also put these on the #! line in our scripts.

The first option is −e; like sed and awk, this allows us to run a one line Perl script:

$ perl −e 'print "Hello, world\n";'
Hello, world
$

Similarly, we can provide Perl with a filename that it should take as standard input; we could rewrite our
familiar comment−killer like this:

$ perl −e 'while(<>) { print unless /^#/ }' myfile

which would print out myfile without all the comment lines. However, looping through each line in a file is
such a common operation that Perl provides a special syntax for it: −n

 Perl on the Command Line

617

$ perl −n −e 'print unless /^#/' myfile

We could even do without the print − the −p flag acts as the following code:

while (<>) {
 ...
 print or die "−p destination: $!\n";
}

This is very useful for search−and−replace regular expressions: a line like perl −p −e 's/foo/bar/g' file will
print out the file with every occurrence of "foo" changed to "bar". Now, let's go one further; let's say we do
want to change, for instance, all references to "August" into "September" in a file. We'd normally have to
collect the output into a temporary file, and then use mv to replace the old file with the temporary one. Not so
in Perl. Perl supports the modification of files 'in place', using the −i option: perl p −i −e
's/August/September/g' myfile is equivalent to this, in shell:

$ sed 's/August/September/g' myfile > tmpfile;
$ mv tmpfile myfile;

Want to take a backup of the original file? No problem! Just add a suffix to −i, like this: perl −p

−i.bak −e 's/August/September/g' myfile changes the file, and saves a backup to myfile.bak. This is the way to
build up very powerful filters and file editors with ease.

So, what other command−line magic can we achieve? We've seen −w to turn on additional warnings for your
script. There's also −c to check the syntax of your program without running it, and −d, the debugger − a very
powerful tool for tracking down problems with your scripts. Finally, how about this: tired of adding "\n" to all
your print statements, and chomping your input? Turn on automatic line processing, with −l. This will
automatically chomp anything coming into the script via the readline operator, and also adds \n to anything
going out via print statements. Combine with −p −e for hours of fun!

Modules

If you're writing serious Perl programs, you will come to realize that a lot of the code you write has probably
been written before; things like network programming, manipulating text or HTML, processing command line
options, storing data in files, and so on. There may also be things you don't feel you can do within Perl, and
need a C extension for.

Perl modules are the answer in both these situations: they provide for reusability of code, like libraries in C,
and also allow interfacing with other languages. We won't go into a great deal of detail here about how to use
modules or build your own modules, but try and give you a flavor of some of the things you can do with them.

CPAN

The main repository for Perl modules is called CPAN, the Comprehensive Perl Archive Network. As the
name suggests, it's a set of mirrored archives for pretty much every Perl module you could think of. The entry
point for CPAN is at http://www.cpan.org/ or at http://www.perl.com/CPAN/; these should direct you to your
nearest mirror site. You can also download documentation, tutorials and the latest sources of Perl from CPAN,
but what you'll want from it most often are the modules; look in the /modules/by−category subdirectory of
your local mirror for a sorted list of modules, or the file CPAN.html in the main directory for descriptions of
all the CPAN modules

 Modules

618

Installing a Module

Having downloaded a module from CPAN, you can install it into your system as follows. We'll take the
Net::Telnet module as an example. Assuming we've downloaded Net−Telnet−3.01.tar.gz from CPAN:

$ tar zxf Net−Telnet−3.01.tar.gz
$ cd Net−Telnet−3.01
$ perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for Net::Telnet
$ make install

The last step may need certain privileges to write to the Perl directories.

There is another way to install modules. The CPAN module by Andreas König which comes with your Perl
distribution will guide you through installing them. Simply type:

$ perl MCPAN e shell

and follow the instructions. This can also be used for installing 'bundles' of modules, like libwww, which have
many dependencies.

Documentation (perldoc)

All modules (including modules bundled with Perl, and the Perl language itself) should come with full
documentation. This documentation is written in the POD (Plain Old Documentation) syntax, and can be read
with the command perldoc. To read the documentation for the Net::Telnet module above, just type:

$ perldoc Net::Telnet

To find out more about the Perl language, start from perldoc perl and, if you're patient enough, work through
all the pages that it points you to. perldoc also provides two very useful options: −q keyword will search
through the extensive Perl FAQ for the specified keyword. For instance, perldoc −q Y2K will tell you about
'Year 2000 bug' compliance...etc. −f function brings up the section of the perlfunc page relating to the function
in question. Try, for instance, perldoc f unshift.

Networking

Right, let's see how these modules can actually help us. You'll need to download the relevant set of modules
from CPAN.

LWP

The LWP (libwww−perl) is a suite of modules that cover web server and client operations. Let's assume we've
got the whole bundle installed. We can now use the module LWP::Simple for simple operations. Let's get the
HTML version of the day's news:

use LWP::Simple;
$news = get "http://news.bbc.co.uk/text_only.htm";

Now we can extract all the links from it, using the HTML::LinkExtor module found in the HTML−Parser
library:

Modules

619

use HTML::LinkExtor;
$p = HTML::LinkExtor−>new();
$p−>parse($news);
@links = $p−>links; # Array of all the links in the file

OK, maybe this isn't that clear to you, because we haven't introduced object orientated programming −
however, just like C libraries, Perl modules can seriously simplify programming.

IO::Socket

Now, how about socket networking? Remember the C program to connect to a time server and get the time?
Here's how we'd do it in Perl. The socket library, IO::Socket, is a standard module that should have come with
your Perl distribution.

use IO::Socket;
$host = "localhost" unless ($host = shift);
$socket = IO::Socket::INET−>new(
 PeerAddr => $host,
 PeerPort => "daytime")
or die "Couldn't connect to $host: $@";
$time = <$socket>; # Sockets act like filehandles.
print $time;

Of course, we could do it all with Perl's built in socket functions (socket, connect, gethostbyname and so on)
but this way is a lot neater. Let the modules do the work.

Net modules

If you're using Perl to automate system tasks, you might find the Net:: series of modules useful. The
Net::Telnet module we installed earlier provides access to a telnet session, including automating connecting,
logging in and executing commands; similarly, Net::FTP (from the libnet bundle) allows for FTP sessions to
be done automatically. Here's how we'd get the MD5 module from CPAN:

use Net::FTP;
$ftp = Net::FTP−>new("ftp.cpan.org") or die "Couldn't connect: $@\n";
$ftp−>login("anonymous");
$ftp−>cwd("/pub/modules/by−name/MD5/");
$ftp−>get("MD5−1.7.tar.gz");
$ftp−>quit();

There's also Net::NNTP (libnet) for news reading and posting, Net::DNS (Net−DNS) for DNS querying,
Net::POP3 (libnet) for fetching mail, Net::Ping, Net::Whois (Net−Whois), Net::IRC (Net−IRC) ...

Databases

There are a number of ways we can store and retrieve data in Perl; we've seen how to deal with flat−file
databases. A more common method is the DBM system we saw in chapter 7. We can access DBMs by tying
them to hashes. This means that the data in the hash will be linked to the data on the disk. We use the standard
AnyDBM_File module as our interface to the GDBM libraries. (Note that AnyDBM_File can in fact access a
number of DBM packages.)

use AnyDBM_File;
tie %database, "AnyDBM_File", "data.db";
We can now use %database as a normal hash; any adding, deleting or
modifying of keys will be reflected in the data file.

Modules

620

untie %database;

There are a number of similar modules to tie data structures to files. For instance, DB_File ties an array to a
text file using the Berkeley DB library− in our CD database example, we could have used this instead of
reading in and writing out the data files at the beginning and end of the program. MLDBM (Multi−level
DBM) is a module used for storing complex data structures in a DBM, and we'll use this to implement our
final version of the CD database.

Finally, using the DBI interface, one can store data in relational databases like MySQL, PostgreSQL, Oracle
and Informix, and execute SQL queries and statements. The relevant modules are DBI, for the interface and
DBD::[Oracle,mysql...] for the drivers for the individual databases.

The CD Database Revisited

Now we've seen what Perl can do, let's have a look at the CD database program as it would be written by a
Perl native. There will be a few concepts in here (references and nested data structures for instance) that we
haven't covered, but that's OK; don't worry too much if you don't understand everything here, you're not
meant to − the idea is just to give you an impression of a 'real' Perl program.

First, we start with the comments as before:

#! /usr/bin/perl −w

Perl translation of chapter 2's shell CD database
Copyright (C) 1999 Wrox Press.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111−#1307 USA

1.

We'll place the whole of the program here, and flesh out the functions later:

use MLDBM qw(AnyDBM_File);
my $record;
tie(%tmp, "MLDBM", "cddb.db")
or die "Couldn't tie DB.\n"; # Scary complex hash contains the whole DB.
%database = %tmp; # Overcome a limitation in MLDBM. *sigh*

Tidy up nicely
$SIG{INT} = sub { %tmp = %database; untie %tmp } ;
system("clear");
print "\n\nCD Database Manager\n\n";
while (1) {
 my $menu_choice = main_menu($record);
 if ($menu_choice eq "a") { $record = add_cd(); }
 elsif ($menu_choice eq "r") { remove_cd($record); undef $record; }

2.

 The CD Database Revisited

621

 elsif ($menu_choice eq "f") { $record = find_cd("y"); }
 elsif ($menu_choice eq "u") { update_cd($record); }
 elsif ($menu_choice eq "c") { count_cds(); }
 elsif ($menu_choice eq "l") { list_tracks($record); }
 elsif ($menu_choice =~ /q/i) { last; }
 else {
 print "Can't get here.\n";
 }
}

%tmp=%database;
untie %tmp;

Now we display the main menu and validate the choice:

sub main_menu {
 my $record = shift;
 my $choice;
 my $title = $database{$record}−>{title} if $record;
 print <<EOF;

 Options :

 a) Add new CD
 f) Find CD
 c) Count CDs and tracks in the catalogue
 EOF
 if ($record) {
 print " l) List tracks on $title\n";
 print " r) Remove $title\n";
 print " u) Update entry for $title\n";
 }
 print " q) Quit\n";
 print "Your choice: ";
 while (1) {
 $choice=lc(<>);
 substr($choice,1)="";
 # Now, we see if the choice is contained in the string of
 # acceptable options, (Which includes l, r and u if we've
 # selecetd a record.) by using it as a regexp. Looks weird?
 return $choice if ("afcq".($record?"lru":"") =~ /$choice/);

 # If not, that's invalid
 print "Invalid choice.\nTry again: ";
 }
}

3.

Let's tackle adding records to the database next. The database is actually quite a complicated hash; the
keys are the catalog numbers, and the values are each themselves hashes. These hashes have keys
"title", "type", "artist", and "tracks". That's why we used the funky−looking
$database{$record}−>{title} above − $database{$record} is a hash. (It's actually a reference to a
hash; C programmers can think of them as pointers. For more about reference, look at the perlref
documentation.) The −>{title} syntax looks inside the hash reference and gets the value of the "title"
key. The value of "tracks" is, of course, a reference to an array of tracks. Arrays inside hashes inside
hashes; it takes a little getting used to.

sub add_cd {
 while(1) {
 print "Enter catalog number: ";
 chomp($record=<>);
 if (exists $database{$record}) {

4.

 The CD Database Revisited

622

 print "Already exists. ";
 print "Please enter a different number.\n";
 } else {
 last;
 }
 }

 print "Enter title: ";
 chomp($title=<>);

 print "Enter type: ";
 chomp($type=<>);
 print "Enter artist/composer: ";
 chomp($artist=<>);

 $database{$record}= {
 "title" => $title,
 "type" => $type,
 "artist" => $artist
 };

 add_tracks($record);
 return $record; # Tell the main menu the new record number.
}

Now the subroutine to add the tracks; this is where we bring out the array reference.

sub add_tracks {
 my $record = shift;
 print "Enter track information for this CD\n";
 print "Enter a blank line to finish.\n\n";
 my $counter=0; my @tracks;
 while (1) {
 print ++$counter.": ";
 chomp($track=<>);
 if ($track) {
 # @{...} means "interpret as an array"
 push @{$database{$record}−>{tracks}}, $track;
 } else {
 last;
 }
 }
}

5.

The code to find a CD is a bit complicated, since we need to look through all the values of
$database{$record}−>{title} for each value of $record in the hash. grep to the rescue again...

sub find_cd {
 $view = ($_[0] eq "y");

 print "Enter a string to search for: ";
 chomp($search=<>);

 # For each key, (record) add the key to the @found array if the
 # title field of that record contains the search string.
 @matches = grep {$database{$_}−>{title} =~/\Q$search\E/ }
 keys %database;
 if (scalar @matches == 0) {
 print "Sorry, nothing found.\n";
 return;
 } elsif (scalar @matches != 1) {
 print "Sorry, not unique.\n";

6.

 The CD Database Revisited

623

 print "Found the following:\n";
 foreach (@matches) {
 print $database{$_}−>{title}."\n";
 }
 return;
 }
 $record=$matches[0];
 print "\n\nCatalog number: ".$record."\n";
 print "Title: ".$database{$record}−>{title}."\n";
 print "Type: ".$database{$record}−>{type}."\n";
 print "Artist/Composer: ".$database{$record}−>{artist}."\n\n";

 if ($view) {
 print "Do you want to view tracks? ";
 $_ = <>;
 if (/^y(?:es)?$/i) {
 print "\n";
 list_tracks($record);
 print "\n";
 }
 }
 return $record;
}

Once we've got this far, listing the tracks isn't difficult!

sub list_tracks {
 my $record = shift;
 foreach (@{$database{$record}−>{tracks}}) {
 print $_."\n";
 }
}

7.

Updating a CD just means removing the old tracks and adding a new set:

sub update_cd {
 my $record = shift;
 print "Current tracks are: \n";
 list_tracks($record);
 print "\nDo you want to reenter them?\n";
 if (($_ = <>) =~ /^y(?:es)?$/i) {
 # Remove the old entry from the hash
 delete $database{$record}−>{tracks};
 add_tracks($record);
 } else {
 print "OK, canceling.\n"
 }
}

8.

Similarly, removing a CD just means deleting its hash entry:

sub remove_cd {
 my $record = shift;
 print "\nDo you want to delete this CD?\n";
 if (($_ = <>) =~ /^y(?:es)?$/i) {
 delete $database{$record};
 } else {
 print "OK, cancelling.\n"
 }
}

9.

Finally, counting the CDs is easy − it's just the number of keys in the hash. Counting the tracks,
however, is a little more tricky; we evaluate the tracks array in scalar context for each of the keys in

10.

 The CD Database Revisited

624

the database, and add the values together. (You could do this with map() but that would be less clear.)

sub count_cds {
 my $totaltracks=0;
 print "Found ".(scalar keys %database)." CDs and ";
 foreach (keys %database) {
 $totaltracks+= scalar @{$database{$_}−>{tracks}};
 }
 print $totaltracks." tracks.\n";
}

Summary

In this chapter, we've seen how to use some features of the Perl programming language, examined some of the
modules available for it and seen how our CD database application could be implemented in Perl.

 Summary

625

Chapter 19: Programming for the Internet: HTML

Overview

In this chapter, we're going to look at a way of programming graphical information. Rather than write
programs that draw graphics and text, we'll specify what we want and use a separate program to view the
specification.

We'll see how HTML, the language of the World Wide Web, is written and then set up a server so we can
view our documents across a network using a client browser. Along the way, we'll cover:

The history and nature of the World Wide Web•
HTML document structure•
Tags, tables, graphic images and anchors•
Client− and server−side clickable maps•
Tips for setting up servers and pages on the Web•

What is the World Wide Web?

The World Wide Web, sometimes called simply WWW or The Web, started in 1989 at the CERN laboratory
Geneva, when Tim Berners−Lee was investigating ways of disseminating information. In 1992, CERN placed
the sample interface and protocol in the public domain. This was rapidly taken up by the Internet community
and the Web was born.

There are three parts to the World Wide Web: a server, which holds documents and images; the network,
which is used to transfer the information; and the client, a browser, which displays the information.

In this chapter, we'll be looking briefly at setting up a server (many implementations are freely available for
several UNIX versions and other platforms), but mainly on how the information you wish to provide is
defined.

Although the World Wide Web is generally associated with the Internet, there's no reason why you can't use
exactly the same software on internal networks (so−called intranets) for providing information. Companies
can and do set up internal WWW servers for providing internal information. As we'll see, this is easy to do
and can provide information in an easy−to−use format.

Documents on the WWW are almost always hypertext documents, i.e. most documents are not complete in
themselves, rather they link to other documents and may themselves be the target of other links.

For example, a company may provide a WWW site giving tourist information for the local area. This might
consist of a single high−level page which provides many references to more detailed information on other
pages. Since WWW documents exist on a computer, these links can be made 'live' and, when selected, take
the user to a different page of information. This hypothetical tourist information service might also provide
links to tourist information providers in neighboring regions, which, in turn, will probably reciprocate by
providing links back to the original pages.

It's hard to explain the power and appeal of the World Wide Web. The only way is to experience it for
yourself!

626

Terminology

Before we get started, we need to get some terminology clear. There are several different standards that are
used in conjunction with the Web.

Many of these standards are defined in documents called RFCs. These are available in various places on the
Internet, but if you can't find a site close to you that provides RFCs, you can obtain them from the machine
ds.internic.net. If you have FTP access, you'll find the files in the subdirectory rfc; if you only have e−mail
access, send mail to mailserv@ds.internic.net, leave the subject blank, and put the single word help in the
body. The mail server will reply telling you how to request RFCs.

You can find other documents relating to the World Wide Web by following links from http://www.w3.org/,
the home of the World Wide Web consortium. In the meantime, here are brief descriptions of some of the
terms that you'll meet.

The HyperText Transfer Protocol (HTTP)

This is the protocol that is used to transfer information between the client and server computers.

Multimedia Internet Mail Extensions (MIME)

This started as an extension to Internet e−mail to allow transfer of information other than plain text. It has
evolved considerably beyond that original aim and now defines the format of information being transferred
over HTTP. Various MIME types and subtypes are defined that allow both client and server to understand the
format of the information being transferred. You can find more information in RFC1521.

Standard Generalized Markup Language (SGML)

This is an international standard, ISO 8879:1986, for defining structured documents. It provides a standard
way of specifying a structure for a document.

Document Type Definition (DTD)

This is a set of rules that define how SGML is applied to a particular document type.

HyperText Markup Language (HTML)

This is a particular application of SGML which defines the markup language used with WWW. It allows you
to define the layout and the structure of a document. At the time of writing the current standard is HTML 4.0
(defined in W3C recommendation REC−html40 which can be found at http://www.w3.org/TR/REC−html40/,
although an XHTML standard is expected to replace it when it is accepted as a recommendation.

HTML 4.0 specifies 3 DTDs, each of which varies in the numbers of tags supported. This is due to the fact
that the current iteration of the HTML standard has been undoing a lot of the changes introduced in the two
previous versions of the standard, 2.0 and 3.2. The HTML standards previously followed the lead of the two
main browser vendors Netscape and Microsoft in the creation of new tags, by ratifying them. This has led to a
pollution of the original purpose of HTML, which was to define only the structure of the document. Previous
versions of the standard introduced purely stylistic elements, which should have remained separate. In the
HTML 4.0 standard, many of the tags that define styles have been marked up for removal. These tags are

 Terminology

627

known as deprecated. The three versions of the DTD have varying amounts of these tags already removed:

Strict only includes tags that haven't been deprecated, and don't appear in frameset documents•
Transitional includes all tags, including those marked up for deprecation, but not those that appear in
frameset documents

•

Frameset includes all tags included in the transitional DTD and the frameset ones as well•

The reasoning behind the different versioning is so that people can still write documents viewable on older
browsers, while taking advantage of HTML 4.0's new features.

In this chapter we will be using transitional HTML, so that you can create HTML documents viewable on
pretty much all browsers.

Extensible Markup Language (XML)

Another language which has been derived from SGML. Although while HTML can be described as a single
application of SGML, XML is actually a much simplified dialect of SGML. It was conceived as a way of
trying to give some of the power and flexibility of SGML but without the complexity of SGML. It retains all
of SGML's most commonly used features, and is, like SGML, a metalanguage a language for describing other
HTML like languages that are customized to a user's individual needs. It's real strength lies in it's ability to
define structured data in a flexible, but human readable form. At a casual glance, an XML actually looks very
like HTML, and was designed to be interoperable with it.

Cascading Style Sheets (CSS)

CSS is an internationalized standard which allows you to separate the style content out of an HTML
document. There have been two versions of the standard to date, CSS1 came out on the 17th December 1996,
a copy can be found at http://www.w3.org/TR/REC−CSS1. The most recent version of the standard is CSS2
which was released in May 1998, and the standard can be located at http://www.w3.org/TR/REC−CSS2.

Extensible Hypertext Markup Language (XHTML)

This is still a proposed recommendation (see http://www.w3.org/TR/1999/PR−xhtml1−19990824) which aims
at defining HTML as an application of XML. In reality it means your pages will be little different from
HTML 4.0, but it ensures that HTML pages written by the user have to conform to an HTML 4.0 DTD.

Uniform Resource Locator (URL)

This is a way of specifying a resource. This usually consists of a protocol name, a :, two / characters, a
machine name and a path to a resource. If the path to the file is omitted, a default file will usually be returned.

To demonstrate with a couple of examples, a specification for FTP access to the document rfc1866.txt, which
is stored on a machine with the name ds.internic.net, is ftp://ds.internic.net/rfc/rfc1866.txt, and you can find
the Wrox Press WWW pages at http://www.wrox.com/.

Uniform Resource Identifier (URI)

A URI is a more general naming scheme for network resources and is intended to be a superset of the more
protocol−specific URL naming scheme. You can find more information in RFC1734 and RFC1630.

 Extensible Markup Language (XML)

628

Writing HTML

Before we look at HTML in detail, let's look at a very small HTML document, what it contains and how it
appears in a browser.

Try It Out − A Simple HTML Document

Here's the source of a very simple HTML document:

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">

<HTML>
<HEAD>
<TITLE>A Simple HTML Document, html1.html</TITLE>
</HEAD>
<BODY>
<H1>This is a title</H1>
<P>
And here is some ordinary text.
</P>
</BODY>
</HTML>

If we use a WWW client program to view the file, what we see will vary slightly, depending on the client
used. You can either open the file by specifying a URL of the form file:/directory/html1.html, or from the
menu. Here's what Netscape Navigator for the X Window system shows when it loads this source file:

How It Works

As you can probably guess, the markup parts of HTML are enclosed in angle brackets, <>, and aren't
displayed. Rather, they control how the remaining text is displayed.

The opening <!DOCTYPE... section defines that this is valid HTML 4.0 transitional. If your HTML doesn't
conform to a particular standard, you should omit the DOCTYPE definition. Many HTML documents omit
this specification. Using the latest and greatest features in browser X might be fun, but in general sticking to
features not just in the HTML standard, but in older versions of the standard where possible, will allow a
wider audience to view your HTML pages.

The rest of the document is enclosed in <HTML> </HTML> tags, which define the document as being
HTML. Inside this, there are two further sections: a head and a body. Inside the head we have a title, which
conventionally appears outside the rest of the text. In many browsers, it will appear as a title to the entire
window.

Inside the body section, there is both a level 1 heading, delimited by <H1></H1>, and a paragraph, delimited

 Writing HTML

629

by <P></P>. In many HTML documents you will see the </P> omitted. This used to be considered
acceptable, but as HTML becomes more strictly defined the </P> should always be used to explicitly delimit
paragraph sections. The plain text appears as is and may be wrapped to fit the width of the browser window. If
you change the size of the window, the text will be reformatted to fit.

Notice how almost all HTML tags have a matched start and end tag and that tags are always closed in
sequence, on a 'last opened − first closed' basis.

The markup tags are not case−sensitive, so <TITLE>, <Title> and <title> are all equivalent. The authors find
it helpful to keep the tags in uppercase to help distinguish them from the rest of the document.

A More Formal Look at HTML

Now that we've seen the general form of an HTML document, let's look at the commonly used tags that are
defined. The first format version of HTML was 2.0, and was rather basic, but is very widely supported by
almost all browsers. At the time of writing, the latest version of the specification is 4.0, which contains many,
many additions to the 2.0 specification. Unfortunately even browsers that claim to support all the latest
features in version 4.0 occasionally miss out some minor features, but the core features of HTML 4.0 are well
supported by most browsers. The more 'unusual' the feature you try and use, the more risk you have that it's
support in different browsers will be missing, or not well implemented, so the display is not what you where
hoping for.

Many browsers accept extensions to the standards. A browser presented with a document containing tags that
it doesn't understand normally ignores them. In general, assuming you want a wide variety of browsers to
show your documents in a consistent way, it's better to stick to tags defined in the standard and not use any
browser−specific extensions.

HTML is a very important specification because it's machine−independent. You should be able to implement
a basic HTML browser for just about any graphical display. There are even text−only HTML browsers,
although, obviously, there's some compromise in what they can display. Non−graphical browsers are
important for visually impaired people and (occasionally) for people with slow network connections.

You can author a formatted document in HTML and then distribute it to others with different computing
platforms. They should still be able to view your document much as you wrote it. There have been various
attempts to provide portable viewing of formatted documents in the past, but HTML is almost certainly the
most successful yet, not least because you can author documents without purchasing specific software to do
so.

Formally, an HTML document consists of characters as defined in standard ISO 10646. Characters in an
HTML document consist either of text to be displayed or tags which control the display of information. Every
tag starts with a < character, and ends with a > character. In between is case−insensitive text that defines the
tag. Some tags contain further attributes (which can be case−sensitive) inside the < and > characters, in the
form attribute="value". Attributes control details of how the tag is to be interpreted.

Most tags are enclosures: there is a start tag, some enclosed text, and an end tag. End tags are always the same
as the start tag, except that the tag name is preceded with a '/'. For example, <H1> is the start tag for a level
one heading, and </H1> is the corresponding end tag. Tags can be nested, but end tags must always appear in
the reverse order to the start tags. Thus <H1> Heading one </H1> is a valid sequence, but <H1>
Heading one </H1> is not.

 A More Formal Look at HTML

630

An HTML document consists of an HTML wrapper, that encloses the entire document, and two sections, a
header and a body. Formal HTML authors may precede the HTML with a doctype specification, like this:

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">

The advent of XHTML means that the inclusion of a DTD will be mandatory for all HTML documents, so
even though it isn't strictly necessary to include now, it's best to get used to using it.

All HTML documents must be enclosed in <HTML> and </HTML> tags. The HTML tag has several
attributes that can be used, the only one that is generally useful is to specify a language using the ISO−639
language code. For English this is often omitted, but for other languages it is good to include it. Attributes are
written using attribute="value" inside the tag, so a German HTML document should start with:

<HTML lang="de">

Inside the HTML wrapper tags, the first section we must define is the header. Although there are quite a few
things that you can do inside the header section, it's almost always used solely for specifying a document title,
using the <TITLE> tag.

The other section of an HTML page is the body, which contains the information you want on your page. It can
be completely empty!

So, the minimum legal HTML document consists of:

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">
<HTML>
<HEAD>
<TITLE></TITLE>
</HEAD>
<BODY>
</BODY>
</HTML>

However, since this contains no title or displayable text it's not very useful!

As alluded to earlier almost all HTML browsers will accept HTML documents without the DOCTYPE
specification, which is fortunate since rather too many documents on the Web seem to omit it. In some ways
this is probably fortunate, because, sadly, very few of them conform to a published HTML standard. However
this will all change in XHTML which requires the inclusion of a DTD to make the document format legal. We
recommend you keep your HTML strictly legal, and include the DOCTYPE specification. Now that we have
an overview of an HTML document, we can look in more detail at the tags that we can use.

HTML Tags

Let's look at the principal HTML tags.

Title

All HTML documents should have a title, defined within <TITLE></TITLE> tags in the head part of the
document. This is usually shown outside the main displayed text, the contents of this tag is often stored as the
text in a bookmark or favorite, so it's important to choose your words carefully. Titles like 'Home Page' don't

 HTML Tags

631

mean much in a list of bookmarks.

Comments

Just like code, HTML documents can benefit from comments. An HTML comment looks like this,

<!−− this is a comment −−>

where the ! and −− characters must be present exactly as indicated. It's safer not to use comments that extend
across multiple lines, some early browsers don't handle them correctly.

Headings

Six levels of heading are defined, H1 through to H6. A top level header is H1. The text for the heading is
enclosed between a start and an end tag, so a level two heading would look like this:

<H2>This is a heading 2</H2>

While previous HTML specifications added an ALIGN attribute to the HTML standard, this has since been
deprecated in strict HTML 4.0 However, as the most 'visual' attribute of headings, we'll use it in a quick
example. It takes the parameters left, right, center, or justify. Thus, we would specify a centered level three
heading like this:

<H3 ALIGN="center">Centered level 3 heading</H3>

Text Formatting

Normally, all the body level text in an HTML document will be formatted as a continuous flow, disregarding
any line breaks in the original source. This is generally a good thing because the originator doesn't know how
wide the viewing page will be. The following tags allow additional control over formatting.

Tag Description

 This tag, which has no closing tag, causes the text flow to start on to the next line.

<P> This tag, which is often used wrongly without a closing tag, causes a new paragraph to be
started, usually after inserting a blank line. Note that <P><P> won't normally insert two blank
lines. See the <PRE> tag (defined later) if you wish to force several blank lines in an HTML
document.

<HR> This tag causes a horizontal line to be drawn across the page.
Text Styles

A range of style tags are defined to allow control over the appearance of text.

<ADDRESS>This is my address</ADDRESS> formats the text in a form suitable for a postal mail address.

This text is bold sets the enclosed text into a bold font.

<BLOCKQUOTE>This text is a quote</BLOCKQUOTE> sets the enclosed text apart from the rest of the
text, often by indenting it. Usually used for quotations.

<CITE>A citation</CITE> identifies citation text.

HTML Tags

632

<CODE>Some source code</CODE> formats the enclosed text as a source code listing.

Emphasized text sets emphasized text. It's usually better to use bold or italic tags explicitly.

<I>This text is in italics</I> sets the enclosed text in an italicized font.

<KBD>text typed by a user</KBD> indicates text typed by a user, this is often a monospaced font.

<PRE>Pre−formatted text</PRE> prevents the browser from reformatting the enclosed text, so it appears on
the browser the same as in the HTML source. You should use this sparingly; since you don't know the width
or height of the browser's screen, you could inadvertently make the text very difficult for some users to view.

This text is strong sets the text to have strong emphasis.

_{This is subscript} sets the enclosed text to a subscript.

^{and this is superscript} sets the enclosed text to a superscript.

<TT>Typewriter spacing</TT> sets text into a monospaced font, as though it had been typed on a typewriter.

Normally , <I>, <PRE> and <CODE> are sufficient for most general formatting needs, and also the ones
most browsers display in a consistent manner.

Try It Out − Text Formatting

Now that we've seen some more tags, let's see what they look like in use. Remember that they may look
different on browsers other than the one we used.

Here is some more HTML, showing some of the text formatting tags that we've just introduced:

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">
<HTML>
<HEAD>
<TITLE>Another Simple HTML Document, html2.html</TITLE>
</HEAD>
<BODY>
<H2>This is file html2.html</H2>
<P>
And here is some ordinary text.
<! And here we have inserted a comment >
<! which takes two lines to type in >
</P>
<H4>Heading level four</H4>
looks like the above.
<H5 ALIGN="center">This is a centered level five</H5>
heading, showing the extra ALIGN tag.
<P>
we can do quite a lot of typing, then put a break in here,
so the text flow is broken up.
</P><P>
If we didn't use the BR tag then text would just keep on flowing across the page. If the user changes the width of the browser window then the text adjusts accordingly.
<HR>
Used sparingly a horizontal rule is a good separator.
</P><P>
Let us try some other changes. Here is some bold text, some <I>Italicized</I> text and some emphasized text. A fixed width font is selected with TT like <TT>this section</TT> of text.

HTML Tags

633

</P><P>
If we would like to
include some code we can make it look like this:

<CODE>
#include <stdio.h>

int main() {

printf("Hello World\n");

}

</CODE>
</P><P>
Perhaps an easier way is to use the PRE
tag, like this:

<PRE>
#include <stdio.h>

int main() {
printf("Hello World\n");
}
</PRE>
</P><P>
Here is an example of an address:

<ADDRESS>
Mr. Postman Pat

7 Posty Lane,

Greendale

Lancashire

Great Britain

</ADDRESS>
</P><P>
This is a block quotation from

<CITE>Macbeth, by William Shakespeare</CITE>
<BLOCKQUOTE>
Is this a dagger which I see before me, The handle toward my hand? Come,
let me clutch thee:

I have thee not, and yet I see thee still.
</BLOCKQUOTE>
</P><P>
Which I consider an outstandingly good play.
</P>
</BODY>
</HTML>

When we view it with Netscape Navigator, we see:

HTML Tags

634

How It Works

This is simply an extension of the previous example. Notice that we're unable to use the < or > characters in
the code fragments, since they are reserved for delimiting tags. We have to use a special syntax to define these
characters.

Special Characters

A wide range of special characters is defined. Some of the more common ones are:

< <

> >

& &

" double quote, "

© © symbol

á a with acute accent, á

æ an a−e ligature, æ

ç c with a cedilla, ç

ü u with an umlaut, ü

Many others can be specified with the HTML character codes, such as @ for an ampersand, & symbol.
See RFC1866 for a full list of the HTML coded character set

HTML Tags

635

Lists

There is an important group of tags that you can use for providing lists. There are five types of list supported
altogether, although three of them are very similar to one another. These are unordered lists, directory lists,
and menus. The corresponding tags are:

 •
<DIR> </DIR>•
<MENU> </MENU>•

Inside the list, each item is started with a list item, tag. Each item is usually marked with a bullet point,
or similar symbol. Here's a simple unordered list:

The first item
The second item
The last item

Notice that the end tag may be omitted.

On many browsers, menu, directory and unordered lists look very similar, if not identical. If you prefer the
items to be numbered, you can use an ordered list. This replaces the bullet mark with a sequential number and
looks like this:

The first item is 1
The second item is 2
The last item is 3

The fifth form of list is the definition list. This is more suited to dictionary type entries, with a key word and
some explanatory text. Unlike a single item list, there are pairs of tags: definition term <DT> and definition
description <DD>. While the end tag of the definition list, </DL>, is required, both end tags </DT> and
</DD> are optional. A definition list looks like this:

<DL>
<DT>Bush
<DD>A normal growing pattern for most Fuchsias<DT>Standard<DD>The main part of the plant is raised on a single stem<DT>Basket
<DD>A group of fuchsias that look good in hanging baskets.
</DL>

Try It Out − Lists

Here's another example, containing lists:

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">
<HTML>
<HEAD>
<TITLE>Another Simple HTML Document, html3.html</TITLE>
</HEAD>
<BODY>

This is entry number 1

HTML Tags

636

This is entry number 2
This is entry number 3
This is entry number 4

This is entry number 1
This is entry number 2
This is entry number 3
This is entry number 4

<H4>Fuchsia types</H4>
<DL>
<DT>Bush</DT>
<DD>A normal growing pattern for most Fuchsias.</DD>
<DT>Standard</DT>
<DD>The main part of the plant is raised on a single stem.</DD>
<DT>Basket</DT>
<DD>A group of fuchsias that look good in hanging baskets.</DD>
</DL>
</BODY>
</HTML>

The result is:

Images

All this formatting of text is quite nice, but adding some pictures is a big step forward. This is very easy to do:
we simply use the IMG tag. This takes several attributes which control how the image appears.

The full tag, with attributes, is:

The attributes separated with | characters are exclusive, i.e. ALIGN can only take one of the given values.
SRC and ALT attributes are both required.

The SRC gives a reference to the source image file. This is commonly in GIF or JPEG format, although PNG
(Portable Network Graphic) is also sometimes accepted. You should generally use the encoding method that
gives the smallest file, which will depend on the type of image. You may need to experiment to determine

 Images

637

which format gives the best resulting image in the smallest size. The image name can be either a simple file
name, or a URL referring to a different location. Photographs are generally best done as JPEGs, and other
images as GIFs.

The ALT provides some default text. This is used by browsers that cannot handle the graphic, where the user
has turned image loading off, perhaps because they're connected via a slow linker while waiting for the image
to download. You should include the ALT option with some sensible text.

The now deprecated ALIGN option takes one of the | separated strings and determines how subsequent text is
aligned with the image.

WIDTH and HEIGHT provide clues for the browser about how much space, in pixels, to leave for the image.
If the browser is loading images after text (a common setting for people with slow links), it allows the browser
to lay out the text correctly before the image has been fetched.

The ISMAP option specifies that this is a mapped image, of which more later.

Try It Out − Adding an Image

Here's some HTML that inserts a picture of two of the authors' favorite beers:

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">

<HTML>
<HEAD>
<TITLE>Another Simple HTML Document, html4.html</TITLE>
</HEAD>
<BODY>
<H3>Black Sheep Ale</H3>
<IMG SRC="blac_s.jpg" ALT="Black Sheep Ale" ALIGN="left" HEIGHT=150
WIDTH=100>
<P>
Here is a picture of a bottle of Black Sheep Ale.
</P><P>
The culmination of five generations of brewing expertise.<P>
Brewed at Paul Theakston's Black Sheep Brewery in Masham, North
Yorkshire.<P>
And nowhere else.
</P>
<PRE>
</PRE>
<HR>
<H3>Spitfire</H3>
<IMG SRC="spit_s.jpg" ALT="Spitfire Bitter" ALIGN="right" HEIGHT=150
WIDTH=100>
<P>
Here is a picture of Spitfire Bitter.
</P><P>
This is a bottle conditioned bitter brewed at the Sheperd Neame brewery in
Kent.
</P><P>
Established in 1698 the bottle proclaims that it is Britain's oldest brewery.
</P>

</BODY>
</HTML>

 Try It Out − Adding an Image

638

What we see is:

How It Works

The browser loads the text and image separately and places them together on the screen. In this case, the
image is in JPEG format. Note how the ALIGN attribute changes the placing of the text following the image.

Tables

Tables were not in the original HTML definition, but are a very important method of formatting data. As well
as using them for conventional tables, we can also sometimes use them with hidden border lines for
controlling the placement of pictures and text.

Here, we present only the basic table attributes. If you need to use complex or nested tables you should
consult a copy of the HTML 4.0 specification or "Instant HTML: Programmer's Reference", ISBN
1−861001−56−8, from Wrox Press. Tables are specified in terms of rows and columns. These can be grouped
together to allow entries to span more than a single row or column.

A table is enclosed in <TABLE></TABLE> tags. You can use additional tags inside these that are only valid
inside the table. These are:

<CAPTION> and </CAPTION> which define a caption for the table.

<TR> and </TR> which delimit a table row.

<TH> and </TH> which delimit a header for a table row or column.

<TD> and </TD> which delimit the data appearing inside a table cell.

These are only valid inside a table row.

How It Works

639

The TABLE tag also takes several attributes, the most important of which are CELLPADDING and
CELLSPACING, that control the width and separation of cells inside the table.

Try It Out − A Table

Here's a simple table:

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">
<HTML>
<HEAD>
<TITLE>Another Simple HTML Document, html5.html</TITLE>
</HEAD>
<BODY>
<TABLE CELLPADDING=5>
<CAPTION>A simple table</CAPTION>
<TR>
 <TD>flats</TD>
 <TD>houses</TD>
 <TD>shops</TD>
 <TD>factories</TD>
</TR>
<TR>
 <TD>small</TD>
 <TD>larger</TD>
 <TD>may be very big</TD>
 <TD>usually very large</TD>
</TR>
</TABLE>
</BODY>
</HTML>

What we see is:

How It Works

Each row is started with a <TR> tag and should be closed with a </TR> tag. Each column in the table is
separated with <TD> tags. These should be closed with a </TD> tag. Many documents omit the </TR> and
</TD> tags, leaving the browser to determine from context where the rows and data should end. You should
always put them.

The browser looks at the cells defined in the table and generates a table with the appropriate number of rows
and columns. It also sizes the cells as required to fit the text inside them.

 Try It Out − A Table

640

Try It Out − Another Table

Here's some HTML that generates a rather more complex table:

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">
<HTML>
<HEAD>
<TITLE>Another Simple HTML Document, html6.html</TITLE>
</HEAD>
<BODY>
<TABLE BORDER=2 CELLPADDING=15>
<CAPTION>HP printers in use</CAPTION>
<TR>
 <TH></TH>
 <TH COLSPAN=3>Inkjet</TH>
 <TH COLSPAN=2>Laser</TH>
</TR>
<TR>
<TH></TH>
 <TH>Original</TH>
 <TH>500</TH>
 <TH>600</TH>
 <TH>2p</TH>
 <TH>4m</TH>
</TR>
<TR>
 <TH>Software</TH>
 <TD>0</TD>
 <TD>2</TD>
 <TD>1</TD>
 <TD>0</TD>
 <TD>2</TD>
</TR>
<TR>
 <TH>Hardware</TH>
 <TD>1</TD>
 <TD>1</TD>
 <TD>0</TD>
 <TD>1</TD>
 <TD>0</TD>
</TR>
<TR>
 <TH>Sales</TH>
 <TD>0</TD>
 <TD>0</TD>
 <TD>0</TD>
 <TD>1</TD>
 <TD>1</TD>
</TR> <TR>
 <TH>Drawing</TH>

Office
 <TD>0</TD>
 <TD>2</TD>
 <TD>0</TD>
 <TD>0</TD>
 <TD>0</TD>
</TR>
</TABLE>
</BODY>

Try It Out − Another Table

641

</HTML>

What we see is:

How It Works

We add the BORDER attribute to the <TABLE> tag to specify borders round the cells and CELLPADDING
to leave some space between the cell text and the border.

We use empty <TH> tags to skip columns where we don't wish to enter text. The COLSPAN attribute is used
to allow the 'Inkjet' and 'Laser' labels to occupy multiple columns in the table. Notice also the
 tag to
split 'Drawing Office' across two lines.

Browsers normally default to fixed−width columns, however, in this example the browser has used
variable−width columns.

Anchors or Hyperlinks

A very important part of the way World Wide Web documents work is the links between them. This feature is
what gives HTML documents the power to create something as appealing as the World Wide Web.

The anchor tag is actually quite simple. It is:

 some text

The NAME attribute provides a way of naming the current location in a document. You may omit it.

