

CONCEPTS OF PROGRAMMING
LANGUAGES
TWELFTH EDITION

CONCEPTS OF PROGRAMMING
LANGUAGES
TWELFTH EDITION

ROBERT W. SEBESTA

University of Colorado at Colorado Springs

330 Hudson Street, NY NY 10013

Senior Vice President, Courseware Portfolio Management: Marcia Horton

Director, Portfolio Management: Engineering, Computer Science & Global
Editions: Julian Partridge

Specialist, Higher Ed Portfolio Management: Matt Goldstein

Portfolio Management Assistant: Meghan Jacoby

Managing Content Producer: Scott Disanno

Content Producer: Carole Snyder

Web Developer: Steve Wright

Rights and Permissions Manager: Ben Ferrini

Manufacturing Buyer, Higher Ed, Lake Side Communications Inc (LSC):
Maura Zaldivar-Garcia

Inventory Manager: Ann Lam

Product Marketing Manager: Yvonne Vannatta

Field Marketing Manager: Demetrius Hall

Marketing Assistant: Jon Bryant

Cover Designer: Joyce Wells, jWellsDesign

Full-Service Project Manager: Prathiba Rajagopal, SPi Global

Composition: SPi Global

Copyright © 2019, 2016, 2013, 2010 Pearson Education, Inc. All rights
reserved. Manufactured in the United States of America. This publication is
protected by copyright, and permission should be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or

transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions department, please visit http://
www.pearsoned.com/permissions.

Many of the designations by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing
this book. These efforts include the development, research, and testing of
theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The author and
publisher shall not be liable in any event for incidental or consequential
damages with, or arising out of, the furnishing, performance, or use of these
programs.

Library of Congress Cataloging-in-Publication Data

Names: Sebesta, Robert W., author.

Title: Concepts of programming languages / Robert W. Sebesta, University
of Colorado at Colorado Springs.

Description: Twelfth edition. | Pearson, [2019]

Identifiers: LCCN 2017059077| ISBN 9780134997186 (alk. paper) | ISBN
0134997182 (alk. paper)

Subjects: LCSH: Programming languages (Electronic computers)

Classification: LCC QA76.7 .S43 2019 | DDC 005.13--dc23 LC record
available at https://lccn.loc.gov/2017059077

1 18

http://www.pearsoned.com/permissions

ISBN 10: 0-13-499718-2

ISBN 13: 978-0-13-499718-6

Changes for the Twelfth Edition of
Concepts of Programming
Languages

Chapter 2: Added Section 2.16.4 A Replacement for Objective-C:
Swift

Added Section 2.16.5 Another Related Language: Delphi

Deleted Section 2.18.6 Origins and Characteristics of Lua

Chapter 5: Rewrote several paragraphs in Section 5.5.3 to correct and
clarify

Chapter 6: Added a paragraph to Section 6.3.2 to describe support for
strings in Swift

Added a paragraph to Section 6.4.2 to describe support the
enumeration types in Swift

Added a paragraph to Section 6.5.3 to describe support for arrays in
Swift

Added a paragraph to Section 6.6.1 to describe support for
associative arrays in Swift

Deleted the interview in Section 6.6.1

Added Section 6.12 Optional Types

Chapter 8: Added a design issue and a brief discussion of it to Section
8.3.1.1

Added several paragraphs to Section 8.3.4 that describe iterators in

Python

Chapter 9: Added a paragraph to Section 9.5.4 on Swift parameters

Chapter 11: Deleted Section 11.4.2 (Abstract Data Types in Objective-
C)

Chapter 12: Deleted Section 12.4.5 (Objective-C)

Deleted Objective-C column from Table 12.1

Added a paragraph in the Summary on reflection

Preface

Changes for the Twelfth Edition
The goals, overall structure, and approach of this twelfth edition of Concepts
of Programming Languages remains the same as those of the eleven previous
editions. The principal goals are to introduce the fundamental constructs of
contemporary programming languages and to provide the reader with the
tools necessary for the critical evaluation of existing and future programming
languages. A secondary goal is to prepare the reader for the study of compiler
design, by providing an in-depth discussion of programming language
structures, presenting a formal method of describing syntax, and introducing
approaches to lexical and syntax analysis.

The twelfth edition evolved from the eleventh through several different kinds
of changes. To maintain the currency of the material, nearly all discussion of
some programming languages, specifically Lua and Objective-C, has been
removed. Material on the newer language, Swift, was added to several
chapters.

In addition, a new section on optional types was added to Chapter 6. Material
was added to Section 8.3.4 to describe iterators in Python. In numerous
places in the manuscript small changes were made to correct and/or clarify
the discussion.

The Vision
This book describes the fundamental concepts of programming languages by
discussing the design issues of the various language constructs, examining
the design choices for these constructs in some of the most common
languages, and critically comparing design alternatives.