The HREF is a hypertext reference, and provides a URL to go to when the link is activated. The character # in
an HREF indicates that all characters after the # refer to an anchor NAME inside a document and all
characters before the # are a URL referring to a document.

How It Works

642

Any text between the start <A...> and end anchor tags is highlighted. When the user selects the
highlighted text, the browser moves to the URL specified in the HREF attribute.

Try It Out − Anchors

Here's a pair of HTML files that contain anchors allowing you to jump not only within each file, but also
between them:

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">
<HTML>
<HEAD>
<TITLE>Another Simple HTML Document, html7.html</TITLE>
</HEAD>
<BODY>

<P>
Here is a simple document. It contains an anchor that allows you to jump to
 html8.html if you click on the highlighted text.
</P><P>
You can also jump to the bottom
of html8.html if you wish.
</P>
</BODY>
</HTML>
<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">

<HTML>
<HEAD>
<TITLE>Another Simple HTML Document, html8.html</TITLE>
</HEAD>
<BODY>

<P>
<H2>This is html8.html</H2>
Here is a simple document. It contains an anchor that allows you to jump to
the bottom
of html7.html if you wish.
<P> We need to insert some text.</P>
<P> Quite a lot of text.</P>
<P> If we didn't, how could you tell which was top and which was
bottom of this document?</P>
<P> You can also jump to the top of this document if you
wish</P>
<P> It might well all appear all on the same page.</P>
<P> Soon we will have enough text.</P>
<P> To prevent this fitting </P>
<P> on</P>
<P> a</P>
<P> single</P>
<P> page!</P>
<P> This is the bottom, but you can jump to the <A NAME="bottom"
HREF="#top">top if you want, or back to
html7.html if you prefer!</P>
</BODY>
</HTML>

Here's a screen shot of part of html8.html, showing the highlighted links:

 Try It Out − Anchors

643

How It Works

This pair of HTML files demonstrates the use of the anchor tag, showing how locations in a document may be
marked with tags and how other documents may be referenced with tags.
Notice that all the tags used here use a relative URL, hence the absence of the machine name.

We also show how combining the two allows you specify a jump to a particular location in another document.

Combining Anchors and Images

It's very common to combine images and anchors, because clicking on an image is much more appealing than
simple text. We do this by simply combining the anchor <A> and image tags, like this:

Try It Out − Images as Anchors

Check out the following HTML:

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">
<HTML>
<HEAD>
<TITLE>Another Simple HTML Document, html9.html</TITLE>
</HEAD>
<BODY>

<H2>This is html9.html</H2>
Here is a simple document. It contains an anchor that allows you to jump by
clicking on a picture. Actually the HREF file "beer.html" doesn't exist,
but the browser does not discover this unless you click to take the hyper link.
<P> You can also <IMG SRC="blac_s.jpg" ALIGN="MIDDLE"
ALT="jump to beer.html"> use images as
clickable items if you wish.</P>

<P> The end.</P>

</BODY>
</HTML>

What we see is:

How It Works

644

How It Works

Using the tag inserts a picture into the anchor tag. Notice we also use an ALT attribute, so that people
using browsers that are not displaying graphics for some reason can still see where the link is going and have
the ability to select it. If the image is selected, the browser will attempt to load the URL specified in the link,
beer.html.

The picture used here is large in proportion to the size of the text. In general, smaller pictures tend to look
better, but this serves as an example.

Non−HTML URLs

So far, all our links have been to other HTML pages on the same machine, but, in fact, we can use lots of
other URLs. The most popular is simply to reference a graphic file by writing an anchor such as:

.

This causes a JPEG format picture to be returned when the link is selected.

We can configure servers that respond to requests from World Wide Web browsers to be aware of different
file extensions and map them to the appropriate MIME file type for sending via the HTTP protocol.

The general scheme depends on where the document is being loaded from. If it's being fetched from a server,
the server is responsible for deciding the MIME type and subtype of the file, which it then sends using the
HTTP protocol before the actual data is sent. The browser is then responsible for determining how to process
that MIME type and sub−type.

If a local file is being loaded, the browser must decide the MIME type and subtype, as well as how to process
it.

A full discussion of mapping file extensions to MIME types is beyond the scope of this chapter; you should
check your server and browser manuals for details of mapping extensions to MIME types. You can normally
find these in files called mime−types and mailcap. By way of example, here's the .mailcap file for Netscape,
which tells it that audio files are to be processed with the 'play' command:

audio/* ; play %s

Other common URLs included in HTML pages include:

ftp://ftp.site.name/pub/filename. If this is selected, the browser is requested to start an FTP session to retrieve
a file.

mailto:name@machine.com. If this is selected, the client is requested to start an e−mail session, with the
address specified.

news:comp.os.linux.announce. If this is selected, the client is requested to start a news session to the
appropriate newsgroup.

How It Works

645

Anchors to Other Sites

The World Wide Web wouldn't be the resource it is if all machines could do was to serve local HTML pages.
The power and the attraction of the World Wide Web is that pages can link to other resources on different
machines. This is done using an absolute URL, of the form http://machine.name/file.html.

Try It Out − Links to Other Sites

Here's an example of a page using some less common URLs and some links to other sites:

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">
<HTML>
<HEAD>
<TITLE>Another Simple HTML Document, html10.html</TITLE>
</HEAD>
<BODY>
<H2>This is html10.html</H2>
This shows some less common URLs and links to remote machines.
<P> If you want to find out about some other WROX books we suggest you visit
their home page.</P>

<P> To send feedback on Wrox books you can email them at
their feedback address.</P>

<P> For more information about the World Wide Web, visit the World Wide Web Consortium. You will find many
specifications, draft specifications, lists of http servers, and lots of other helpful files.</P>

<P> If you are just getting started with Linux, then you should subscribe to
the newsgroups</P>

 comp.os.linux.announce, and
 comp.os.linux.answers.
<P> Some people are not sure how Linux is</P>

pronounced. Well now you know!
<P>
<HR>
</P>
<P>

This server is running on a Linux box. Be proud, be powered by Linux!
<HR>
<CITE>Many thanks to Alan Cox for
permission to use this graphic.</CITE>
</P> <P>
This page is © Copyright Wrox Press.
</P>
</BODY>
</HTML>

When we view it we see:

 Anchors to Other Sites

646

How It Works

This example shows a page combining absolute URLs and some other less common ones. Notice that the
image has had the background color set transparent (a feature available in GIF files and supported by most
viewers), so we can see no border around the picture. The Linux graphic originally appeared on
http://www.linux.org.uk/; thanks to Alan.Cox@linux.org for permission to reuse it.

Other Things to do with Images

There are a few other tricks that we can play with graphics. A popular addition is to give pages a background.
We do this by extending the <BODY> tag with the BACKGROUND attribute. You should keep your
background image small and make sure it doesn't detract from your main text. A background tag looks like
this:

<BODY BACKGROUND="background.gif">

You can set one of the colors in a GIF file to be transparent. This allows the background to show through,
which often looks much cleaner than a square graphic put on a page.

Another feature of GIFs is that they allow you to store several images in the same GIF file. Some browsers
understand this and will show each of the images in the GIF file in sequence, giving a simple animated image.

Authoring HTML

In this chapter, we've been writing HTML by simply typing it in. Certainly, once you have a reasonable grasp
of HTML, it is quite easy to type it in directly. We simply input all the HTML in this chapter using the emacs
editor.

If you start to write large amounts of HTML, you may wish to investigate other ways of generating it. The
principal ways are:

Type it in with a text editor.•

How It Works

647

Use a converter to convert from an existing format. Several converters exist, including some that
convert from HTML to another format, such as PostScript. Of particular interest is Linuxdoc−sgml.
Like HTML, this is an SGML−defined structured document, but one that may be converted to many
other formats, including HTML itself. If you want to write a document once, but reproduce it in many
different formats, you should consider starting with Linuxdoc−sgml.

•

Use a context−sensitive editor. Several editors exist that 'know' HTML and help you to chose tags and
correctly structure your HTML document. You can also use an emacs HTML helper mode.

•

Use a WYSIWYG editor that simply generates HTML.•

Using a WYSIWYG generator could give you some problems. Since HTML was designed to accommodate
many different viewers on different platforms, it specifies the general format of documents, but not normally
the details, such as the font and point size to use. While what you see in your WYSIWYG generator may
indeed be what you get, it might not be exactly what others see!

Once you've created your HTML you should do two more things. Firstly, run it though an HTML checker.
Several excellent programs are available, including html−check and weblint. Secondly, you should test it on
as many viewers (and platforms) as you can manage and check that each results in a reasonable image for the
user.

That covers the principal parts of HTML, with the exception of forms (which we'll meet in the next chapter)
and clickable maps, which we'll be covering later in this chapter.

Serving HTML Pages

So far, we have been writing HTML pages and simply loading them into a browser as files. This is fine as a
way for a single person to view a document, but if you want a lot of people to view your work, you would
have to send each of them their own copy.

A much better solution, and indeed the foundation of the World Wide Web, is the idea of transferring
documents across networks as they are required. This allows users to browse (or surf if you prefer!)
documents without having to request them in advance.

You can do this by setting up a server program running on a machine where all the documents are stored,
allowing client programs to request these documents over the network.

Don't think that this has to be on the Internet to be useful; a company might decide that it offers a good way of
distributing procedure documents, for example, rather than maintaining multiple paper copies which require
tracking and updating. A single copy of the documents can be placed on a server on an internal LAN and
viewed on any workstation connected to the LAN. Since both Linux and many HTML server programs are
free, this can be a low cost solution.

Networked HTML Overview

The diagram below shows how clients can request HTML documents (along with images and other references
files) stored on a server.

 Serving HTML Pages

648

The browser program on the client machine generates a request across the network to the server. The server's
HTTP daemon (the usual name for the server program on UNIX systems) processes the request, reads the
documents from its document store and sends them back to the client as MIME encoded documents. All the
data is transferred using the HTTP protocol, which runs on top of the underlying network protocols.

The system works in terms of requests and responses. The client requests a document and the server responds
by sending the document, or an error if the document doesn't exist. Where a document consists of HTML text
and images, the client is responsible for requesting the document and subsequently for asking for any
additional files it requires, such as images included with tags.

There's no 'conversation' as such between the client and the server. The server simply responds to requests as
they happen and, apart from log files, keeps no record of any previous request from a particular client.

An HTTP daemon can serve many clients. It simply processes requests in the order in which it receives them.
In fact, many implementations of the HTTP daemon use multiple processes to increase the throughput of
requests and responses.

Setting up a Server

Many Linux distributions come with an HTTP server, normally the very popular (and free) Apache Server.
Unless you have some very special reasons for wanting to use a different web server, this is an excellent
server to use, though there are many others, many of them freely available.

Most Linux distributions will come with a web server included, usually Apache, and normally all you need to
do is select it to be installed and run in your default configuration. It is that simple. If your distribution didn't
have a web server, or you would like to install one from scratch, we suggest you use Apache from
http://www.apache.org. It's free, excellent quality, very well documented on the web site, and easy to install.

One item that may need to be configured is a default page, which is served to a client when no page is
specified. Suppose we wanted to look for Wrox Press on the Internet. We might reasonably guess that
http://www.wrox.com would be a good machine address to try, but what page to look for?

The answer is to leave the page blank, so we try for a URL http://www.wrox.com/, i.e. with no HTML page
specified. We can configure the HTTP daemon to serve a default page when this happens. This is normally
Index.html or index.html, but you can normally change it by adjusting the httpd configuration files.

To find your Apache document files, you should probably start by looking for the Apache configuration files,
because not only will it tell you where your documents are, but also where the log files if you ever need to
track down problems. It's also interesting to look through the many configuration options.

 Setting up a Server

649

If you don't know where your Apache is installed, try looking in the file /etc/rc.d/init.d.httpd, which may give
you some clues. Alternatively you could try /etc/httpd/conf or /usr/local/Apache/conf directories for the
configuration files. The files you are looking for are called httpd.conf, and srm.conf. To locate your actual
document files, look for the configuration option DocumentRoot in the srm.conf file.

In short, setting up a web server on Linux is trivially easy!

Clickable Maps

These are images that take different actions, depending on which location inside the image is clicked on.
There are two forms of clickable maps: server−side and client−side. We'll look briefly at both.

Server−side Maps

By including an tag in an HTML page and using the ISMAP attribute, we tell the client that, when the
map is clicked, the name of the map and the (x,y) location that was clicked must be sent to the server.
Different servers will process the request in slightly different ways. The end result is the same: the (x,y)
location on the map is translated to a URL, which is returned to the client as the next page to load.

We do this using a 'map' file on the server. The file defines certain regions of the picture as relating to
different URLs. In general, you can use circles, rectangles and polygons. You can also specify a default URL
if you wish.

There are two ways to generate a map file. The first method is to use a graphics program, such as xv, that can
read in a graphics file and show you the coordinates of your pointer. You then write down each location in
turn as you mark out the region you want to map to a URL. This method is fine for one or two simple maps,
but rather tedious for anything more.

The second way is to look for a program that lets you mark out an image, writing a map file for you as you go.
Several exist for various UNIX platforms. Here's a sample map file, in NCSA format, which relates different
parts of the image to different URLs:

rect ovary.html 290,107 324,166
circle stigma.html 289,516 298,529
rect style.html 275,383 291,501
poly filament.html 183,366 109,491 120,496 186,375
poly filament.html 311,392 339,564 349,561 319,383
poly filament.html 264,396 261,541 268,536 271,397
circle anther.html 348,581 355,593
circle anther.html 266,550 277,556
circle anther.html 105,505 114,521
poly tube.html 287,158 328,168 328,208 314,183 280,176
poly sepals.html 325,230 315,186 200,160 232,204 325,237
poly sepals.html 332,233 371,264 403,334 406,371 422,372 424,323 375,246 329,227
poly corolla.html 211,205 348,249 403,366 343,399 159,344

Unfortunately, different UNIX servers implement maps in slightly different ways. Not only are there slight
differences in the format of the map file, but the way it is accessed on the server can also vary. You should
consult the appropriate manual for the server you are using.

On the Apache server, it's very easy. You simply put the map file in a subdirectory called maps in the main
HTTP file directory and, in the client HTML document, specify an image file with an anchor, like this :

 Clickable Maps

650

Other servers require an additional configuration file to specify the location of the map file and also require a
program, usually imagemap, to be stored in the cgi−bin directory of the server.

Client−side Maps

The client−side clickable map is a more recent form of clickable map and has a significant advantage over the
server−side map in that all the processing load is on the client and clicking doesn't require transactions across
the network.

To make a client−side map, we use an tag with the USEMAP attribute, like this:

Then, somewhere in the same HTML page, we include the actual map, in <MAP></MAP> tags, like this:

<MAP NAME="fuchsiamap">
<AREA SHAPE="rect" COORDS="290,107 324,166" HREF="ovary.html">
...
<AREA SHAPE="poly" COORDS="325,230 315,186 200,160 232,204 325,237" HREF="sepals.html">
</MAP>

Notice the order of the fields is slightly different in the client side map.

Server−side Includes

One final feature of pages served by web server programs is that they can be processed before they are
returned to the client. This feature is called server−side includes and allows us to access information on the
server at the time the page is served, rather than when the page was authored. Most server−side includes start
with the sequence <!# and end with the sequence >.

All server−side includes have a directive and may also have an attribute. The directives are:

echo, which allows access to environment variables. The usual variables that are available are:•
DATE_GMT: the current date and time at Greenwich, UK. Now known as UTC time.•
DATE_LOCAL: the local date and time•
LAST_MODIFIED: the date and time when the current document was last updated.•
include, which allows an additional file to be inserted in the HTML file before it's returned to the
client.

•

exec, which inserts the output of a command into the HTML document before it's returned to the
client.

•

Here's an example of a server−side include that would insert the date and time that the current document was
last modified:

<!#echo var="LAST_MODIFIED">

Not all servers can process server−side includes and, even if they can, they may be disabled or only certain
directives accepted. Server−side includes cause problems for servers because they add an additional
processing requirement. If server−side includes are enabled on all files, the httpd program must process every

 Client−side Maps

651

file it returns, looking for server−side directives, significantly adding to the processing load. Some servers
permit server−side includes only on files with specific extensions, commonly .shtml.

The other problem, particularly with the exec directive, is that you are permitting others to run programs on
your machine. Setting up a machine to serve HTML pages does open your machine to others, which is a
reduction in security, but is generally reasonably safe since you're only returning a data stream. Allowing
people to execute programs with exec, on the other hand, significantly compromises your security. For this
reason, some commercial service providers don't allow exec in server−side includes.

Try It Out − Client−side Maps and Server−side Includes

Here's some HTML that shows both a client−side map and some server−side includes. Be careful when you're
choosing the image to use as your map, because, to be useful, they must be displayed by the client. Very large
images are only really acceptable when they're loaded locally.

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">
<HTML>
<HEAD>
<TITLE>Demonstration Page</TITLE>
</HEAD>
<BODY>
<H1><CENTER>This document is html11.html</CENTER></H1>
<P> This document was last modified on <!#echo var="LAST_MODIFIED"></P>

<P> It demonstrates server side includes, a client side map, and other links.</P>

<P>
<HR>
</P> <P> Here is a fortune, different just about every time this page is loaded!</P>

<PRE>

<!#exec cgi="/cgi−bin/fortune">

</PRE>
<P>
<HR>
This is a clickable client side map.
</P>
<P> Try clicking on different parts of the fuchsia:</P>

<P>
<A>

</P>
<P>
<HR>
</P>
<P> If you want to find out about some other WROX books we suggest you visit
their home page.</P>

<P> For more information about the World Wide Web, visit the World Wide Web Consortium. You will find many
specifications, draft specifications, lists of httpd servers, and lots of other helpful files. </P>

<P> If you are just getting started with Linux, then you should subscribe to

Try It Out − Client−side Maps and Server−side Includes

652

the newsgroups
 comp.os.linux.announce, and
 comp.os.linux.answers.</P>

<P> Some people are not sure how Linux is
pronounced. Well now you know!</P>

<P>
<HR>
</P>
<P>

This server is powered by Linux!
<HR>
<CITE>Many thanks to Alan Cox for
permission to use this graphic.</CITE>
</P>
<P>
This page is © Copyright Wrox Press.
</P>

<MAP NAME="fuschiamap">
<AREA SHAPE="rect" COORDS="290,107 324,166" HREF="ovary.html">
<AREA SHAPE="rect" COORDS="279,504 300,530" HREF="stigma.html">
<AREA SHAPE="rect" COORDS="275,383 291,501" HREF="style.html">
<AREA SHAPE="poly" COORDS="183,366 109,491 120,496 186,375" HREF="filament.html">
<AREA SHAPE="poly" COORDS="311,392 339,564 349,561 319,383" HREF="filament.html">
<AREA SHAPE="poly" COORDS="264,396 261,541 268,536 271,397" HREF="filament.html">
<AREA SHAPE="rect" COORDS="333,561 363,581" HREF="anther.html">
<AREA SHAPE="rect" COORDS="255,538 280,563" HREF="anther.html">
<AREA SHAPE="rect" COORDS="95,496 120,521" HREF="anther.html">
<AREA SHAPE="poly" COORDS="287,158 328,168 328,208 314,183 280,176" HREF="tube.html">
<AREA SHAPE="poly" COORDS="325,230 315,186 200,160 232,204 325,237" HREF="sepals.html">
<AREA SHAPE="poly" COORDS="332,233 371,264 403,334 406,371 422,372 424,323 375,246 329,227" HREF="sepals.html">
<AREA SHAPE="poly" COORDS="211,205 348,249 403,366 343,399 159,344" HREF="corolla.html">
</MAP>

</BODY>

</HTML>

The resulting page is:

Try It Out − Client−side Maps and Server−side Includes

653

How It Works

The #echo server−side include inserts the current date and time of the file into the page.

The #exec server−side include executes the fortune program (actually the fortune program in the cgi−bin
directory that was provided with the Apache server we got), and inserts its text into the page. We enclose this
in <PRE></PRE> tags to preserve the formatting, which is important in many fortune cookies. Since this is
invoked each time the page is fetched, and fortune returns a pseudo random fortune, this will change on
virtually every request for the page.

Finally, the client−side map allows the user to click on different parts of the image.

Tips for Setting up WWW Pages

Lastly, here are some tips for setting up Web pages:

Remember that documents can be linked. You don't need to include all the detail in a single
document. Hide some detail behind hypertext links.

•

Don't break your documents into many tiny pieces. If you split your documents up with too little
information on each page they become fragmented and difficult to follow.

•

Stick to the HTML standards. Just because your favorite browser has implemented some extension to
the standard, it doesn't mean you have to use it. Not everybody will be using the same browser. Be
conservative in what you expect browsers to support.

•

Check your HTML. There are several very good HTML checkers freely available. Use them to make
sure your HTML is correct.

•

Take care with images. If you put very large graphics on your pages, people using slow modem links
will experience much frustration waiting for the graphic to arrive. Remember a modem link is a lot
slower than browsing on the server machine.

•

Use the ALT attribute of the tag. This allows people with non−graphical browsers (and those
who have disabled graphics to speed up browsing) to view your pages. Remember that not everybody
will be able to see the picture, and test the document without graphics on your machine to make sure
it still looks all right.

•

The title of a document is often used as a bookmark to refer to the location afterwards. Keep it
succinct but accurate.

•

How It Works

654

You can find many more hints, tips and rules in various style guides available on the Internet.

Summary

In this chapter, we've learned the basics of HTML, the markup language used to write pages that appear on the
World Wide Web.

We've seen how to incorporate images on pages and how to link pages together, not just on a local site but
across the Internet.

We have discussed checking your HTML to ensure that it's valid and viewable on a wide variety of platforms.

We saw some of the extra features that we can use when HTML pages are being delivered by a server, rather
than read from a local file.

Finally, we gave you some basic tips about writing your own pages.

 Summary

655

Chapter 20: Internet Programming 2: CGI

Overview

In the last chapter, we saw how to set up HTML pages containing information that could be viewed both
locally and across networks. While this is a very good way of publishing information, it is all essentially static
information. To supply dynamic information we need to allow the user, through the web page, to interact with
programs on the server in a dynamic way.

In this chapter, we'll learn how to allow the viewer to send information back to the server, and how the server
can pass this information to programs, which can then respond to the client in a dynamic way. We are only
going to look at server side processing, that is where code executes away from the client. We are also going to
concentrate on stand alone server side programs, rather than scripts embedded in web pages, such as are used
by PHP.

It is also possible to write client side programs, usually referred to as Dynamic HTML (DHTML), where
scripts execute on the client, a topic we are not going to pursue here.

The interface specification that defines how information can be passed from browsers back to the server is
called the Common Gateway Interface, usually abbreviated to CGI. The program accepting such
information from a browser, commonly referred to as a CGI program, can process this information and use
the HTTP protocol to send commands or dynamic documents back to the browser.

Before we can look at the CGI, we need to look at an HTML construct we haven't yet encountered, the FORM
element.

FORM Elements

In the HTML that we've seen so far, all the tags have been concerned with controlling the way information is
structured for display to the client, but haven't provided for any input from the browser, other than the
selection of hypertext links.

We can set up fields that allow user input using the <FORM> tag. This is a composite tag. It can contain
several other tags that are only valid inside a form. The <FORM> tag and its embedded tags, the form
elements, have the following syntax:

<FORM ACTION= METHOD= ENCTYPE= >
 <INPUT NAME= TYPE= VALUE= SIZE= MAXLENGTH= CHECKED>

656

 <SELECT NAME= SIZE= MULTIPLE>
 <OPTION SELECTED VALUE= >
 </SELECT>
 <TEXTAREA NAME= ROWS= COLS= > </TEXTAREA>
</FORM>

In addition, we can also use the more common tags that we met in the last chapter inside the <FORM> tag.
Notice that almost all the tags have a NAME attribute, which will be used by the server. We'll return to the
processing of the NAME attribute when we look at general processing of forms by the server later in the
chapter.

As you can see, <FORM> is a quite complex tag. Let's look at each element in turn.

The FORM Tag

The <FORM> tag starts an HTML form. It takes three attributes:

The ACTION attribute specifies the URL of the program to invoke to process this form.•
The METHOD attribute takes either the value GET or the value POST.•
The ENCTYPE attribute is usually omitted, unless you wish to include a file to be sent with the form.
If this is the case then the attribute is set to "multipart/form−data", but this is not commonly used. If
you are just submitting the form then use x−www−form−urlencoded which is the default.

•

Collectively, these attributes control how information is to be passed back to the server. The ACTION value
must point to a program that can be invoked on the server; these are normally stored in a separate subdirectory
of the HTTP server from normal pages, almost always called cgi−bin. The METHOD attribute controls how
information is transmitted to the program on the server. We'll return to programs in cgi−bin and the
METHOD attribute later.

The INPUT Tag

The <INPUT> tag defines input types. The appearance and behavior of the input is controlled with the TYPE
attribute. Supported values for the TYPE attribute include:

TEXT

When the TYPE attribute takes the value TEXT, the browser will display a single line box into which we can
enter text. The NAME attribute gives the field a name, which will be used when the form is processed on the
server. The SIZE attribute gives the size of the field on the web page; MAXLENGTH gives the maximum
input size allowed. If this is larger than SIZE, the field will scroll to allow input. The VALUE attribute allows
a default string to be entered in the field when it's first displayed.

Here's a fragment of HTML, illustrating the TEXT style of input:

Please enter your

salutation: <INPUT TYPE=TEXT NAME=sal SIZE=5 MAXLENGTH=10 VALUE="Mr. ">

first name: <INPUT TYPE=TEXT NAME=fname SIZE=20 MAXLENGTH=30>

second name: <INPUT TYPE=TEXT NAME=sname SIZE=20 MAXLENGTH=30>

 The FORM Tag

657

PASSWORD

The PASSWORD value is the same as the TEXT value, except that the contents of the field can't be seen in
the browser. It's not very secure as a password, because the contents of the field are passed as plain text to the
server, so anyone intercepting the transfer of the form information to the server will be able to read the
password. However, it's useful to prevent other people from seeing what's being typed into the field.

Here's a fragment of HTML, illustrating the PASSWORD type:

Password: <INPUT TYPE=PASSWORD NAME=passwd SIZE=8>

HIDDEN

Setting TYPE=HIDDEN results in a text field that the user doesn't see on the browser screen and can't enter
information into. This is used by server programs. Like the PASSWORD type, it's not very secure.

Here's a fragment of HTML, illustrating a HIDDEN field:

<INPUT TYPE=HIDDEN NAME=camefrom VALUE="foo/bar/baz.html">

CHECKBOX

The CHECKBOX type allows the user to select several of a number of options. Checkbox fields are grouped
by specifying several of them with the same NAME attribute. The browser will allow the user to select from
the set of checkbox fields having the same name.

The additional attribute CHECKED provides default selections. The VALUE attribute is used in returning the
information to the server. To allow the user to see what's being selected, you should associate some text with
each checkbox.

Here's a fragment of HTML, illustrating the CHECKBOX type of field. It shows the user a list of areas of the
world and allows multiple selections:

<FORM ACTION="program" METHOD=POST>

Please indicate which areas of the world you would like
to visit:

<INPUT TYPE=CHECKBOX NAME=cb VALUE="1">Asia

<INPUT TYPE=CHECKBOX NAME=cb VALUE="2" CHECKED>Africa

<INPUT TYPE=CHECKBOX NAME=cb VALUE="3">North America

<INPUT TYPE=CHECKBOX NAME=cb VALUE="4">South America

<INPUT TYPE=CHECKBOX NAME=cb VALUE="5">Antarctica

<INPUT TYPE=CHECKBOX NAME=cb VALUE="6">Europe

<INPUT TYPE=CHECKBOX NAME=cb VALUE="7" CHECKED>Australasia

</FORM>

RADIO

The RADIO type of <INPUT> tag is very similar to the CHECKBOX type, except that only one option may
be chosen and only one of a set may be marked CHECKED. If no default is specified, the browser will make
the first of the set checked when the radio buttons are first shown.

The INPUT Tag

658

Here's a fragment of HTML, illustrating the RADIO type of field. It again shows the user a list of areas of the
world, but, this time, allows only one to be selected:

<FORM ACTION="program" METHOD=POST>

Please indicate in which area of the world you
live:

<INPUT TYPE="RADIO" NAME=cb VALUE="1">Asia

<INPUT TYPE="RADIO" NAME=cb VALUE="2">Africa

<INPUT TYPE="RADIO" NAME=cb VALUE="3" CHECKED>North America

<INPUT TYPE="RADIO" NAME=cb VALUE="4">South America

<INPUT TYPE="RADIO" NAME=cb VALUE="5">Antarctica

<INPUT TYPE="RADIO" NAME=cb VALUE="6">Europe

<INPUT TYPE="RADIO" NAME=cb VALUE="7">Australasia

</FORM>

IMAGE

The IMAGE type of <INPUT> tag allows the selection of an (x,y) coordinate from an image, giving a similar
input type to image maps. It's very rarely used as image maps are almost always preferred, so we won't
consider it further here.

SUBMIT

The SUBMIT type causes a button to be displayed by the browser. When this button is selected, the contents
of the form are sent back to the server for processing. Almost all forms have a SUBMIT button, the label for
which is given by the VALUE attribute.

Here's an example:

<INPUT TYPE=SUBMIT NAME=processnow VALUE="Submit Form">

RESET

TYPE=RESET also causes a button to be displayed by the browser. When this button is selected, the form
elements are reset to the values displayed when the form was first loaded. This is done by the browser and
doesn't cause any interaction with the server. The RESET type can also take a VALUE attribute. Here's an
example:

Clear the form: <INPUT TYPE=RESET VALUE="Reset Form">

The SELECT Tag

The <SELECT> tag allows the user to select from a list of values. It has the attributes NAME, MULTIPLE
and SIZE.

The NAME attribute, as usual, is used when information is returned to the server. The attribute MULTIPLE
allows more than one option to be selected, but only one option can be seen at a time. It's not often used,
because checkboxes are often a better choice. The SIZE attribute specifies the number of items that may be
selected. The default is one and gives a selection list from which one element can be selected.

Each item in a <SELECT> tag is specified with an <OPTION> tag, with the attribute VALUE giving the
value returned to the server when a selection is made. The optional attribute SELECTED specifies a default

The INPUT Tag

659

value.

An example of the SELECT tag is:

<SELECT NAME="Speed">
<OPTION VALUE="vslow">9600 or slower
<OPTION VALUE="slow">14400
<OPTION SELECTED VALUE="OK">28800
<OPTION VALUE="quick">better than 28000
</SELECT>

The TEXTAREA Tag

The <TEXTAREA> tag allows multiple input lines to be entered and returned to the server. In addition to the
usual NAME attribute, it has ROWS and COLS attributes to specify the size of the area. Browsers usually
take the ROWS and COLS to specify the visible size of the text area and add scroll bars to allow text input
outside this area.

Here's an example of <TEXTAREA>:

Enter your address:

<TEXTAREA NAME="address" ROWS=5 COLS=50>
</TEXTAREA>

If text is entered between the opening and closing <TEXTAREA> tags, it appears as default text in the text
area when the page is displayed.

A Sample Page

In preparation for the rest of the chapter and to summarize the last section, it's time for a Try It Out. Imagine,
if you will, a virtual travel agent, where you ask for information on the various parts of the world you might
like to visit, and give your modem speed (to determine the graphical content of the brochures). The part of the
world you live in determines which branch of the company handles your request.

Try It Out − A Simple Query Form

Start with a basic HTML template, like the one below, and save it as cgi1.html.

<!DOCTYPE HTML PUBLIC "−//W3C//DTD HTML 4.0 Transitional//EN"
 "http://www.w3.org/TR/REC−html40/loose.dtd">
<HTML>
<HEAD>
<TITLE>A Simple HTML Form Document</TITLE>
</HEAD>
<BODY>
<H1>A demonstration of an HTML form</H1>
<P>

</P>
</BODY>
</HTML>

1.

Now for the FORM element which fills the rest of the page. It starts with the TEXT and PASSWORD
type elements:

2.

 The TEXTAREA Tag

660

<FORM ACTION="program" METHOD=GET>

Enter your name: <INPUT NAME=name TYPE=TEXT SIZE=20 MAXLENGTH=40>
and password: <INPUT NAME=passwd TYPE=PASSWORD SIZE=8 MAXLENGTH=8>

For all the different parts of the world the customer might want to visit, we provide a series of
checkboxes:

Please indicate which areas of the world you would like
to visit:

<INPUT TYPE="CHECKBOX" NAME=cb VALUE="1">Asia
<INPUT TYPE="CHECKBOX" NAME=cb VALUE="2">Africa
<INPUT TYPE="CHECKBOX" NAME=cb VALUE="3">North America
<INPUT TYPE="CHECKBOX" NAME=cb VALUE="4">South America
<INPUT TYPE="CHECKBOX" NAME=cb VALUE="5">Antarctica
<INPUT TYPE="CHECKBOX" NAME=cb VALUE="6">Europe
<INPUT TYPE="CHECKBOX" NAME=cb VALUE="7">Australasia

3.

To save a little time, you can copy and modify the last section to use radio buttons to find out the
customer's home continent:

Please indicate in which area of the world you
live:

<INPUT TYPE="RADIO" NAME=rb VALUE="1">Asia

<INPUT TYPE="RADIO" NAME=rb VALUE="2">Africa

<INPUT TYPE="RADIO" NAME=rb VALUE="3" CHECKED>North America

<INPUT TYPE="RADIO" NAME=rb VALUE="4">South America

<INPUT TYPE="RADIO" NAME=rb VALUE="5">Antarctica

<INPUT TYPE="RADIO" NAME=rb VALUE="6">Europe

<INPUT TYPE="RADIO" NAME=rb VALUE="7">Australasia

4.

Now we use the <SELECT> tags for finding out the user's modem speed:

Please indicate your modem speed:
<SELECT NAME="Speed">
<OPTION value="none">No modem
<OPTION value="vslow">9600 or slower
<OPTION value="slow">14400
<OPTION SELECTED value="OK">28800
<OPTION value="quick">better than 28000
</SELECT>

5.

Use the TEXTAREA input type for the customer's address:

Please enter your address:

<TEXTAREA NAME="address" ROWS=5 COLS=50>
</TEXTAREA>

6.

Lastly, the Submit and Reset buttons and the closing <FORM> tag:

<INPUT TYPE=RESET VALUE="Clear fields">
<CENTER>
<INPUT TYPE=SUBMIT VALUE="Send Information">
</CENTER>
</FORM>

7.

Having typed all this in, if you view the form in your web browser, you should see something like:

 The TEXTAREA Tag

661

How It Works

The document starts with conventional HTML, just as we have seen before. We then start a form with the
<FORM> tag. For now, we're not concerned with the ACTION and METHOD attributes.

We then ask the user to enter a name and password, using the TEXT and PASSWORD type <INPUT> tags.
Since we didn't specify any line breaks, the text simply continues on the same line.

We then break the text with the
 tag, provide a prompt and use a CHECKBOX type of <INPUT> tag to
allow the user to select multiple entries. We use the same NAME=cb field in each of the <INPUT> tags, to
tell the browser that these entries should be grouped together.

After another paragraph break, we use a group of RADIO type <INPUT> tags to allow the user to select a
single option. Again, we group them together by using the same NAME=rb for each of the buttons in group.
We also use the CHECKED attribute to specify a default.

The modem speed element demonstrates a different type of selection, the SELECT type. The appearance of
this element changes significantly depending on the platform the browser is running on. The one shown here
is the OSF/Motif style SELECT.

We then use <TEXTAREA> tags to prompt the user for some free form information, in this case a postal
address.

Finally, we provide a reset button for clearing the form to default values and a submit button for sending the
information to the server. Note that the <CENTER> tag used here is depreciated in HTML 4, but serves our
purpose, since we wish to stick to the basics of HTML, rather than getting involved in more complex issues
such as style sheets and XHTML.

How It Works

662

Sending Information to the WWW Server

Now that we've seen how to program a browser to allow the user to enter information and send it back to the
server, we need to look at the other side of the system, how the information is transmitted to the server and
how it's processed once there.

When the Submit button is selected, the browser encodes all the information in the form and sends it to the
server using the HTTP protocol. The server software is then responsible for invoking the appropriate program
on the server computer and passing the information to it. The program on the server is often called a CGI (or
cgi−bin) program, since the interface between the WWW server software and the program is defined by the
CGI specification. There are alternatives to invoking a separate program, common called 'in−process'
handling. In−process handling is the purpose of the ISAPI interface to IIS, the NSAPI interface to Netscape
server, and also they way Java servlets execute. At the end of this chapter we will see our own 'in−process'
handling, where we see how to embed a Perl interpreter in the Apache web server, so we can write cgi Perl
programs, without having to invoke Perl each time a cgi program needs executing.

Information Encoding

We've already met the ENCTYPE attribute of the <FORM> tag that specifies the encoding used to return
information to the server. In HTML , this is normally omitted, as the default of
application/x−www−form−urlencoded usually the encoding required.

When the data in a form is prepared for transmission to a server, a sequence of transformations is applied to
encode the data:

The form field names and values are 'escaped'. This means that in each field and value pair, spaces are
replaced with + characters. Non−alphanumeric characters are replaced by their hexadecimal digits, in the form
%HH, where HH is the ASCII hex value of the character. Line breaks are encoded as %0D%0A.

The fields are listed in the order they appear in the form, with the name and value fields joined by an =
character. The name/value field pairs are then joined together with & characters. The ; character is often
accepted in place of the & character, although this is not part of the standard.

This encoding replaces the form information with a single stream of characters (with no whitespace) holding
the all the information entered into the form.

Server Program

We now need to look at the programs on the server. These are normally stored in a subdirectory of the main
HTTP server, called cgi−bin (since they are binary programs that implement the CGI interface). The program
to be invoked is specified by the ACTION attribute of the <FORM> tag, like this:

<FORM ACTION="/cgi−bin/myprogram" METHOD=POST>

Security

A word of warning about security is appropriate at this point. When you allow people to send form
information to your server, you're allowing them to specify some arbitrary data and pass it to a program
they're invoking on your server. This is potentially a security problem. Depending on how the CGI program
handles the data and if you allow it to invoke other programs, some people may find ways of starting

 Sending Information to the WWW Server

663

programs you did not wish them to run. Look for the latest version of the WWW security FAQ and be very
careful about allowing programs in cgi−bin to invoke any other programs.

For starters, here are a few tips on things to avoid:

Don't trust the client. You have no control over which browser they're using and what it allows to be
sent to your program.

•

Don't use the shell or Perl eval statement in CGI programs, since it potentially allows an arbitrary
string to be used to invoke a command shell.

•

Be careful invoking other programs, especially using popen and system, which might allow the client
to cause the wrong program to be invoked by clever use of the input data.

•

Having said that, there are many, many, Internet service providers offering WWW services allowing
customers to write their own CGI programs, with very few scare stories about unauthorized access. You
should be aware of the security problem, but don't let it stop you setting up a Web server!

Writing a Server−side CGI Program

There are almost no restrictions on what language you can use to write CGI programs. In this chapter, we'll
mostly use C, but it's perfectly possible to write CGI programs using shell scripts, Tcl and possibly the most
popular option, Perl.

A server program can receive information in three ways: through environment variables, from the command
line and from the standard input. The method used is controlled by the METHOD attribute of the <FORM>
tag.

Where METHOD=GET, the encoded form information is normally passed to the CGI program on the
command line. This can cause problems on some systems where there may be a limit on the amount of such
information that can be passed. Instead, for all but the simplest requests, many servers pass this information in
the environment variable QUERY_STRING rather than the command line.

Where METHOD=POST, the form information is made available for reading on the standard input.

Important Historically, the GET method was used for forms that 'had no side effects', normally in
forms implementing a query on the server, and the POST method for more complex
forms that could result in changes on the server.

There's a special way of passing information to a CGI program without using a form at all. This is to append
the information to the URL, separated by a ? character. We'll see more of this later.

Environment Variables

Several important pieces of information are passed to the CGI program as environment variables. These are
the same whatever the method of transferring the form data. The standard variables are:

Variable Name Description

SERVER_SOFTWARE Information about the server software that received the request and invoked the
program.

SERVER_NAME The server's hostname, or IP address.

GATEWAY_INTERFACE The revision of the CGI specification that the server implements.

 Writing a Server−side CGI Program

664

SERVER_PROTOCOL The revision of the protocol used when the request was received from the
client.

SERVER_PORT The port on which the request was received. This is normally 80 for WWW
servers.

REQUEST_METHOD This is the method used to make the request, GET or POST.

PATH_INFO Some additional information about the path to the CGI program.

PATH_TRANSLATED The physical path to the CGI program.

SCRIPT_NAME The name of the script being executed.

REMOTE_HOST The name of the host computer the request came from.

REMOTE_ADDR The IP address of the host the request came from.

AUTH_TYPE, These are used where the server supports user authentication.

REMOTE_USER

REMOTE_IDENT The remote user name. This is not reliable and is rarely used.

CONTENT_TYPE The content type of the information being transferred. This is usually
application/x−wwwform−urlencoded.

CONTENT_LENGTH The number of bytes of data being passed to the program. This should always
be used in preference to looking for a null terminator or end of file when
reading input where METHOD=POST.

The CONTENT_TYPE and CONTENT_LENGTH may not be set when METHOD=GET.

In addition, some servers may add further variables. These should start with HTTP_ to avoid clashes with
names that may be added by later versions of the HTTP protocol and CGI specification.

The Apache server, and many others, also provide:

QUERY_STRING This contains the information passed to the CGI
program for METHOD=GET, or where the
information was passed as part of the URL.

Putting it all Together

We now know almost enough to write our first CGI program, which will show the values of the environment
variables when the client request was made. There are libraries that can do this for you, but it's instructive to
show how it would be done by hand, since that will help you to understand the principles involved.

We don't yet quite understand how, after processing the information from the client, our CGI program can
return a result to it. In actual fact the standard output of the cgi program is fed back to the browser, but before
we can send HTML to the client we must send some HTTP header information. For now, it's enough to know
that writing Content−type: text/plain and a blank line followed by the text you wish to display is sufficient for
the browser to display simple text on the screen.

We'll use a shell program for this example, because that's the easiest method for the processing we need at this
stage.

Try It Out − Our First CGI Program

We're going to write cgi1.sh, so we'll comment that into the header:

#!/bin/sh

1.

Writing a Server−side CGI Program

665

cgi1.sh
A simple script for showing environment variable information passed to a CGI program.

We start the output to the browser with the two lines that we were given above:

echo Content−type: text/plain
echo

2.

Next, we want to display the arguments:

echo argv is "$*".
echo

3.

Then we show the environment variables under which the CGI request was made, the meat of this
first program:

echo SERVER_SOFTWARE=$SERVER_SOFTWARE
echo SERVER_NAME=$SERVER_NAME
echo GATEWAY_INTERFACE=$GATEWAY_INTERFACE
echo SERVER_PROTOCOL=$SERVER_PROTOCOL
echo SERVER_PORT=$SERVER_PORT
echo REQUEST_METHOD=$REQUEST_METHOD
echo PATH_INFO=$PATH_INFO
echo PATH_TRANSLATED=$PATH_TRANSLATED
echo SCRIPT_NAME=$SCRIPT_NAME
echo REMOTE_HOST=$REMOTE_HOST
echo REMOTE_ADDR=$REMOTE_ADDR
echo REMOTE_IDENT=$REMOTE_IDENT
echo QUERY_STRING=$QUERY_STRING
echo CONTENT_TYPE=$CONTENT_TYPE
echo CONTENT_LENGTH=$CONTENT_LENGTH
 exit 0

4.

We need to change our HTML example page (let's call it cgi2.html) so that the request references our
shell script. To do this, we just need to change the ACTION attribute, right after the HTML header:

<FORM ACTION="/cgi−bin/cgi1.sh" METHOD=POST>

5.

Lastly, since we must access these scripts via our WWW server in order for the CGI program to be
invoked correctly, we must now copy the files into the appropriate directories. For the cgi1.sh
program, this should be in the cgi−bin subdirectory of the server setup, for the HTML it's with the
other HTML files. We must also ensure the cgi1.sh program is executable.

6.

We can now access our form via the server. When we press the Submit button on the form, this is what we
see:

Writing a Server−side CGI Program

666

How It Works

When the user presses the Submit button, the form data is sent to the server which then invokes the cgi1.sh
program. cgi1.sh uses the standard output to return data to the browser for it to display. Notice that ACTION
has what appears to be an absolute path in it, but the server automatically prepends the location of the server
files before invoking the program.

Note that we can't yet see any of the actual data from the elements on the form yet, just the environment in
which the program was invoked.

We can now slightly extend the CGI script, to try and access the data being passed to the program. Since we
used METHOD=POST, this data will appear on the standard input.

Try It Out − Reading the Data

Save a copy of cgi1.sh as cgi2.sh. We'll now make a very simple change to our script to read and return the
input. Add the following code to the end of the script:

echo The data was:
read x
while ["$x" != ""]; do
 echo $x
 read x
done

We also change the ACTION attribute of our HTML form (call it cgi2.html) to reference the new CGI
program, cgi2.sh.

When we submit the screen like this:

Writing a Server−side CGI Program

667

The output we get is:

How It Works

We now read the entire standard input stream and return it to the browser. Remember that simply reading the
standard input until it stops isn't an officially supported method of accessing the data. It does, however, serve
our purposes here as an example.

Important Real programs should always use the CONTENT_LENGTH environment
variable to determine the amount of data to process. This is the way the CGI
specification states the length must be determined, perhaps for environments that
don't have an easy way of detecting end−of−file on the standard input.

There are two important things to notice in the information the CGI program received:

The data has been encoded so that it forms a continuous string with no whitespace.•
There's no information about the checkbox part (where would you like to visit) of the form. This is
because no boxes were checked, so the browser was free to omit that part of the data. This is an
advantage in many ways, because it reduces the amount of data being transferred across the network,
but it's important that form decoding software takes account of the possibility of empty fields being

•

Writing a Server−side CGI Program

668

omitted. Browsers may arbitrarily suppress unused fields.

Try It Out − Using the GET Method

To complete our look at HTML forms, change the METHOD type to GET in our HTML sample, now
cgi3.html. If we now invoke the form, the information is passed to cgi2.sh in a slightly different way, so we
see:

The information is encoded in the same way, but the CONTENT_LENGTH parameter is no longer supplied.
It's now made available in the variable QUERY_STRING, not on the standard input. METHOD=GET is
easier to process, but METHOD=POST is to be preferred for all but the simplest forms.

CGI Programs Using Extended URLs

Before we move on to decoding the data passed to the CGI program, we'll look at the remaining way of
sending data to a CGI program: appending it to a URL. The server program separates the main part of the
URL (the bit before the ?) and uses it as the program to invoke. It passes the remaining part of the URL as an
argument to the program, as though it had come from a form.

Try It Out − A Query String

Invoke cgi2.sh again, this time using the URL:

http://localhost/cgi−bin/cgi2.sh?Andrew+Stones=10

Now the CGI program sees:

Writing a Server−side CGI Program

669

This method of passing information to CGI programs is often used where the server has generated the HTML
that the client is viewing and wishes to encode some extra data inside it. An example would be Web pages
that require user authentication. Since each request for a page is treated separately by the server, in theory, the
user would have to enter their password every time a page was accessed. Instead, the user is given a special
URL to access which encodes the user name and password or an authenticated pass key.

Suppose a user, Jenny Stones, with a password secret (obviously not a very worldly−wise user...), wishes to
access the weather page of an online newspaper that asks her to register before she can have access. Rather
than presenting her with a form that asks for her name and password, the page could ask her to enter a special
URL of the format:

http://www.paper.com/cgi−bin/access?user=Jenny+Stones&passwd=secret&page=weather

Although this looks a bit cumbersome, it can be stored as a browser bookmark or shortcut and then accessed
with a single selection. There is then no need to re−enter the name and password each time the page is
accessed. It also saves Jenny Stones having to remember or write down the user name and password for all the
online services to which she has access.

The drawback is that the password is stored as plain text, so this isn't a secure way of storing names and
passwords or passing them across the network. In practice a feature called 'cookies' is often used to store a
users access rights to a site, which saves them having to remember passwords. The drawback is that the
cookie is stored by the browser on the local machine, so if you register at home, and get a cookie stored on
your home PC, it's got going to help you access the site if you browse it from work on a different PCs. We
will not be looking at cookies further in this chapter.

Decoding the Form Data

We've seen how to access the data returned by a form, so now we must decode it into a more usable format.
This can be quite involved. However, when you've solved the problem once, you can reuse the decoding
software again and again. There are already programs that decode form data available on the Internet, in a
range of languages including Tcl, Perl, C and C++. Some of the examples are in the public domain, others
have slightly more restrictive licenses.

Not to worry; we're going to decode the data using our own program. To do this, we need to perform the
opposite of the encode and in the reverse order. Since we already know the encoding rules, it's just a case of
writing the software to implement them. Let's call our first attempt decode1.c. To keep things simple, we will

 Decoding the Form Data

670

impose some fixed limits on the number and sizes or parameters we can process.

Try It Out − A CGI Decode Program in C

After adding in the standard headers and a couple of constants, we define a data structure,
name_value_st, which can hold one field name and one value of that field. Then we declare the
prototypes of the functions that we're going to use later.

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define FIELD_LEN 250 /* how long each name or value can be */
#define NV_PAIRS 200 /* how many name=value pairs we can process */

typedef struct name_value_st {
 char name[FIELD_LEN + 1];
 char value[FIELD_LEN + 1];
} name_value;
name_value name_val_pairs[NV_PAIRS];

static int get_input(void);
static void send_error(char *error_text);
static void load_nv_pair(char *tmp_buffer, int nv_entry_number_to_load);
static char x2c(char *what);
static void unescape_url(char *url);

1.

On its own, the main function doesn't do a great deal. It calls get_input to set the ball rolling by
loading the name_val_pairs structure and sends the decoded information back to the client, starting
with the Content−type and a blank line:

int main(int argc, char *argv[])
{
 int nv_entry_number = 0;

 if (!get_input()) {
 exit(EXIT_FAILURE);
 }

 printf("Content−type: text/plain\r\n");
 printf("\r\n");

 printf("Information decoded was:−\r\n\r\n");
 while(name_val_pairs[nv_entry_number].name[0] != '\0') {
 printf("Name=%s, Value=%s\r\n",
 name_val_pairs[nv_entry_number].name,
 name_val_pairs[nv_entry_number].value);
 nv_entry_number++;
 }
 printf("\r\n");
 exit(EXIT_SUCCESS);
}

2.

Next, we define a function get_input that does just what it says. We need to discover whether the
request is of type POST or GET and then copy the input to a data block called ip_data:

static int get_input(void)
{
 int nv_entry_number = 0;
 int got_data = 0;

3.

Try It Out − A CGI Decode Program in C

671

 char *ip_data = 0;
 int ip_length = 0;
 char tmp_buffer[(FIELD_LEN * 2) + 2];
 int tmp_offset = 0;
 char *tmp_char_ptr;
 int chars_processed = 0;

 tmp_char_ptr = getenv("REQUEST_METHOD");
 if (tmp_char_ptr) {
 if (strcmp(tmp_char_ptr, "POST") == 0) {
 tmp_char_ptr = getenv("CONTENT_LENGTH");
 if (tmp_char_ptr) {
 ip_length = atoi(tmp_char_ptr);
 ip_data = malloc(ip_length + 1); /* allow for NULL character */
 if (fread(ip_data, 1, ip_length, stdin) != ip_length) {
 send_error("Bad read from stdin");
 return(0);
 }
 ip_data[ip_length] = '\0';
 got_data = 1;
 }
 }
 }

 tmp_char_ptr = getenv("REQUEST_METHOD");
 if (tmp_char_ptr) {
 if (strcmp(getenv("REQUEST_METHOD"), "GET") == 0) {
 tmp_char_ptr = getenv("QUERY_STRING");
 if (tmp_char_ptr) {
 ip_length = strlen(tmp_char_ptr);
 ip_data = malloc(ip_length + 1); /* allow for NULL character */
 strcpy(ip_data, getenv("QUERY_STRING"));
 ip_data[ip_length] = '\0';
 got_data = 1;
 }
 }
 }

 if (!got_data) {
 send_error("No data received");
 return(0);
 }

 if (ip_length <= 0) {
 send_error("Input length not > 0");
 return(0);
 }

By getting to this point, we know that we have the encoded data stored in ip_data. Next, we need to
extract the NAME and VALUE components of the HTML submission and decode them individually.
We know that & symbols represent the breaks between NAME=VALUE pairs, so we use them to
split them up and pass the result to the function load_nv_pair to decode them one at a time.

 memset(name_val_pairs, '\0', sizeof(name_val_pairs));
 tmp_char_ptr = ip_data;
 while (chars_processed <= ip_length && nv_entry_number < NV_PAIRS) {

 /* copy a single name=value pair to a tmp buffer */
 tmp_offset = 0;
 while (*tmp_char_ptr &&
 *tmp_char_ptr != '&' &&

4.

Try It Out − A CGI Decode Program in C

672

 tmp_offset < FIELD_LEN) {
 tmp_buffer[tmp_offset] = *tmp_char_ptr;
 tmp_offset++;
 tmp_char_ptr++;
 chars_processed++;
 }
 tmp_buffer[tmp_offset] = '\0';

 /* decode and load the pair */
 load_nv_pair(tmp_buffer, nv_entry_number);

 /* move on to the next name=value pair */
 tmp_char_ptr++;
 nv_entry_number++;
 }
 return(1);
}

You'll notice that we pass all errors to a function called send_error, which sends an error string back
to the client. It's not too difficult, so we'll define it next:

static void send_error(char *error_text)
{
 printf("Content−type: text/plain\r\n");
 printf("\r\n");
 printf("Woops:− %s\r\n", error_text);
}

5.

The actual decoding is handled by the function load_nv_pair, which we called in get_input. It breaks
down the NAME=VALUE pairs further and places the NAME and VALUE into separate sections of
our data structure and then calls another function, unescape_url, to continue the decoding.

/* Assumes name_val_pairs array is currently full of NULL characters */
static void load_nv_pair(char *tmp_buffer, int nv_entry)
{
 int chars_processed = 0;
 char *src_char_ptr;
 char *dest_char_ptr;

 /* get the part before the '=' sign */
 src_char_ptr = tmp_buffer;
 dest_char_ptr = name_val_pairs[nv_entry].name;
 while(*src_char_ptr &&
 *src_char_ptr != '=' &&
 chars_processed < FIELD_LEN) {

 /* Change a '+' to a ' ' */
 if (*src_char_ptr == '+') *dest_char_ptr = ' ';
 else *dest_char_ptr = *src_char_ptr;
 dest_char_ptr++;
 src_char_ptr++;
 chars_processed++;
 }

 /* skip the '=' character */
 if (*src_char_ptr == '=') {

 /* get the part after the '=' sign */
 src_char_ptr++;
 dest_char_ptr = name_val_pairs[nv_entry].value;
 chars_processed = 0;
 while(*src_char_ptr &&

6.

Try It Out − A CGI Decode Program in C

673

 *src_char_ptr != '=' &&
 chars_processed < FIELD_LEN) {
 /* Change a '+' to a ' ' */
 if (*src_char_ptr == '+') *dest_char_ptr = ' ';
 else *dest_char_ptr = *src_char_ptr;
 dest_char_ptr++;
 src_char_ptr++;
 chars_processed++;
 }
 }

 /* Now need to decode %XX characters from the two fields */
 unescape_url(name_val_pairs[nv_entry].name);
 unescape_url(name_val_pairs[nv_entry].value);
}

The function unescape_url then decodes the special (non−alphanumeric) characters in the text from
their %HH representation by running through the array and calling the function x2c:

/* this routine borrowed from the examples that come with the NCSA server */
static void unescape_url(char *url)
{
 int x,y;
 for (x=0,y=0; url[y]; ++x,++y) {
 if ((url[x] = url[y]) == '%') {
 url[x] = x2c(&url[y+1]);
 y += 2;
 }
 }
 url[x] = '\0';
}

/* this routine borrowed from the examples that come with the NCSA server */
static char x2c(char *what)
{
 register char digit;
 digit = (what[0] >= 'A' ? ((what[0] & 0xdf) − 'A')+10 : (what[0] − '0'));
 digit *= 16;
 digit += (what[1] >= 'A' ? ((what[1] & 0xdf) − 'A')+10 : (what[1] − '0'));
 return(digit);
}

7.

We compile this program, copy it into the cgi−bin directory and change our HTML form so the FORM
ACTION is now /cgi−bin/decode1 and the METHOD=POST. This is now cgi5.html.

Here's the form information that we submit:

Try It Out − A CGI Decode Program in C

674

After submitting the form, we see:

As you can see, the new line has been preserved.

How It Works

That was quite a large amount of C code, so let's segment it and look at how each piece works. We start by
declaring a structure to hold each of the name/value pairs and then declare a global array to store them in. We
impose some arbitrary limits on the sizes, because it makes the example rather easier to understand. A
real−world program should perhaps use a linked list of nodes, each containing a pointer to a malloced area
with the name and value in it, thus removing the arbitrary size restrictions.

We then call the routine get_input to load the name_val_pairs array. This takes several steps. First we check
which method was used to post the data and transfer the data into some space pointed to by ip_data. Now the
data is in a single place, we can use the same code to process both GET and POST methods.

The first stage is to break the single string so we can work on a single name=value string at a time. Remember
that these are separated by & characters. We then call load_nv_pair once per name/value pair, which splits the
pair by looking for the = character. It also replaces + characters with spaces.

How It Works

675

Once the name and value strings have been separated, we can remove the special coding where characters are
stored as a pair of hex bytes, as %XX. To do this, we use two routines x2c and unescape_url.

The x2c and unescape_url routines appear (usually verbatim) in almost all C and C++ form decoding
software. As far as we can tell, they came originally from the examples provided with the NCSA WWW
server. We've never seen a copyright message on them or any other comment claiming ownership. Since they
are so widely distributed and solve the problem, we use them again here, trusting that the attribution to the
NCSA server software is correct.

Now that we've processed the input, we simply print out the pairs. Notice that we precede our output with a
Content−type line and blank line as before and that all lines are terminated with a carriage return and a new
line.

Returning HTML to the Client

Until now, we've just been sending back plain text to the client from our CGI program. While this works, it
doesn't look very attractive.

We'll now look at generating HTML, so that the CGI program's output looks more like a normal Web page. In
fact, if we're careful, there's no reason why a user should be able to tell the difference between a static HTML
page returned from the server and one dynamically generated by a CGI program.

Because the CGI program has full control over data sent back to the client, it can send many different types of
data, not just text. It does this using the Content−type: control line that we saw earlier, which controls the
MIME type and subtype that the client browser expects to receive. Rather than using the text/plain MIME
type and subtype information that we used for text, we can use a text/html type. This allows us to send HTML
to the client, which it will then decode and display just like a normal HTML page.

We could simply write code like this,

printf("<H1>A heading</H1>\r\n");

but it wouldn't be very elegant. A much better approach is to write some utility functions to cater for some of
the lower level functionality that we need to send HTML tags to the client.

Here are some example lower level routines. The function html_content sends a string to the client to let it
know that we'll be sending HTML to it:

static void html_content(void)
{
 printf("Content−type: text/html\r\n\r\n");
}

html_start then starts the HTML header section, sends a title string and starts the HTML body section:

static void html_start(const char *title)
{
 printf("<HTML>\r\n");
 printf("<HEAD>\r\n");
 printf("<TITLE>%s</TITLE>\r\n", title);
 printf("</HEAD>\r\n");
 printf("<BODY>\r\n");
}

 Returning HTML to the Client

676

We can use two more functions, html_header and html_text, simply as convenient utility routines to print
header text of a specified level and ordinary body text, respectively.

static void html_header(int level, const char *header_text)
{
 if (level < 1 || level > 6) level = 6; /* force the level to a valid number */
 if (!header_text) return;
 printf("<H%d>%s</H%d>\r\n", level, header_text, level);
}

static void html_text(const char *text)
{
 printf("%s\r\n", text);
}

Finally, html_end terminates the HTML.

static void html_end(void)
{
 printf("</BODY>\r\n");
 printf("</HTML>\r\n");
}

Notice that we terminate all lines with both a carriage return and a newline character, rather than the more
usual UNIX convention of terminating lines with a single newline character. A minimal CGI program could
then consist of these routines; something as simple as:

html_content();
html_start("Example");
html_header(1, "Hello World");
html_text("Pleased to be here!");
html_end();

We can modify our earlier program to return HTML information rather than plain text by adding the five
functions defined above to the end of our decode1.c program and making a few other changes. Call it
decode2.c.

Try It Out − Returning HTML to the Client

Add the following function prototypes for the functions that we've just placed at the end. They can go
after the ones that we've already defined:

static int get_input(void);
static void send_error(char *error_text);
static void load_nv_pair(char *tmp_buffer, int nv_entry_number_to_load);
static char x2c(char *what);
static void unescape_url(char *url);
static void html_content(void);
static void html_start(const char *title);
static void html_end(void);
static void html_header(int level, const char *header_text);
static void html_text(const char *text);

1.

Most of the changes happen in the main function, since it deals with almost all the output. Basically,
it's a matter of defining a buffer for the text to be stored in before it gets displayed in HTML format
and then changing the output commands to make use of our new functions:

2.

Try It Out − Returning HTML to the Client

677

int main(int argc, char *argv[])
{
 char tmp_buffer[4096];
 int nv_entry_number = 0;

 if (!get_input()) {
 exit(EXIT_FAILURE);
 }

 html_content();
 html_start("Form decoding test");

 html_header(2, "Information decoded");
 while(name_val_pairs[nv_entry_number].name[0] != '\0') {
 sprintf(tmp_buffer, "Name=%s, Value=%s",
 name_val_pairs[nv_entry_number].name,
 name_val_pairs[nv_entry_number].value);
 html_text(tmp_buffer);
 html_text("

");
 nv_entry_number++;
 }
 html_end();
 exit(EXIT_SUCCESS);
}

The only other function that we need to change is send_error, the output from which must now also be
in HTML format:

static void send_error(char *error_text)
{
 html_content();
 html_start("Woops");
 html_text(error_text);
 html_end();
}

3.

After completing these changes (and changing the reference in the Web page, of course), we get the following
output. Your hard−earned HTML expertise gives a slightly more professional look:

Try It Out − Returning HTML to the Client

678

Tips and Tricks

Here are a few hints and tips that you may find useful in writing your own CGI programs.

Making Sure your CGI Program Exits

During the execution of your CGI program or when it's sending back its response to the client, the client
could exit or the network may fail. If this happens, your program may get into a state where it's waiting to
send output on the standard output that it can never complete. To avoid this, it's wise to ensure that there's a
fail−safe way for the program to exit.

A good way of doing this is to trap the SIGALRM signal when the program starts, then, before doing any
output, call alarm to generate a signal in, say, 30 seconds. Normally, a CGI program will run for a very short
period of time, often less than a second. Thus, if the signal handling routine is ever called, we can assume that
a serious problem has occurred. Since this could well be that output has blocked, it's probably best to just exit
the CGI program, rather than trying to send error information back to the client. Alternatively, if the server
system allows, we could use non−blocking I/O to avoid stalling.

Redirecting the Client

A common trick is for the CGI program to redirect the request to a different Web page, depending on the
information that was passed. It does this by sending status messages back to the client. A range of status codes
are defined, but only a very few are useful in CGI programs. Here we'll consider only status 302, which tells
the client the page has temporarily moved.

Suppose we have a form that asks the user if they like jazz or classical music and, depending on the answer to
the question, we wish to direct the user to different pages. If we generate the resulting page on the fly in the
CGI program, we're now stuck with coding pages in programs, rather than using HTML files.

A much simpler solution is to ask the client to move to a different page. Suppose we decode the information
in a CGI program and end up with a variable result that contains either jazz or classical. We can direct the
client to the appropriate page like this:

printf("Status: 302\r\n");
if (strcmp(result, "jazz") == 0) {
 printf("Location: /jazz.html\r\n");
}
else {
 printf("Location: /class.html\r\n");
}
exit(EXIT_SUCCESS);

Notice that this is the first information we send back, so we don't start the response with a Content−type: line.
When the client sees the Status: 302, it believes the URL it requested has moved to a temporary new home. It
looks for a following Location: line to tell it what that location is. When the Location: line arrives the client
simply requests the specified URL.

 Tips and Tricks

679

Dynamic Graphics

Many WWW pages have an access or hits counter. Since, in general, these appear on pages consisting of
normal HTML, how does the up−to−date graphical access counter get there?

Often, the answer is to use an tag, but to specify the SRC (usually a .gif or .jpg file) as a cgi−bin
program. When the client accesses the base HTML page, it finds the tag and tries to fetch the image
specified. By making the cgi−bin program one that can generate images on the fly, a dynamic image can be
returned.

A full discussion of this is beyond the scope of this chapter, but if you wish to investigate this further, you
should search for a graphics library called gd, which lets you generate graphics from code.

Hiding Context Information

Often, a server would like to pass information between one form and the next. This might be a user's name, a
customer code, or some other information.

Since each form is processed completely separately from any other form, we need to 'hide' information inside
the form. We can do this using the hidden fields that we met earlier in the chapter, or by appending
information to the URL after a ? character.

By declaring one or more hidden fields and giving them a default value when a CGI−generated HTML form
is sent to the client, we can hide the information in the form in a way not immediately visible to the user.
When the user has finished with the form and sends it back to the server, the CGI program can use the values
of the hidden fields to extract the context information.

Notice that the fields are hidden, not secret. The user can still view the information by viewing the source to
the HTML. Hidden fields are not a good place to hide secret passwords!

Data appended to a URL after a ? character is treated as though the user used a form with METHOD=GET.
The CGI program can then decode the additional information and use it as context information. We'll
demonstrate this in the following example application.

An Application

This is what you've been waiting for; we're now going to see how we can adapt our database application to be
accessible over the Web. In this example, we're only going to implement read access to the database. This
allows us to demonstrate the principle of accessing the database through a CGI script, but keeps the
application reasonably simple. You could extend it to allow the database to be updated if you wished.

We'll start with the application that we developed in Chapter 7, using the dbm database, but replacing the
app_ui.c file with a new front end, app_html.c. We'll also use the HTML functions that we wrote earlier in the
chapter.

Try It Out − An HTML Database Interface

This is the full listing of the program app_html.c. The main function starts the database and then calls
one of the other two functions, depending on whether a CD catalog number is specified on the URL
command line:

1.

 Dynamic Graphics

680

#include <stdio.h>
#include <string.h>

#include "cd_data.h"
#include "html.h"

const char *title = "HTML CD Database";
const char *req_one_entry = "CAT";
void process_no_entry(void);

void process_cat(const char *option, const char *title);

void space_to_plus(char *str);

int main(int argc, char *argv[])
{
 if (!database_initialise(0)) {
 html_content();
 html_start(title);
 html_text("Sorry, database could not initialize");
 html_text("

");
 html_text("Please mail <AHREF=\"mailto:webmaster@anyhost.com\">
 webmaster for assistance");
 html_end();
 exit(EXIT_SUCCESS);
 }

 if (!get_input()) {
 database_close();
 html_content();
 html_start(title);
 html_text("Sorry, METHOD not POST or GET");
 html_text("Please mail <AHREF=\"mailto:webmaster@anyhost.com\">
 webmaster for assistance");
 html_end();
 exit(EXIT_SUCCESS);
 }

 html_content();
 html_start(title);

If there was a legitimate query string, display the tracks for that CD. Otherwise, list all the CDs in the
database:

 if (strcmp(name_val_pairs[0].name, req_one_entry) == 0) {
 process_cat(name_val_pairs[0].name, name_val_pairs[0].value);
 }
 else {
 process_no_entry();
 }
 html_end();
 database_close();
 exit(EXIT_SUCCESS);
}

2.

If we get here, no entry has been selected. Show a standard screen, listing all the CDs in the database:

void process_no_entry(void)
{
 char tmp_buffer[120];
 char tmp2_buffer[120];
 cdc_entry item_found;

3.

 Dynamic Graphics

681

 int first_call = 1;
 int items_found = 1;

 html_header(1, "CD database listing");
 html_text("Select a title to show the tracks");
 html_text("

<HR>

");

 while(items_found) {
 item_found = search_cdc_entry("", &first_call);
 if (item_found.catalog[0] == '\0') {
 items_found = 0;
 }
 else {
 sprintf(tmp_buffer, "Catalog: %s", item_found.catalog);
 html_text(tmp_buffer);
 html_text("

");
 strcpy(tmp2_buffer, item_found.catalog);
 space_to_plus(tmp2_buffer);
 sprintf(tmp_buffer, "Title:
 %s", tmp2_buffer, item_found.title);
 html_text(tmp_buffer);
 html_text("

");
 sprintf(tmp_buffer, "Type: %s", item_found.type);
 html_text(tmp_buffer);
 html_text("

");
 sprintf(tmp_buffer, "Artist: %s", item_found.artist);
 html_text(tmp_buffer);
 html_text("

<HR>

");
 }
 }
}

If we get here, the additional parameters have already been parsed:

void process_cat(const char *name_type, const char *cat_title)
{
 char tmp_buffer[120];
 cdc_entry cdc_item_found;
 cdt_entry cdt_item_found;
 int first = 1;
 int track_no = 1;

 if (strcmp(name_type, req_one_entry) == 0) {

4.

This code shows a screen with one entry, defined by cat_title:

 html_header(1, "CD catalog entry");
 html_text("

");
 html_text("Return to: list");
 html_text("

");
 html_text("<HR>");

 cdc_item_found = search_cdc_entry(cat_title, &first);
 if (cdc_item_found.catalog[0] == '\0') {
 html_text("Sorry, couldn't find item ");
 html_text(cat_title);
 }
 else {
 sprintf(tmp_buffer, "Catalog: %s", cdc_item_found.catalog);
 html_text(tmp_buffer);
 html_text("

");
 sprintf(tmp_buffer, "Title: %s", cdc_item_found.title);

5.

 Dynamic Graphics

682

 html_text(tmp_buffer);
 html_text("

");
 sprintf(tmp_buffer, "Type: %s", cdc_item_found.type);
 html_text(tmp_buffer);
 html_text("

");
 sprintf(tmp_buffer, "Artist: %s", cdc_item_found.artist);
 html_text(tmp_buffer);
 html_text("

");
 html_text("");
 cdt_item_found = get_cdt_entry(cdc_item_found.catalog, track_no);
 while(cdt_item_found.catalog[0] != '\0') {
sprintf(tmp_buffer, " %s", cdt_item_found.track_txt);
 html_text(tmp_buffer);
 track_no++;
 cdt_item_found = get_cdt_entry(cdc_item_found.catalog,track_no);
 }
 html_text("");
 html_text("<HR>");
 }
 }
}

This short function lives up to its name by accepting a string and changing any occurrence of the
space character to a + symbol:

void space_to_plus(char *str)
{
 while (*str) {
 if (*str == ' ') *str = '+';
 str++;
 }
}

6.

How It Works

The first part of the process is to check that the database will initialize. If this fails, we print some simple
HTML to allow the user to mail the Webmaster at the site to report the problem. We then check to see
whether there was a query string whose first component name is req_one_entry (which is set to be the string
CAT). If there was, we call the routine process_cat to print out the tracks for a single entry. Otherwise, we call
process_no_entry to list the known CDs in the database.

Information on a particular CD is given by the process_cat function, which we'll look at first, since it's
slightly simpler. First, we send some HTML to add an anchor so the user can click to get back to the list of
CDs. We then call the routine that we developed in Chapter 7, search_cdc_entry, to retrieve the information
for the CD and send some more HTML to display the entry. After the header information, we use
search_cdt_entry to scan the tracks. We list the tracks, using HTML to generate an ordered list, which gives
us numbered entries.

If no catalog entry is selected, the function process_no_entry is invoked and it displays the standard screen
which lists all the CDs in the database. The function searches the database using a blank string so that all the
CDs are found. We then display them using HTML.

The 'clever' part is in the lines:

strcpy(tmp2_buffer, item_found.catalog);
space_to_plus(tmp2_buffer);
sprintf(tmp_buffer, "Title: %s",

How It Works

683

tmp2_buffer, item_found.title);

These create a copy of the catalog entry, but with spaces changed to + characters (as required by the standard
rules for encoding x−www−form−encoded form data). We then generate an anchor line containing both the
catalog name (to display on the screen) and the encoded version, so selecting the link calls the program
cgi−bin/cddb/cdhtml?CAT=CDA66374. Remember that this invokes the cdhtml program, but passes
CAT=CDA66374 in the environment variable QUERY_STRING. The program detects this, decodes it and
uses it to select the process_cat function, with the name set to CAT and the value set to CDA66374, which it
can then use to find and display the track information.

To create the full application, we've still got a little more work to do. For a start, we need to define all the
functions that we used in app_html.c. Create a file called html.c and start it like this:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "html.h"

name_value name_val_pairs[NV_PAIRS];

Then add in all the functions (except main, of course) that we defined in our decode3.c program. The
remaining things we need are the two header files that we've included in our source code files, html.h and
cd_data.h, and the additional source code file, cd_access.c.

html.h looks like this,

#define FIELD_LEN 250 /* how long can each name or value be */
#define NV_PAIRS 200 /* how many name=value pairs can we process */

/* This structure can hold one field name and one value of that field */
typedef struct name_value_st {
 char name[FIELD_LEN + 1];
 char value[FIELD_LEN + 1];
} name_value;

extern name_value name_val_pairs[NV_PAIRS];

int get_input(void);
void send_error(char *error_text);
void load_nv_pair(char *tmp_buffer, int nv_entry_number_to_load);
char x2c(char *what);
void unescape_url(char *url);

void html_content(void);
void html_start(const char *title);
void html_end(void);
void html_header(int level, const char *header_text);
void html_text(const char *text);

but the other two need no effort at all since, in an excellent example of code reuse, they're exactly the same as
the files with the same names that we used back in Chapter 7. To put everything together, we can use a short
makefile:

all: cdhtml

How It Works

684

.c.o:
 gcc −g −c $?

html.o: html.c html.h
 gcc −g −c html.c

app_html.o: app_html.c cd_data.h html.h
 gcc −g −c app_html.c

cd_access.o: cd_access.c cd_data.h
 gcc −I/usr/include/db1 −g −c cd_access.c

cdhtml: app_html.o cd_access.o html.o
 gcc −o cdhtml −pedantic −g app_html.o cd_access.o \
html.o −ldb
install: cdhtml
 −echo Depending on your setup, you need to do something like...
 −echo cp cdhtml /usr/local/apache/cgi−bin/cddb
 −echo cp cdc_data.db /usr/local/apache/cgi−bin/cddb
 −echo cp cdt_data.db /usr/local/apache/cgi−bin/cddb

After we compile the program with make, we need to move it into the cgi−bin directory (don't forget the
database cdc_data files from the earlier version of the application!) and we can access it using the URL
http:localhost/cgi−bin/cddb/cdhtml.

This gives us a list of CDs, like this:

If we then click one of the highlighted links, we access the same executable, but this time with an appended
query string. What we see are the tracks of the selected CD:

How It Works

685

Important The cdc_ and cdt_ files that you've copied to the /cgi−bin/cddb directory must have read/write
privileges set for everyone. Though cdhtml is read−only, the (unchanged) cd_access.c routines
that open the database need to open the files for reading and writing.

If the thought of typing in all that code doesn't appeal to you, remember that the listings for this and all the
other examples in the book are available from the Wrox Press Web site.

Perl

No book containing information about writing programs for a Linux−based Apache web server would be
complete without a mention of Perl. Although we have generally stuck to using C, to be consistent with the
main theme of this book, Perl is probably the most commonly used language for writing cgi programs on
Linux and UNIX systems.

There are many Perl modules associated with writing cgi programs in Perl, most notably CGI.pm, which,
amongst other things, does much of the hard work of parsing forms for you. However we are going to leap
forward to a more advanced topic, the powerful mod_perl facility. This effectively embeds a Perl interpreter
inside the Apache web server, and allows it to process requests that involve executing Perl scripts without the
overhead of starting the Perl interpreter each time a cgi program needs to be invoked.

In addition you get access to some internal Apache state information, which helps you develop more complex
generated web pages, and the ability to change your Perl scripts without rebuilding the web server each time
you make a change. Indeed you can often make changes and just ask Apache to restart and re−load your Perl
scripts next time it is idle.

Unfortunately, there is a price you must pay. Firstly Perl scripts that you execute using mod_perl must be very
carefully written − since they run inside the web server you need to be quite careful about your use of
variables and initialization. Secondly the process sizes can get quite large, so you may need to significantly
increase the memory on a server making heavy use of mod_perl. However many sites judge that the power
and flexibility of mod_perl vastly outweighs its drawbacks, and mod_perl is widely used on the Internet. You
can even move your mod_perl scripts, normally unchanged, from Apache on a Linux or UNIX server, to
Apache on Microsoft Windows.

We don't have anything like the space in this book to give you more than a quick taste of adding mod_perl
support to Apache, and writing your first Perl script for it. However we do hope this brief look at a more
advanced topic will encourage you to delve more deeply into this, and once you know the basics there is
plenty of helpful online documentation to guide you on your way.

 Perl

686

The first thing you need is the sources for Apache. If your distribution came with a pre−built Apache, but no
sources, you may have to do what we did − uninstall the pre−built Apache, fetch the sources of the latest
stable version, compile them and install them yourself. Don't worry, Apache is extremely easy to build and
install, a matter of a few minutes work.

We assume you will be doing this on a test machine, and that once you have saved any work relating to your
existing Apache web server, you have removed it and are starting from a clean install. If your Linux
distribution came with Apache and mod_perl ready built you are in luck, and can skip these steps. Otherwise
the safest course is to remove any web server that came with your distribution, and rebuilt Apache from the
sources, so we can link in the mod_perl additions. Don't worry, it's very easy.

First go to http://www.apache.org and fetch the latest sources, usually they are in a gzip−ed tar file with the
version number included. Download this file to a convenient directory, unzip and untar it. Read the INSTALL
file that contains the instructions. If you want to install Apache in /usr/local/apache, a common location,
./configure −−prefix=/usr/local/apache is the first step, then you run make. If all looks well su to become root,
and run make install. You then start your web server with the command /usr/local/apache/bin/apachectr start
and away you go. We did say it wasn't hard!

Once you have Apache running from sources that you have built yourself, you are ready to install mod_perl.
At the time of writing this is slightly more tricky, but not particularly difficult.

Assuming you already have Perl installed, but no additional modules, the first step in getting mod_perl
working is to fetch additional modules from CPAN, the Comprehensive Perl Archive Network, which you can
find at http://www.cpan.org. The minor inconvenience with mod_perl is that it relies on a large number of
other modules, so each time you try installing mod_perl, it tends to complain you need a different module
installing first. But then again, you should be impressed at how much re−use is possible with Perl modules, so
it's not all bad news! It gets more frustrating when some of those modules themselves require further modules.
In the words of "The Hitch Hiker's Guide to the Galaxy" by Douglas Adams, Don't Panic. There is an easy
solution, and that solution is the CPAN Perl module.

Stage one is to fetch the FTP module. At the time of writing this is part of the libnet module. FTP to
http://www.cpan.org, and fetch a copy into an empty directory and extract the files. Then you need just four
commands to get it installed:

perl Makefile.PL
make
make test
make install

Well strictly speaking you could omit the make test, but better safe than sorry. Now you have a Perl module
that can 'do' FTP for you. As it happens it can also do SMTP, NNTP and several other protocols, but FTP is
the one that interests us right now.

Stage two is to install Andreas König's truly wonderful CPAN module. You configure this module once to tell
it which CPAN sites are good download locations from your site, then it can take care of fetching modules
from CPAN for you, working out dependant modules, fetching them as well, and installing them all in one go.

Repeat the steps for CPAN that you followed for libnet, except this time CPAN will ask you some questions.
Don't worry, they are nice easy ones like 'where can I make a directory to work in' and 'tell me which
continent you are on'. Nothing too difficult.

 Perl

687

Once you have CPAN installed, it's time for stage three, the Apache module bundle.

Since the CPAN module will need access to the Internet, but sometimes has to do some work in between, if
you are on a dial−up link that has an automatic timeout, you may need to take some steps to keep the dial−up
link alive. A simple ping −i15 www.perl.com will do the trick, just remember to kill it off once CPAN has
finished it's magic, and allow the dialup link to drop.

Start the CPAN module in interactive mode, with the command

perl −MCPAN −e shell

Perl will start, and you will be given an interactive cpan> prompt.

Enter the command

install Bundle::Apache

Then sit back and watch in amazement as all the hard work is done for you!

Don't worry if the final steps of installing mod_perl fail − we are going to run them again anyway, because we
want to specify some extra options.

Once CPAN has finished, enter exit to return to the shell prompt.

Stage four (don't worry we are getting there) is to re−fetch by hand the mod_perl module from CPAN,
because we want different options from the defaults that the CPAN module gave us. As before unpack it, but
this time we want some extra command line options when we configure it.

perl Makefile.PL EVERYTHING=1 APACHE_PREFIX=/usr/local/apache

This means we want all mod_perl options, and our Apache web server is installed in /usr/local/apache. If
yours is elsewhere you need to adjust the instructions as appropriate. Almost immediately you will be
prompted for the source directory where you built Apache, type this in, you need to include the final /src part
of the tree. We built Apache in a local directory, so the answer on this author's machine was
/home/rick/apache/src/apache_1.3.9/src.

The version number may well have increased by the time you get to read this.

You will then be asked questions about allowing Apache to be rebuilt. You probably want to answer yes to all
these questions. Then we run make, to rebuild our httpd binary, which will be built in the Apache src
directory.

When the compile steps have completed, you can run make test to test that you have built a mod_perl enabled
Apache server. It will run a special httpd using a different configuration file on a separate port, so it will not
conflict with any existing web server running on the machine. Now it's possible that the test will fail. It did for
us! At least this seemed to have been a problem with the testing itself, not the newly built httpd, so we kept
going without further problems.

Now we have an httpd program built with mod_perl support, the final stage is to install and configure it, then
we will be ready to write a test Perl module.

 Perl

688

You can run make install, but our personal preference is to do this final step by hand, so that's what we will
describe here.

Change into the /usr/local/apache directory, and su to become root.

If your web server is already running, stop it using the command

/usr/local/apache/bin/apachectr stop

Make a copy of the existing bin/httpd and conf/httpd.conf files, just in case.

Now overwrite the bin/httpd file with the one you just built in the apache/src directory. You should notice that
the new httpd file is much larger than the old file.

There is just one thing left to do before we write our simple Perl module, which is to update the Apache
configuration with some Perl additions.

Now there are several ways to do this, and what we are going to describe here is not the most efficient, in
terms of execution, way of doing this. However, it is probably the simplest way, and quite sufficient for
learning about mod_perl.

Edit httpd.conf (remember to take a copy first). At a convenient location in the file, add some additional lines:

PerlFreshRestart On
<Location /blp−hello−perl>
 SetHandler perl−script
 PerlHandler Apache::Hello
</Location>

The PerlFreshRestart On tells Apache that when it is restarted, it should reload any Perl scripts. This is an
option you need if you are debugging Perl scripts.

The next section, that looks a little like a section in an HTML document, is telling Apache that when it is
asked for a document blp−hello−perl, it needs to use the Perl script handler, and the Perl script it should
invoke is Hello, in the module Apache.

Now we stop and start Apache, to let it re−read the configuration file:

/usr/local/apache/bin/apachectr stop
/usr/local/apache/bin/apachectr start

Now we have our Apache server with an embedded Perl interpreter, and we have configured it to invoke a
Perl script when we ask for a document called blp−hello−perl. It's time to Try it Out.

Try It Out A mod_perl Module.

The file we are going to create is: /usr/local/apache/lib/perl/Apache/Hello.pm

The directory lib/perl under the standard Apache install directory is one place mod_perl in Apache looks for
Perl scripts. If you need to put it somewhere else, you need to add to the httpd.conf file an extra line
PerlSetEnv PERL5LIB <comma separated list of places to look>. The additional Apache directory is because
we are going to put our file in package call Apache. Here is our very first Perl module:

Try It Out A mod_perl Module.