Any serious study of programming languages requires an examination of
some related topics, among which are formal methods of describing the
syntax and semantics of programming languages, which are covered in
Chapter 3. Also, implementation techniques for various language constructs
must be considered: Lexical and syntax analysis are discussed in Chapter 4,
and implementation of subprogram linkage is covered in Chapter 10.
Implementation of some other language constructs is discussed in various
other parts of the book.

The following paragraphs outline the contents of the twelfth edition.

Chapter Outlines
Chapter 1 begins with a rationale for studying programming languages. It
then discusses the criteria used for evaluating programming languages and
language constructs. The primary influences on language design, common
design trade-offs, and the basic approaches to implementation are also
examined.

Chapter 2 outlines the evolution of the languages that are discussed in this
book. Although no attempt is made to describe any language completely, the
origins, purposes, and contributions of each are discussed. This historical
overview is valuable, because it provides the background necessary to
understanding the practical and theoretical basis for contemporary language
design. It also motivates further study of language design and evaluation.
Because none of the remainder of the book depends on Chapter 2, it can be
read on its own, independent of the other chapters.

Chapter 3 describes the primary formal method for describing the syntax of
programming language—BNF. This is followed by a description of attribute
grammars, which describe both the syntax and static semantics of languages.
The difficult task of semantic description is then explored, including brief
introductions to the three most common methods: operational, denotational,
and axiomatic semantics.

Chapter 4 introduces lexical and syntax analysis. This chapter is targeted to
those Computer Science departments that no longer require a compiler design
course in their curricula. Similar to Chapter 2, this chapter stands alone and
can be studied independently of the rest of the book, except for Chapter 3, on
which it depends.

Chapters 5 through 14 describe in detail the design issues for the primary
constructs of programming languages. In each case, the design choices for
several example languages are presented and evaluated. Specifically, Chapter
5 covers the many characteristics of variables, Chapter 6 covers data types,
and Chapter 7 explains expressions and assignment statements. Chapter 8

describes control statements, and Chapters 9 and 10 discuss subprograms and
their implementation. Chapter 11 examines data abstraction facilities. Chapter
12 provides an in-depth discussion of language features that support object-
oriented programming (inheritance and dynamic method binding), Chapter 13
discusses concurrent program units, and Chapter 14 is about exception
handling, along with a brief discussion of event handling.

Chapters 15 and 16 describe two of the most important alternative
programming paradigms: functional programming and logic programming.
However, some of the data structures and control constructs of functional
programming languages are discussed in Chapters 6 and 8. Chapter 15
presents an introduction to Scheme, including descriptions of some of its
primitive functions, special forms, and functional forms, as well as some
examples of simple functions written in Scheme. Brief introductions to ML,
Haskell, and F# are given to illustrate some different directions in functional
language design. Chapter 16 introduces logic programming and the logic
programming language, Prolog.

To the Instructor
Chapters 1 and 3 are typically covered in detail, and though students find it
interesting and beneficial reading, Chapter 2 receives little lecture time due to
its lack of hard technical content. Because no material in subsequent chapters
depends on Chapter 2, as noted earlier, it can be skipped entirely. If a course
in compiler design is required, Chapter 4 is not covered.

Chapters 5 through 9 should be relatively easy for students with extensive
programming experience in C++, Java, or C#. Chapters 10 through 14 are
more challenging and require more detailed lectures.

Chapters 15 and 16 are entirely new to most students at the junior level.
Ideally, language processors for Scheme and Prolog should be available for
students required to learn the material in these chapters. Sufficient material is
included to allow students to dabble with some simple programs.

Undergraduate courses will probably not be able to cover all of the material

in the last two chapters. Graduate courses, however, should be able to
completely discuss the material in those chapters by skipping over some parts
of the early chapters on imperative languages.

Supplemental Materials
The following supplements are available to all readers of this book at
www.pearson.com/cs-resources.

A set of lecture note slides. PowerPoint slides are available for each
chapter in the book.

All of the figures from the book.

A companion Web site to the book is available at www.pearson.com/cs-
resources. This site contains mini-manuals (approximately 100-page
tutorials) on a handful of languages.

Solutions to many of the problem sets are available to qualified instructors in
our Instructor Resource Center at www.pearson.com. Please contact your
school’s Pearson representative or visit www.pearson.com to register.

Language Processor Availability
Processors for and information about some of the programming languages
discussed in this book can be found at the following Web sites:

http://www.pearson.com/cs-resources
http://www.pearson.com/cs-resources
http://www.pearson.com
http://www.pearson.com

JavaScript is included in virtually all browsers; PHP is included in virtually
all Web servers.

All this information is also included on the companion Web site.