689

package Apache::Hello;

use strict;
use Apache::Constants ':common';

sub handler {
 my $r = shift;
 my $user_agent = $r−>header_in('User−Agent');

 $r−>content_type('text/html');
 $r−>send_http_header;
 my $host = $r−>get_remote_host;
 $r−>print(<<END);
<HTML>
<HEAD>
<TITLE>HELLO</TITLE>
</HEAD>
<BODY>

END
 $r−>print("Hello $host with browser $user_agent \n\r

Welcome to Apache running mod_perl\r\n");
 $r−>print("</BODY>\r\n</HTML>\r\n");

 return OK;
}

1;

How it works

We declare that we are a file Hello in module Apache. Then we turn on the strict option, always a good idea,
and declare that we wish to use the common constants in the Apache module.

We declare a subroutine handler which is a special name that Apache knows to invoke, to generate output for
a web page.

The line my $r = shift; gets us a variable r, containing the request object. This object has all the common
routines we need to call to generate our page from Perl.

We then get the user agent which will have been passed in the HTTP request, sent the content type, send a
predefined HTTP header and get the remote host name.

The final lines are simple Perl to generate a very basic HTML page which is returned to the browser simply
by calling the print method of the requester object.

Well that's all the hard work done, there is just one thing left to do − testing, and perhaps some debugging too.

Fire up your web browser, and point it at http://localhost/blp−hello−perl.

If all when well, you should see:

How it works

690

However if it doesn't work first time, don't worry. The first thing to try is a request to
http://localhost/index.html. You should get the standard installation screen, telling you Apache is running OK.
Assuming that worked, you should find the log files in /usr/local/apache/logs have some pretty good clues as
to what went wrong.

Unfortunately this very brief taster of mod_perl is all we have room for here. However there is a huge amount
of information available on the web, just follow the links from http::/www.apache.org, and if you get serious
with Apache modules, you may want to look out for other books on Apache modules.

Summary

This chapter has shown you how to create dynamic, interactive Web pages. A faster changing subject you're
unlikely to come across, so there are ever−improving methods of displaying information on the Web. We
hope this has given you the basis (in theory and application) to write your own simple CGI applications in C.

To recap, in this chapter we've covered:

The HTML to create forms for entering client−side information•
Encoding these forms for transmission•
The subsequent decoding using Perl or C•
Dynamically creating HTML pages with the CGI program's response•
CGI tips and tricks•
Using the CGI program to access our server database.•
A brief glance at an advanced topic, mod_perl, for embedding a Perl interpreter in the Apache web
server.

•

 Summary

691

Chapter 21: Device Drivers

Overview

Up until now we've been concentrating on writing application code. We've looked at the libraries available to
application programmers which allow them to access hardware and devices attached to the machine − file
systems, memory, network connections, and so on. All of these libraries allow our applications to make
demands on the kernel − the core of the operating system.

To round off this book, we're going to take a look at the kernel from the other side. In order to fulfill those
demands from applications, the kernel relies upon device drivers to talk to all the different types of device it
might encounter. This enables the kernel to present a uniform interface to applications, regardless of the
underlying technology. The file system is an obvious example − we can use the same commands to operate on
files, whether the files are stored on an IDE hard drive, a SCSI drive, a CD−ROM, a floppy, or even a RAM
disk. This shows device drivers at work.

Writing device code, while it is not necessarily more difficult than writing application code, requires us to
learn some new libraries, and consider some different sorts of problems, that we have not encountered in
application space. We'll be writing code that forms part of the kernel itself, so while in application space the
kernel provides a safety net for your mistakes, in kernel space there is no safety net. Kernel code has the
power to monopolize control of the computer, preventing any other processes from executing, so we will have
to write code which doesn't abuse that power, and behave as a good neighbour to other processes.

In writing kernel modules for Linux, we have the immense advantage that the entire body of kernel source
code is available for us to look at, modify, and reuse in our own code. Throughout this chapter we'll point you
to the source code of various header files and modules for further information. It is impossible to
overemphasize the importance of the source code, as a source of information, good coding advice, and of
ideas.

The focus of the following chapter will be Intel's x86 architecture, although the accompanying modules have
also been tested on a Compaq Alpha, so they are known to be reasonably portable. Other differences exist
between these two platforms and others, which we will try and outline more extensively in the section on
portability later. That being said, the majority of the code will work on other architectures and we will do our
best to clearly mention what parts are platform dependent (mainly due to differences in the hardware
architecture) as we come across them. Thankfully, in recent years portability has become a great focus of
kernel development and almost all of the kernel driver API is indeed very portable. Some code will never be
completely portable, but if nothing is stated about portability in a section, it should work regardless of what
particular machine you are working with.

Devices

So what is exactly is a device? It can be just about any part of a computer, either directly built into the core of
it or as an add−on peripheral such as a SCSI controller, extra serial ports, network adapter and much more.
Usually we are concerned with the latter when writing new device drivers adding support for that flashy new
adapter you just bought.

Device drivers are the software that controls the device and exports a usable interface that allows other
programs to interact with this particular device. A device driver doesn't necessarily control a physical
hardware peripheral. An example of this is /dev/random (spits out random data, more on this later) and

692

/dev/vcs0 (current virtual console). These devices have no connection to real hardware, but are a way of
getting data from the kernel to applications and are usually named software devices.

Device drivers are a layer between the kernel and the hardware that it controls. As such it is a very useful
abstraction, since it greatly simplifies the kernel: instead of having the kernel talk to each device itself it
exports a well defined interface and leaves this task to the individual device drivers. This also means that the
kernel proper can be (and is) written without knowledge of the various different devices that will be
developed later on, as long as they can be accommodated within the framework of the defined models. So, for
example, adding support for a new file system to the Linux kernel doesn't require a total rewrite and can be
done relatively easily and with reuse of existing code. The file system, for example, is split into a generic
virtual file system, VFS, that the specific file systems register themselves with. All the major parts of the
kernel are designed this way the CD−ROM subsystem, the SCSI layer, and others. This provides a good level
of modularity and eases the development of new device drivers.

Device Classes

Device drivers can be split up into different classes according to their behavior. The two basic types are
character and block oriented devices. Character devices are read byte by byte sequentially and access to
them is not cached by the buffer system. Imagine how data or audio is read of a tape in a continuous stream
this is how character devices serve data. Block devices, on the other hand, allow random access, are read in
multiples of their block size, and access to them goes through the buffer cache system. In contrast to other
UNIX flavours, the Linux kernel does allow data that is not a multiple of the device block size to be read and
so that difference is purely academic.

Most device drivers are accessed through the file system; an exception is network devices that have no file
entries on Linux like on some other UNIX variants. /dev is populated with the device special files and its
contents look almost like any other directory.

$ ls −l /dev
...
brw−rw−−−− 1 root disk 22, 1 May 5 1998 hdc1
crw−rw−−−− 1 root daemon 6, 0 May 5 1998 lp0
...
$

One of the things that make these different from regular files are the c and b "flags", which classify the device
as either a character or block device, respectively. The distinction between these two types of devices is clear
in this example: It would not make any sense to allow random access to a printer, for instance, while being
able to copy a file from a disk without resorting to reading the entire hard drive from the beginning is
essential. Device special files do not have to be located in the /dev directory, but this is tradition and keeps the
system orderly. Some UNIX systems contain directories under /dev for the disk subsystem, for example, but

 Device Classes

693

Linux generally just has one big, messy directory.

The numbers following the owner and group of the special file, respectively indicate the major and minor
number of the device. The major number indicates a specific device and the minor an instance within the
device. In the example listing of /dev above, hdc1 has major 22 and minor 1. Major 22 is the official number
for the secondary IDE controller and the IDE subsystem identifies partitions on the master and slave device
according to the minor number. In fact, you could choose any name you wish for the special files; the kernel
only cares about the type and the major.

New special files are created with the mknod system call, which can be invoked by the utility of the same
name. The syntax for mknod is:

mknod name type major minor.

So to create the above lp0 entry, you would have to be root and type:

mknod /dev/lp0 c 6 0
#

You can create them anywhere, as long as the hosting file systems support it. Most of the arguments are
self−explanatory, so we will just mention that type corresponds to the class of the device b for block devices
and c for character devices. More information can be found in the man page for mknod.

User and Kernel Space

The first thing to come to grips with is the difference between programming device drivers and writing normal
user space applications. Linux operates in two modes, user−mode and supervisor−mode. We will call the
latter kernel−mode from know on, since this is the descriptive explanation of what is really going on. This
reflects a change in the way the processor actually handles instructions − it supports these two execution
modes internally. Intel's x86 (x >= 3) names its execution modes Ring 0, 1, 2, and 3, with Ring 0 being the
most privileged mode and vice versa. In Linux, Ring 0 signifies kernel−mode execution and Ring 3
user−mode the other modes are unused. Other architectures have similar features, but name their execution
modes differently. We won't bore you with the tedious hardware details, but the gist of it is that the mode a
process operates in places certain restrictions on what it is allowed to do. Processes running in user−space are,
among other things, not allowed to directly access hardware and execute certain instructions.

When you are writing an ordinary program you use certain functions that you take for granted, such as printf
and strcpy. These are part of the standard C library, libc, and have defined prototypes in appropriate header
files. User space applications are (usually) linked against libc and these symbols are resolved at run time.
Kernel modules, on the other hand, are linked against the kernel and are therefore restricted to using the
functions that it exports. A device driver built as a kernel module is not run in the ordinary sense and so
module symbols are resolved when you attempt to load the module into the kernel.

There are several issues concerning good practice when writing kernel level code that you should be aware of.
Below are some of the rules to live by some are black and white while others leave room for interpretation.

Don't use floating−point arithmetic. The kernel does not save the processor's FP states when
switching modes so if you do you have to save the state yourself. There is usually no good reason to
do so.

•

Don't busy wait in your driver. A user space application can never completely monopolize the CPU,
but a loop spinning for a second inside the kernel will appear to hang the system during that time and

•

 User and Kernel Space

694

prevent any real work from being done.
Don't try to be too clever. Debugging, as we will see later, is much harder in kernel space and drivers
often need precise timing when dealing with hardware even adding a print statement might mess up
the timing and hide an obscure bug. Keep the code as clean and comprehensible as possible.

•

What Goes Where?

You will also need to decide what to implement as a module and what to keep in user space. The general
consensus is that if you can code it in user space, don't do it in kernel space! There are several reasons why
this is excellent advice; mistakes happen, but an error in user space dumps core while the kernel might hang
completely. Bloating the kernel space with unnecessary code is not good practice, either. Providing the
necessary hooks in a kernel module for an application to use will often yield the best result when speed or
timing is not too essential and critical. It will also give you the advantage of having the standard user space
libraries available to link with.

Building Modules

Compiling a kernel module is no more difficult than what you are used to with ordinary applications. The
examples that accompany this book are all supplied with makefiles for you to inspect. The basic procedure for
compiling a kernel module is something in the order of:

gcc −D__KERNEL__ −D__SMP__ −DMODULE DMODVERSIONS −I/usr/src/linux/include −Wall
 −O2 −o module.o −c module.c

If you have never paid much attention to a kernel build this may look at bit overwhelming. Most of the above
defines can be handled directly from within the module by reading the settings from the kernel. Let's look at
what each of them does.

__KERNEL__ Not all kernel header files are only used by the kernel itself. Some user space
applications include them, but parts of them are kernel specific and thus need to be
hidden from user space. Code that will be inserted into the kernel has to define
__KERNEL__ to see the whole thing.

__SMP__ The kernel can be compiled for either SMP (Symmetric Multi Processor, systems
having more than one CPU) or UP (Uni Processor) machines. A module that will
be inserted in an SMP kernel must define __SMP__.

MODULE Must be defined for code that is compiled as a kernel module.

MODVERSIONS A safe guard against kernel and module incompatibilities. A more comprehensive
explanation follows below.

The rest of the gcc command line options are not kernel specific and you have probably seen them used
before. The −O switch tells gcc how much optimization to perform at compile−time. Kernel modules must be
compiled with an optimization level of O2 or higher to use functions that are inlined by the kernel, such as
outb. Levels higher than O2 may work, but we don't recommend them. All warnings are turned on, as this is
good practice for any kind of program, not just kernel modules.

/usr/src/linux is the preferred place to keep your linux kernel tree, but it is not a requirement and you can store
it anywhere you want. The I (include path) option given to gcc above tells it to include this path when
searching for includes. Header files that are specific to the kernel are located in the include/ directory of the
kernel tree, so when we write

#include <linux/module.h>

User and Kernel Space

695

we are including the file /usr/src/linux/include/linux/module.h. There are two directories of importance inside
the include/ directory, one of them being linux/ and the other asm/. The former contains platform independent
files, while the latter is a symbolic link to asm−arch/ where arch is i386 or alpha, for example. This link is
created when configuring and building the kernel and symbolic links to both include directories are made to
/usr/include/linux and /usr/include/asm, correspondingly.

The MODVERSIONS define is used on kernels running with function versioning. This is a measure used to
prevent modules from being loaded into an incompatible kernel, which could either cause malfunctioning or
kernel crashes in the worst cases. When modules are compiled, they are built against the current kernel
version you are running at the time and can usually only be loaded on exactly that version. A kernel running
with versioning will suffix exported functions with checksum information based on the interface that it
exports.

This provides a secure way of knowing that the underlying API has not changed since the module was build.
You can check whether you are running a versioned kernel by inspecting /proc/ksyms, which contains the
symbols exported on the running kernel. If the exported functions have a suffix similar to _Rxxxxxx,
versioning is enabled. This will look something like:

$ cat /proc/ksyms
...
c0115728 printk_Rsmp_1b7d4074
c01d3ed0 sprintf_Rsmp_3c2c5af5
...
$

The actual function names of the above are printk and sprintf. The listing shows that we're currently running
an SMP kernel with module versioning enabled. To be able to resolve these names, a module must include the
linux/modversions.h file.

Name space is another issue that you may not have paid particular attention to before, unless you have worked
with a big project. When you do kernel development, you should be careful about polluting the global kernel
name space. An excellent way to avoid clashes, which is adopted by the vast majority of the kernel
developers, is to prefix exported functions with the name of your driver. Still, only exporting functions and
variables that are going to be used by other drivers is the best practice and should be used along with it.
Declaring global variables and functions static achieves this beautifully, but has other side effects. Other
variables and functions are explicitly exported with the macro EXPORT_SYMBOL, which adds them to the
kernels global symbol table. You generally only need to worry about this if you plan on splitting your driver
across several modules or otherwise expose internals for others to use. Of course, keeping global name space
pollution to a minimum is always a good idea. The syntax is straightforward:

EXPORT_SYMBOL(name) Export the variable or function name.

EXPORT_SYMBOL_NOVERS(name) Export the variable or function name, but don't include
module versioning even if defined.

EXPORT_NO_SYMBOLS Don't export any symbols.
The declarations must be made outside of any functions in an include file, bottom of module, or similar. The
macros are defined in linux/module.h if you are curious. EXPORT_SYMTAB must be defined prior to using
any of these macros.

User and Kernel Space

696

Data Types

Linux runs on a lot of different architectures, some 32−bit and some 64−bit. Some efforts have been made to
even allow Linux to run on 16−bit hardware and who knows what will happen in the future. Therefore it is
important not to make assumptions about the size of a given type of variable. Linux defines standard types
that have a given size on any platform.

__u8, ..., __u64

__s8, ..., __s64

Unsigned and signed variables between char and 64−bit long in size.

If you need a specifically sized variable, use one of the above types. They also look much nicer in the code
and make it more readable when you browse the driver source a couple of months later. There are also the
special types that are passed to driver entry points, for example.

ssize_t schar_read(, size_t count, loff_t *offset)

ssize_t and size_t are examples of types that serve a specific purpose within the kernel we'll look at exactly
what purpose later. Usually these types are acted upon directly and you therefore need not worry too much
about the particular size. The various types are described in linux/types.h and asm/posix_types.h so look them
up if you need a hint as to what size they are typedefed to. When you do need to assign them to the compiler's
integral types, remember to use an appropriate cast. gcc is quite picky about size mismatches and will warn
you about possible problems.

Try It Out − A Kernel Module

Now is an excellent time to dive in and create our very first module. In keeping with past tradition, "hello,
kernel" seems like the thing to do − don't worry, it's the last time we'll revisit this bit of programming history
in this book.

Let's start off with the following file, hello.c:

#include <linux/module.h>

#if defined(CONFIG_SMP)
#define __SMP__
#endif

#if defined(CONFIG_MODVERSIONS)
#define MODVERSIONS
#include <linux/modversions.h>
#endif

#include <linux/kernel.h>

int init_module(void)
{
 printk(KERN_DEBUG "Hello, kernel!\n");
 return 0;
}

void cleanup_module(void)
{
 printk(KERN_DEBUG "Good−bye, kernel!\n");
}

1.

User and Kernel Space

697

The kernel equivalent of printf is printk. They are similar in usage, but the latter does not support
printing of floating point. The KERN_DEBUG define given to printk sets the priority of the printed
message. The possible values are defined by linux/kernel.h as follows:

#define KERN_EMERG "<0>" /* system is unusable */
#define KERN_ALERT "<1>" /* action must be taken immediately */
#define KERN_CRIT "<2>" /* critical conditions */
#define KERN_ERR "<3>" /* error conditions */
#define KERN_WARNING "<4>" /* warning conditions */
#define KERN_NOTICE "<5>" /* normal but significant condition */
#define KERN_INFO "<6>" /* informational */
#define KERN_DEBUG "<7>" /* debug−level messages */

So we could have written

printk("<7>Hello, kernel!\n");

instead, but we think you will agree that using the predefined levels makes the code easier to read.
The log level setting controls what messages will actually get printed on the console and / or
appended to the syslog. This is controlled by syslogd and can usually be setup in /etc/syslog.conf. As
it is written you will probably not be able to see the messages directly. Instead they are stored in the
kernel buffer allocated for these kinds of messages. The program dmesg will show you what is
currently stored in there (lots of messages from your last boot, most likely).

Apart from printk, though, there shouldn't be anything too unfamiliar here − we'll look at what's new
in a moment. For now, let's compile the module, with this command in the directory where you
created the hello.c file:

$ gcc −D__KERNEL__ −I/usr/src/linux/include −DMODULE −Wall −O2 −c hello.c −o hello.o
$

Now let's try and insert the module into the kernel. Modules are loaded with the insmod (insert
module) command, usually found in /sbin/. You must be root to insert and remove a module, as this
would otherwise be a serious security breach if anybody were allowed to meddle with the kernel!
Make sure that you are root and try the module out:

insmod hello.o
#

2.

No error messages so far, so how do we verify that the module has been inserted successfully? We
can check the very end of the dmesg readout of the kernel buffer with this command:

dmesg | tail −n1
Hello, kernel!
#

We can see the message from our module there in the kernel buffer. To prove that the module is
loaded, lsmod (list modules) can be run. It lists the modules that are currently inserted.

lsmod
Module Size Used by
...
hello 176 0 (unused)
...
#

3.

Not surprisingly, hello is listed with the other modules. lsmod also lists the size and usage count of4.

User and Kernel Space

698

each loaded module. We will get into usage counts a little later. For now, lets get rid of the hello
module again. The rmmod (remove module) command will detach a module from the kernel.

rmmod hello
dmesg | tail −n1
Good−bye, kernel!
#

How It Works

A couple of new things were introduced here. linux/module.h includes another header file (among others)
called linux/config.h which contains the options selected at the kernel compile time, as defines. This is
especially convenient for us, since we can be sure that if the kernel is compiled for SMP, CONFIG_SMP will
be defined and we can define __SMP__ appropriately. The same thing goes for CONFIG_MODVERSIONS;
if that is configured we define MODVERSIONS and include linux/modversions.h to gain access to the
versioning information.

As we saw, a little message is printed to the kernel buffer when the module is loaded and unloaded. The two
functions we defined to perform this are the only ones that are actually needed to complete a module.
init_module is called at load time and is responsible for setting up internal data structures, initialize the
hardware, and perform any other tasks that need to be done before the device is invoked for the first time.
Since the above is only a simple framework, no real work is done. Most things work both ways, and so
cleanup_module takes care of shutting down the device and releasing any resources that the device may have
occupied.

And that's it: we've built a module, and successfully inserted it into the kernel. Now we've overcome our fear
of the Linux kernel, we can get on to something a little more substantial.

Character devices

While the hello module above is about as simple as you can get, it doesn't really do anything interesting. Once
it is loaded you cannot interact with it and it does not export any useful functions to user space applications.
As a first step beyond, let's look at a sample framework for a character driven driver.

Character devices have to register themselves with the kernel, and provide it with the information that enables
the kernel to invoke the correct functions when applications wish to interact with the device. register_chrdev
takes care of this and is invoked with the following syntax :

int register_chrdev(unsigned int major, const char *name, struct file_operations *fops)

The return value is negative in case of failure, and non−negative (either a positive integer or zero) on success,
which is the case with the majority of the kernel functions. Calling the function with zero as major provides
dynamic major number assignment. In this case, the device is registered with the next available major number
and this is returned. Using dynamic assignment is not hard, but in order to access devices you need to create
the correct special files if the major has changed since the last time you loaded the module. Because of this,
we will use a series of reserved major numbers in this book Majors 42 and 120−127 are set aside for local
devices and thus not to be used by production modules. Consult Documentation/devices.txt for more
information, including how to acquire an official number if you ever need one.

The second parameter, name, is only used for registration with /proc/devices. It is simply the name that will
show up there, nothing more. The final parameter, the file operations structure, is the most interesting. It

User and Kernel Space

699

defines how the driver communicates with the outside world; specifically what functions it handles itself and
what the kernel defaults take care of. The structure is defined in linux/fs.h and is a series of pointers to
functions. This concept is used in numerous places in the kernel and provides a form of abstraction between
the different layers and how they interact.

File Operations

Access to devices goes through the file system, as we saw in the first section on special files. This is
independent of the type of device be it directly related to file systems (a hard disk driver, for example) or
totally unrelated − a parallel port driver, perhaps. Device drivers therefore need to register a set of file
operations that define the specific implementation that they offer. Below is the current file operations structure
with the prototypes defined. All of the possible function types are listed, although no one single module will
normally need to define them all. You'll recognise the names of most of these functions as mirroring the
low−level device access functions we met back in chapter three. These functions are actually where those
low−level calls end up, once the kernel has identified the device which needs to be contacted to fulfil that
request.

struct file_operations {
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char *, size_t, loff_t *);
int (*readdir) (struct file *, void *, filldir_t);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
int (*mmap) (struct file *, struct vm_area_struct *);
int (*open) (struct inode *, struct file *);
int (*flush) (struct file *);
int (*release) (struct inode *, struct file *);
int (*fsync) (struct file *, struct entry *);
int (*fasync) (int, struct file *, int);
int (*check_media_change) (kdev_t dev);
int (*revalidate) (kdev_t dev);
int (*lock) (struct file *, int, struct file_lock *);
}

Your driver can provide any combination of these functions in order to represent the functionality of its device
to the kernel. Let's look at what the available functions are:

llseek llseek, or lseek as it is known in user space, changes the position within the
file structure. Specifically file−>f_pos is modified; we will look at this later
when discussing the file structure. On success, it returns the new position,
while failure is identified with a negative return value.

read read is seen from the application point of view, so read actually writes data
back to user space. The return value, if positive, is the number of bytes read.
Negative return values indicate an error.

write write feeds data to the device and is equivalent to read with respect to return
values.

readdir readdir is strictly used by file systems to look up the contents of a directory.

poll poll allows an application to be notified of given events from the device.
select, the equivalent in BSD UNIX, is deprecated in Linux and poll should
be used instead.

ioctl

 File Operations

700

ioctl, or I/O control, allows applications to control the behavior or get data
from the device with the ioctl system call.

mmap mmap implements memory mapping of the devices address space to user
space. This can be used to provide direct access to an internal buffer or
peripheral device memory space.

open open is called when the device is opened by an application. This is the only
function that is default implemented for both character and block devices, so
you can leave this undefined if you don't need or care to know when the
device is opened.

flush flush, naturally, flushes the buffered data. As character devices aren't
buffered this entry only makes sense for block devices.

release release is called when the device is closed.

fsync fsync synchronizes the in−memory state with that on disc, writing out all
dirty data in the output buffer. It must not return until it's finished. This entry
is also only relevant to block devices.

fasync fasync is called when an application changes the behavior with fcntl.

check_media_change check_media_change examines whether the media has changed since it was
last accessed. Therefore it only makes sense to block devices handling
removable media (such as CD−ROMs and floppies).

revalidate revalidate and check_media_change are closely related. If a disc change has
been detected, revalidate should update internal device information, if
needed. revalidate also only makes sense for removable block devices.

lock lock enables a user to lock a file. Only really makes sense for file systems.
A single device will probably never have to define all of the above methods. It is completely up to you to
define the operations that make sense for your device and set the others to NULL.

When the character device is registered with the kernel, its file_operations structure and name is added to the
global chrdevs array of device_struct structures where the major number indexes it. This is called the
character device switch table.

struct device_struct {
 const char *name;
 struct file_operations *fops;
};

So by looking up chrdevs[YOUR_MAJOR]−>fops, the kernel knows how to talk to the device and what entry
points it supports.

 File Operations

701

A Sample Driver, Schar

Let's take a look at a sample character device driver, which we'll call Schar. This driver implements reading
and writing in its own fake way, by pretending to serve data from a device that is polled at a constant interval.
The polling mechanism is managed by kernel timers, which we will explain fully in the next section.

Schar.c starts out with forwarding declarations of the functions that define our implementation of the
file_operations structure. Then we fill it out.

/* forward declarations for _fops */
static ssize_t schar_read(struct file *file, char *buf, size_t count, loff_t *offset);
static ssize_t schar_write(struct file *file, const char *buf, size_t count, loff_t *offset);
static unsigned int schar_poll(struct file *file, poll_table *wait);
static int schar_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg);
static int schar_mmap(struct file *file, struct vm_area_struct *vma);
static int schar_open(struct inode *inode, struct file *file);
static int schar_release(struct inode *inode, struct file *file);

static struct file_operations schar_fops = {
 NULL, /* llseek */
 schar_read,
 schar_write,
 NULL, /* readdir */
 schar_poll,
 schar_ioctl,
 NULL, /* mmap */
 schar_open,
 NULL, /* flush */
 schar_release,
 NULL, /* fsync */
 NULL, /* fasync */
 NULL /* lock */
};

Some prefer the file_operations structure to appear at the beginning of the module, while others like it at the
bottom. The latter approach would spare us from putting function prototypes at the beginning of the file. It is
purely a matter of taste. Don't worry about some of the include files, we'll cross those bridges along the way.

The MSG macro

Before we dive deeper into Schar's sources, we need to introduce the MSG macro we use throughout this
chapter. It is an alternative way to print debugging statements that can prove quite handy. Instead of
sprinkling the code with ugly #ifdef statements, we put the definition of MSG in the schar.h:

#define DEBUG

#ifdef DEBUG
#define MSG(string, args...) printk(KERN_DEBUG "schar:" string, ##args)
#else
#define MSG(string, args...)
#endif

It keeps the code looking clean and prefixes every statement with the module name. You could also easily
define a bitmask of events and get finely controlled logging, if you wish. Schar is very simple, so logging
everything makes sense. Undefining DEBUG would effectively make MSG a no−op. Sometimes it would be

 A Sample Driver, Schar

702

advantageous to include even more information in the debug statement, especially for larger device driver
projects. We might want to include line and file information to quickly be able to locate a specific message
within the source. This could look something like this:

#define MSG(string, args) printk(KERN_DEBUG \
"schar:__FILE__−__LINE__:" string, ##args)

It's up to you which one you prefer, all of the modules shown in this book use the former because their
complexity does not warrant the extra information.

Registering the Device

As with the hello module, Schar naturally also has an init_module entry point. It does a lot of different things
− allocating memory, initializing timers and variables, and so on, but for the time being we will stick to
looking at the device registration.

int init_module(void)
{
 int res;

 if (schar_name == NULL)
 schar_name = "schar";

 /* register device with kernel */
 res = register_chrdev(SCHAR_MAJOR, schar_name, &schar_fops);
 if (res) {
 MSG("can't register device with kernel\n");
 return res;
 }
}

schar_name can be passed in to the module as a parameter − we'll see how later on. For now, we check to see
if a name has been specified, and if not, set it to a default.

SCHAR_MAJOR is defined in schar.h and is set to 42, which as we said before is one of the reserved major
numbers. It doesn't matter what number you choose as long as it is not being used by any other active devices.
Choosing one of the reserved majors is always safe for experimenting on your own.

#define SCHAR_MAJOR 42

We could also have used dynamic assignment of majors instead. The advantage of that approach would be
that we don't have to know anything about what majors are available. The downside, at least in this context, is
that we would have to create new device special files for using the module every time we load it (provided
that the major returned isn't the same all the time). For this reason, we will stick to static majors. A sample
implementation of dynamic registration could be easily implemented and would look something like this:

int major = 0, res;

res = register_chrdev(major, schar, &schar_fops);
if (res < 0) {
 MSG("can't register device with kernel\n");
 return res;
} else {
 major = res;
 MSG("device registered with major %d\n" , major);

Registering the Device

703

}

All the sample devices in this chapter use static major numbers, and switching to dynamic assignment is left
as an exercise to the reader.

After a successful call to register_chrdev, the device is registered with the kernel and the given file operations
structure is added to the character switch table. The device should also show up in /proc/devices in the
character device section.

Module Usage Count

The kernel needs to keep track of usage information for each module loaded in the system. If it didn't, how
else would it know when it was safe to remove a module? We certainly don't want a hard disk driver module
to be removed while you were copying files to it that would wreak havoc on the disk and leave the file system
in an unreliable state.

There are two macros that modify the usage count, MOD_INC_USE_COUNT and
MOD_DEC_USE_COUNT. The former increments the count by one while the latter decrements it. It is up to
the driver rogrammer to maintain a usage count that at the same time protects the module from being unloaded
unexpectedly while making certain that the module can be safely removed when it is unused. The kernel will
only allow unloading of modules with a usage count of zero. The MOD_IN_USE macro evaluates to the
current usage count, but is hardly ever needed since the kernel checks it itself before attempting to remove the
module.

Open and Release

The module is now loaded and sits idle on your system, until someone opens the associated device. When the
device is opened by a process, schar_open is invoked. Here the module usage count is incremented to prevent
removal of the device while it is busy.

static int schar_open(struct inode *inode, struct file *file)
{
 /* increment usage count */
 MOD_INC_USE_COUNT;

this tells the Kernel that the module is now being used by one more process. If a user executes an rmmod
module_name, the kernel returns −EBUSY for modules that have a usage count bigger than zero (i.e. they are
in use). Therefore it is the module's own responsibility to keep the usage count up to date. We increase the
usage count by one in schar_open which protects the module from being unloaded while a process has it
opened. When a process closes the device we decrement the usage count to keep it in balance.

The file argument passed to schar_open is the in−kernel description of the file descriptor returned to
applications. The file structure contains information about the mode the device is opened in. This code snippet
tests whether the device is being opened for read or not, for example.

 if (file−>f_mode & FMODE_READ) {
 MSG("opened for reading\n");
 ...

It also includes information on where the next read should be initiated and much more. The following parts
are all that are relevant to this module (and most others, in fact).

Module Usage Count

704

struct file {
...
mode_t f_mode;
loff_t f_pos;
unsigned int f_flags;
...
};

f_mode is the mode the device is opened in, either for reading, writing or both. f_flags provides more
information, some of which is relevant to device modules, such as O_NONBLOCK or O_NDELAY for
example. These flags are the ones given to the open call from the user space application and control the
behavior of the device on read and write. You can find all the related information in asm/fcntl.h. f_pos is the
position from which the next read or write operation will be performed.

Back to schar_open, and the next step is to set up the timer we will look at this in the next section.
schar_open ends up by printing the major and minor number of the opened device, extracted from the inode
passed to it. Right now we have no real use for this, but later on we will examine modules that use this
information to differentiate between different instances of the driver. Inodes, which we met in chapter three,
identify files on disk and in memory and contain such information as owner, access time, size, type of file
system, and much more. The stat system call gets its information by extracting it from the inode, so running
stat on a file should give you some clue as to what data the inode provides (that are relevant outside the
kernel). Look up the detailed information in linux/fs.h note how the file system type is defined in the union u.
Linux supports a lot of file systems!

schar_release does nothing more than decrement the usage count by 1. There is nothing else to be done, since
Schar does not keep any memory malloc'ed on a per−open basis, and has no other state information that needs
to be updated.

static int schar_release(struct inode *inode, struct file *file)
{
 MOD_DEC_USE_COUNT;
 MSG("schar_release\n");
 return 0;
}

Reading the Device

schar_read pretends to read data from the device − in fact it reads it from an internal data queue − and pass it
back to user space. Schar keeps a global variable that keeps track of the data queue; when data is available,
schar_pool holds the number of bytes that are in surplus. This means that if schar_read is invoked while
schar_pool is zero or negative, reading processes must be made inactive until data is available.

static ssize_t schar_read(struct file *file, char *buf, size_t count,
 loff_t *offset)
{

 /* if less data than requested is here, put process to sleep */
 while (count > schar_pool) {
 MSG("putting process with pid %u to sleep\n", current−>pid);
 /* go to sleep, but wake up on signals */
 interruptible_sleep_on(&schar_wq);
 if (signal_pending(current)) {
 MSG("pid %u got signal\n", (unsigned)current−>pid);
 /* tell vfs about the signal */
 return −EINTR;

Reading the Device

705

 }
 }

 /* copy the data from our buffer */
 if (copy_to_user(buf, schar_buffer, count))
 return −EFAULT;

 schar_pool −= count;
 schar_data_read += count;

 MSG("want to read %u bytes, %ld bytes in queue\n", (unsigned)count,
 schar_pool);

 /* return data written */
 file−>f_pos += count;
 return count;
}

This may seem a little daunting, but let's take it step by step. count is the amount of data that the reading
process requested. If count is bigger than schar_pool, the read cannot be satisfied and we must put the reading
process on hold until the requested data is available. interruptible_sleep_on changes the state of the process
and adds it to the schar_wq wait queue. We'll look at wait queues in a moment − they provide a way for us to
set the process reading the device to a non−running state, and let the scheduler select a new process for
execution. The data is served from our internal buffer and copied back to the application with the aid of
copy_to_user, a concept that will also be detailed later on.

At the end of schar_read we subtract count bytes from our pool, schar_length, and return the number of bytes
read. In this case we just return count, since we pretend to have written exactly as much data to the application
as it asked for. This works fine with dd, for example, since we can instruct it to request exactly the number of
bytes we want. Try running cp on Schar later, and you will see what we mean on our system, cp asks for data
in blocks of 4 Kb and keeps going until 0 bytes read is returned. So you can feed Schar as much as you want,
cp just keeps asking for more.

Don't worry if a lot of schar_read doesn't make much sense for now. We will look at each aspect of it one at a
time in the following sections.

The current Task

There are several mentions of the current macro in schar_read. It is a macro that represents the currently
running process in the form of a task structure. This means that the current we act upon in schar_read is the
process that is currently reading from the device. A task structure has many elements the complete listing can
be found in linux/sched.h, but lets take a look at some of the fields we used here, directly or indirectly:

struct task_struct {
 volatile long state;
 ...
 int sigpending;
 ...
 pid_t pid;
 ...
 sigset_t signal, blocked;
 ...
};

The current Task

706

As you can see, all the tasks in the system are linked in a doubly linked list. state signifies the current state of
the process, i.e. whether it is running, stopped, or currently swapping. We'll look more at this in the discussion
of wait queues. pid is self explanatory the program id of the process. signal holds information regarding any
signals sent to the process and blocked is a mask of signals that the process itself decided to block out.
Finally, sigpending holds information on whether the process was sent an unblocked signal and is the variable
checked by signal_pending. So if signal_pending returns true, we notify the VFS and let it restart the transfer.

Wait Queues

We're using wait queues to let the current task be put to sleep when no data is available and then wake it up
when new data is copied to Schar. This frees up the system and allows it to run other processes. The scheduler
will not consider the task until we wake it up again which we'll do when the condition it sleeps on has been
fulfilled. As we said, this gives our kernel code considerable power over user space applications which access
it.

schar_read used this technique, and we'll see it again later, but let's take a more formal look at the
implementation.

struct wait_queue {
 struct task_struct *task;
 struct wait_queue *next;
};

There's not much to say about the definition, it explains itself. task contains relevant state information in the
task structure about the process being put to sleep and next is a pointer to the next entry in the wait queue.
With that in mind, it should be obvious that you can have as many processes sleeping on a wait queue as you
want. How do we put the processes to sleep?

void interruptible_sleep_on(struct wait_queue **p)
long interruptible_sleep_on_timeout(struct wait_queue **p, long timeout)

These macros put the process to sleep with a state, but allow it to wake on signals. The _timeout variant calls
schedule_timeout internally and thus enables the callee to let the process wake on its own when it expires.
We'll discuss how the timeout is specified later on when we come to timers.

void sleep_on(struct wait_queue **p)
long sleep_on_timeout(struct wait_queue **p, long timeout)

The semantics of these two are exactly the same as the functions above, except that the state is set to
TASK_UNINTERRUPTIBLE.

If you wish to peek more at the internals, they can be found in kernel/sched.c.

Sooner or later a sleeping process must be brought to life, one way or another.

wake_up_interruptible(struct wait_queue **p)
wake_up(struct wait_queue **p)

Both of these are macros that expand to __wake_up. The former only wakes interruptible sleepers, while the
latter wakes both. However, processes that were explicitly stopped (sent a SIGSTOP, for example) will not be
awakened.

Wait Queues

707

Schar puts readers to sleep on its wait queue, when it has no data to serve. A timer will wake them up, as
would a writer, when enough data is available to satisfy the request.

interruptible_sleep_on(&schar_wq);
if (signal_pending(current))
 return −EINTR;

This structure is seen in many places throughout the kernel; we put the current process to sleep, but allow it to
wake up in case it is sent a signal. When interruptible_sleep_on returns, the process has been awakened either
by an explicit call to wake_up_interruptible or because it received a signal. If the latter is the case,
signal_pending returns 1 and we instruct the VFS to restart the read by returning EINTR to signify an
interrupted call. If we had simply used sleep_on to put the process to sleep, it would sleep uninterruptibly
while waiting for data and not even a SIGKILL would annihilate it.

As mentioned before, we wake the readers in the timer handler and schar_write.

wake_up_interruptible(&schar_wq);

This wakes up all the readers sleeping on the queue. Whether that is the appropriate behavior or not, depends
on the situation we may only be able to satisfy one read, so should we wake all the readers and let them race
for the data? Schar could keep a per−device−open wait queue to solve the problem. Since that would not
introduce any new concepts that exercise is left to the interested reader. Having per−device data is an
interesting and useful concept by itself and will be demonstrated with the Iomap module later.

Writing to the Device

schar_write is much simpler by comparison, as it increments schar_pool by count and modifies file−>f_pos to
signify how much data was written to the device. The reason this is so much simpler than the read operation is
that Schar doesn't care about finding something to do with the data, it'll take as much as we throw at it. The
only thing we need to do apart from this is wake up any readers, since there might be enough data available
now to satisfy their read. The implementation looks like this:

static ssize_t schar_write(struct file *file, const char *buf,
 size_t count, off_t *offset)
{
 schar_pool += count;
 schar_data_written += count;

 /* if we were really writing − modify the file position to
 reflect the amount of data written */
 file−>f_pos += count;
 if (copy_from_user(schar_buffer, buf, count))
 return −EFAULT;

 /* wake up reading processes, if any */
 if (schar_pool > 0) {
 wake_up_interruptible(&schar_wq);
 wake_up_interruptible(&schar_poll_read);
 }

 MSG("trying to write %u bytes, %ld bytes in queue now\n",
 (unsigned)count, schar_pool);

 /* return data written */
 return count;

Writing to the Device

708

}

Non−blocking Reads

Drivers that serve data should differentiate between blocking and non−blocking opens. If not enough data is
available to satisfy a request, we ordinarily put the process to sleep and wake it once enough data is available.
When the device is opened non−blocking, we should instead supply as much data as we can and return
immediately without putting the process to sleep. We acheive this by adding the following to the schar_read
function:

static ssize_t schar_read(struct file *file, char *buf, size_t count,
 loff_t *offset)
...
 while (count > schar_pool) {
 /* if the device is opened non blocking satisfy what we
 can of the request and don't put the process to sleep. */
 if (file−>f_flags & O_NONBLOCK) {
 if (schar_pool > 0) {
 file−>f_pos += schar_pool;
 if (copy_to_user(buf, schar_buffer, schar_pool))
 return −EFAULT;
 count = schar_length;
 schar_pool = 0;
 return count;
 } else {
 return −EAGAIN;
 }
 MSG("putting process with pid %u to sleep\n", current−>pid);
 /* go to sleep, but wake up on signals */
 interruptible_sleep_on(&schar_wq);
 if (signal_pending(current)) {
 MSG("pid %u got signal\n", (unsigned)current−>pid);
 /* tell vfs about the signal */
 return −EINTR;
 }
 }
}
...
}

schar_read checks f_flags in order to detect with what method the device was opened. If the application
requested more data than what is currently in our pool, we return what is there, but if the pool is empty we
return −EAGAIN. This is a hint to the reading processes that it should try its request again later.

A device driver that only implements read and write is a bit boring. The file operation structure contains many
other entry points now let's implement some of these in Schar or at least explain why some of them work
without even writing an explicit function in the driver to handle it.

Seeking

Schar does not implement its own seeking function and therefore relies on the default implementation in the
kernel. The default implementation is invoked if a NULL is registered for llseek in the file operations
structure passed to register_chrdev. The kernel version can be found in fs/read_write.c as default_llseek and
provides SEEK_SET, SEEK_CUR and SEEK_END functionality. These macros, when used with llseek,
change the value of file−>f_pos, the position in the file stream from which the next byte will be read. In case

Non−blocking Reads

709

you want to handle the seeking yourself if the specific device does not support seeking relative to the end, for
example you will have to provide your own llseek implementation. This is a typical example:

loff_t own_llseek(struct file *file, loff_t offset, int mode)
{
 switch (mode) {
 case 0: /* SEEK_SET */
 file−>f_pos = offset;
 return file−>f_pos;
 case 1: /* SEEK_CUR */
 file−>f_pos += offset;
 return file−>f_pos;
 case 2: /* SEEK_END */
 return −EINVAL;
 default: /* cannot happen */
 return −EINVAL;
 }
}

If seeking does not make sense for the device at all, an llseek function will have to be defined to prevent
seeking. In that case −ESPIPE should simply be returned, which is means "Illegal seek" in this respect.

loff_t own_llseek(struct file *file, loff_t offset, int mode)
{
 /* illegal seek */
 return ESPIPE;
}

ioctl

Sometimes it can be useful to change or get the parameters from a running driver, instead of reconfiguring it
and running a new compile. For some devices this is not even an option if it is constantly in use and thus
cannot be removed from the system. ioctl is an entry point in the driver that will let you either set or retrieve
settings while it is still running.

Every device in the kernel has a (somewhat) unique ioctl base number associated with them along with a
range of commands. For example, the SCSI generic layer has ioctl base number 0x22 and the whole sub range
of 0x00−0xff assigned to it. Sometimes only a part of the sub range is used as most devices won't need to
support 256 commands. An ioctl command consists of an upper 16−bit base and a lower 16−bit command and
so the first SCSI generic command would be 0x2200. The ioctl base numbers are documented in
Documentation/ioctl−number.txt although it is not quite up to date as of this writing. The file also includes
instructions as to how to request a suitable range for your own device. We selected an available base number
for Schar 0xbb. The lower level implementation is somewhat more complex than that. Ignorance is bliss, but
if you are really interested look at the definitions in asm/ioctl.h.

Linux distinguishes between four types of ioctl function calls; direct commands, read, write, or read and write.
This is defined by the way the identifiers are written in the module. The different types are defined as follows:

_IO(base, command) Define the selected command. No data is transferred to or from
the application issuing the ioctl. An _IO ioctl can still return an
integer as long as it is positive (and thus not interpreted as an
error).

_IOR(base, command, size) A reading ioctl, as seen from the application. size is the size of

ioctl

710

the argument to be transferred back.

_IOW(base, command, size) A writing ioctl, as seen from the application. size is the size of
the argument to be transferred from user space.

_IOWR(base, command, size) A reading and writing ioctl. As usual, size indicates the size of
the argument to be transferred back and forth.

In addition, macros are provided to check the validity of the command sent. The kernel side encoding splits
the bit field into a direction, size, and command section. The information can be extracted with the following
macros.

_IOC_DIR(command) The direction of the command, either _IOC_NONE,
_IOC_WRITE, or _IOC_READ corresponding to the the types
mentioned above. For _IOWR, the value is _IOC_WRITE
OR'ed with _IOC_READ.

_IOC_TYPE(command) The ioctl base number part of the field, 0xbb for Schar.

_IOC_NR(command) The command part of the field.

_IOC_SIZE(command) The size of the argument, if any.
The ioctl function itself is defined in the file_operations structure supplied when registering the module.
schar.h defines the supported commands.

#define SCHAR_IOCTL_BASE 0xbb
#define SCHAR_TOGGLE_DEBUG _IO(SCHAR_IOCTL_BASE, 0)
#define SCHAR_GET_POOL _IOR(SCHAR_IOCTL_BASE, 1, unsigned long)
#define SCHAR_EX_TIMER_DELAY _IOWR(SCHAR_IOCTL_BASE, 5, unsigned long)

The base number is sufficiently far away from anything else out there, so we shouldn't get any conflicts.
These are the three different types that exist in Schar. SCHAR_TOGGLE_DEBUG toggles whether debug
messages should be printed or not. No parameter is specified, hence the _IO type. SCHAR_GET_POOL
returns the number of bytes currently residing in the pool and finally SCHAR_EX_TIMER_DELAY sets the
number of jiffies between each timer delay and returns the old setting. Jiffies are a time measurement within
the kernel and will be covered shortly.

The schar_ioctl function consists almost solely of a switch statement supporting the different commands.

static int schar_ioctl(struct inode *inode, struct file *file,
 unsigned int cmd, unsigned long arg)
{
 /* make sure that the command is really one of schar's */
 if (_IOC_TYPE(cmd) != SCHAR_IOCTL_BASE)
 return −ENOTTY;

 switch (cmd) {
 case SCHAR_TOGGLE_DEBUG: {
 schar_debug = !schar_debug;
 return 0;
 }
 case SCHAR_GET_POOL: {
 if (put_user(schar_pool, (unsigned long *)arg))
 return −EFAULT;
 break;
 }
 case SCHAR_EX_TIMER_DELAY: {
 unsigned long tmp = schar_timer_delay;
 if (!capable(CAP_SYS_ADMIN))

ioctl

711

 return −EACCES;
 if (get_user(schar_timer_delay,
 (unsigned long *)arg))
 return −EFAULT;
 if (put_user(tmp, (unsigned long *)arg))
 return −EFAULT;
 break;
 }
 default: {
 MSG("ioctl: no such command\n");
 return −ENOTTY;
 }
 }
 /* to keep gcc happy */
 return 0;
}

The implementation hopefully speaks for itself if you have used the ioctl system call before. We will look at
the two calls which we've not met before − get_user and put_user − a little later. For now it should suffice to
say that they copy data back and forth between user space and kernel space. The default case catches any
commands that Schar does not support. −ENOTTY is the appropriate return value for unsupported commands.
This might seem a bit odd, since this historically meant "Not a typewriter" and dates back to the days when
the only devices were TTY's. Today this translates to "Inappropriate ioctl for device" when it is returned for
an ioctl call.

Checking User Rights

Ioctl's are available for use by anyone who has access to open the device. Depending on what operations
should be performed access should not be permitted to all users. SCHAR_EX_TIMER_DELAY checks
whether the user who opened the device is the super user, since setting too low a timeout will expire the timer
too quickly and thus effectively prevent the machine from doing any useful work. Linux has a lot of different
capability personalities defined, the most significant in this case being CAP_SYS_ADMIN. The various
CAP_ defines are located in linux/capability.h with comments regarding the operations permitted.

int capable(int cap)

The check is performed by capable which returns 1 if the user has the particular capability and 0 otherwise.
The use of capabilities is not restricted to ioctls alone, but they are most frequently used there.

poll

poll provides a way for a process to sleep on the device waiting for a certain event to take place. This is not to
be confused with a repeated check for status as this is not what happens here. Using the poll system call is an
efficient way of waiting for events to occur without resorting to busy looping. Schar implements poll
somewhat, as much as it makes sense in our case anyway. The implementation of poll is very simple. Since a
write to Schar will always succeed, we only need to test for reads. An schar_poll_read wait queue is
introduced, and if our pool of data is empty a poll for read will sleep until data is available.

static unsigned int schar_poll(struct file *file,
 poll_table *wait)
{
 unsigned int mask = 0;

 poll_wait(file, &schar_poll_read, wait);

Checking User Rights

712

 /* if the pool contains data, a read will succeed */
 if (schar_pool > 0)
 mask |= POLLIN | POLLRDNORM;

 /* a write always succeeds */
 mask |= POLLOUT | POLLWRNORM;

 return mask;
}

This is all it takes for Schar! If Schar kept an upper limit on the size of the pool, a schar_poll_write could
easily be added and a similar check could be made for POLLOUT. The header file asm/poll.h contains the
possible poll masks We will cover the standard ones here.

POLLIN
POLLRDNORM

The device can supply data on a succeeding read without blocking.

POLLOUT
POLLWRNORM

The device can accept data on a succeeding write without blocking.

POLLERR An error occurred.
If you have ever used poll for user space applications, you should be familiar with these as they are similar
when seen from the kernel.

Try it out reading and writing to Schar

Okay, we've covered the basics of Schar − we'll come on to the timer and memory functionality soon. But
before we do, let's try it out. You can download the source code for Schar from the Wrox Press website,
www.wrox.com. You can extract the archive anywhere on your system. Schar is located in modules/schar.

The first thing we need to do is create an appropriate special file for Schar. Recall from earlier that
mknod is the command that does just that. We need to create a character special file with a major
number of 42 and a minor of 0.

mknod /dev/schar c 42 0
#

1.

Go to the source of the Schar module and type make inside the directory. The compile should
complete without errors or warnings. The finished module then resides in the same directory as
schar.o. Insert the module.

insmod schar.o
#

The device should now be registered with the kernel and ready to serve. Verify this by examining the
/proc/devices file as explained above or type dmesg and notice how Schar welcomes us at the end.

$ dmesg | tail −n1
schar: module loaded
$

2.

Now lets copy a file to Schar and see what happens. You can choose any file you'd like, but try a
small text file if you have one handy, or can create one for the purpose. It would be a good idea to
have a separate terminal window open to repeatedly run dmesg to follow Schar's output. Here we list
the output from dmesg below each command.

3.

Try it out reading and writing to Schar

713

If cp asks you if its okay to overwrite /dev/schar, just say yes.

$ cp small_file /dev/schar
schar: opened for writing
schar: major: 42 minor: 0
schar: trying to write 4096 bytes, 4096 bytes in queue now
schar: trying to write 4096 bytes, 8192 bytes in queue now
schar: trying to write 3241 bytes, 11433 bytes in queue now
schar: release

First we go through schar_open which is responsible for the first two lines of output. Then
schar_write is entered and the 11433 byte file we copied to the device is written in chunks of 4096
bytes at the time. When the write has finished, schar_release is entered and the write of the file is
completed.
Data is now available to be read from Schar, so lets copy some it back.

$ cp /dev/schar out_file
schar: opened for reading
schar: major: 42 minor: 0
schar: want to read 4096 bytes, 7337 bytes in queue
schar: want to read 4096 bytes, 3241 bytes in queue
schar: putting process with pid 757 to sleep
schar: pid 757 got signal

Again schar_open is the entry point, but this time schar_read is entered next. Data is read in chunks of
4096 bytes again we can satisfy two reads of 4Kb before the pool contains less that what cp asks for.
This is where we put the reader (cp) to sleep until more data becomes available. We got impatient and
ended the read with a Ctrl−C which sent a signal to the process, hence the last line of output.

It is important to note that the 4Kb chunks we serve data in above is not an Schar limit, but rather the
design of cp. We could just as well serve data in 1 byte or 16Kb chunks instead.

So, we can write data to Schar, and read data back. Let's now try and play with some of the other
functions we included.

4.

Try it out ioctl

Make sure that the Schar module is built and loaded. Create a file called schar_ioctl.c in the directory
containing the sources to Schar.

#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>

#include "schar.h"

int main(int argc, char *argv[])
{
 int fd = open("/dev/schar", O_RDWR);

 /* complain if the open failed */
 if (fd == −1) {
 perror("open");
 return 1;
 }

1.

Try it out ioctl

714

 /* complain if the ioctl call failed */
 if (ioctl(fd, SCHAR_TOGGLE_DEBUG) == −1) {
 perror("ioctl");
 return 2;
 }

 printf("Schar debug toggled\n");

 return 0;
}

Compile the program and execute it with the following two lines:

$ cc −o schar_ioctl schar_ioctl.c
$./schar_ioctl
Schar debug toggled
$

2.

If Schar was loaded with debugging enabled (as it defaults to), it should now stop printing informative
messages about opens, reads, and such. Try the copy commands we used earlier, and check dmesg.
You should see debgging output is no longer arriving in the kernel buffer.

3.

Module Parameters

Linux provides an easy way to add parameter options for modules, which can be supplied at module load time
with either modprobe or insmod. Schar has most of its user definable parameters set up this way.

MODULE_PARM(variable, type)

variable is the variable parameter set and type is a string compromising the length and type of the parameter.
They can be placed anywhere in the module outside of functions, but are usually placed after the global
variable declarations near the top. Lets look at an example from Schar.

MODULE_PARM(schar_debug, "1b");

The type string "1b" signifies that this is a byte value of length 1. The length can also be supplied with both a
minimum and maximum size; "5−10b" would then mean that schar_debug was a byte size array with a
minimum of 5 and a maximum of 10 items. If no length argument is given, a length of 1 is assumed. Four
other types are defined besides byte size.

h short

i int

l long

s string
It is also possible to supply a descriptive text of the various module parameters. This information can be
extracted with modinfo and gives the user a chance to see what parameters are supported without diving into
the actual source of the module.

MODULE_PARM_DESC(schar_debug, "Enable debugging messages");

The above line is used to describe the meaning of the schar_debug variable exported prior with
MODULE_PARM declaration. Finally, a general description and author field can be filled out.

MODULE_DESCRIPTION("Sample character driver");
MODULE_AUTHOR("Jens Axboe");

Module Parameters

715

modinfo supports several options that let you extract the information you need. Beware that modutils−2.1.121
has a bug will cause it to continuously loop while printing the information so getting a newer version is
recommended.

Try it out modinfo

Let's try it out and list some of the module parameter information stored in a compiled Schar module. Make
sure that you are in the directory containing the built Schar module:

$ modinfo −p schar.o
schar_name string, description "Name of device"
schar_debug byte, description "Enable debugging messages"
schar_inc int, description "Byte increase in pool per timer fire"
schar_timer_delay long, description "Timer ticks between timer fire"
schar_pool_min long, description "Timer fill pool minimum in bytes"

The p parameter asks modinfo to print information about the parameter that the module can be fed at load
time its name, type, and a description of the option.

proc file system interface

The proc file system works much like a real file system, in that it is mounted and reading or writing is
accomplished by using standard file utilities. The data read from a file is generated on the fly by the module or
kernel and can provide run time statistics and other relevant information. Writeable files can be used to
change configuration or behavior of the driver. Adding a proc file system entry to Schar thus allows users to
retrieve information from the running module, without having to issue ioctl commands through a program.

Sysctl

The best place to register an entry is under the /proc/sys directory. Then entries can be retrieved with either
cat, for example, or the sysctl system call. Devices should register themselves under the dev/ directory and
this is exactly what Schar does it creates an Schar subdirectory and an entry called 0 inside it. The entries are
defined in an array of ctl_table structures stacked on top of each other until the chain is complete. The root
(/proc/sys/dev) is set up with /proc/sys/dev/schar as a directory entry child and finally /proc/sys/dev/char/0 is
added. Here's the code from Schar.c:

/* sysctl entries */
static char schar_proc_string[SCHAR_MAX_SYSCTL];
static struct ctl_table_header *schar_root_header = NULL;
static int schar_read_proc(ctl_table *ctl, int write, struct file *file,
 void *buffer, size_t *lenp);

static ctl_table schar_sysctl_table[] = {
 { DEV_SCHAR_ENTRY, /* binary id */
 "0", /* name */
 &schar_proc_string, /* data */
 SCHAR_MAX_SYSCTL, /* max size of output */
 0644, /* mode */
 0, /* child − none */
 &schar_read_proc }, /* set up text */
 { 0 }
};

static ctl_table schar_dir[] = {

Try it out modinfo

716

 { DEV_SCHAR, /* /proc/dev/schar */
 "schar", /* name */
 NULL,
 0,
 0555,
 schar_sysctl_table }, /* the child */
 { 0 }
};

static ctl_table schar_root_dir[] = {
 { CTL_DEV, /* /proc/dev */
 "dev", /* name */
 NULL,
 0,
 0555,
 schar_dir }, /* the child */
 { 0 }
};

DEV_SCHAR_ENTRY is the binary ID used when issuing a sysctl system call and should be unique.
schar_proc_string is the data returned to reading processes and is no longer than SCHAR_MAX_SYSCTL
bytes in length. The implementation is very simple and merely consists of copying the statistics generated to a
dedicated buffer schar_proc_string that is generated by schar_read_proc when the read takes place.

Once the appropriate tables have been set up, the entry is registered with the proc file system. A
ctl_table_header is returned or 0 in the unlikely scenario that no memory was available.

schar_root_header = register_sysctl_table(schar_root_dir, 0);
schar_root_dir−>child−>de−>fill_inode = &schar_fill_inode;

The last line sets up the fill_inode. Upon entering and leaving the /proc/sys/dev/schar directory the assigned
function, schar_fill_inode, increments or decrements the module usage count. A fill argument is passed to the
function indicating whether the inode associated with the directory is busy or not. By incrementing the usage
count the module cannot be removed until no one is accessing the directory, which would otherwise generate
a kernel fault (also known as an Oops, we will look at these in the section on debugging).

proc_dostring does the rest of the job for us, copying the data to user space and modifying the file position.
The arguments remain untouched and are simply passed along.

return proc_dostring(ctl, write, file, buffer, lenp);

Schar is not very careful with regards to proc or sysctl support in the kernel. If this was a production module,
the implementation should be protected by adding the necessary define checks. Something in the order of

#ifdef CONFIG_SYSCTL
...
#endif

around the relevant pieces of code. Otherwise the module would fail to compile on a kernel build without
sysctl support, albeit that is an extremely rare scenario.

Writable Entries

The entry registered by Schar only provides information to the user and as such is read only. The mode set up
does permit writing, however, and in that case the written string is merely printed to the logs.

Writable Entries

717

if (write) {
 char *tmp = (char *) get_free_page(GFP_KERNEL);
 MSG("proc: someone wrote %u bytes\n", *lenp);
 if (tmp) {
 if (!copy_from_user(tmp, buffer, *lenp))
 MSG("proc: %s", tmp);
 free_page((unsigned long)tmp);
 file−>f_pos += *lenp;
 }
 return 0;
}

A write argument is passed to the registered handler indicating whether the access was for reading or writing.
In the latter case, the data is copied to us and printed.

It should not be hard to add a function to parse the input and change the configuration appropriately. Another
alternative is to create numerous entries each holding one of Schar's configuration options (much like the
other /proc/sys entries) and thus provide the possibility of simply echoing changes directly to the separate
files. It would then even be possible to use proc_dostring for both input and output. The sysctl abstraction
does lend itself more in this direction, but having learned of both it should provide you with the necessary
tools to further pursue the proc file systems. Besides, it is a two−for−one deal, since registering a sysctl table
also takes care of setting up the proc file system entry. kernel/sysctl.c is a great place to look for more
information.

How Schar Behaves

Schar keeps an internal count of how many bytes are either in surplus or in demand in the schar_pool variable.
A negative value means that a reader is currently starved of schar_pool bytes, while a positive value signifies
the opposite. Writing to the device will add the bytes written to the pool for later consumption. Schar keeps a
kernel timer running that adds SCHAR_INC bytes to schar_pool at SCHAR_TIMER_DELAY intervals while
a reader is waiting for data. A write to the device will always succeed, but if a reader requests more data than
what is currently in the pool it is added to Schar's wait queue and woken up every time the timer handler runs.
It prints relevant information to the logs, so give it a try to get a feel for how the internals work.

Schar keeps a free page of memory as an internal buffer and copies read and written data to and from there. It
serves no particular purpose other than to demonstrate how data is moved between kernel and user space a
concept we will look at much more closely later.

While Schar is useless by itself, it exposes the basic skeleton for a character driven device driver. We used a
kernel timer to feed the pool to emulate the feel of a polled device. Polling is needed if the device is unable to
provide feedback to the driver in the form of interrupts, a concept we will look at later when looking at
interrupt driven character drivers.

Review

In this section we looked at how character devices register themselves in the kernel device switch table with
the register_chrdev function. They passed a file_operations structure to this function that defined what access
methods we provide in this driver. The module usage count makes sure that a driver is not unloaded while it is
busy and is modified with the MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT macros.

We looked at how Schar implements read and write operations and can put the current process to sleep and
wake it up at will using wait queues. This is an important concept and is used in just about every character

 How Schar Behaves

718

device driver.

Then we looked at which visible entry points the driver provides besides just read and write. The first one was
seeking through llseek which turned out to be active even if we haven't written an implementation in the
module. We looked at how disabling seeks could be accomplished by writing a basically empty
implementation that merely returned ESPIPE.

Next up was ioctl, IO Control, commands. We saw how calls were split up in two parts, a base number and a
command. The implementation in Schar was basically just a switch statement and ENOTTY was returned for
unknown commands. Not all ioctl calls should be available to all users. Specific capabilities could be checked
with the capable function.

poll provided a way for a reading process to sleep while data becomes available. The implementation in Schar
only looked at reading processes, since it always accepts data from writers. Although only reads could be
tested for in Schar, the other poll masks were also shown.

Finally we took a quick look at specifying module parameters before moving on to the proc file system setup
in Schar. We went all the way and provided a sysctl entry that could be reached both by reading entries in
/proc/sys/dev/schar and through the sysctl system call.

Finally we had a quick explanation of how Schar behaves when data is copied to and from the device. You
should compile the module yourself and give it a go to fully understand what it does and how.

Time and Jiffies

The kernel keeps track of time passing in the global jiffies variable. You may consider this the kernel's
heartbeat, since for every timer tick that goes by jiffies is incremented by one. The define HZ controls the rate
of the ticks and can be modified at your will in <asm/param.h>. Beware that changing this will require a
recompile of existing modules (and the kernel, of course) and will break applications that depend on its
default value. Every platform, except the Alpha, sets this to 100; that gives us a heartbeat rate of one every 10
milliseconds. Increasing the value may give you better interactive performance at the expense of spending
more time in the scheduler, but leaving it at 100 is probably a safe bet. Every now and then discussions arise,
debating whether HZ should be changed since it has stayed the same since Linux was first introduced. So far
it is not conclusive if increasing it will give better performance on today's faster processors

You might end up programming devices where you want to detect whether an operation was completed within
a given amount of time or not. Some devices do not support raising interrupts upon completion and thus must
be handled via some form of polling for status. This is usually only the case with old or badly designed
hardware; modern devices should support some kind of event notification. Busy looping should never be
considered good device driver programming practice. If you do need to resort to these dirty measures, make
sure that it only runs in the odd case, i.e. during device probing or similar instances. In these cases the most
used construct is a variant of the following:

unsigned long timeout = jiffies + PROBE_TIMEOUT;
do {
 do_command(PROBE);
 stat = get_status();
} while (stat == BUSY && time_before(jiffies, timeout));

if (time_after_eq(jiffies, timeout))
 printk("operation timed out.\n");

 Time and Jiffies

719

Now you might be wondering what the time_before and time_after_eq functions do and why we didn't just
compare timeout and jiffies directly. Well, Linux is such a stable operating system that it is not that unusual to
have machines running a very long time between reboots. Given that jiffies is defined to be an unsigned long
it will wrap eventually and start ticking from zero again. If timeout wraps when jiffies and
PROBE_TIMEOUT are added, a simple test of:

do {
 do_command(PROBE);
 stat = get_status();
while (stat == BUSY && (jiffies < timeout));

would cause the loop to exit prematurely. Clearly this isn't intended and keeping track of wraps ourselves,
albeit not that difficult, shouldn't be something that the driver writer should be bothered with. For this reason,
these four macros can do the job for us safely:

time_before(jiffies, x) wrap safe jiffies < x

time_after(jiffies, x) wrap safe jiffies > x

time_before_eq(jiffies, x) wrap safe jiffies <= x

time_after_eq(jiffies, x) wrap safe jiffies >= x
The macros are not only useful when doing direct tests like the above where the possibility of a wrap is
miniscule, but also when testing for much larger values in drivers where packets are queued and then only
tested for timeouts much later. That could be in a SCSI or network adapter driver code, for example. The
macros are defined in linux/timer.h.

On the issue of portability and time−outs using jiffies never assume that HZ equals 100. This is already a
false assumption on Alpha architectures, which define it as 1024 and rtLinux (Real Time Linux) that uses
10,000. Users are free to select any value they please and changing HZ is as easy as modifying asm/param.h
and recompiling. Therefore make sure that constructs like the above define PROBE_TIMEOUT in terms of
HZ and not a tick value alone.

Small Delays

At times you need a finer control over time than that which HZ provides. Remember that HZ is 100 on most
platforms, which will only give you an approximate resolution of 0.01 seconds. That may not seem like much,
but for most hardware this is an extremely long period of time. In case you need finer resolution, udelay can
provide up to microsecond precision.

/* delay for 0.5 milliseconds */
udelay(500);

udelay uses the BogoMIPS rating calculated at boot time and while you can not rely on precisely microsecond
resolution, it does get fairly close. You may have wondered what the BogoMIPS rating shown at boot means
and what it is used for it is a calibration loop run at boot that measures a loops per second speed. As such it
isn't directly related to hardware speed (hence BogoMIPS, for bogus), but it does provide a way to somewhat
accurately offer delay operations for udelay and friends. Never use udelay for more than a millisecond or two
as this can cause overflow on machines with high BogoMIPS ratings. In fact, be very certain that you really
do need to delay like this! If you do need to pause for longer than this, either loop a specified amount of times
and udelay a millisecond each time, like this:

/* delay for 10 milliseconds */
int i;

 Small Delays

720

for (i = 0; i < 10; i++)
 udelay(1000);

Or you can use mdelay, which is a macro that does exactly that for you.

/* delay for 10 milliseconds */
mdelay(10);

Timers

Kernel timers are an excellent way of keeping track of time in your driver. Instead of looping and busy
waiting for a certain amount of time to expire, you should take advantage of the available timer functions. As
we have seen above, timers can also be used to poll a device at a constant interval. Timers are implemented as
a doubly linked list with the following format:

struct timer_list {
 struct timer_list *next;
 struct timer_list *prev;
 unsigned long expires;
 unsigned long data;
 void (*function)(unsigned long);
};

You can find this definition in linux/timer.h. For the sake of simplicity, you will never have to touch the *next
and *prev pointers; in fact you should not. The kernel uses these internally and does that for us. The
interesting parts can be found in kernel/sched.c. add_timer takes care of acquiring the necessary locks and
then calls internal_add_timer. This keeps the interface simple for us and we do not actually have to be
concerned with the inner workings of internal_add_timer. The different locking schemes will be introduced
later, when the issues of SMP and reentrant code are discussed.

init_timer does exactly what the name hints at initializes the timer for use. In reality it merely updates next
and prev to be null pointers so that timers added twice won't go unnoticed. This is also the technique used in
Schar's open procedure to detect whether the internal timer was already set up. Let's take a closer look at the
code from Schar that shows how timers are used in that context. The timer is initialized as follows:

static struct timer_list schar_timer;

This code, from init_module, just prepares the timer for later use.

init_timer(&schar_timer);

schar_open then sets it up, provided that is hasn't already been set up by another reader.

if (!timer_pending(&schar_timer)) {
 schar_timer.function = &schar_timer_handler;
 mod_timer(&schar_timer, SCHAR_TIMER_DELAY);
}

Most important is the timer_handler function, a reference to which is passed to schar_timer's function value.

static void schar_timer_handler(unsigned long data)
{
 /* setup timer again */
 if (schar_pool < schar_pool_min) {

 Timers

721

 schar_pool += SCHAR_INC;
 schar_timer.expires = jiffies + schar_timer_delay;
 schar_timer.function = &schar_timer_handler;
 add_timer(&schar_timer);
 MSG("setting timer up again, %ld data now\n", schar_pool);
 }

 /* if the module is in use, we most likely have a reader waiting for
 data. wake up any processes that are waiting for data. */
 if (MOD_IN_USE && schar_pool > 0) {
 wake_up_interruptible(&schar_wq);
 wake_up_interruptible(&schar_poll_read);
 }

 return;
}

The syntax is fairly straightforward so we won't explain it to death. data is not used in Schar at all, since we
are only maintaining one timer with the handler. We could have added a timer for both readers and writers,
and let the value of data signify either a SCHAR_READER or SCHAR_WRITER timer. There are many
other uses for data it is passed to timer_handler as an argument so you can use it anyway you please. It is also
worth noting that expires is not relative to the current time you need to add jiffies explicitly.

Timers are automatically deleted when they expire, but leaving them hanging after the module has been
unloaded is an excellent way to hang the kernel. This also means that you can add the timer again from the
handler itself. cleanup_module calls timer_pending to detect whether the timer has expired or not. It returns
true if the timer hasn't fired yet and false otherwise. If the timer is still running, it is explicitly deleted by
del_timer. Strictly speaking, this isn't really necessary since calling del_timer on a timer that has fired does no
harm. We included it here merely for the sake of covering all the related timer functions.

If you need to update the timer to extend the timeout, mod_timer is your friend. So instead of doing

del_timer(&timer1);
timer1.expires = jiffies + new_value;
add_timer(&timer1);

you can do

mod_timer(&timer1, new_value);

and end up with the same result in a nicer way. If the timer had already expired by the time mod_timer is
invoked, it acts just like add_timer and merely adds the timer again.

Try it out The timer implementation in Schar

Schar periodically adds data to its internal pool by using a kernel timer. The interval can be adjusted either
through an ioctl call or by modifying SCHAR_TIMER_DELAY in schar.h.

The timer is added when a reader opens the device and re−added from the timer handler as long as data is in
demand.

$ cp /dev/schar out_file
schar: opened for reading
schar: major: 42 minor: 0
schar: putting process with pid 889 to sleep

Try it out The timer implementation in Schar

722

schar: setting timer up again, 1024 data now
schar: putting process with pid 889 to sleep

schar: setting timer up again, 2048 data now
schar: putting process with pid 889 to sleep

schar: setting timer up again, 3072 data now
schar: putting process with pid 889 to sleep

schar: setting timer up again, 4096 data now
schar: want to read 4096 bytes, 0 bytes in queue
schar: putting process with pid 889 to sleep

SCHAR_INC bytes of data are added to the pool each time the handler runs 1024 in this case. Every time the
handler runs it wakes the reading process (or processes, if you have more than one running) in case we now
have enough data to satisfy the read. When the pool contains 4096 bytes, cp can receive the first chunk of data
and the procedure starts over again.

Giving up the Processor

Instead of looping and waiting for a certain amount of time to expire, it may be beneficial to suspend
execution of the current process and resume later. Changing the state of the process and calling the scheduler
can accomplish this. In the listing of the Linux task structure we examined earlier, the state field was
introduced. It can be assigned to any of the following values:

TASK_RUNNING The task was selected by the scheduler the last time it ran and is
currently in a running state. This is the state of the current process when
entering the driver.

TASK_INTERRUPTIBLE The task is in a state of sleep, but can be woken up by signals.

TASK_UNINTERRUPTIBLE The task is in a state of sleep and signals cannot wake it up. The process
is probably waiting on an event to happen and it wouldn't make sense to
let it wake before that event occurs.

There are a couple more than this, but they aren't relevant here. Look them up in linux/sched.h if you wish.

So before invoking the scheduler, current−>state should be set to either TASK_INTERRUPTIBLE or
TASK_UNINTERRUPTIBLE. Which one to use depends on what condition the process is waiting for. The
latter should only be used if wouldn't make sense to let wake it up before what it requested is ready and
putting it away in a uninterruptible state is the most logical choice. For most issues that is not the case If you
grep through the Linux sources you will find very few places that actually use TASK_UNINTERRUPTIBLE.
One example, however, is if pages belonging to the process are being brought in from swap; we don't want the
process to wake up until the task is completed.

A piece of code that demonstrates these principles could be:

current−>state = TASK_INTERRUPTIBLE;
schedule();

Now the process gets tugged away and the scheduler runs. But how do we know when the process returns? If
there are no other suitable processes to run, the same task will be selected to run again and we end up at the
same place almost instantly. This is where schedule_timeout enters the picture you call it instead of schedule,
and it returns the number of jiffies left to be slept. The scheduler is guaranteed not to select the process for

 Giving up the Processor

723

execution before the specified timeout has expired.

/* put the process away for a second */
current−>state = TASK_INTERRUPTIBLE;
schedule_timeout(HZ);

The value signifies the number of jiffies the process should sleep before being run again. The inner workings
of schedule_timeout are rather interesting it is implemented with the aid of a kernel timer, and the data
argument is the address of the current process. After the timer has been added, schedule_timeout calls
schedule itself. The timer function simply does a wake up of the process with address data. If you are
interested, look in kernel/sched.c.

Task Queues

We have looked at how timers can be used to wake up processes at a given point in the future. While timers
are handy, it could also be useful to delay work to be executed later. This becomes particularly interesting
when we deal with interrupt handling routines and bottom halves, which task queues are very closely related
to. For now, let's stick to task queues and defer the discussion of interrupt handling to the next section.

struct tq_struct {
 struct tq_struct *next; /* linked list of active bh's */
 unsigned long sync; /* must be initialized to zero*/
 void (*routine)(void *); /* function to call */
 void *data; /* argument to function */
};

The declaration is from linux/tqueue.h. As usual, you do not have to touch all the fields yourself. *next is used
internally to keep the queued tasks in a linked list and sync makes sure that a task is not queued twice before
being run. This would corrupt the linked list, so if you attempt to queue the task twice you will simply be
ignored.

Some predefined task queues exist in the kernel, but let's first look at declaring your own queue.

DECLARE_TASK_QUEUE(q_task);
struct tq_struct q_run = { NULL, 0, (void *)q_task_handler,
 &q_task };

This is the definition of the structure in queues and is pretty much taken directly from the header file. The
only real difference is that we define our own function to be called and activate the task queue from there.
DECLARE_TASK_QUEUE is a macro that initializes the queue to NULL. q_task is where we queue the
tasks, and q_run will run q_task_handler when the task queue is being consumed. Adding a process to the
above queue is done with

queue_task(&q_run, &q_task);

queue_task can be called numerous times and when we are ready to execute the tasks on hold on the queue,
run_task_queue is invoked. All the tasks queued on q_task are then consumed.

run_task_queue(&q_task);

 Task Queues

724

The Predefined Task Queues

We won't talk any more about defining your own task queues, since the kernel provides a few for us to use
and they will suffice for the most part. Therefore you hardly ever need to handle your own.

tq_immediate Gets run as soon as possible. We'll talk more about it in the section on interrupt
handling.

tq_timer After each passing timer tick, tq_timer is run. This queue is the one the kernel uses
for kernel timers internally.

tq_scheduler Gets run every time the scheduler is invoked, if it contains any tasks.

tq_disk Mostly used by the VFS and the block functions when dealing with requests.
The first three queues are clearly the most interesting and you should probably stay away from tq_disk, since
it has a very specialized purpose. If we disregard tq_disk, We have placed them in order of how fast they will
get executed after queuing (as a rule of thumb).

When you deal with the built−in task queues, you will never have to invoke run_task_queue on your own.
Depending on which queue you use, you instead simply mark the queue after adding the task and it will be run
automatically. Before we move on to looking at how to mark the queues for execution, let's take a very quick
look at the implementation of bottom halves in Linux.

We will look closer at bottom halves in the section on interrupt handling, but since they are closely related to
task queues it seems appropriate to use them as an example. Basically, interrupt handlers can be split in two
parts a top and bottom half. The former receives the interrupt and takes care of immediate, basic needs such
as acknowledging it to the device. The bottom half runs later and is used to defer processing of the data
received in the top half. This allows Linux to process more interrupts than a single interrupt handler can
manage on its own.

In fact, task queues are implemented as bottom halves in Linux. As the different bottom halves are marked
active, the kernel executes them with do_bottom_half from the scheduler. The kernel maintains a list of
possible bottom halves in linux/interrupt.h. Here is a snippet:

enum {
 TIMER_BH = 0,
 CONSOLE_BH,
 TQUEUE_BH,
 ...
 IMMEDIATE_BH,
 ...
};

These are the older embedded bottom halves and are not directly available to modules since each of them
serves a specialized purpose. If you look in the header file, you will notice that there isn't an entry for
tq_scheduler because it does not need to be marked for execution. The first thing the scheduler does, is to
check if tq_scheduler contains any tasks and executes them if it does. This also means that this queue is run
every time the scheduler is invoked, which is dependent on many factors.

tq_timer is run on every timer tick if it contains any tasks and thus does not need to be marked as active either.
This also means that task waiting on this queue are being run at interrupt time which places certain restrictions
on what they can do. Functions that are being run at interrupt time must not block or sleep, for example. This
may not sound like such a hard thing to achieve, but you must also bear in mind that the entire call path of
such a function is included so you must not call other functions that might block.

 The Predefined Task Queues

725

The last queue that should be considered for general use is tq_immediate. As the name implies, the queue is
run extremely fast. It is generally intended to be used as a way of defering work for interrupt handlers and we
will use it in the interrupt handling section.

void init_bh(int nr, void (*routine)(void)) Enable the handling of bottom half nr by
function routine.

void mark_bh(int nr) Mark the appropriate bit in bh_active,
which will make the scheduler run the task
queue when it is invoked.

tq_immediate is the only queue that must be explicitly marked, since its intended use is as a bottom half.
When we get to interrupt handling, some examples on how to use task queues and bottom halves will be
shown.

Review

We started out by looking at jiffies, the heart beat of the kernel. The standard kernel maintains a tick rate of
100 per second and increments jiffies by one each tick. Sooner or later jiffies wraps and starts ticking from
zero again, which is why we covered four macros that aid the device writer in determining whether a certain
timeout had passed or not. We showed how a process could be rescheduled, either with an explicit timeout
value or just forcing the scheduler to run and pick a new process for execution (and in that case it might select
the very same process again).

We also covered kernel timers and showed how they are used in Schar to invoke a specific timer handler at a
given point in the future. Task queues were another way of deferring work to be done later, although they
can't explicitly be invoked at a given time in the future and overall lend themselves more toward processing
work immediately or running batches of jobs.

Memory Management

Before we deal with how to allocate memory properly in a driver, let us take a brief tour of memory
management in general and how Linux handles it. You have probably come across the term virtual memory
before and may have wondered just what precisely it covered. When you allocate memory in user space
applications, you aren't handed a private section of the RAM in your machine. While this would be a way for
an operating system to handle memory allocations, it would only allow you to run as many applications as
your memory could hold in total. Linux does not work this way it pretends that much more memory is
available (hence the term virtual memory, it isn't actually real) and hands out virtual addresses to applications.

The mapping between virtual and physical addresses is kept in several structures, which comprise the page
table. The page table consists of three levels the page directory, page middle directory, and the page table
entries each which of provide an offset of the virtual address. This is the lowest level of memory management,
and the driver writer won't usually have to deal with the page table directly.

 Review

726

Virtual Memory Areas

Above the page table reside the virtual memory areas. These are a map of contiguous virtual memory
addresses, as handed out to an application.

struct vm_area_struct {

 unsigned long vm_start;
 unsigned long vm_end;

 pgprot_t vm_page_prot;

 struct vm_operations_struct *vm_ops;
 unsigned long vm_offset;
 struct file *vm_file;

};

This is a highly snipped version of the structure, you can find it in linux/mm.h. We will cover the members
that we will actually need later on. vm_start and vm_end represent the beginning and end of the virtual
memory area and vm_page_prot is the protection attributes assigned to it whether it is shared, private,
executable, and so forth. vm_ops is similar to the file_operations structure used with character and block
devices and forms an analogous abstraction to operation on virtual memory areas. Finally vm_offset is the
offset into the area and vm_file is used in correlation with memory mapping of files. We'll take a much closer
look at this structure when we dissect the mmap functions of Schar.

The mappings made by a specific process can be seen in /proc/<pid>/maps. Each one corresponds to a
separate vm_area_struct and the size, span, and protection associated with the mapping can be read from the
proc entry, amongst other things.

Address Space

 Virtual Memory Areas

727

The entire addressable area of memory (4 Gb on 32−bit platforms) is split into two major areas kernel space
and user (or application) space. PAGE_OFFSET defines this split and is actually configurable in asm/page.h.
The kernel space is located above the offset and user space is kept below. The default for PAGE_OFFSET on
the Intel platform is 0xc0000000 and thus provides the kernel with approximately 1 GB of memory, leaving 3
GB for user space consumption. On the Intel platform, the virtual addresses seen from the kernel are therefore
a direct offset from the physical address. This isn't always the case and primitives to convert between the two
must thus be used.

Types of Memory Locations

There are three kinds of addresses that you need to be aware of as a device driver writer :

Physical. This is the "real" address, the one that is used to index the memory bus on the motherboard.•
Virtual. Only the CPU and the kernel (via its page tables and TLB) knows about virtual addresses.•
Bus. All devices outside the CPU. On some platforms this is identical to the physical addresses.•

Now, if you want to talk to an add−on card you can't hand it a virtual memory address and tell it to transfer X
number of bytes to you. The card knows absolutely nothing about what addressing scheme the kernel and
CPU has agreed upon since it does not have access to the page tables and thus can't make any sense of the
memory address. Similarly, the kernel uses virtual addresses for everything and accessing bus memory varies
from platform to platform. Linux therefore provides convenient macros and functions to convert the three
types of addresses back and forth.

unsigned long virt_to_phys(void *address)
void *phys_to_virt(unsigned long address)

unsigned long virt_to_bus(void *address)
void *bus_to_virt(unsigned long address)

Talking to a peripheral device requires the translation back and forth between virtual addresses (that the kernel
knows about) and bus addresses (what the devices know about). This is regardless of the type of bus the
peripheral is installed in, be it PCI, ISA, or any other. Note that jumping through the extra hoops of converting
addresses is only necessary when you explicitly need to pass a pointer to a memory area directly to the device.
This is the case with DMA transfers, for example. In other situations you normally read the data from device
I/O memory or I/O ports.

Getting Memory in Device Drivers

Memory is allocated in chunks of the PAGE_SIZE on the target machine. The Intel platform has a page size
of 4 Kb whereas the Alpha uses 8 Kb sized pages and it is not a user configurable option. Keep in mind that
the page size varies depending on the platform. There are many ways of allocating memory for driver usage,
the lowest level one being a variant of :

unsigned long __get_free_page(int gfp_mask) Allocate exactly one page of memory.
gfp_mask describes priority and attributes of the page we would like to get a hold of. The most commonly
used ones in drivers are :

GFP_ATOMIC Memory should be returned, if any is available, without going blocking or bringing
in pages from swap.

GFP_KERNEL Memory should be returned, if any is available, but the call may block if pages need

 Types of Memory Locations

728

to be swapped out.

GFP_DMA The memory returned should be below the 16 MB mark and thus suitable as a DMA
buffer. This flag is only needed on ISA peripherals, as these cannot address more
memory than 16MB.

GFP_ATOMIC must always be specified if you wish to allocate memory at interrupt time, since it is
guaranteed not to schedule out the current process if a suitable page is not available. ISA boards can only see
up to 16 MB of memory and hence you must specify GFP_DMA if you are allocating a buffer for DMA
transfers on an ISA peripheral. Depending on how much memory is installed and the level of internal
fragmentation, memory allocated with GFP_DMA may not succeed. PCI devices do not suffer under this
constraint and can use any memory returned by __get_free_page for DMA transfers.

__get_free_page is actually just a special case of __get_free_pages.

unsigned long __get_free_pages(int gfp_mask, unsigned long order)

gfp_mask has the same meaning, but order is a new concept. Pages can only be allocated in orders of 2, so the
number of pages returned is 2order. The PAGE_SHIFT define determines the software page size and is 12 on
the Intel platform (212 bytes is 4 Kb). An order of 0 returns one page of PAGE_SIZE bytes and so forth. The
kernel keeps internal lists of the different orders up to 5 which limits the maximum order to that amount,
giving you a maximum of 25 * 4 Kb == 128 Kb on the Intel platform.

You may have wondered why the functions are prefixed with __ and there is a perfectly good explanation for
this. They are actually faster variants of get_free_page and get_free_pages respectively and the only
difference lies in the fact that the __ versions don't clear the page before returning it. If you copy memory
back to user space applications, it may be beneficial to clear the page of previous contents which could
inadvertently contain sensitive information that should not be passed to another process. __get_free_page and
friends are quicker and, if the memory allocated is only to be used internally, clearing the pages may not be
needed.

It is extremely important to free memory once you are done using it. The kernel does not reap allocated pages
when the module is unloaded and this makes it the module's complete responsibility to do its own memory
management.

void free_page(unsigned long addr)
void free_pages(unsigned long addr, unsigned long
order)

Free the page(s) at memory location addr. You are
expected to keep track of the size of allocated pages,
since free_pages expect you to the supply it with the
order you used when allocating the memory.

kmalloc

Allocation of memory with get_free_page and the likes is a bit troublesome and places a lot of the memory
management work in the hands of the device driver. Depending on what you are aiming at using the memory
for, a page oriented scheme might not be the most appropriate. Besides, it is not that often that the size
requirement fits perfectly into the scheme of allocating pages in orders of two of the page size. This can lead
to a lot of wasted memory. Linux provides kmalloc as an alternative, which lets you allocate memory any size
you want.

void *kmalloc(size_t size, int flags)

size is the requested amount of memory and is rounded up to the nearest multiple of the page size. flags
consist of a mask of priorities, just like with the get_free_page variants. The same size restrictions apply you

Getting Memory in Device Drivers

729

can only get up to 128 KB at the time. Trying to allocate more will get you an error in the log, saying
"kmalloc: Size (135168) too large" for example.

void kfree(const void *addr)

kfree will free the memory previously allocated by kmalloc. If you are used to dynamically allocating memory
in applications with malloc, you will feel right at home with kmalloc.

vmalloc

The third and final way to acquire memory is with vmalloc. While get_free_page and kmalloc both return
memory that is physically contiguous, vmalloc provides memory that is contiguous in the virtual address
space and thus serves a different purpose. It does so by allocating pages separately and manipulating the page
tables.

void *vmalloc(unsigned long size)
void vfree(void *addr)

vmalloc allows you to allocate much larger arrays than kmalloc, but the returned memory can only be used
from within the kernel. Regions passed to peripheral devices cannot be allocated with vmalloc, exactly
because they are not contiguous in the physical address space. Virtual memory is only usable within the kernel
/ CPU context, where it can be looked up in the page tables.

vmalloc cannot be used at interrupt time either as it may sleep, since internally kmalloc is called without
GFP_ATOMIC set. This should not pose a serious problem, as it would be abnormal to need more memory
than __get_free_pages can provide inside an interrupt handler.

All things considered, vmalloc is most useful for internal storage. The RAM disk module, Radimo, shown in
the block device section will provide an example of vmalloc usage.

Transferring Data Between User and Kernel Space

Applications running on the system can only access memory below the PAGE_OFFSET mark. This ensures
that no process is allowed to overwrite memory areas managed by the kernel, which would seriously
compromise system integrity, but at the same time poses problems regarding getting data back to user space.
Processes running in the context of the kernel are allowed to access both regions of memory, but at the same
time it must be verified that the location given by the process is within its virtual memory area.

int access_ok(int type, const void *addr,
 unsigned long size)

The above macro returns 1 if access of the desired type to/from the memory location addr of size bytes is
permitted and 0 if not. type is either VERIFY_WRITE or VERIFY_READ, depending on the direction of the
transfer. Every transfer taking place to and from user space must make sure that the location given is a valid
one. The code to do so is architecture dependent and located in asm/uaccess.h.

The actual transfer of data is done by various functions, depending on the size of the transfer.

get_user(void *x, const void *addr) Copy sizeof(addr) bytes from user space address addr
to x.

put_user(void *x, const void *addr)

Getting Memory in Device Drivers

730

Copy sizeof(addr) bytes to user space to variable x
from addr.

The type of the pointer given in addr must be known and cast if necessary, which is why there is no need for a
size argument. The implementation is quite intricate and can be found in the above mentioned include file.
Frequently they are used in implementing ioctl calls, since those often copy single value variables back and
forth.

You may have wondered why the appropriate access_ok call was not included in Schar, for example. Often
the check is omitted by mistake and the x_user functions therefore include the check. The return value is 0 if
the copy was completed and −EFAULT in case of access violation.

__get_user(x, addr)

The versions prefixed with __ perform no checking. They are typically used when performing multiple single
value copies where performing the access check several times is redundant.

char foo[2];
...
if (access_ok(VERIFY_WRITE, arg, 2*sizeof(*arg)) {
 __put_user(foo[0], arg);
 __put_user(foo[1], arg+1);
} else {
 return −EFAULT;
}

This is a trivial case, but the idea behind it should be clear. A third version of the x_user family also exists.
Typically the return value is checked and −EFAULT is returned in the case of access violation and this lead to
the introduction of the last variant.

void get_user_ret(x, addr, ret)
void put_user_ret(x, addr, ret)

The _ret versions return the value in ret for you in case of error they don't return any error code back to you.
This simplifies the programming of ioctl's and leads to such simple code as:

get_user_ret(tmp, (long *)arg, −EFAULT);

Moving more Data

Often more data needs to be copied than just single variables and it would be very inefficient and awkward to
base the code on the primitives above. Linux provides the functions needed to transfer bigger amounts of data
in one go. These are the ones that are used in Schar's read and write functions.

copy_to_user(void *to, void *from, unsigned long size)
copy_from_user(void *to, void *from, unsigned long size)

They copy size amount of bytes to and from the pointers specified. The return value is 0 in case of success and
non−zero (in actual fact the amount not transferred) if access is not permitted, as copy_xx_user also calls
access_ok internally. An example of the usage can be found in Schar.

if (copy_to_user(buf, schar_buffer, count))
 return −EFAULT;

Transferring Data Between User and Kernel Space

731

As with get_user, non checking versions also exist and are prefixed in the same manner with __.

__copy_to_user(void *to, void *from, unsigned long size)
__copy_from_user(void *to, void *from, unsigned long size)

Finally, _ret variants are also available that return ret in case of access violations.

copy_to_user_ret(void *to, void *from, unsigned long size, int ret)
copy_from_user_ret(void *to, void *from, unsigned long size, int ret)

It should be noted that all of the above rely on being run in the context of a process. This means that using
them from interrupt handlers and timer functions, for example, is strictly prohibited. In these situations the
kernel functions are not working on behalf of a specific process and there is no way to know if current is
related to you in any way. In these situations it is far more advisable to copy data to a buffer maintained by the
driver and later move the data to user space. Or, as will be seen next, memory mapping of device driver
buffers can be implemented and solve the problems without resorting to an extra copy.

Simple Memory Mapping

Instead of copying data back and forth between user and kernel space incessantly, at times it is more
advantageous to simply provide the applications a way to continuously view in−device memory. The concept
is called memory mapping and you may already have used it in applications to map entire files and read or
write to them through pointers, instead of using the ordinary file oriented read or write. If not, Chapter 3
contains an explanation of what mmap is and how it is used in user space. In particular, many of the
arguments are explained there and they map directly to what we are going to do here.

It is not always safe or possible to copy data directly to user space. The scheduler might schedule the process
in question out, which would be fatal from an interrupt handler, for example. One possible solution is to
maintain an internal buffer and have such functions write and read there and later copy the data to the
appropriate place. That causes additional overhead since two copies of the same data have to be made, one to
the internal buffer and an extra one to the application's memory area. However, if the driver implements the
mmap driver entry point, a given application can directly obtain a viewpoint into the driver buffer and the
need for a second copy is thus gone.

schar_mmap is added to the file_operations structure to declare that we support this operation. Let's look at
the Schar implementation.

static int schar_mmap(struct file *file,
 struct vm_area_struct *vma)
{
 unsigned long size;

 /* mmap flags − could be read and write, also */
 MSG("mmap: %s\n", vma−>vm_flags & VM_WRITE ? "write" :
 "read");

 /* we will not accept an offset into the page */
 if(vma−>vm_offset != 0) {
 MSG("mmap: offset must be 0\n");
 return −EINVAL;
 }

 /* schar_buffer is only one page */
 size = vma−>vm_end − vma−>vm_start;

 Simple Memory Mapping

732

 if (size != PAGE_SIZE) {
 MSG("mmap: wanted %lu, but PAGE_SIZE is %lu\n",
 size, PAGE_SIZE);
 return −EINVAL;
 }

 /* remap user buffer */
 if (remap_page_range(vma−>vm_start,
 virt_to_phys(schar_buffer),
 size, vma−>vm_page_prot))
 return −EAGAIN;

 return 0;
}

We receive two arguments in the function a file structure and the virtual memory area that will be associated
with the mapping. As mentioned earlier, vm_start and vm_end signify the beginning and end of the mapping
and the total size wanted can be deduced from the difference between the two. Schar's buffer is only one page
long, which is why mappings bigger than that are rejected. vm_offset would be the offset into the buffer. In
this case it wouldn't make much sense to allow an offset into a single page and schar_mmap rejects the
mapping if one was specified.

The final step is the most important one. remap_page_range updates the page tables from the vma−>vm_start
memory location with size being the total length in bytes. The physical address is effectively mapped into the
virtual address space.

remap_page_range(unsigned long from, unsigned long phys_addr,
 unsigned long size, pgprot_t prot)

The return value is 0 in case of success and −ENOMEM if it failed. The prot argument specifies the protection
associated with the area; MAP_SHARED for a shared area, MAP_PRIVATE for a private, etc. Schar passes it
directly from the one given to mmap in the application.

The page, or pages, being mapped must be locked so as to not be considered for other use by the kernel. Every
page present in the system has an entry in the mem_map[] array and we can look up the page allocated in
there and set the necessary attributes.

unsigned long MAP_NR(unsigned long page_addr) Return the index in mem_map
for the page.

Schar allocates a page of memory and calls mem_map_reserve for the index returned by MAP_NR, which
makes sure that Schar has the page completely to itself. The page is unlocked by mem_map_unreserve and
freed in cleanup_module when the driver is unloaded. This order of operation is important, as free_page will
not free a page that is reserved. The entire page structure along with all the different flags attributes can be
found in linux/mm.h.

This was an example of how to access the kernel's virtual memory from user space by making
remap_page_range do the work for us. In many cases, however, memory mapping from drivers allows access
to the buffers on peripheral devices. The next section will introduce I/O memory and, among other things, will
briefly touch upon how to do that.

 Simple Memory Mapping

733

I/O Memory

The last kind of address space we are going to look at is I/O memory. This can be both ISA memory below
the 1 Mb boundary or high PCI memory, but we conceptually use the same access method for both. I/O
memory is not memory in the ordinary sense, but rather ports or buffers mapped into that area. A peripheral
may have a status port or onboard buffers that we would like to gain access to. The sample module Iomap
gives a demonstration of these principles and can be used to read and write or memory map a region of I/O
memory.

Where I/O memory is mapped to, depends highly on the platform in question. On the Intel platform simple
pointer dereferencing can be used to access low memory, but it is not always in the physical address space and
therefore must be remapped before we can get a hold of it.

void *ioremap(unsigned long offset, unsigned long size)

ioremap maps a physical memory location to a kernel pointer of the wanted size. Iomap uses it to remap the
framebuffer of a graphics adapter (the main intended use for the module) to a virtual address we can access
from within the driver. An Iomap device consists of:

struct Iomap {
 unsigned long base;
 unsigned long size;
 char *ptr;
}

Where base is the starting location of the frame buffer, size is the length of the buffer, and ptr is what ioremap
returns. The base address can be determined from /proc/pci provided you have a PCI or AGP adapter it is the
prefetchable location listed there:

$ cat /proc/pci
PCI devices found:
 Bus 1, device 0, function 0:
 VGA compatible controller: NVidia Unknown device (rev 17).
 Vendor id=10de. Device id=29.
 Medium devsel. Fast back−to−back capable. IRQ 16. Master Capable. Latency=64. Min Gnt=5.Max Lat=1.
 Non−prefetchable 32 bit memory at 0xdf000000 [0xdf000000].
 Prefetchable 32 bit memory at 0xe2000000 [0xe2000008].

Find your graphics adapter among the different PCI devices in your system and locate the memory listed as
prefetchable as you can see, that would be 0xe2000000 on this system. Iomap can manage up to sixteen
different mappings all set up through ioctl commands. We'll need this value when trying out Iomap a little
later.

Once the region has been remapped, data can be read and written to. Iomap using byte size functions.

unsigned char *readb(void *addr)
unsigned char *writeb(unsigned char data, void *addr)

readb returns the byte read from addr and writeb writes data to specified location. The latter also returns what
it wrote, if you need that functionality. In addition doubleword and long versions also exist.

unsigned short *readw(void *addr)
unsigned short *writew(unsigned short data, void *addr)
unsigned long *readl(void *addr)

 I/O Memory

734

unsigned long *writel(unsigned long data, void *addr)

If IOMAP_BYTE_WISE is defined, this is how Iomap reads and writes data. As one would expect, they are
not that fast when doing copies of the megabyte size since that is not their intended use. When
IOMAP_BYTE_WISE is not defined, Iomap utilizes other functions to copy data back and forth.

void *memcpy_fromio(void *to, const void *from, unsigned long size)
void *memcpy_toio(void *to, const void *from, unsigned long size)

They work exactly like memcpy, but operate on I/O memory instead. A memset version also exists that sets
the entire region to a specific value.

void *memset_io(void *addr, int value, unsigned long size)

Iomap's read and write functions work basically just like Schar's, for example, so we are not going to list them
here. Data is moved between user space and the remapped I/O memory through a kernel buffer and the file
position is incremented.

At module cleanup time, the remapped regions must be undone. The pointer returned from ioremap is passed
to iounmap to delete the mapping.

void iounmap(void *addr)

Portability

The data returned by the read and write functions is in little endian format, whether that is the native byte
ordering on the target machine or not. This is the ordering used in PCI peripherals' configuration space, for
example, and the above functions will byte swap the data if necessary. If data needs to be converted between
the two data types, Linux includes the primitives to do so. The section on portability will look closer at that.

Assignment of Devices in Iomap

Iomap keeps a global array of the possible devices created, indexed by minor numbers. This is a widely used
approach to managing multiple devices and is easy to work with. The global array, iomap_dev, holds pointers
to all the potential accessed devices. In all the device entry points, the device being acted upon is extracted
from the array.

Iomap *idev = iomap_dev[MINOR(inode−>i_rdev)];

In the cases where an inode is not directly passed to the function, it can be extracted from the file structure. It
contains a pointer to the dentry (directory entry) associated with the file, and the inode can be found in that
structure.

Iomap *idev = iomap_dev[MINOR(file−>f_dentry−>d_inode−>i_rdev)];

I/O Memory mmap

In addition to being read and written ordinarily, Iomap supports memory mapping of the remapped I/O
memory. The actual remapping of pages is very similar to Schar, with the deviation that since actual physical
pages are not being mapped no locking needs to be done. Remember that I/O memory is not real RAM and
thus no entries exists for it in mem_map.

I/O Memory

735

remap_page_range(vma−>vm_start, idev−>base, size,
 vma−>vm_page_prot)

As with Schar, remap_page_range is the heart of iomap_mmap. It does the hard work for us in setting up the
page tables. The actual function doesn't require much code.

static int iomap_mmap(struct file *file, struct vm_area_struct *vma)
{
 Iomap *idev = iomap_dev[MINOR(file−>f_dentry−>d_inode−>i_rdev)];
 unsigned long size;

 /* no such device */
 if (!idev−>base)
 return −ENXIO;

 /* size must be a multiple of PAGE_SIZE */
 size = vma−>vm_end − vma−>vm_start;
 if (size % PAGE_SIZE)
 return −EINVAL;

 /* remap the range */
 if (remap_page_range(vma−>vm_start, idev−>base, size,
 vma−>vm_page_prot))
 return −EAGAIN;

 MSG("region mmapped\n");
 return 0;
}

We start by finding the specific device in the iomap_dev array and check whether this particular device has
been set up. If it hasn't, we return an appropriate error message. We also require that the range that is going to
be remapped is a multiple of the page size and return an error. If all is in order, we call remap_page_range and
let it do its job.

Try it out the Iomap module

Iomap's source is also included in the code download from the Wrox website. Go to the modules/iomap
directory, where you should find the following files:

$ ls
iomap.c iomap.h iomap_setup.c Makefile

As root, run make to build the iomap module, and make two special file entries, one with minor 0 and
one with minor 1, then insert the module.

make
mknod /dev/iomap0 c 42 0
mknod /dev/iomap1 c 42 1
insmod iomap.o
iomap: module loaded

1.

Now we are ready to take it for a spin. Iomap won't do anything on its own, so we need to set up two
devices to experiment with. First you will need to dig up the base address of the frame buffer on your
display adapter − examine /proc/pci as explained at the beginning of the I/O memory section. Recall
that the address was 0xe200000 on this system. We will need this now when creating a small program
that sets up the two devices through ioctl calls. Create a file called iomap_setup.c in the directory
where the Iomap module sources are located, or edit the existing code, containing the following:

2.

Try it out the Iomap module

736

#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>

#include "iomap.h"

#define BASE 0xe2000000
int main(int argc, char *argv[])
{
 int fd1 = open("/dev/iomap0", O_RDWR);
 int fd2 = open("/dev/iomap1", O_RDWR);
 Iomap dev1, dev2;

 if (fd1 == −1 || fd2 == −1) {
 perror("open");
 return 1;
 }

 /* setup first device */
 dev1.base = BASE;
 dev1.size = 512 * 1024;
 if (ioctl(fd1, IOMAP_SET, &dev1)) {
 perror("ioctl");
 return 2;
 }

 /* setup second device, offset the size of the first device */
 dev2.base = BASE + dev1.size;
 dev2.size = 512 * 1024;
 if (ioctl(fd2, IOMAP_SET, &dev2)) {
 perror("ioctl");
 return 3;
 }

 return 0;
}

As you'd expect, you should change BASE to point to your frame buffer address! Otherwise we might
end up writing to another device in your system, which could be fatal. Compile and run the
iomap_setup program, this should define the two devices that we are going to operate on.

$ cc Wall o iomap_setup iomap_setup.c
$./iomap_setup
iomap: setting up minor 0
iomap: setup: 0xe2000000 extending 0x80000 bytes
iomap: setting up minor 1
iomap: setup: 0xe2080000 extending 0x80000 bytes

We have now set up two devices, one mapping 0.5Mb from the start of the frame buffer and the other
mapping 0.5Mb from the start of the first mapping. These map directly into the graphics memory of
the display adapter and writing to them should cause a visible distortion on your screen. Before
running the next few lines to try that out, make sure that you have X loaded and execute the
commands from within a terminal there.

$ cp /dev/iomap1 /dev/iomap0

3.

Now the effects of the above command should be apparent! The region on you monitor that
corresponds to the mapping of the second device should now also appear at the top the screen, thus
creating an odd looking X session. Continue the fun and fill the top of the monitor with garbage by
copying random data to it:

4.

Try it out the Iomap module

737

$ dd if=/dev/random of=/dev/iomap0 bs=512 count=1024

I/O Ports

I/O ports are a phenomenon that is only seen on some platforms such as the x86 architecture. They can be
either a status port on a peripheral device or the serial port that your mouse is connected to. Data is read and
written to ports in sizes according to its width. Other platforms, the Alpha for example, don't have real ports
but only I/O memory. Reading and writing to memory locations instead then achieves access to I/O data.

Linux supports a wide variety of functions to read and write to and from I/O ports. They are all variants of the
same flavor and differ mainly in how wide a port they talk to. Note that this section deals with regular I/O
ports, not I/O memory, which was covered above. The header file to browse for this section is asm/io.h − this
is a very nasty file, consider yourself warned!

A driver ought to verify that a given port can be used. Another driver might already have grabbed the port we
are looking for and we do not want to wreak havoc by outputting data that might confuse the device it
handles.

int check_region(unsigned int from, unsigned long extent)

from is the port we are testing and extent is how wide it is counted in bytes. The return value is 0 on success
or any other value if the port already taken. Once a proper port has been found, you can go ahead and request
it.

void request_region(unsigned int from, unsigned long extent, const char *name)
void release_region(unsigned int from, unsigned long extent)

The parameters are almost alike name is the one that shows up in /proc/ioports and should be considered a
device label along the lines with the /proc/devices entry. Ports can be 8, 16, or 32−bit wide.

__u8 inb(unsigned int port)
__u16 inw(unsigned int port)
__u32 inl(unsigned int port)

The usage should be clear they all read the respective size value from a port. The return value is the data read
and, depending on what platform is used, different types fill the size requirement. The functions for writing to
ports are similar.

void outb(__u8 data, unsigned int port)
void outw(__u16 data, unsigned int port)
void outl(__u32 data, unsigned int port)

Again, the typing is a bit loose because it varies from one platform to another. Typing is not the only problem
with I/O ports, as some platforms don't have regular ports but emulate them by reading and writing to memory
locations instead. We won't detail this any further here your best bet is to study some of the drivers in the
kernel.

In addition, Linux provides string versions that allow you to transfer more than one datum at the time
efficiently.

void insb(unsigned int port, void *addr, unsigned long count)
void outsb(unsigned int port, void *addr, unsigned long count)

 I/O Ports

738

addr is the location in memory to transfer to or from and count is the number of units to transfer. Similar
version exists for word and double word size transfers with the same naming convention as the single datum
functions. They are very fast, much more efficient than building a loop around the inb, for example.

Portability

Not all platforms have regular I/O ports such as the Intel architecture, but implement them as a mapped region
of regular memory. The above functions for talking to I/O ports are also not the only variants that exist as
different platforms have differing needs. The data returned is in little endian format which might not be
suitable and some big endian platforms provide variants that don't byte swap the result. Inspect asm/io.h from
the various architectures if you are curious.

Interrupt Handling

Most real hardware does not rely on polling to control the data flow. Instead interrupts are used to signal the
availability of data or other hardware conditions to the device driver and let it take the appropriate action.
Writing an ISR (Interrupt Service Routine) is often surrounded by mysticism, but that can only be because
people have not seen how easy it really is to do in Linux. There is nothing special about it, because Linux
exports a very elegant and uncomplicated interface for registering interrupt handlers and (eventually) handling
interrupts as they come in.

So what is an interrupt exactly? It is a way for a device to get the device drivers attention and tell it that the
device needs to be serviced somehow. This could be to signal that data is available for transfer or that a
previously queued command has now completed and the device is ready for a new one.

How interrupts are handled internally by Linux is very architecture dependent, since it all depends on what
interrupt controller the platform is equipped with. If you are interested, you can find the necessary information
in arch/<your arch>/kernel/irq.c, arch/i386/kernel/irq.c for example.

Interrupts that have no designated handler assigned to them, are simply acknowledged and ignored by Linux.
You can find a listing of what handlers are installed on you system by listing the contents of /proc/interrupts:

 CPU0 CPU1
 0: 1368447 1341817 IO−APIC−edge timer
 1: 47684 47510 IO−APIC−edge keyboard
 2: 0 0 XT−PIC cascade
 4: 181793 182240 IO−APIC−edge serial
 5: 130943 130053 IO−APIC−edge soundblaster
 ...

This is an incomplete listing of our system right now. The leftmost column is the interrupt number, then the
numbers represent the number of times each CPU has handled the particular interrupt The last two items are
the interrupt type, and finally the device that registered the handler. So the listing above reveals that CPU0 has
handled 130943 interrupts from the soundblaster device and CPU1 took care of 130053. 0 is a special case
the timer interrupt (On the x86. Other platforms are different.) and indicates the number of ticks since the
system was booted. The fourth column here indicates how the interrupts are handled. This is not really
important to us here and it should suffice to know that in a SMP environment the IO−APIC distributes the
interrupts between the CPU's. XT−PIC is the standard interrupt controller.

Another file you might want to look at is /proc/stat. It contains, among other things, the total number of
interrupts that have transpired. The line of interest to us now is intr, which has the following format: intr total

 Portability

739

irq0 irq1 irq2 ..., where total is the sum of all interrupts, irq0 the sum of interrupt 0, and so forth. This file
might come in handy, when you are experimenting with your first interrupt driven driver, since it also lists
triggered interrupts that don't have a handler registered which /proc/interrupts doesn't.

Allocating an Interrupt

Now that we have looked at the interrupt statistics gathered in /proc, let's move on to how you can request
your own IRQ. An explanation of the parameters follows below.

int request_irq(unsigned int irq,
 void (*handler)(int, void *, struct pt_regs *),
 unsigned long irqflags,
 const char *devname,
 void *dev_id)

request_irq returns 0 on success and failure is indicated by an appropriate negative error most notably,
−EINVAL is returned if the IRQ is out of range and −EBUSY if a shared handler was requested and the
irqflags do not match with an already installed handler.

irq The actual IRQ that you wish to handle.

handler(int irq, void
*dev_id, struct pt_regs
*regs)

When the interrupts occurs this is the function that gets called. This is the IRQ
handler.

irqflags This controls the behavior of the interrupt. We will look more at that later.

devname The name that is listed in /proc/interrupts.

dev_id Helps support sharing of interrupts. It is the one that is passed to the handler
given and can thus be used if you need to pass it information. The IDE
subsystem, for example, uses it to distinguish between the master and slave that
it controls per interrupt.

The irqflags parameter is comprised of several possible combinations.

SA_INTERRUPT A handler registered with this flag runs with all IRQ's disabled. Not setting it
only disables the IRQ being serviced by the handler.

SA_SHIRQ Enable the IRQ line to be shared between more than one device. The drivers
must also agree on the rest of the irqflags mask and supply the proper dev_id,
otherwise sharing is not allowed.

SA_SAMPLE_RANDOM The Linux kernel keeps an internal entropy pool managed by the random
device. If the device being managed by the handler does not interrupt at a fixed
rate, it may be able to contribute to the randomness of this pool and the flag
should be set. Naturally, this depends heavily on the actual hardware being
driven.

The handler being registered receives three arguments when invoked. irq can only be considered useful if the
handler manages more than one IRQ, otherwise you know what specific interrupt that occurred. regs contains
the imagery of the CPU registers before the interrupt occurred. It is rarely useful, but find the definition in
asm/ptrace.h if you are curious. The second argument is dev_id, which we already covered.

Unregistering an IRQ handler is done with free_irq. The arguments are similar to request_irq and need no
further explanation.

void free_irq(unsigned int irq, void *dev_id)

Interrupt Handling

740

Getting an Appropriate IRQ

Before you can register a handler to use with your driver you have to find out what IRQ to use. This is highly
hardware dependent, both with regards to the type of peripheral device and the host bus, be it ISA, PCI, or
SBUS (A host bus found on the SPARC). Regarding the former, some devices will let you read the
configuration from a status port; others you may have to probe. If you are going to write a driver for a real
piece of hardware you need the programming specifications from the vendor and they will tell you how to
correctly retrieve the needed information.

The most prevalent bus types are ISA and PCI (at least on the Intel platform). Although efforts have been
made to partially add plug−and−play capabilities to ISA devices, ISA was invented before plug−and−play
was an issue and no real standard exists. Besides, we have probably all experienced how well that works...
PCI devices provide a clean and standardized way to retrieve configuration information without resorting to
nasty probing and guesswork. How to handle PCI devices is beyond the scope of this book. linux/pci.h is a
good place to start if you want to deal with PCI and, as always, plenty of examples exist within the Linux
sources. The rest of this section will only deal with legacy devices.

If the hardware allows you to retrieve the configuration directly, you will not have to do any probing yourself.
As mentioned previously, this information is located in hardware device manuals and we can't say anything
generic about that. Linux provides interrupt detection for devices that don't support nicer alternatives.

unsigned long probe_irq_on(void)
int probe_irq_off(unsigned long unused)

probe_irq_on initiates the probing sequence and probe_irq_off ends it. In between you should put code that
will trigger an IRQ from the device and this will then be the return value from probe_irq_off. If more than one
IRQ fired, probe_irq_off will return a negative value (in fact corresponding to the first triggered IRQ found,
which could provide some hint). The probing sequence will typically look something like the below:

 int irq;
 unsigned long foo;

 /* clear dangling interrupts */
 probe_irq_off(probe_irq_on());

 foo = probe_irq_on();

 /* this should provoke an interrupt from the device */
 outb(TRIGGER_IRQ, PORT);

 irq = probe_irq_off(uu);

 if (irq > 0)
 printk("irq %d detected\n", irq);

This is purely a theoretical example of how you might detect the IRQ used. The value returned by
probe_irq_on is purely bogus and explains why probe_irq_off names it unused. The interesting part is what is
returned after the probe hopefully the interrupt you need.

The IRQ Handler

Once you have the available IRQ that you need, you need to write a handler to deal with the device interrupts.
The job of the handler is to acknowledge the interrupt and service the device in some way. Typically some

Interrupt Handling

741

form of data is available and should be transferred from the device, or a state change occurred and the
hardware wants to let us know about it. The handler runs either with all interrupts enabled except its own or
no interrupts enabled depending on whether SA_INTERRUPT was specified, so any interrupts from the same
device are lost until the handler has finished running. We'll see later how to deal with that issue.

The normal flow of execution is halted when an interrupt occurs the kernel stops what it was currently doing
and invokes the appropriate handler registered. Interrupt handlers are different from the normal driver entry
points in that they run at interrupt time and as such are not running on behalf of a specific process. That means
that the current process typically doesn't have any relation to the driver and it shouldn't be touched. This also
includes any access to user space, such as copying data back and forth.

Interrupt handlers should finish as soon as possible, since you may otherwise miss another interrupt from the
device. If you share the interrupt with another device, you are also preventing interrupts from there being
serviced. Although it has been mentioned before, it is important to stress that you must not block at interrupt
time. If you do, the scheduler may be invoked and this is not allowed. It will inform you of such an occurrence
with "Scheduling in interrupt" on the console followed by an Oops. Nor are you allowed to sleep in the
handler. In general, think carefully about how you interact with the rest of the system while running at
interrupt time.

There is nothing special about interrupt handlers other than what is mentioned above, so we won't give
detailed examples on how to write one. As with the probe example, here is a theoretical interrupt handler:

void our_intr(int irq, void *dev_id, struct pt_regs *regs)
{
 int status;

 printk("received interrupt %d\n", irq);

 /* reading status from board */
 inb(STATUS_PORT, status);

 /* we are sharing irq, check if it was our board */
 if (status & MY_IRQ_STAT)
 return;

 /* acknowledge IRQ */
 outb(STATUS_PORT, MY_ACK_IRQ);

 >transfer data from the device, if needed<

 /* schedule bottom half for execution */
 our_taskqueue.routine = (void *)(void *)our_bh;
 our_taskqueue.data = (void *)dev_id;
 queue_task(&our_taskqueue, &tq_immediate);
 mark_bh(IMMEDIATE_BH);

 return;
}

The first thing we do is check whether the IRQ was generated from the device the driver is managing by
reading a status from a designated port on the hardware. This is one way of handling interrupt sharing. If the
handler was controlling several instances of the same hardware device, we could have used dev_id to
differentiate between them.

Interrupt Handling

742

Bottom Halves

The above handler introduces a new concept, bottom halves. They were mentioned briefly in the section on
task queues, but they deserve a little more attention. Instead of doing all the work in the actual interrupt
handler, we declare a task queue and add it to the immediate queue (thus guaranteeing very swift execution).
our_bh is the bottom half for this device and will be consumed by the immediate queue as soon as we return
from the top half (the actual interrupt handler). The top half will most likely copy data from the device to an
internal buffer and let the bottom half deal with necessary processing.

Whether keeping a separate bottom half is worth the effort, depends on how much time you need to spend in
the top half and if the IRQ is shared or not. As soon as the interrupt handler returns from execution, the device
IRQ reporting is enabled again. Bottom halves thus run with the device IRQ active and thereby allow the
handler to service more interrupts than it otherwise would have been able to. Bottom halves are atomic with
respect to each other, so you don't have to worry about being reentered. A top half, however, can be invoked
while the bottom half is still executing. If a bottom half is marked while it is running it will be run again as
soon as possible, but marking it twice will still only make it run once.

Often you need to share data between the two, since the bottom half is doing work for the top half. This
requires some care. We will look more about atomicity and reentrancy in a dedicated section.

You don't have to use tq_immediate, but it is usually the one used simply because it is the quickest. Since the
regular bottom halves are all predefined in the kernel, this is the replacement to use if you need it.

Reentrancy

One of the more important issues with device drivers is the issue of reentrancy. We have already discussed
some of the issues loosely throughout the text, but only in passing and the issue clearly needs more attention
than that. Imagine having your driver opened by several processes at once. Often a driver for a real device has
to maintain several internal structures that are manipulated in a myriad of places. It goes without saying that
the integrity of these structures must remain intact, so how do you make sure that two processes aren't
modifying the same structure at the same time? The issue is even more important as SMP systems are
becoming more prevalent and having two CPUs these days is not uncommon. Linux 2.0 solved this problem
by guarding the entire kernel space with a big lock thus making sure that only one CPU was spending time in
the kernel at the time. While this solution worked, it didn't scale very well as the number of CPU's increased.

During the 2.1 development cycle it became apparent that finer grained locking was needed if Linux was to
conquer machines with more than two CPU's and do it well. So instead of having one big lock and having
processes acquire it upon entering kernel space, new locking primitives were introduced. Important data
structures inside the kernel are now guarded with a separate lock and having numerous processes executing
inside the kernel is now possible. Sections of code that modify structures that can also be modified by others
at the same time are called critical sections and this is the piece of code we need to protect against reentrancy.

As we mentioned earlier, a process running in kernel space can't be preempted on its own so you can be
assured that current won't change beneath you they have to give up execution. This was almost true. Actually,
interrupts can come in at any time and will break the current flow of execution. Of course there is also the
issue of putting processes to sleep and explicitly doing a schedule from within the driver here we must also be
prepared to handle the consequences of being reentered. Does this mean that you have to guard all variables?
No, luckily only global structures share the same address space. Variables local to a function reside in the
kernel stack for that process and are thus distinct to each accessing process.

int global;

 Bottom Halves

743

int device_open(struct inode *inode, struct file *file)
{
 int local;

 printk("pid = %d : ", current−>pid);
 printk("global = 0x%p, local = 0x%p\n", &global, &local);
 ...
}

The output of the above code in a module verifies that this is true, global variables are shared while local
variables are different copies:

pid = 909 : global = 0xc18005fc, local = 0xc08d3f2c
pid = 910 : global = 0xc18005fc, local = 0xc098df2c

While having local variables residing in the kernel stack is a relief it also places certain constraints on what
you can fit in that space. Linux 2.2 reserves approximately 7 Kb of kernel stack per process, which should be
plentiful for most needs. Some of this is reserved for interrupt handling and the likes you should be careful
not to overstep this limit. Should you need more than approximately 6 Kb, you must allocate it dynamically.

The classic way of guarding yourself against reentrancy was to disable interrupts globally, do your work, and
enable interrupts again. Interrupt handlers, and everything else that runs at interrupt time, work
asynchronously with your driver and structures that are modified by these handlers need to be protected
against being changed while you are working with them.

unsigned long flags;

/* save processor flags and disable interrupts */
save_flags(flags);
cli();

read/modify structures, critical section

restore_flags(flags);

While this still works, it disables interrupts across all CPU's and as such it is a slow and non−cooperative way
of guarding yourself. If the target system is guaranteed to be UP (single CPU systems), this is all you need
since only one CPU can be executing kernel code. Instructions are thus guaranteed to be serialized and are
therefore atomic in respect to each other.

Disabling Single Interrupts

If you know that only your own interrupt handler modifies the internal structures, it can be considered overkill
to disable all interrupts in the system. All you really need is to make sure that your own handler doesn't run
while you are mucking around with them. In this case Linux provides functions to disable a single IRQ line.

void disable_irq(unsigned int irq);
void disable_irq_nosync(unsigned int irq);
void enable_irq(unsigned int irq);

The critical region can thus be placed between a disable and enable of the interrupt, and the top half will not
be invoked if the interrupt line is raised. The difference between the regular disable_irq and the _nosync
version is that the former guarantees that the specified IRQ is not running on any CPU before returning, while

 Disabling Single Interrupts

744

the latter will disable the specified interrupt and return even if a top half handler is still running.

Atomicity

Instructions are said to be atomic when you know there are executed in one go, i.e. you will not be interrupted
until you are done. Disabling interrupts accomplishes this, as we saw above, since no one can interrupt us in
the critical section. Linux also offers atomic primitives that act on variables without the need to lock
everybody else out. They are defined in asm/atomic.h.

void atomic_add(int i, volatile atomic_t *v)
void atomic_sub(int i, volatile atomic_t *v)
void atomic_inc(volatile atomic_t *v)
void atomic_dec(volatile atomic_t *v)
int atomic_dec_and_test(volatile atomic_t *v)

As you can see these operate on the atomic_t type which is a structure containing only a counter member.
What it contains doesn't really matter, since you should only access it via the atomic_x functions and macros.
Only then are you insured atomicity. They are mainly used for keeping count for semaphores, but can be used
any way you please.

Atomic operations are often needed to prevent race conditions. A race exists when a process decides to sleep
on an event based on evaluating an expression non−atomically. Schar does not have such a construct, but it is
common enough that we will give an example.

/* if device is busy, sleep */
if (device−>stat & BUSY)
 sleep_on(&queue);

If the test for device busy is not atomic, the condition may become false after the test but before sleep_on is
invoked. The process may sleep forever on the queue. Linux has some handy bit testing operations that are
guaranteed to execute atomically.

set_bit(int nr, volatile void *addr)
clear_bit(int nr, volatile void *addr)
test_bit(int nr, volatile void *addr)

Set, clear, or test the bit specified in nr
from the bitmask at addr.

The above device busy test could then be implemented as:

/* if device is busy, sleep */
if (test_bit(BUSY, &device−>stat)
 sleep_on(queue);

and be completely race safe. There are several others, including test−and−set operations as well, defined in
asm/bitops.h.

Protecting Critical Sections

Going with the assumption that your modules are only going to be run on UP systems is clearly a very bad
idea. Linux provides two variants of spin locks that can be used to protect structures against manipulation. On
UP systems this defaults to the above construct of disabling interrupts with cli, while on SMP systems they
only disable interrupts on the local CPU. The latter is sufficient as long as all the functions on your driver
acquire the same spin lock before modifying shared structures.

 Atomicity

745

Basic Spin Locks

Spin locks are one of the most basic locking primitives. A process trying to enter a critical region already
protected by another process with a spin lock, will "spin", or loop, until the lock is released and can be
acquired.

The different types of spin locks can be found in asm/spinlock.h. This is also the file to inspect if you are at all
interested in how they are implemented differently in single and multiple CPU configurations. There are two
basic types implemented in Linux.

spinlock_t our_lock = SPIN_LOCK_UNLOCKED;
unsigned long flags;
spin_lock(&our_lock);
spin_lock_irqsave(&our_lock, flags);

If the structures are not going to be modified at interrupt time, spin_lock is all you need. It provides safety
from modification across CPU's, but doesn't disable interrupts even on the local CPU. This makes it faster
than spin_lock_irqsave, which also provides assurance against interrupt handlers.

spin_unlock(&our_lock);
spin_unlock_irqrestore(&our_lock, flags);

These are the equivalent unlocking macros to be used when you're done modifying structures.

There are a lot more functions in asm/spinlock.h, including macros that allow you to test whether getting a
lock will succeed before trying to acquire it, and others. If you need more functionality you can find the
needed information in there.

Reader and Writer Locks

The above spin locks provide full locking and protect the code in between from being reentered for any
purpose. It may also be useful to further differentiate access to structures; access with the purpose of only
reading data, or write access. For this purpose Linux provides locks that allow you to acquire either read or
write access, thus allowing multiple readers or a single writer to enter the critical region at the same time.

rwlock_t our_lock = RW_LOCK_UNLOCKED;
unsigned long flags;

read_lock(&our_lock);
read_lock_irqsave(&our_lock, flags);
write_lock(&our_lock);
write_lock_irqsave(&our_lock, flags);

The semantics are exactly the same as for basic spin locks, so we won't explain them further. Unlocking the
region is provided by similar macros.

read_unlock(&our_lock);
read_unlock_irqrestore(&our_lock, flags);
write_unlock(&our_lock);
write_unlock_irqrestore(&our_lock, flags);

Now you know how to protect yourself effectively against the gruesome effects of reentrancy with basic spin
locks and reader/writer spin locks. In a UP environment the non−IRQ versions all expand to no−ops (IRQ
versions still disable interrupts, since they are handled as soon as they come in and therefore still run

Protecting Critical Sections

746

asynchronously) so you will not lose performance there, but the behavior on SMP systems is far more
attractive than the basic cli construct.

Automated Locking

Most of the functions available to device drivers are protected internally by spin locks, courtesy of the kernel,
and no extra locking is thus required. An example of such was given in the section on timers, where add_timer
internally acquired the timer_list lock before manipulating the given timer structure. If the timer is local to the
function no locking is needed and internal_add_timer could be called directly. However, it is recommended to
always use the "safer" variants and this subsection is purely added in case you were wondering why no
locking was used to maintain integrity of wait queue or timer lists in Schar, for example.

Block Devices

The second class of devices that are covered in this book is block devices. They are entirely different creatures
than character drivers in that they don't serve bytes of data, but entire blocks instead. While character drivers
are usually accessed directly from applications by reading and writing to them, block device accesses go
through the buffer cache in the system.

The illustration above is a half−truth since only reading and writing of blocks passes through the buffer cache.
open, close, and ioctl have normal entry points, for example.

Block devices usually host file systems and can be accessed randomly by specifying which block to read or
write. This is in contrast to character drivers, which only allow sequential, non−random access and thus
cannot be used for providing file system storage.

Linux does not distinguish sharply between the two and even provides the same interface for both. When we
were designing the first character driver, Schar, some of the elements of the file_operations structure did not
lend themselves to a character oriented access scheme, exactly because the same one is used for both types of
devices.

Radimo A Simple RAM Disk Module

The best way to get a little familiar with the inner workings of block devices and the underlying system they
depend on is to dig in with a working example. Radimo is RAM disk driver that will host a file system of
varying size, depending on the available memory in the system.

At the heart of every block device driver is the request function. This is the one that receives the read and
write requests and turns them into something that the device can comprehend. If we were to write an IDE

Protecting Critical Sections

747

driver, the request function would generate commands and send them to the controller to initiate the transfer
of data in both directions. Several items, including the request function, need to be defined in a special order
at the beginning of the module. The normal order of include files apply, but the items below must be defined
before <linux/blk.h> is included.

#define MAJOR_NR RADIMO_MAJOR The major number of the device. This is mandatory.

#define DEVICE_NAME "radimo" The name of the device may be omitted and is then set to
"unknown". Serves no particular function other than providing
a name to be printed in case of request errors.

#define DEVICE_REQUEST
radimo_request

The request function for the device. Is also mandatory.

#define DEVICE_NR(device)
(MINOR(device))

Used for partionable devices to enable them to use the minor
number for partition selection.

#define DEVICE_ON(device)
#define DEVICE_OFF(device)

Motorized devices can set this to the functions related to
spinning the device up and down. When a request has ended,
the block system will call the off function. DEVICE_OFF must
be defined even as just an empty define, but DEVICE_ON can
be omitted.

#define DEVICE_NO_RANDOM If defined, the device will not contribute to system entropy.
This is similar to SA_SAMPLE_RANDOM for interrupt
handlers.

After having defined the above, linux/blk.h can be included.

Size Issues

There are two sector sizes associated with a block device, a hardware and software sector size. The former is
how the data is arranged on the physical media controlled by the device while the latter is the arrangement
within the device. By far the majority of devices have a hardware sector size of 512 bytes, although deviants
such as MO−drives do exist and typically use 2048 byte sector sizes.

The respective sizes are set at initialization time in global arrays indexed by major number.

#define RADIMO_HARDS_SIZE 512
#define RADIMO_BLOCK_SIZE 1024
static int radimo_hard = RADIMO_HARDS_SIZE;
static int radimo_soft = RADIMO_BLOCK_SIZE;

...

hardsect_size[RADIMO_MAJOR] = &radimo_hard;
blksize_size[RADIMO_MAJOR] = &radimo_soft;

We go with the flow and use a hardware sector size of 512 bytes. It does not really matter, since Radimo
stores data in a buffer internally. The software block size can be any value, with a couple of restrictions: it has
to be equal to or bigger than the hardware sector size, a multiple of the hardware sector size, and smaller then
the PAGE_SIZE. If you neglect to set either one, 512 is assumed for the hardware sector size and 1024 for the
block size.

In addition to the sector sizes, the total size of the device is also kept in a global array. The size argument is
given in Kb and lets the kernel return −ENOSPC (No space left on device) automatically.

Radimo A Simple RAM Disk Module

748

blk_size[RADIMO_MAJOR] = &radimo_size;

It is interesting to note that if we kept several virtual devices (indexed by minor, for example) radimo_size
and friends could be an array and thus get [MAJOR][MINOR] indexing. The actual definition of the various
block related global structures reside in drivers/block/ll_rw_blk.c which also contains comments about them.

Registering a Block Device

Once the various defining is done, a file operations structure is set up.

static struct file_operations radimo_fops = {
 NULL, /* llseek */
 block_read, /* generic block read */
 block_write, /* generic block write */
 NULL, /* readdir */
 NULL, /* poll */
 radimo_ioctl,
 NULL, /* mmap */
 radimo_open,
 NULL, /* flush */
 radimo_release,
 NULL, /* fsync */
 NULL, /* fasync */
 radimo_media_change,
 radimo_revalidate,
 NULL /* lock */
};

The file operations structure sets up our communications system. There is usually no need to define our own
read and write functions as the defaults set up the request and call ll_rw_block which queues the requests for
us to execute. The defaults can be found in fs/block_dev.c and drivers/block/ll_rw_block.c, but you don't
really need to know the inner workings to be comfortable with block devices. We define our own ioctl
function for a block device to function properly with the standard file system utilities, there are some ioctl
commands we have to support. We will look at them a little later. open and release serve the same purpose as
with character devices and that just leaves radimo_media_change.

Finally the block device is registered much the same way as the character devices.

res = register_blkdev(RADIMO_MAJOR, "radimo", &radimo_fops);
if (res) {
 MSG(RADIMO_ERROR, "couldn't register block device\n");
 return res;
}

Media Change

Whenever a block device is being mounted, the defined check_media_change function is called to detect
whether the medium has changed or not. Being a RAM disk driver this can never be the case, but we will play
along and pretend it can happen anyway. Radimo sets up an internal timer that clears our storage every 60
seconds if the device is not busy. In addition, it invalidates any buffers that might be in the buffer cache in the
system, forcing them to be re−read instead of being served from the cache. The buffers are in fact invalidated
by the VFS when we return 1 to indicate a media change, but that won't happen until mount time. Buffers
might still be cached if the user simply copied the device raw with dd or cp.

Radimo A Simple RAM Disk Module

749

revalidate is closely related to the media change. If a change has occurred, radimo_media_change returns 1 to
inform the VFS of the change. Next, the revalidate function is called to allow the device to perform whatever
it needs to update its internal device information. There is no need to implement a specific revalidate function
if the necessary actions can be taken in the media change function. Nor does it matter what you return the
function is strictly called for your pleasure.

Ioctl for Block Devices

Since block devices are used to host file systems, it seems only appropriate that all block devices should
accept some standard ioctl commands. We looked at implementing ioctl's earlier and you might want to skip
back if you want to have your memory refreshed. Radimo implements the most common and standard ones.

BLKFLSBUF Block flush buffers. Write out all dirty buffers currently residing in the buffer cache.
Radimo does nothing more than call fsync to write the out dirty buffers andinvalidate
them.

BLKGETSIZE Block get size. Return the size of the device in units of 1024 bytes. The various file
system related utilities (fsck, for instance) determine the total size by issuing this ioctl.
If the device does not support this command, they will have to guess.

BLKSSZGET Block get sector size. Return the software sector size of the block device.

BLKRAGET Block get read ahead. Return the current read ahead value for the device.

BLKRASET Block set read ahead. Set the read ahead value for the device.

BLKRRPART Block re−read partition table. Called by fdisk when rewriting the partition table.
Radimo is not partionable and does not support this command.

The implementation is fairly straightforward so we won't list it here. There are other standard commands for
block devices find them in linux/fs.h if you are interested. Radimo does not implement any device specific
commands, but if it did they would naturally be enclosed within the same switch statement.

The Request Function

The request function is definitely the backbone of the block device. In contrast to character devices which
receive a stream of data, block devices process requests instead. A request is either a read or a write and it is
the job of the request function to either retrieve or store the data sent to it on the media it controls. Depending
on the peripheral in question, the actions performed by the request function naturally differs a lot.

Requests are stored in lists of structures, each of which are of the type struct request. The function does not
need to traverse the list itself, but instead accesses the request via the CURRENT macro (not to be confused
with current, the process).

#define CURRENT (blk_dev[MAJOR_NR].current_request)

The definition resides in linux/blk.h. The structure of the request is as follows, with the irrelevant (to our
discussion of the block system) parts left out the ones used by Radimo will be expanded upon further when
we look at its request function next.

CURRENT−>

volatile int rq_status Status of the request, either RQ_ACTIVE or RQ_INACTIVE (the
SCSI subsystem does use more, however). The kernel uses the status
internally while finding an unused entry in the list of requests.

kdev_t rq_dev

 Ioctl for Block Devices

750

The device the request is for. If the driver is managing several
minors, information can be extracted from here by using the
MINOR macro.

int cmd The type of request, either READ or WRITE.

int errors Can be used to maintain a per−request error status count.

unsigned long sector,
current_nr_sectors

The starting sector and number of sectors that we should act upon.

char *buffer Where we should read/write the data.

struct buffer_head *bh; The buffer head associated with the request. We look a bit more at
buffer heads in the section about the buffer cache.

These are the details of a request. Radimo stores the data in an array allocated with vmalloc at init time and
serve requests by copying the data from CURRENT−>buffer back and forth as instructed. The sectors are thus
no more than an offset into the array. Request functions have a somewhat peculiar format let's look at
Radimo's version and follow up with a few comments afterward.

void radimo_request(void)
{
 unsigned long offset, total;

radimo_begin:

 INIT_REQUEST;

 MSG(RADIMO_REQUEST, "%s sector %lu of %lu\n",
 CURRENT−>cmd == READ ? "read" : "write",
 CURRENT−>sector,
 CURRENT−>current_nr_sectors);

 offset = CURRENT−>sector * radimo_hard;
 total = CURRENT−>current_nr_sectors * radimo_hard;

 /* access beyond end of the device */
 if (total+offset > radimo_size*1024) {
 /* error in request */
 end_request(0);
 goto radimo_begin;
 }

 MSG(RADIMO_REQUEST, "offset = %lu, total = %lu\n", offset, total);

 if (CURRENT−>cmd == READ) {
 memcpy(CURRENT−>buffer, radimo_storage+offset, total);
 } else if (CURRENT−>cmd == WRITE) {
 memcpy(radimo_storage+offset, CURRENT−>buffer, total);
 } else {
 /* can't happen */
 MSG(RADIMO_ERROR, "cmd == %d is invalid\n", CURRENT−>cmd);
 end_request(0);
 }

 /* successful */
 end_request(1);

 /* let INIT_REQUEST return when we are done */
 goto radimo_begin;
}

 Ioctl for Block Devices

751

The macro INIT_REQUEST is responsible for quite a number of actions. First, it checks whether CURRENT
contains a request and returns if it does not. Then it performs a validity check of the request (is it really for
this device?) and if the proper locking of CURRENT−>bh is in order. The first check also explains why we
continuously loop around INIT_REQUEST; when we are done, it will return for us. The offset into our
storage array is calculated by multiplying the supplied starting sector CURRENT−>sector by our hardware
sector size. The total amount of data to be transferred is found in a similar way by examining the total number
of sectors that CURRENT−>current_nr_sectors specifies. Data is then copied with a simple memcpy
depending on what direction CURRENT−>cmd contains.

void end_request(int uptodate) Ends the CURRENT request.
An uptodate value of 1 indicates that the request was successfully fulfilled. CURRENT is then set to the next
request. If that request is also for Radimo, control is handed back to us and radimo_request continues; if not,
then another request function is brought to life.

If the request cannot be fulfilled (it could be beyond the end of the device, for example), end_request is
invoked with a value of 0. This will generate an I/O error in the system logs, specifying the offending device
and the sector that caused the error. Note that we only receive the request from the generic block read and
write functions when it has already verified that the request does not exceed the boundaries. If
blk_size[RADIMO_MAJOR] is set to NULL the simple check is bypassed when the request is created and a
read error can be provoked by accessing beyond the end of the device:

radimo: read sector 4096 of 2
end_request: I/O error, dev 2a:00 (radimo), sector 4096

The info printed is the device major and minor numbers in hexadecimal and the DEVICE_NAME defined.

The Buffer Cache

Blocks of data written and read from block devices get cached in the buffer cache. This improves system
performance, because if a process wants to read a block of data just read or written, it can be served directly
from the buffer cache instead of issuing a new read from the media. Internally this cache is a doubly linked
list of buffer head structures indexed by a hash table. Although it initially does not look like we touched a
buffer head in radimo_request, CURRENT−>buffer is merely a pointer to the data field inside the buffer head.

If you are running Radimo with RADIMO_REQUEST in the MSG mask, you can follow the requests as they
are processed by the request function. Issuing a read of, say, the same 10 blocks twice will only cause them to
be read once by Radimo; the second time the request is served from the buffer cache. The opposite can also be
investigated try writing some blocks to the device and notice how they are not processed immediately. The
blocks reside in the buffer cache for some time before being flushed to the device. Even if Radimo did not
copy the data sent to it to internal storage, the device would be fully functional while the buffers still resided
in the cache. The ram disk module that comes with the kernel (drivers/block/rd.c) uses this principal. Rd does
nothing to maintain internal storage, but instead marks the used buffers as locked and thus ensures that they
stay in the buffer cache and not be put on the freelist. Radimo can emulate this behavior if
RADIMO_CHEAT_REQUEST is defined.

The buffer head structure can be found in linux/fs.h. Going into details would be beyond the scope of this
book, but lets take a look at the state flags since they are accessed indirectly by a couple of functions in
Radimo.

BH_Uptodate The data residing in the buffer is up to date with that on disk.

 The Buffer Cache

752

BH_Dirty Data in the buffer has been modified and must be written out to disk.

BH_Lock
BH_Protected

Buffer has been locked and cannot be put on the free list.

BH_Req Unset if the buffer was invalidated.
invalidate_buffers is called when we wish to remove all references to the buffers associated with Radimo from
the buffer cache. It clears all but BH_Lock and the buffers are then free to be reused.

Try it out Radimo

Radimo is the final module included in the source code download. It's located, naturally, in the
modules/radimo directory. As usual, you will need to compile and insert the module and create a
corresponding special file before we can interact with the device.

make
mknod /dev/radimo b 42 0
insmod radimo.o
radimo: loaded
radimo: sector size of 512, block size of 1024, total size = 2048Kb

The options printed can all be specified at load time by supplying the appropriate parameters to insmod.
Browse back to the beginning of the Radimo section and find them or use modinfo to dig them out. The
defaults will do fine for this session.

Now that the module is loaded, we are ready to create a file system on the device. Any type will do, but lets
use ext2 in this example.

mke2fs /dev/radimo
dmesg | tail −n1
radimo: ioctl: BLKGETSIZE

Since we implemented the BLKGETSIZE ioctl call in Radimo, mke2fs can obtain the complete size of the
device on its own. Now you can mount the file system and copy files to and from it, just like you would on an
ordinary hard drive.

mount t ext2 /dev/radimo /mnt/radimo
cp /vmlinuz /mnt/radimo

There should be nothing new in that concept. umount the device and leave it alone for 60 seconds,
RADIMO_TIMER_DELAY defined in radimo.h, to test the media change mechanism. Now try mounting it
again.

umount /dev/radimo; sleep 60
mount t ext2 /dev/radimo /mnt/radimo
mount: wrong fs type, bad option, bad superblock on /dev/radimo,
 or too many mounted file systems
dmesg
radimo: media has changed
VFS: Disk change detected on device radimo(42,0)
radimo: revalidate

On the last mount our timer handler has run and set media_changed to 1. This causes radimo_media_change
to return 1 to the VFS indicating a media change, VFS prints a message confirming this and then invokes
radimo_revalidate to let the device do any handling it might need to perform on a disc change. The end result

Try it out Radimo

753

is that the mount fails.

Going Further

This was only meant as a short introduction to block devices, mainly the request function with related
structures and ioctl calls. Radimo is a very simple driver and as such does not demonstrate how block device
drivers handle a real hardware peripheral. Actual hardware typically relies on interrupts to control the flow of
data and in those cases the request function cannot indicate whether the request completed successfully or not
right away. The interrupt handler normally deals with this when the device has signaled the outcome of the
operation. There are myriad examples of interrupt driven block drivers in the kernel for you to study, if you
need a real case to study.

As block devices are used to host file systems, they normally support partition−based access. Linux offers
generic partition support defined in the partition and gendisk structure defined in linux/genhd.h. The
implementation can be found in gendisk.c in drivers/block where various drivers that utilize the support are
also located. Adding partition support to Radimo should not pose any significant problems and would be a
good exercise in getting familiar with the generic disk subsystem. That is left as an exercise to the reader!

Most block devices in the kernel belong to a specific class, such as SCSI, IDE or even CD−ROM drivers.
While these can be considered ordinary block devices, Linux offers special interfaces for these that should be
utilized. The readily available examples in the kernel along with the obtainable documentation found in
Documentation/ or the Linux Documentation Project is an invaluable resource in this situation.

Debugging

Device drivers are no different from regular programs; they are almost never bug free.

Kernel level code does not segmentation fault in the ordinary sense and produce nice core dumps for you to
examine and so doing postmortem debugging on device drivers is very different from regular debugging.
Some people might tell you that the human mind is the best debugger there is, and they are right. In this case,
all we can do is go back to the source and work it through step by step. The great thing about Linux is that you
have the entire source code available use it. Using a debugger can be invaluable, but make sure you end up
fixing the real bug and not just adding band−aid for hiding the real problem.

Oops Tracing

One technique that is essential to master is Oops tracing. Most kernel bugs manifests themselves as NULL
pointer dereferences and depending on where they happen, the kernel can often continue running. This is
much like a segmentation fault in applications, but it does not generate a core file. The layout of Oops is
highly processor specific and the rest of this section will look at how the x86 version looks. The procedure for
decoding the dump is basically the same for other platforms and the information provided in this section will
therefore be useful on non−Intel architectures as well. Let's dive into an Oops.

Unable to handle kernel paging request at virtual address 01380083
current >tss.cr3 = 06704000, %cr3 = 06704000
*pde = 00000000
Oops: 0000
CPU: 1
EIP: 0010:[<c0144040>]
EFLAGS: 00010202
eax: c0144000 ebx: 01380083 ecx: 00000005 edx: c64e8550
esi: c64e9c20 edi: c5f17f84 ebp: 00000000 esp: c5f17f3c

 Going Further

754

ds: 0018 es: 0018 ss: 0018
Process bash (pid: 390, process nr: 32, stackpage=c5f17000)
Stack: c5f17f84 c64e859c c64e859c fffffffe c012dfaf c64e8550 c64e9c20
 c5f17f84 00000000 c60dd004 00000001 c012e17a c64e9620 c5f17f84
 c60dd000 c60dd000 c5f16000 bffff6b0 c60dd002 00000002 000006b3
 c012e26c c60dd000 c64e9620
Call Trace: [<c012dfaf>] [<c012e17a>] [<c012e26c>] [<c012c232>] [<c0108be4>]
Code: 66 83 3b 00 74 4e 31 c9 8b 74 24 20 66 8b 4b 02 3b 4e 44 75

If this the first time you have come across an Oops, it might look at bit intimidating. It contains a dump of the
processor registers at the time of the fault, a stack trace, a back trace of the function calls, and a listing of the
machine code that caused the Oops. This information is useless if we can't map the addresses shown to actual
function names. The tool ksymoops does this for us, among other things. It is conveniently located in the
scripts/ksymoops sub directory of your kernel sources. Running the above Oops through ksymoops, will yield
something like the text opposite.

Unable to handle kernel paging request at virtual address 01380083

current >tss.cr3 = 06704000, %cr3 = 06704000
*pde = 00000000
Oops: 0000
CPU: 1
EIP: 0010:[<c0144040>]
EFLAGS: 00010202
eax: c0144000 ebx: 01380083 ecx: 00000005 edx: c64e8550
esi: c64e9c20 edi: c5f17f84 ebp: 00000000 esp: c5f17f3c
ds: 0018 es: 0018 ss: 0018
Process bash (pid: 390, process nr: 32, stackpage=c5f17000)
Stack: c5f17f84 c64e859c c64e859c fffffffe c012dfaf c64e8550 c64e9c20
 c5f17f84 00000000 c60dd004 00000001 c012e17a c64e9620 c5f17f84
 c60dd000 c60dd000 c5f16000 bffff6b0 c60dd002 00000002 000006b3
 c012e26c c60dd000 c64e9620
Call Trace: [<c012dfaf>] [<c012e17a>] [<c012e26c>] [<c012c232>] [<c0108be4>]
Code: 66 83 3b 00 74 4e 31 c9 8b 74 24 20 66 8b 4b 02 3b 4e 44 75

>>EIP: c0144040 <proc_lookup+4c/e0>
Trace: c012dfaf <real_lookup+4b/74>
Trace: c012e17a <lookup_dentry+126/1f0>
Trace: c012e26c <__namei+28/58>
Trace: c012c232 <sys_newstat+2a/8c>
Trace: c0108be4 <system_call+34/38>
Code: c0144040 <proc_lookup+4c/e0> 00000000 <_EIP>:
Code: c0144040 <proc_lookup+4c/e0> 0: 66 83 3b 00 cmpw $0x0,(%ebx)
Code: c0144044 <proc_lookup+50/e0> 4: 74 4e je 54 <_EIP+0x54> c0144094 <proc_lookup+a0/e0>
Code: c0144046 <proc_lookup+52/e0> 6: 31 c9 xorl %ecx,%ecx
Code: c0144048 <proc_lookup+54/e0> 8: 8b 74 24 20 movl 0x20(%esp,1),%esi
Code: c014404c <proc_lookup+58/e0> c: 66 8b 4b 02 movw 0x2(%ebx),%cx
Code: c0144050 <proc_lookup+5c/e0> 10: 3b 4e 44 cmpl 0x44(%esi),%ecx
Code: c0144053 <proc_lookup+5f/e0> 13: 75 00 jne 15 <_EIP+0x15> c0144055 <proc_lookup+61/e0>

For ksymoops to resolve the addresses to function names, it needs the appropriate system map for the running
kernel. During the kernel building process an updated file is placed in the root of your kernel source directory,
usually /usr/src/linux/System.map. However, the file only contains entries for the files that are compiled in
since it can not possibly know the memory location where a particular module will be loaded later. Getting the
location of modularized code can be accomplished at load time by telling insmod to do so by adding the −m
parameter. Exported symbols also show up in /proc/ksyms.

 Going Further

755

The call trace of this particular Oops goes from system_call through the listed functions and ends up in
proc_lookup where the fault occurred. The trace lists functions according to the following format.

<function_name+offset/length>

The offset indicates where in the function the jump was made and length is the total length. The offending
code is listed disassembled. At offset 0x4c into proc_lookup a compare was made against the ebx register and
looking at the register dumps shows that it contains an invalid address. Now we need to locate the file that
contains the function in question and find out what could be causing this. In this case it seems reasonable that
proc_lookup would be a part of the proc file system and indeed the function is listed in fs/proc/root.c. The
Makefile in the kernel allows you to run a make fs/proc/root.s and get an assembler listing containing
debugging information. Open root.s in an editor, find proc_lookup and the offending operation, along with a
line number in root.c. In this particular case, the dentry pointer passed to proc_lookup was completely bogus.

That was the easy part now you have to find out how on earth that could have happened? It might be a valid
thing to do and in that case a check should probably be added. However, it is far more plausible that the driver
being created is at fault. In this case the Oops occurred while we were testing the proc implementation in
Schar. The problem was that while someone was accessing the proc entry, the module was removed, and the
directory entry associated with it was freed. Next time the entry was looked up, the dentry passed was no
longer valid. Schar was fixed to increment its module usage count when the proc entry was busy and the
problem was solved.

Debugging Modules

Unfortunately it is not possible to single step kernel code like ordinary applications, at least not right out of
the box. The best way to go about debugging your own modules is to strategically add printk statements in
troublesome areas and work your way down from there. Beware that obscure bugs may be hidden by a simple
printk statement, either because it changes the timing or the alignment of data slightly. But try it and see what
happens. If it hangs, find out where and print critical variables. An Oops can be decoded using the techniques
demonstrated above and ksymoops includes /proc/ksyms by default and can thus also decode any functions
exported by the modules loaded. During development it is advisable to export all possible functions and
variables to make sure that ksymoops will catch them. The section on integrated debugging will explore
further options.

The Magic Key

The most unfortunate bugs are the ones that crash the system completely. In these situations the Magic SysRq
key, or System Attention Key (SAK), can be of great assistance. This handy feature was added during the 2.1
development cycle and you can enable the option when configuring the kernel. It doesn't add any overhead to
normal system operation and it can be the only way to resolve a complete hang, so whether you are doing
kernel development or not, always leave it enabled. You activate the different commands by pressing Alt Sys
Rq and a command key. The different commands are documented in Documentation/sysrq.txt here we will
examine the p command. So go ahead and press Alt Sys Rq p :

SysRq: Show Regs

EIP: 0010:[<c0107cd0>] EFLAGS: 00003246
EAX: 0000001f EBX: c022a000 ECX: c022a000 EDX: c0255378
ESI: c0255300 EDI: c0106000 EBP: 000000a0 DS: 0018 ES: 0018
CR0: 8005003b CR2: 4000b000 CR3: 00101000

 Debugging Modules

756

This is a listing of the processor state, complete with flags and registers. EIP, the instruction pointer, shows
where the kernel is currently executing so you need to look up this value in the symbol map for your kernel.
The closest matches for our kernel are

c0107c8c T cpu_idle
c0107ce4 T sys_idle

which reveals that the kernel was currently executing cpu_idle. If a driver gets stuck in an endless loop, SAK p
will tell you exactly where, assuming that the scheduler is still running. The system might also be completely
hung and in that case the SAK cannot help you.

Kernel Debugger KDB

There is a way to debug a running kernel safely that has minimal impact on normal system operation. It does
require patching of the kernel for the Intel platform, however, as the features are not yet included there
although they might be in the future. Some of the other platforms provide similar features without the need to
patch the kernel. Snoop around in the kernel configuration or search the internet, if necessary.

The debugger can be invoked in different places. At boot you can pass the kdb parameter to lilo and the
debugger will be started as soon as possible. During system operation, the debugger can be entered manually
by pressing the Pause key and is invoked automatically when an Oops occurs. From within the debugger you
can inspect and modify CPU registers and process variables, single step execution, set breakpoints, and much
more.

The patch comes with quite a few man pages explaining how to use it so we won't go into detail here. The
debugger is fairly simple to use, although it is not as pleasant to work with as gdb and does not provide the
same degree of functionality. This is to be expected for a built−in debugger, but having said that it still is a
very handy tool. Entering the debugger, setting a breakpoint, and then having the debugger automatically
invoked when it is reached, provides an excellent way to single step your module without affecting general
system performance that much.

Remote Debugging

After Chapter 9, we're familiar with gdb and how to use it with ordinary applications. With the kgdb kernel
patches, a running kernel can be debugged over a serial line from gdb just like any other program. This
approach requires two machines a master, where the controlling gdb is run from, and a slave being debugged.
A null−modem cable connects the two machines and it is probably a good idea to test the connection with
Minicom or a similar terminal program to make sure that the link is fully functional and reliable.

After having patched the kernel on the slave, recompiled, and rebooted, the machine runs just like before until
an accompanying debug script is invoked. A breakpoint is defined in the kernel and upon executing the script,
the slave is halted and control passed to the master. From there you can use gdb like you are used to the slave
machine is resumed with "continue" and can be stopped with Ctrl C again or when it hits a breakpoint.

The KDB patches also offer serial line debugging, but if you have two machines set up, using the kgdb
patches offers the advantage of providing the interface through the vastly more powerful gdb. Whether you
need that extra functionality or not, is up to you.

 Kernel Debugger KDB

757

General Notes on Debugging

While the various ways to debug the kernel differ in one way or another, they all have some points in
common. Generally, you will have to be very careful with breakpoints. If you are using an integrated
debugger, setting breakpoints in some of the keyboard handling is not a very good idea (for obvious reasons).
Likewise with debugging via a network connection and enabling a breakpoint in the driver or somewhere in
the network stack. It might work, and it might not but be prepared to hit the big red switch and enjoy a cup of
coffee while fsck runs! Some drivers rely on precise timing and single stepping those will probably not work
either. This also applies to interrupt and timer handlers. Be prepared to handle crashes until you get the hang
of kernel debugging and know where not to place breakpoints.

In our experience, having a dedicated machine for testing and debugging provides the most flexible solution.
It does not have to be an expensive solution either; we have an old 486 hooked up to our main workstation
that boots over the network and mounts its root file system through NFS. The test machine contains nothing
more than a motherboard with little RAM, a network adapter, floppy, and a cheap graphics adapter. The
development is kept on the workstation while trial runs and debugging is done on the test machine alone. If it
happens to crash, a reboot takes only about half a minute with no file system check necessary and we can keep
editing sources undisturbed on the workstation. Hook up a serial cable, and remote debugging the test
machine is a cinch.

Portability

The device driver created should naturally run on as many platforms as possible. Luckily the exposed API is
very portable, and the problems that arise are mainly due to platform differences. Most of the portability
issues have been mentioned in the sections where most of the problems arise. This small section will look a
little closer at some of these and introduce a few others.

Data Types

The small section located near the beginning of the chapter listed the __uXX and __sXX data types. It is
always a good idea to use these when a specific size of variable is needed, since there is no guarantee that a
long is the same size on all platforms, for example.

Endianess

Platforms like the Intel or Alpha use little−endian byte orientation, which means that the most and least
significant byte values are swapped. Power PC and Sparc CPU's are some of the big endian platforms that
Linux runs on, however, and they store the data in that order. This is how C views the world and what is
easiest to read by humans. In most cases you do not need to worry about the target endianess, but if you are
building or retrieving data with a specific orientation, converting between the two will be needed. For big
endian __BIG_ENDIAN_BITFIELD is defined and __LITTLE_ENDIAN_BITFIELD for little endian
platforms, so the relevant code can be placed inside define checks.

#if defined(__LITTLE_ENDIAN_BITFIELD)
 byteval = x >> 8;
#else
 byteval = x & 0xff;
#endif

Linux also provides primitives to ease the conversion of variables. These are defined in
linux/byteorder/generic.h and come in many different flavors. Some of the most common (for Intel, at least)

 General Notes on Debugging

758

are:

unsigned long cpu_to_be32(unsigned long x)
unsigned short cpu_to_be16(unsigned short x)

Convert the variable x from the CPU
native ordering to big endian.

unsigned long be32_to_cpu(unsigned long x)
unsigned short be16_to_cpu(unsigned short x)

Convert big endian variable x to CPU
native ordering.

There are numerous other functions to satisfy the conversion of 16, 32, and 64−bit variables to either type
byte ordering; they can all be found in the above mentioned include file.

Alignment

A piece of data is said to be properly aligned, when it resides at a memory address that a processor can access
in an efficient manner. It is dependent on the type of the processor when it considers data to be unaligned and
what happens when it is accessed; the consequences are either a slowdown in execution for the architecture
that allows unaligned access or failure for one that does not.

get_unaligned(ptr)
put_unaligned(val, ptr)

Access unaligned data.

If you need to access data that is known to be misaligned, use the above macros. They are defined in
<asm/unaligned.h>. For the architectures that directly support unaligned access, they expand to general
pointer dereferencing.

Other possible portability problems have been mentioned throughout the text where they belong and you
should not encounter any that were not listed either here or there. Portable code is beautiful code, so keep it
that way!

Continuing the Quest

We hope you will enjoy delving into kernel development. At times it may seem like an impossible task, given
the size of the entire kernel source, but hopefully the following chapters will provide you with enough
baggage and incentive to dig in deeper on your own. Reading this book is by no means a substitute for looking
at the source your self. The source is, of course, also the only documentation that is always completely
up−to−date! This is surely the most powerful aspect of Open Source projects to programmers, as the entire
source is freely available for you to study. Documentation for the Linux kernel is scarce at best, which makes
reading other people's drivers and kernel modifications the best resource to be had.

The road to full understanding of the Linux kernel and device drivers is steep and filled with obstacles along
the way. We hope this short introduction will aid you in getting started and encourage you to continue the
quest on your own. In spite of many frustrating nights looking for an obscure bug and pulling out hair in
distress until we finally nailed it, or maybe even because of them, you should still feel compelled to continue
hacking the sources and keep learning. Some of the kernel developers are extremely gifted and studying their
work is well worth the time spent.

Perhaps the biggest obstacle to overcome for beginning kernel programmers is knowing where to find a
specific piece of code in the kernel sources. Hopefully this text will give you a head start and provide a
general overview of what goes on where in the kernel. When you get stuck in a particular section anyway,
grep like you have never grepped before and find all the examples you can. As mentioned in the beginning,
the kernel is evolving all the time and a hard copy text can thus never be completely up to date. When and if
you find differences between what is written here and in the kernel, always trust the kernel.

 Alignment

759

Anatomy of the Kernel Source

linux

arch (architecture
dependent code)

drivers

block (block devices)

cdrom (generic drivers and uniform layer)

char (character devices)

macintosh

misc (mostly parallel port)

net (network drivers)

pci (PCI subsystem)

sbus (SBUS subsystem (SPARC))

scsi (drivers and SCSI subsystem)

sound (drivers and sound subsystem)

video (mostly framebuffer drivers)

fs (vfs and all other
file systems)

include

asm (symlink to appropriate platform, e.g. asm−alpha)

linux

init (where it all
begins)

ipc (Inter Process
Communication)

kernel

lib (string functions,
et al)

mm (the memory
management
subsystem)

modules

net (the network
subsystem)

scripts (various
useful tools)

We have omitted large parts, but this is the basic structure of the kernel. You are encouraged to go look for
yourself.

 Anatomy of the Kernel Source

760

Appendix A: Portability

Overview

There are three main types of portability:

Portability between different operating systems, either alternative implementations of UNIX or to
completely different operating systems, such as OS−9, VMS or MS−DOS.

•

Portability between different vendors' compilers, whether that means other C compilers or
compatibility with being compiled as C++ code.

•

Portability between different hardware, where word size, byte storage order and other differences can
lead to problems.

•

We're not overly concerned in this book with portability between different operating systems, but the other
types of portability are of interest here.

Portability has always been important in the UNIX world, because different versions of UNIX have been
available on many different platforms. Until recently, Linux was only available for 80x86 class machines, but
now Linux too is becoming available on other platforms, most notably the Motorola 68k series and the DEC
Alpha processors.

In this appendix, we'll provide some hints, tips and general notes about portability to help you ensure your
software is portable between different UNIX platforms and different versions of compilers.

Language Portability

First, we'll look at what steps you should take to ensure your code is portable between different versions of C
compilers and different versions of UNIX.

Preprocessor Symbols

Several preprocessor symbols are used to indicate the type and conformity of the compiler. They're not
defined in the usual way (in a header file), but are provided by the preprocessor or the compiler system. Their
meanings are significant for portability.

__STDC__

Perhaps the most important preprocessor symbol is __STDC__. This should be defined by a compilation
environment that meets the ISO C language standard. Historically, this was often used for moving code
between older systems that could only compile the original Kernighan & Ritchie style C and newer systems
tracking the evolving C standard.

These days, very few compilers differ greatly from the standard, although many compilers aren't validated and
thus probably have minor deviations. Using this symbol allows you to isolate parts of the code that require
ISO C rather than the old K & R behavior. The most common difference is in prototyping.

To use this symbol, you may write code like this:

#ifdef __STDC__

761

 int my_function(const char *mystring, const int a_value);
#else
 int my_function();
#endif

If you're using the GNU compiler gcc, use the −ansi switch to enable standard C compilation.

Some people have reported compilers that define __STDC__ to 0, apparently to indicate they don't conform to
the ISO C standard! If you do encounter this unusual behavior, you may have to switch to using #if
__STDC__.

_XOPEN_SOURCE

If your code is compliant (or supposed to be) with the X/Open and POSIX standards, define
_XOPEN_SOURCE before including any header files.

This define may modify the behavior of included files to bring them in line with the X/Open standard. You
won't need the older define _POSIX_SOURCE if _XOPEN_SOURCE is defined.

Use it like this:

#define _XOPEN_SOURCE

#include <unistd.h>

Reserved Names

A number of names are reserved. The ISO C language, for example, reserves a list of words, but be wary of
nonstandard compilers which may reserve some others too. The compiler reference manual will be the
definitive source in these cases.

auto break case char const continue default

do double else enum extern float for

goto if int long register return short

signed sizeof static struct switch typedef union

unsigned void volatile while
In addition, it's probably wise to avoid any C++ keywords, should you later wish to convert your program
from C to C++. Since, at the time of writing, the ANSI C++ standard is still evolving, it's impossible to give a
complete list. However, as a minimum you should avoid:

asm catch class delete

friend inline new operator

private protected public template

this throw try virtual
Many other names are also reserved. In particular, all names starting with an underscore _ are reserved for the
compiler to use. Names ending in _t are also reserved for use in POSIX header files. The rule is, never start a
name with _ or end it with _t.

Preprocessor Symbols

762

Once you start including header files, additional names become used, which can be quite a problem. Consider
the following scenario. You have a file that compiles correctly. You then write a new function in the file,
requiring an additional header file to be included. This new header file uses names that clash with your
existing names, forcing you to rewrite some parts of the program code. The solution to this, of course, is to
avoid all names reserved by any header file.

The names that are used by the different header files are listed here:

Header Used Names

ctype.h All names starting is or to.

dirent.h All names starting d_.

errno.h All names starting E, followed by a

number or other uppercase letter.

fnctl.h All names starting l_, F_, O_ or S_.

grp.h All names starting gr_.

limits.h All names ending _MAX.

locale.h All names starting LC_.

pwd.h All names starting pw_.

signal.h All names starting sa_, SIG or SA_.

string.h All names starting mem, str or wcs.

sys/stat.h All names starting st_ or S_.

sys/times.h All names starting tms_.

termios.h All names starting c_, V, I, O or TC.

Limits

The header file limits.h defines many maximum values. Always use the values from the header, rather than
inventing your own arbitrary ones. If you do need to define your own limits and expect your code to be used
on many different systems, it may be worth adding some 'once only' code to check that the current system
limits are the same as or better than any limits your program requires.

It's much better for a program to exit gracefully when you try and run it, explaining what limit is incompatible
with the program, than to attempt to run but behave incorrectly.

Hardware Portability

Since UNIX, and now Linux, is available on a wide range of hardware, you should take steps to ensure you
don't inadvertently write code that's restricted to a particular platform.

The C language is widely regarded as a portable language. It's suitable for a very diverse range of tasks, from
low−level hardware access to higher level applications such as databases. It's also a very efficient language in
that it can normally be translated by a compiler into machine code that will perform the required task
efficiently, with little run−time overhead.

Unfortunately, that's not the whole story. There are many parts of C that aren't fully defined and can cause
problems when C source code is moved between different systems. Perhaps the classic example of this is the
size of an integer. For many years, UNIX programmers expected integers to be 32 bits wide and thus hold
very large values, while MS−DOS programmers expected integers to be only 16 bits wide. Moving code from

 Limits

763

UNIX that assumed an integer could hold values bigger than 65,535 to MS−DOS could be a major
undertaking.

In the authors' opinion, there are three different approaches to producing portable code:

Write it on a single platform and worry about portability later. This certainly gets the initial code
written more quickly, but it's quite likely that moving it to a different system will require significant
rewriting and many new bugs will probably appear in the new code.

•

Write it on one system, but take care to avoid non−portable features. If you need to use a feature that
you know will cause portability problems, try to isolate it to a single file or function call. This
approach means that some effort will almost certainly be required when the code is ported, but it
shouldn't be extensive and major problems should be confined to small sections of the code that are
known to require porting effort.

•

Switch development between as many different platforms as possible and avoid any features that may
be non−portable. This approach will probably result in the first version of your software taking a very,
very long time to come to fruition and it will probably run slowly and still require effort to port to a
system it hasn't been run on before. Nobody, not even a team of dedicated professionals, can catch
every possible problem before it arises.

•

As you can perhaps guess, the authors favor the second approach. Here we list some common porting pitfalls,
and suggest some things that can be done to avoid them.

Sizes

In C, the integer is defined to be the natural word size of the processor. This would be 16 bits on an 8086 and
32 bits on a 68030. The varying size of int is a common cause of problems. Not only could you find that your
integer will take a different range of values on different machines, but trying to set or test bits in a integer can
also cause problems.

For example, suppose we wish to set bit 2 (counting from 0) in an integer called i. The expression,

i |= 0x04;

will set the bit, regardless of how wide the integer i is.

Clearing the bit is less straightforward. An obvious answer is to write

i &= 0xfffb; /* Do not write this */

which will clear the bit if i is 16 bits wide. The problem arises if i is actually 32 bits wide, in which case we've
cleared not only bit 2 but also the top 16 bits accidentally! The correct way to write this is:

i &= ~0x04;

This allows the compiler (which knows how wide an integer is) to first create the bit complement of 0x04,
using the ~ operator, and then mask i against it. This way, the mask will always have the correct number of
bits in it.

 Sizes

764

Byte Order

Different processors arrange bytes in memory in a different order. A few processors even have instructions
for changing the way they store bits in memory. There are two classes of processors.

Little−endian

In this class of processors, the least significant bits (LSBs) of variables are stored at the lowest addresses. The
VAX and 80x86 classes are notable processors that access memory in this fashion.

Big−endian

In this class of processors, the most significant bits (MSBs) of variables are stored at the lowest addresses.
The SPARC and 68k series of processors use memory in this fashion.

Important A very few processors allow you to select the 'endedness' at run time, but we won't consider that
here.

You could face a number of problems when you're moving programs between these classes of processors,
notably when you're passing parameters to functions. Avoid taking the address of function parameters. For
example:

char z;
func(z);

func(char zz) {
 char *p, tmp;
 p = &zz; /* Not a good idea */
 tmp = zz;
 p = &tmp; /* much safer */

A more serious problem arises when you're transferring data between the different types of processors on disk
or across a network. A full discussion is beyond the scope of this book, but if you're interested, you should
consider the htonl, htons, ntohl and ntohs functions which convert between host and network byte ordering.
You can find a more general set of routines in the XDR (external data representation) standard.

char

A surprising number of programs seem to depend for their correct operation on whether a character is signed
(ranges from −127 to +128) or unsigned (ranges 0 to 256). Never assume either. If you require characters to
be signed or unsigned, explicitly declare them as signed char or unsigned char. Problems can also occur with
shorts and integers, but this seems to be much less common.

Union Packing

The way the compiler arranges fields inside a union isn't defined. Suppose you declare a union like this:

union baz {
 short bar_short;
 char bar_char;
} my_baz;

 Byte Order

765

If you try and write code that stores values in one 'part' of the union and reads them from the other, the results
are undefined. You can't use a union to change the type of a variable in a portable way.

my_baz.bar_short = 7;
if (my_baz.bar_char == 7) { /* No ! */

Structure Alignment

A similar problem occurs with structures.

struct foo {
 short bar_short;
 char bar_char;
} my_foo;

The size of foo will vary between processors, depending on how the compiler has added padding bytes
between the members of the structure.

Another pitfall of structures is to try and compare them with the memcmp function. Using our foo structure
again, you might write:

struct foo foo1;
struct foo foo2;

/* some code that manipulates the structures */

if (memcmp(foo1, foo2, sizeof(struct foo))) { /* No !*/

Don't do this. You're asking if every byte in structure foo1 is the same as in foo2, but because of padding there
may be bytes in the structure that don't correspond to any of the members in the structure. If you need to
compare two structures, you must explicitly compare every member. It is, however, acceptable to copy
structures using normal assignment or memcpy, since this transfers all the members.

Pointer Sizes

A lot of older UNIX code assumes sizeof(int) = sizeof(void *);

Never assume that you can move pointers to integers and back. If you need an anonymous pointer, use a void
*. Also, beware the qsort function, which has the prototype:

void qsort(void *base, size_t num_el, size_t size_el,
 int (*compare)(const void *, const void *));

Suppose you want to compare two members of our foo structure. Don't write the compare function to accept a
pair of pointers to foo structures. The prototype requires void *. Instead, write the compare function to accept
two void pointers and then cast the pointers back using local variables, like this:

int compare(void *struct_one_ptr, void *struct_two_ptr)
{
 struct foo *foo1_ptr;
 struct foo *foo2_ptr;

 foo1_ptr = (struct foo *)struct_one_ptr;
 foo2_ptr = (struct foo *)struct_two_ptr;

 Structure Alignment

766

Function Parameter Evaluation

The order in which function parameters are evaluated is undefined. If you write code such as,

func(a++, b=a+c);

you may have portability problems, because some compilers will evaluate a++ first and some b=a+c first.
Also, take extreme care with macros that may have side effects when used in function arguments, or in
particular parts of some expressions. For example, beware,

isdigit(*ptr++); /* No! */

since the function isdigit is often implemented as a macro.

Moving to C++

Today you may be writing your code in ISO C, but in a few years you may wish to come back, add some new
features and at the same time update the code to be compiled as C++. As the C++ standard evolves, it's
moving further and further away from C and moving C code to a C++ compiler consequently becomes harder.
We've already seen some C++ keywords to avoid. In addition, there are some other features to avoid in C that
will make a later move to C++ easier.

Always prototype. C++ requires prototypes; C just encourages it.

A C func() may take any number of arguments; in C++ it takes no parameters.

Global data must be declared exactly once in C++; C is more relaxed.

In C, a global const has external linkage; in C++ it has file linkage.

In C, a struct variable declaration requires the keyword struct before the structure name; in C++, it doesn't.

In C++, enumerations are more tightly type checked than in C, which considers them integers.

Use the Compiler

Most modern compilers are very good at offering warnings about doubtful code. Use the compiler options to
turn those warnings on. If you are using gcc, you can use the −Wall option, which turns on all warnings. If
you're about to port your code to a different environment, also consider gcc's −pedantic option, which can be
extremely pedantic indeed! It will help you find constructs in your code that may need reworking as part of
the port. It's much easier to correct warnings from a compiler before moving the code than it is to try and test
and correct a buggy program after porting.

If you are writing production code, you should consider using −Wall and ensuring that your compiles produce
no warnings. This might seem a rather optimistic goal, since you will almost undoubtedly receive some
warnings about constructs that are correct.

 Function Parameter Evaluation

767

There are two things to remember. Firstly, the team that wrote the compiler probably knew a great deal about
the finer points of the language. Secondly, if you start with clean compiles and continue keeping your
compiles clean, you'll find it much easier to spot important warnings. It's very easy to become accustomed to a
particular file generating a stream of warnings and miss the new and important warning that just appeared.

Programs are Read by People

Our final tips are all about remembering that code is read by people and is almost always read many more
times than it is written. Most code is around for much longer that the original authors intend. Today's quick
one−off might be next year's mission−critical application.

Take the time to use proper, meaningful variable names. Using i or j for a simple integer loop variable is
perhaps acceptable, but all other variables should have more meaningful names.

Name functions in a consistent manner. For example, if you have a set of functions that get the state of
particular options, name them in a consistent way, such as get_option_baud(), and get_option_typeahead().
This helps readers find related functions quickly and more easily.

 Programs are Read by People

768

Appendix B: FSF and the GNU Project

Overview

To quote from the GNU Bulletin, The Free Software Foundation is dedicated to eliminating restrictions on
peoples right to use, copy modify and redistribute computer programs.

The word free isnt about money. Theres nothing wrong with paying to obtain a CD containing GNU software.
Free refers to the freedom to have the source code, to learn how it works, to adapt it and to share it with
others.

The Free Software Foundation (FSF) are putting together a complete software system, named GNU, which
stands for GNUs Not UNIX. Its intended to be upwardly compatible with UNIX, while allowing access to the
complete source code. The project isnt yet finished, but many parts are available and most Linux distributions
rely on large parts of the GNU project.

The GNU Project

The major parts of the project are:

The Hurd, a collection of server processes to run on a kernel called Mach, developed at CMU. The
Hurd isnt yet complete, but the Linux kernel suffices quite nicely!

•

The GNU C Library. Most Linux distributions use this. Its almost complete, but still being worked on.•
GNU EMACS. Arguably, the most configurable programming editor yet written. It can be difficult to
learn, but persistence in mastering this editor will pay dividends in the end. It seems that work on
EMACS will continue forever!

•

GCC, the GNU C compiler. This actually consists of many parts and different front ends keep being
added. Currently, work is proceeding on Pascal and CHILL (http://www.kvatro.no/telecom/chipsy/)
front ends and is mostly complete. At the time of writing, its not an ISO C certified compiler; the fact
that certification costs a considerable amount of money is a drawback to a Foundation always short of
spending power. However, GCC does track the standard closely and differences are mostly quite
minor. GCC is also a C++ compiler.

•

Ghostscript, a Postscript processor for viewing and printing documents.•
There are many other utilities, such as the bash shell, bison and flex (replacements for YACC and
LEX), make and numerous others.

•

With few exceptions, the GNU versions of standard tools are better than the originals. You can help the Free
Software Foundation by giving donations and by purchasing copies of their software, either directly or from
vendors that make donations to the Foundation.

The GNU Public License

This is sometimes referred to as copyleft, or the GPL. Unlike other copyrights that restrict freedoms, this one
enhances freedoms in a rather ingenious way.

Heres the full text of the license:

GNU GENERAL PUBLIC LICENSE

769

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software−−to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation's software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License instead.) You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source code.
And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The "Program",
below, refers to any such program or work, and a "work based on the Program" means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program or

1.

 Appendix B: FSF and the GNU Project

770

a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term "modification".) Each licensee is
addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are
outside its scope. The act of running the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program (independent of having been made
by running the Program). Whether that is true depends on what the Program does.
You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2.

You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 2
above, provided that you also meet all of these conditions:

You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change.

1.

You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

2.

If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy of this License. (Exception: if
the Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

3.

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a
work based on the Program) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3.

You may copy and distribute the Program (or a work based on it, under Section 3) in object code or
executable form under the terms of Sections 2 and 3 above provided that you also do one of the
following:

4.

 Appendix B: FSF and the GNU Project

771

Accompany it with the complete corresponding machine−readable source code, which must
be distributed under the terms of Sections 2 and 3 above on a medium customarily used for
software interchange; or,

1.

Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine−readable copy of the corresponding source code, to be distributed under the terms of
Sections 2 and 3 above on a medium customarily used for software interchange; or,

2.

Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

3.

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus
any associated interface definition files, plus the scripts used to control compilation and installation of
the executable. However, as a special exception, the source code distributed need not include anything
that is normally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not compelled to copy the source along
with the object code.
You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and
will automatically terminate your rights under this License.

However, parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5.

You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do so,
and all its terms and conditions for copying, distributing or modifying the Program or works based on
it.

6.

Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the Program
subject to these terms and conditions. You may not impose any further restrictions on the recipients'
exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties to this License.

7.

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty−free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

8.

 Appendix B: FSF and the GNU Project

772

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed through that system in
reliance on consistent application of that system; it is up to the author/donor to decide if he or she is
willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of
this License.
If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may
add an explicit geographical distribution limitation excluding those countries, so that distribution is
permitted only in or among countries not thus excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9.

The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of
this License which applies to it and "any later version", you have the option of following the terms
and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

10.

If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

11.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL
NECESSARY SERVICING, REPAIR OR CORRECTION.

1.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF

2.

 Appendix B: FSF and the GNU Project

773

THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file
to most effectively convey the exclusion of warranty; and each file should have at least the ``copyright'' line
and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>

Copyright ©19yy <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to
the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright © 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type show w

This is free software, and you are welcome to redsitribute it under certain conditions; type show c for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than `show w' and `show c'; they
could even be mouse−clicks or menu items−whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a ``copyright
disclaimer'' for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes at
compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989

 Appendix B: FSF and the GNU Project

774

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License

 Appendix B: FSF and the GNU Project

775

Appendix C: Internet Resources
There are many, many resources on the Internet for Linux, UNIX and other related software. Here we suggest
just a few places you might start looking. Since the Internet is such a dynamic resource, it seems certain some
of the resources may have gone by the time you read this. Never fear! Use your favorite search engine to find
new ones, or even ones that we've missed.

WWW Locations

Like the Web as a whole, the number of sites grows all the time. Try these starting points, follow the links,
and see what you can find.

Linux Specific

Linux News

Current news about Linux can be found at the following sites:

http://www.slashdot.org/

http://www.freshmeat.net/

http://linuxtoday.com/

http://www.linuxworld.com/

http://www.linuxgazette.com/

Linux Kernel Resources

Alan Cox's Diary
http://www.linux.org.uk/diary

Linux Kernel Archives
http://www.kernel.org/

Linux−kernel mailing archive
http://www.uwsg.indiana.edu/hypermail/linux/kernel/index.html

KDB patches providing integrated debugging
http://reality.sgi.com/slurn_engr/

Linux Distribution Vendors

Debian Project
http://www.debian.org/

Red Hat
http://www.redhat.com/

776

SuSE
http://www.suse.com/

Caldera Inc.
http://www.caldera.com/

Other Linux Resources

Linux Software Map
http://www.execpc.com/lsm

Linux Documentation Project
http://www.linuxdoc.org/

The Linux Home Page
http://www.linux.org/

Linuxberg
http://www.linuxberg.com/

Linux v2 Information HQ
http://www.linuxhq.com/

The Linux Threads Library
http://pauillac.inria.fr/~xleroy/linuxthreads/

LINUX.ORG.UK
http://www.uk.linux.org/

Linux 2.0 Penguins
http://www.isc.tamu.edu/~lewing/linux/

GNOME Project homepage
http://www.gnome.org/

Linux packages in RPM format
http://rufus.w3.org/

Pacific HiTech Home Page
http://www.pht.com/

The Linux Midi + Sound Main Page
http://www.bright.net/~dlphilp/linuxsound/

Trusted Information Systems: Firewall Toolkit on Linux
http://www.pauck.de/marco/misc/misc.html

Linux International: Promoting Linux
http://www.li.org/

Linux Specific

777

InfoMagic Main Index Page
http://www.infomagic.com/

The Cathedral and the Bazaar
http://www.tuxedo.org/~esr/writings/cathedral−bazaar/cathedral−bazaar.html/

StarOffice office productivity suite
http://www.sun.com/products/staroffice/

Applixware
http://www.applix.com/applixware/

Unix and General Programming

The GNU Project Homepage
http://www.gnu.org/

Cygnus
http://www.cygnus.com/

The Electronic Frontier Foundation
http://www.eff.org/

UK UNIX User Group Home Page
http://www.ukuug.org/

Troll Tech − Qt Multi−platform C++ GUI Framework
http://www.troll.no

UnixWorld Online Magazine Home Page
http://www.wcmh.com:80/uworld/

Walnut Creek CDROM Electronic Catalog
http://www.cdrom.com/

Association of C & C++ Users WWW
http://www.accu.org/ − mail membership@accu.org for more info

Tcl WWW Info
http://www.sco.com/Technology/tcl/Tcl.html

The X Consortium Homepage
http://www.x.org/

Andrew S. Tanenbaum (provides a reference to Minix, a tiny UNIX−like OS)
http://www.cs.vu.nl/~ast

Tcl/Tk Project at the Scriptics Corporation
http://www.scriptics.com/

 Unix and General Programming

778

Tcl Contributed Software Archive
http://www.neosoft.com/tcl/contributed_sources/

Perlmongers homepage
http://www.perl.org/

V: a Freeware Portable C++ GUI Framework for Windows and X
http://www.objectcentral.com/

The Hungry Programmers (writing a free Motif clone)
http://www.hungry.com

Sun User Group
http://www.sunukug.org/
http://www.european.org/

Unix freeware sources
http://linux.robinson.cam.ac.uk/linapps/linapps.html

The NetBSD Project
http://www.netbsd.org

The Jargon File: a Collection of Slang Terms Used by Computer Hackers
http://www.fwi.uva.nl/~mes/jargon

The Official fvwm Homepage
http://www.fvwm.org/

SAMBA Web Pages: Allows SMB Access to UNIX Files and Printers
http://samba.anu.edu.au/samba/

The Xfree Home Page
http://www.XFree86.org/

Xforms C++ GUI library
ftp://ftp.cs.ruu.nl/pub/XFORMS/

C++ Information
http://www.maths.warwick.ac.uk/c++
http://www.ocsltd.com/c++

HTML & HTTP Information

General

The World Wide Web Consortium: Information on W3C
http://www.w3.org/

The World Wide Web Consortium: Protocol Information
http://www.w3.org/Protocols/Overview.html

 HTML & HTTP Information

779

Beginner's Guide to HTML
http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html

Guides to Writing Style for HTML Documents
http://union.ncsa.uiuc.edu/HyperNews/get/www/html/guides.html

Tools for Aspiring Web Authors
http://www.nas.nasa.gov/NAS/WebWeavers/

Location of the weblint Program
http://www.khoral.com/staff/neilb/weblint.html

Internet Engineering Task Force: HTML Standards
http://www.ics.uci.edu/pub/ietf/html/

Style Guide for Online Hypertext
http://www.w3.org/hypertext/WWW/Provider/Style/Overview.html

Tools for WWW Providers
http://www.w3.org/Tools/Overview.html

Introduction to HTML
http://www.cwru.edu/help/introHTML/toc.html

Webmaster Reference LibraryTM
http://www.webreference.com/

CGI

The Common Gateway Interface
http://hoohoo.ncsa.uiuc.edu/cgi/

Matt's Script Archive
http://worldwidemart.com/scripts/

GIFs on the FLY
http://www.unimelb.edu.au/fly/fly.html

Graphics Library for GIF Creation
http://www.starship.python.net/~richard/gdmodule/

Beginner's Guide to HTML and CGI scripting
http://www.demon.co.uk/dita/new2html.html

Web Developer's Virtual Library: CGI
http://www.charm.net/Vlib/Providers/CGI.html

CGI security: Pitfalls to Avoid for CGI Programmers
http://www.cerf.net/customer_service/unix−web/secure_s.htm

HTML & HTTP Information

780

cgihtml: Library of CGI and HTML Routines Written in C
http://cgi.resourceindex.com/Programs_and_Scripts/C_and_C++/

Web Info

The World Wide Web Consortium: Information on W3C
http://www.w3.org/

World Wide Web FAQ
http://www.boutell.com/openfaq/browsers/

HTTP Servers

World Wide Web Server Software − Lots of Servers Listed Here
http://www.w3.org.Servers.html

Apache HTTP Server Project
http://www.apache.org/

Status of the W3C httpd
http://www.w3.org/hypertext/WWW/Daemon/Status.html

The NCSA httpd Home Page
http://hoohoo.ncsa.uiuc.edu/

An Overview of the WN Server
http://hopf.math.nwu.edu/docs/overview.html

Newsgroups

Usenet is always a good starting point.

General UNIX Groups

alt.unix.wizards

comp.sources.unix

comp.std.unix

comp.unix <various>

gnu.announce

comp.os.linux <various

Linux−specific Groups

If you're running Linux and have Internet access then you should at least subscribe to
comp.os.linux.announce and comp.os.linux.answers.

HTML & HTTP Information

781

FTP Archive Sites

There are lots of archives. Some of the main ones are:

ftp://sunsite.unc.edu
ftp://tsx−11.mit.edu
ftp://prep.ai.mit.edu/pub/gnu

Remember, the main sites are always very busy, as is the Internet. If possible, use a mirror site closer to your
location.

URLs for the Tools Mentioned in Chapter 9

ftp://sunsite.unc.edu/pub/Linux/devel/lang/c/•
Checker−0.7.2.lsm•
Checker−0.7.2.tgz•
Checker−libs−0.7.2.tgz•
ElectricFence−2.0.5.lsm•
ElectricFence−2.0.5.tar.gz•
cflow−2.0.tar.gz•
cflow.lsm•
cxref−1.0.lsm•
cxref−1.0.tgz•
cxref−1.0.txt•
lclint−2.1a.common−mini.tar.gz•
lclint−2.1a.common.tar.gz•
lclint−2.1a.linux−a.out.tar.gz•
lclint−2.1a.linux−elf.tar.gz•
lclint−2.1a.lsm•
lclint−2.1a.src.tar.gz•

Note that version numbers will change. At the time of writing, the most current version of lclint is
lclint−2.4b. Home site for the Larch (lclint) project is http://larch−www.lcs.mit.edu:8001/larch/lclint

 FTP Archive Sites

782

Appendix D: Bibliography

Standards

X/Open Single UNIX Specification
(Often referred to as Spec. 1170)
ISBN 1−85912−085−7
X/Open publications, +44 (0) 1993 708731
http://www.xopen.org/

IEEE Portable Operating System Interface for Computer Environments, POSIX
IEEE Std 1003.1−1988 C Language interface
ISBN 1−55937−003−3
IEEE, The Standards Office, 445 Hoes Lane, PO Box 1331,
Piscataway, NJ 08855−1331, USA
http://www.ieee.org

ISO C
ISO/IEC 9899:1990, Programming Languages, C
(Technically identical to ANSI standard ANS X3.159−1989, Programming Languages, C)

Other Documentation and Resources

Linux Manual Pages.
Linux HOWTO guides.
The many and various Linux CD−ROM distributions.

Books Worth a Look

Advanced Programming in the UNIX EnvironmentW. Richard StevensAddison−WesleyISBN
0−201−56317−7

The UNIX Programming EnvironmentBrian W. Kernighan & Rob PikePrentice−HallISBN 0−13−937681−X

Linux Application DevelopmentMichael K. Johnson & Erik W. TroanAddison−WesleyISBN 0−201−30821−5

Writing Apache Modules with Perl and CLincoln Stein & Doug MacEachernOReilly & AssociatesISBN
1−56592−567−X

Tcl and the Tk ToolkitJohn K. OusterhoutAddison−WesleyISBN 0−201−63337−X

Advanced UNIX ProgrammingMarc J. RochkindPrentice−HallISBN 0−13−011800−1

X Window Systems Programming and Applications with XtDouglas A. YoungPrentice−HallISBN
0−13−972167−3

Instant UNIXEvans, Matthew & StonesWrox PressISBN 1−874416−65−6

The Design of the UNIX Operating SystemMaurice J. BachPrentice−HallISBN 0−13−201757−1

783

The UNIX systemS.R. BourneAddison−WesleyISBN 0−201−13791−7

Programming the UNIX systemM. R. M. Dunsmuir & G. J. DaviesMacmillanISBN 0−333−37156−9

Programming PerlLarry Wall & Randal L. SchwartzO'Reilly & AssociatesISBN 0−937175−64−1

Learning PerlRandal L. Schwartz & Tom ChristiansenO'Reilly & AssociatesISBN 1−56592−284−0

Practical Programming in Tcl and TkBrent B. WelchPrentice−HallISBN 0−13−182007−9

POSIX Programmer's GuideDonald LewineO'Reilly & AssociatesISBN 0−937175−73−0

The Korn shellMorris I. Bolasky & David G. KornPrentice−HallISBN 0−13−516972−0

Principles of Concurrent and Distributed Programming M. Ben−AriPrentice−HallISBN 013711821X

HTML The Definitive GuideChuck Muciano & Bill KennedyO'Reilly & AssociatesISBN

Spinning the WebAndrew FordInternational Thomson PublishingISBN 1−850−32141−8

Managing Projects with makeAndrew Oram & Steve TalbottO'Reilly & AssociatesISBN 0−937175−90−0

Managing Internet Information ServicesCricket Liu, Jerry Peek, Russ Jones, Bryan Buus & Adrian
NyeO'Reilly & AssociatesISBN 1−56592−062−7

Linux in a NutshellJessica Perry HekmanO'Reilly & Associates1−56592−167−4

Exploring ExpectDon LibesO'Reilly & AssociatesISBN 1−56592−090−2.

UNIX Network ProgrammingW Richard StevensPrentice−HallISBN 0−13−949876−1

Operating System ConceptsAbraham Silberschatz & Peter GalvinAddison−WesleyISBN 0−20−159113−8

The Magic Garden ExplainedBerny Goodheart & James CoxPrentice−HallISBN 0−13−098138−9

Linux Device DriversAlessandro RubiniO'Reilly & AssociatesISBN 1−56−592292−1

Open SourcesChris DiBona, Sam Ockman & Mark Stone (eds)O'Reilly and AssociatesISBN 1 56592 582 3

And Finally, Three Books to Read away from the Computer

Gödel, Escher, Bach: An Eternal Golden Braid
Douglas R. Hofstadter
Penguin Books
ISBN 0140055797

The Illuminatus! Trilogy
Robert Shea & Robert Anton Wilson
Dell
ISBN 0440539811

 And Finally, Three Books to Read away from the Computer

784

The Wasp Factory
Iain Banks
Abacus Fiction
ISBN 0−349−10177−9

 And Finally, Three Books to Read away from the Computer

785

	Beginning Linux Programming, Second Edition
	Table of Contents
	Foreword
	Introduction
	 Welcome
	 Who's this Book For?
	 What's Covered in the Book
	 What You Need to Use this Book
	 Source Code
	 Conventions
	 Tell Us What You Think
	 Why Should I Return the Reply Card?

	 Chapter 1: Getting Started
	 Overview
	 What is UNIX?
	 What is Linux?
	 Distributions
	 The GNU Project and the Free Software Foundation
	 Programming Linux
	 UNIX Programs
	 The C Compiler
	Try It Out - Our First UNIX C Program
	How It Works

	 Getting Help
	Try It Out - Manual Pages and info

	 Development System Roadmap
	 Programs
	 Header Files
	 Library Files
	 Static Libraries
	Try It Out - Static Libraries
	 Shared Libraries

	 UNIX Philosophy
	 Simplicity
	 Focus
	 Reusable Components
	 Filters
	 Open File Formats
	 Flexibility

	 Summary

	 Chapter 2: Shell Programming
	 Overview
	 What is a Shell?
	 Pipes and Redirection
	 Redirecting Output
	 Redirecting Input
	 Pipes

	 The Shell as a Programming Language
	 Interactive Programs
	 Creating a Script
	 Making a Script Executable

	 Shell Syntax
	 Variables
	 Conditions
	 Control Structures
	 Functions
	Try It Out - A Simple Function
	How It Works
	Try It Out - Returning a Value
	How It Works
	 Commands
	 Command Execution
	 Here Documents
	Try It Out - Using Here Documents
	Try It Out - Another Use for a Here Document
	How It Works
	 Debugging Scripts

	 Putting it All Together
	 Requirements
	 Design
	Try It Out - A CD Application
	Notes

	 Summary

	 Chapter 3: Working with Files
	 Overview
	 UNIX File Structure
	 Directories
	 Files and Devices

	 System Calls and Device Drivers
	 Library Functions
	 Low-level File Access
	write
	read
	open
	Initial Permissions
	umask
	close
	ioctl
	Try It Out - A File Copy Program
	 Other System Calls for Managing Files

	 The Standard I/O Library
	fopen
	fread
	fwrite
	fclose
	fflush
	fseek
	fgetc, getc, getchar
	fputc, putc, putchar
	fgets, gets
	 Formatted Input and Output
	 Other Stream Functions
	 Try It Out - Another File Copy Program
	 Stream Errors
	 Streams and File Descriptors

	 File and Directory Maintenance
	chmod
	chown
	unlink, link, symlink
	mkdir, rmdir
	chdir, getcwd

	 Scanning Directories
	opendir
	readdir
	telldir
	seekdir
	closedir
	 Try It Out - A Directory Scanning Program
	How It Works

	 Errors
	 Advanced Topics
	fcntl
	mmap
	 Try It Out - Using mmap

	 Summary

	 Chapter 4: The UNIX Environment
	 Overview
	 Program Arguments
	 Try It Out - Program Arguments
	How It Works
	 getopt
	 Try It Out - getopt
	How It Works

	 Environment Variables
	Try It Out - getenv and putenv0
	 Use of Environment Variables
	 The environ Variable
	Try It Out - environ
	How It Works

	 Time and Date
	Try It Out - time
	How It Works
	 Try It Out - gmtime
	How It Works
	 Try It Out - ctime
	How It Works
	 Try It Out - strftime and strptime
	How It Works

	 Temporary Files
	 Try It Out - tmpnam and tmpfile
	How It Works

	 User Information
	Try It Out - User Information
	How It Works
	 Other User Information Functions

	 Host Information
	Try It Out - Host Information
	How It Works
	 Licensing

	 Logging
	Try It Out - syslog
	How It Works
	 Configuring Logs
	Try It Out - logmask
	How It Works

	 Resources and Limits
	 Try It Out - Resource Limits
	How It Works

	 Summary

	 Chapter 5: Terminals
	 Overview
	 Reading from and Writing to the Terminal
	Try It Out - Menu Routines in C
	How It Works
	Why It Doesn't Quite Work
	 Handling Redirected Output
	Try It Out - Checking for Output Redirection
	How It Works
	 Talking to the Terminal
	Try It Out - Using /dev/tty

	 The Terminal Driver and the General Terminal Interface
	 Overview
	 Hardware Model

	 The termios Structure
	 Input Modes
	 Output Modes
	 Control Modes
	 Local Modes
	 Special Control Characters
	 Terminal Speed
	 Additional Functions
	Try It Out - A Password Program with termios
	How It Works
	Try It Out - Reading Each Character
	How It Works

	 Terminal Output
	 Terminal Type
	 Identify Your Terminal Type
	 Using terminfo Capabilities

	 Detecting Keystrokes
	Try It Out - Your Very Own kbhit
	How It Works
	 Pseudo Terminals

	 Summary

	 Chapter 6: Curses
	 Overview
	 Compiling with curses
	 Concepts
	Try It Out - A Simple curses Program

	 Initialization and Termination
	 Output to the Screen
	 Reading from the Screen
	 Clearing the Screen
	 Moving the Cursor
	 Character Attributes
	Try It Out - Moving, Inserting and Attributes

	 The Keyboard
	 Keyboard Modes
	 Keyboard Input
	Try It Out- Keyboard Modes and Input
	How It Works

	 Windows
	 The WINDOW Structure
	 Generalized Functions
	 Moving and Updating a Window
	Try It Out - Multiple Windows
	 Optimizing Screen Refreshes

	 Subwindows
	Try It Out - Subwindows
	How It Works

	 The Keypad
	 Try It Out - Using the Keypad

	 Color
	 Try It Out - Colors
	 Redefining Colors

	 Pads
	Try It Out - Using a Pad

	 The CD Collection Application
	Try It Out - A New CD Collection Application
	Try It Out - Looking at main
	Try It Out - The Menu
	 Try It Out - Database File Manipulation
	Try It Out - Querying the CD Database

	 Summary

	 Chapter 7: Data Management
	 Overview
	 Managing Memory
	 Simple Memory Allocation
	Try It Out - Simple Memory Allocation
	How It Works
	 Allocating Lots of Memory
	 Try It Out - Asking for all Physical Memory
	How It Works
	Try It Out - Available Memory
	How It Works
	 Abusing Memory
	Try It Out - Abuse Your Memory
	How It Works
	 The Null Pointer
	 Try It Out - Accessing a Null Pointer
	How It Works
	How It Works
	 Freeing Memory
	Try It Out - Freeing Memory
	How It Works
	 Other Memory Allocation Functions

	 File Locking
	 Creating Lock Files
	Try It Out - Creating a Lock File
	How It Works
	 Try It Out - Cooperative Lock Files
	How It Works
	 Locking Regions
	 Use of read and write with Locking
	Try It Out - Locking a File with fcntl
	How It Works
	Try It Out - Testing Locks on a File
	How It Works
	 Competing Locks
	 Try It Out - Competing Locks
	How It Works
	 Other Lock Commands
	 Deadlocks

	 Databases
	 The dbm Database
	 The dbm Routines
	 dbm Access Functions
	 Additional dbm Functions

	 The CD Application
	 The CD Application Using dbm
	Try It Out - cd_data.h
	Try It Out - app_ui.c
	 Try It Out - cd_access.c

	 Summary

	 Chapter 8: Development Tools
	 Overview
	 Problems of Multiple Source Files
	 The make Command and Makefiles
	 The Syntax of Makefiles
	 Options and Parameters to make
	 Comments in a makefile
	 Macros in a makefile
	Try It Out - A Makefile with Macros
	How It Works
	 Multiple Targets
	Try It Out - Multiple Targets
	How It Works
	 Built-in Rules
	 Suffix Rules
	Try It Out - Suffix Rules
	How It Works
	 Managing Libraries with make
	Try It Out - Managing a Library
	How It Works
	 Advanced Topic: Makefiles and Subdirectories
	 GNU make and gcc
	Try It Out - gcc -MM
	How It Works

	 Source Code Control
	 RCS
	 SCCS
	 CVS

	 Writing a Manual Page
	 Distributing Software
	 The patch Program
	 Other Distribution Utilities

	 Summary

	 Chapter 9: Debugging
	 Types of Error
	 Specification Errors
	 Design Errors
	 Coding Errors

	 General Debugging Techniques
	 A Program with Bugs
	 Code Inspection
	 Instrumentation
	Try It Out - Debug Information
	How It Works
	 Controlled Execution

	 Debugging with gdb
	 Starting gdb
	 Running a Program
	 Stack Trace
	 Examining Variables
	 Listing the Program
	 Setting Breakpoints
	 Patching with the Debugger
	 Learning more about gdb

	 More Debugging Tools
	 Lint: Removing the Fluff from Your Programs
	 Function Call Tools
	 Execution Profiling

	 Assertions
	 Problems with assert
	 Try It Out - assert
	How It Works

	 Memory Debugging
	 ElectricFence
	Try It Out - ElectricFence
	How It Works
	 Checker
	Try It Out - Checker
	How It Works

	 Resources
	 Summary

	 Chapter 10: Processes and Signals
	 Overview
	 What is a Process?
	 Process Structure
	 The Process Table
	 Viewing Processes
	 System Processes
	 Process Scheduling

	 Starting New Processes
	Try It Out - system
	How It Works
	Replacing a Process Image
	 Try It Out - execlp
	How It Works
	Duplicating a Process Image
	 Try It Out - fork
	How It Works
	 Waiting for a Process
	Try It Out - wait
	How It Works
	 Zombie Processes
	Try It Out - Zombies
	How It Works
	 Input and Output Redirection
	 Try It Out - Redirection
	How It Works
	 Threads

	 Signals
	 Try It Out - Signal Handling
	How It Works
	 Sending Signals
	Try It Out - An Alarm Clock
	How It Works
	 Signal Sets

	 Summary

	 Chapter 11: POSIX Threads
	 What is a Thread?
	 Advantages and Drawbacks of Threads

	 Checking for Thread Support
	Try it out - POSIX compliance test
	How it works

	 A First Threads Program
	Try it out - a simple threaded program.
	How it works.

	 Simultaneous Execution
	Try it out - simultaneous execution of two threads
	How it works.

	 Synchronization
	 Synchronization with Semaphores
	Try it out - a thread semaphore.
	How it works.
	 Synchronization with Mutexes
	Try it out - a thread mutex.
	How it works.

	 Thread Attributes
	detachedstate
	schedpolicy
	schedparam
	inheritsched
	scope
	stacksize
	Try it out - setting the detached state attribute
	How it works.
	Thread Attributes - Scheduling
	Try is out - scheduling
	How it works

	 Canceling a Thread
	Try it out - canceling a thread.
	How it works

	 Threads in Abundance
	Try it out - many threads
	How it works.

	 Summary

	 Chapter 12: Inter-process Communication: Pipes
	 Overview
	 What is a Pipe?
	 Process Pipes
	popen
	pclose
	 Try It Out - Reading Output From an External Program
	How It Works
	 Sending Output to popen
	Try It Out - Sending Output to an External Program
	How It Works

	 The Pipe Call
	Try It Out - The pipe Function
	How It Works
	 Try It Out - Pipes across a fork
	How It Works

	 Parent and Child Processes
	Try It Out - Pipes and exec
	How It Works
	 Reading Closed Pipes
	 Pipes Used as Standard Input and Output

	 Named Pipes: FIFOs
	Try It Out - Creating a Named Pipe
	How It Works
	 Accessing a FIFO
	 Try It Out - Accessing a FIFO File
	How It Works

	 Advanced Topic: Client/Server using FIFOs
	 Try It Out - An Example Client/Server Application
	How It Works

	 The CD Application
	 Aims
	 Implementation
	Try It Out - The Header File, cliserv.h
	 Client Interface Functions
	Try It Out - The Client's Interpreter
	 The Server Interface
	Try It Out - server.c
	 The Pipe
	Try It Out - Pipes Implementation Header
	 Application Summary

	 Summary

	 Chapter 13: Semaphores, Message Queues and Shared Memory
	 Semaphores
	 Semaphore Definition
	 A Theoretical Example
	 UNIX Semaphore Facilities
	 Using Semaphores
	Try It Out - Semaphores
	How It Works
	 Semaphore Summary

	 Shared Memory
	 Overview
	 Shared Memory Functions
	 Shared Memory Summary

	 Message Queues
	 Overview
	 Message Queue Functions
	 Message Queue Summary

	 The Application
	Try It Out - Revising the Server Functions
	Try It Out - Revising the Client Functions

	 IPC Status Commands
	 Semaphores
	 Shared Memory
	 Message Queues

	 Summary

	 Chapter 14: Sockets
	 Overview
	 What is a Socket?
	 Socket Connections
	Try It Out - A Simple Local Client
	 Try It Out - A Simple Local Server
	 Socket Attributes
	 Creating a Socket
	 Socket Addresses
	 Naming a Socket
	 Creating a Socket Queue
	 Accepting Connections
	 Requesting Connections
	 Closing a Socket
	 Socket Communications
	Try It Out - Network Client
	How It Works
	 Try It Out - Network Server
	How It Works
	 Host and Network Byte Ordering

	 Network Information
	 Try It Out - Network Information
	How It Works
	 Try It Out - Connecting to a Standard Service
	How It Works
	 The Internet Daemon
	 Socket Options

	 Multiple Clients
	Try It Out - A Server for Multiple Clients
	How It Works

	 select
	Try It Out - select
	How It Works
	 Multiple Clients
	Try It Out - An Improved Multiple Client/Server

	 Summary

	 Chapter 15: Tcl: Tool Command Language
	 Overview
	 A Tcl Overview
	 Our First Tcl Program
	 Tcl Commands
	 Variables and Values
	 Quoting and Substitution
	 Calculation
	 Control Structures
	 Error Handling
	 String Operations
	 Arrays
	 Lists
	 Procedures
	 Try It Out - Procedures
	How It Works
	 Input and Output

	 A Tcl Program
	Try It Out - A Concordance Program
	How It Works
	Network Support
	 Try It Out - socket
	How It Works

	 Creating a New Tcl
	 Tcl Extensions
	 expect
	 [incr Tcl]
	 TclX
	 Graphics

	 Summary

	 Chapter 16: Programming for X
	 Overview
	 What is X?
	X Server
	X Protocol
	Xlib
	X Clients
	 X Toolkits

	 X Window Manager
	 The X Programming Model
	 Start Up
	 Main Loop
	 Clean Up

	 Fast Track X Programming
	 The Tk Toolkit
	 Windows Programming
	Try It Out - Saying Hello
	How It Works
	 Configuration Files
	 More Commands
	 Tk Widgets
	Try It Out - Learning More
	How It Works
	 Tk's Built-in Dialogs
	Color Chooser
	Get Open/Save Files
	 Color Schemes
	 Fonts
	 Bindings
	 BindTags
	 Geometry Management
	 Focus and Navigation
	 Option Database
	 Inter-application Communication
	 Selection
	 Clipboard
	 Window Manager
	 Dynamic/Static Loading
	 Safe Tk

	 A Mega-Widget
	Package File Generation

	 An Application Using the Tree Mega-Widget
	 Tk Process Log Viewer
	 Internationalization
	 Where Now?
	Tix
	[incr Tk]
	BLT

	 Summary

	 Chapter 17: Programming GNOME using GTK+
	 Overview
	 An Introduction to GNOME
	 The GNOME Architecture
	 The GNOME Desktop
	 Programming in GNOME using GTK+
	 An Application in GNOME

	 Summary

	 Chapter 18: The Perl Programming Language
	 Overview
	 An Introduction to Perl
	 A Full Example
	 Perl on the Command Line
	 Modules
	 The CD Database Revisited

	 Summary

	 Chapter 19: Programming for the Internet: HTML
	 Overview
	 What is the World Wide Web?
	 Terminology
	 The HyperText Transfer Protocol (HTTP)
	 Multimedia Internet Mail Extensions (MIME)
	 Standard Generalized Markup Language (SGML)
	 Document Type Definition (DTD)
	 HyperText Markup Language (HTML)
	 Extensible Markup Language (XML)
	 Cascading Style Sheets (CSS)
	 Extensible Hypertext Markup Language (XHTML)
	 Uniform Resource Locator (URL)
	 Uniform Resource Identifier (URI)

	 Writing HTML
	 Try It Out - A Simple HTML Document
	How It Works

	 A More Formal Look at HTML
	 HTML Tags
	 Images
	 Try It Out - Adding an Image
	How It Works
	 Tables
	 Try It Out - A Table
	How It Works
	Try It Out - Another Table
	How It Works
	 Anchors or Hyperlinks
	 Try It Out - Anchors
	How It Works
	 Combining Anchors and Images
	 Try It Out - Images as Anchors
	How It Works
	 Non-HTML URLs
	 Anchors to Other Sites
	 Try It Out - Links to Other Sites
	How It Works

	 Authoring HTML
	 Serving HTML Pages
	 Networked HTML Overview
	 Setting up a Server

	 Clickable Maps
	 Server-side Maps
	 Client-side Maps

	 Server-side Includes
	Try It Out - Client-side Maps and Server-side Includes
	How It Works

	 Tips for Setting up WWW Pages
	 Summary

	 Chapter 20: Internet Programming 2: CGI
	 Overview
	 FORM Elements
	 The FORM Tag
	 The INPUT Tag
	 The SELECT Tag
	 The TEXTAREA Tag

	 A Sample Page
	Try It Out - A Simple Query Form
	How It Works

	 Sending Information to the WWW Server
	 Information Encoding
	 Server Program
	 Writing a Server-side CGI Program
	 CGI Programs Using Extended URLs
	 Try It Out - A Query String
	 Decoding the Form Data
	Try It Out - A CGI Decode Program in C
	How It Works

	 Returning HTML to the Client
	Try It Out - Returning HTML to the Client

	 Tips and Tricks
	 Making Sure your CGI Program Exits
	 Redirecting the Client
	 Dynamic Graphics
	 Hiding Context Information

	 An Application
	 Try It Out - An HTML Database Interface
	How It Works

	 Perl
	Try It Out A mod_perl Module.
	How it works

	 Summary

	 Chapter 21: Device Drivers
	 Overview
	 Devices
	 Device Classes
	 User and Kernel Space

	 Character devices
	 File Operations

	 A Sample Driver, Schar
	The MSG macro
	Registering the Device
	Module Usage Count
	Open and Release
	Reading the Device
	The current Task
	Wait Queues
	Writing to the Device
	Non-blocking Reads
	Seeking
	ioctl
	Checking User Rights
	poll
	Try it out reading and writing to Schar
	Try it out ioctl
	Module Parameters
	Try it out modinfo
	proc file system interface
	Sysctl
	Writable Entries
	 How Schar Behaves
	 Review

	 Time and Jiffies
	 Small Delays
	 Timers
	Try it out The timer implementation in Schar
	 Giving up the Processor
	 Task Queues
	 The Predefined Task Queues
	 Review

	 Memory Management
	 Virtual Memory Areas
	 Address Space
	 Types of Memory Locations
	 Getting Memory in Device Drivers
	 Transferring Data Between User and Kernel Space
	 Simple Memory Mapping
	 I/O Memory
	 Assignment of Devices in Iomap
	 I/O Memory mmap
	Try it out the Iomap module

	 I/O Ports
	 Portability
	 Interrupt Handling
	 The IRQ Handler
	 Bottom Halves
	 Reentrancy
	 Disabling Single Interrupts
	 Atomicity
	 Protecting Critical Sections

	 Block Devices
	 Radimo A Simple RAM Disk Module
	 Media Change
	 Ioctl for Block Devices
	 The Request Function
	 The Buffer Cache
	Try it out Radimo
	 Going Further

	 Debugging
	 Oops Tracing
	 Debugging Modules
	 The Magic Key
	 Kernel Debugger KDB
	 Remote Debugging
	 General Notes on Debugging

	 Portability
	 Data Types
	 Endianess
	 Alignment

	 Continuing the Quest
	 Anatomy of the Kernel Source

	Appendices
	 Appendix A: Portability
	 Overview
	 Language Portability
	 Preprocessor Symbols
	 Reserved Names
	 Limits

	 Hardware Portability
	 Sizes
	 Byte Order
	 char
	 Union Packing
	 Structure Alignment
	 Pointer Sizes
	 Function Parameter Evaluation

	 Moving to C++
	 Use the Compiler
	 Programs are Read by People

	 Appendix B: FSF and the GNU Project
	 Overview
	 The GNU Project
	 The GNU Public License

	 Appendix C: Internet Resources
	 WWW Locations
	 Linux Specific
	 Unix and General Programming
	 HTML & HTTP Information

	 Newsgroups
	 General UNIX Groups

	 FTP Archive Sites
	 URLs for the Tools Mentioned in Chapter 9

	 Appendix D: Bibliography
	 Standards
	 Other Documentation and Resources
	 Books Worth a Look
	 And Finally, Three Books to Read away from the Computer