Acknowledgments
The suggestions from outstanding reviewers contributed greatly to this
book’s present form and contents. In alphabetical order, they are:

Numerous other people provided input for the previous editions of Concepts
of Programming Languages at various stages of its development. All of their
comments were useful and greatly appreciated. In alphabetical order, they
are: Vicki Allan, Henry Bauer, Carter Bays, Manuel E. Bermudez, Peter
Brouwer, Margaret Burnett, Paosheng Chang, Liang Cheng, John Crenshaw,
Charles Dana, Barbara Ann Griem, Mary Lou Haag, John V. Harrison, Eileen
Head, Ralph C. Hilzer, Eric Joanis, Leon Jololian, Hikyoo Koh, Jiang B. Liu,
Meiliu Lu, Jon Mauney, Robert McCoard, Dennis L. Mumaugh, Michael G.
Murphy, Andrew Oldroyd, Young Park, Rebecca Parsons, Steve J. Phelps,
Jeffery Popyack, Steven Rapkin, Hamilton Richard, Tom Sager, Raghvinder -
Sangwan, Joseph Schell, Sibylle Schupp, Mary Louise Soffa, Neelam
Soundarajan, Ryan Stansifer, Steve Stevenson, Virginia Teller, Yang Wang,
John M. Weiss, Franck Xia, and Salih Yurnas.

Matt Goldstein, Portfolio Management Specialist; Meghan Jacoby, Portfolio
Management Assistant; Managing Content Producer, Scott Disanno; and
Prathiba Rajagopal, all deserve my gratitude for their efforts to produce the
twelfth edition both quickly and carefully.

About the Author
Robert Sebesta is an Associate Professor Emeritus in the Computer Science
Department at the University of Colorado–Colorado Springs. Professor
Sebesta received a BS in applied mathematics from the University of
Colorado in Boulder and MS and PhD degrees in computer science from
Pennsylvania State University. He has taught computer science for more than
40 years. His professional interests are the design and evaluation of
programming languages and Web programming.

Contents
1. Chapter 1 Preliminaries 1

1. 1.1 Reasons for Studying Concepts of Programming Languages 2

2. 1.2 Programming Domains 5

3. 1.3 Language Evaluation Criteria 7

4. 1.4 Influences on Language Design 17

5. 1.5 Language Categories 20

6. 1.6 Language Design Trade-Offs 21

7. 1.7 Implementation Methods 22

8. 1.8 Programming Environments 29

1. Summary • Review Questions • Problem Set 30

2. Chapter 2 Evolution of the Major Programming Languages 33

1. 2.1 Zuse’s Plankalkül 36

2. 2.2 Pseudocodes 37

3. 2.3 The IBM 704 and Fortran 40

4. 2.4 Functional Programming: Lisp 45

5. 2.5 The First Step Toward Sophistication: ALGOL 60 50

6. 2.6 Computerizing Business Records: COBOL 56

7. 2.7 The Beginnings of Timesharing: Basic 61

1. Interview: ALAN COOPER—User Design and Language
Design 64

8. 2.8 Everything for Everybody: PL/I 66

9. 2.9 Two Early Dynamic Languages: APL and SNOBOL 69

10. 2.10 The Beginnings of Data Abstraction: SIMULA 67 70

11. 2.11 Orthogonal Design: ALGOL 68 71

12. 2.12 Some Early Descendants of the ALGOLs 73

13. 2.13 Programming Based on Logic: Prolog 77

14. 2.14 History’s Largest Design Effort: Ada 79

15. 2.15 Object-Oriented Programming: Smalltalk 83

16. 2.16 Combining Imperative and Object-Oriented Features: C++ 85

17. 2.17 An Imperative-Based Object-Oriented Language: Java 89

18. 2.18 Scripting Languages 92

19. 2.19 The Flagship .NET Language: C# 98

20. 2.20 Markup-Programming Hybrid Languages 100

1. Summary • Bibliographic Notes • Review Questions • Problem Set
• Programming Exercises 102

3. Chapter 3 Describing Syntax and Semantics 109

1. 3.1 Introduction 110

2. 3.2 The General Problem of Describing Syntax 111

3. 3.3 Formal Methods of Describing Syntax 113

4. 3.4 Attribute Grammars 128

1. History Note 128

5. 3.5 Describing the Meanings of Programs: Dynamic Semantics 134

1. History Note 142

1. Summary • Bibliographic Notes • Review Questions • Problem Set
155

4. Chapter 4 Lexical and Syntax Analysis 161

1. 4.1 Introduction 162

2. 4.2 Lexical Analysis 163

3. 4.3 The Parsing Problem 171

4. 4.4 Recursive-Descent Parsing 175

5. 4.5 Bottom-Up Parsing 183

1. Summary • Review Questions • Problem Set • Programming
Exercises 191

5. Chapter 5 Names, Bindings, and Scopes 197

1. 5.1 Introduction 198

2. 5.2 Names 199

1. History Note 199

3. 5.3 Variables 200

4. 5.4 The Concept of Binding 203

5. 5.5 Scope 211

6. 5.6 Scope and Lifetime 222

7. 5.7 Referencing Environments 223

8. 5.8 Named Constants 224

1. Summary • Review Questions • Problem Set • Programming
Exercises 227

6. Chapter 6 Data Types 235

1. 6.1 Introduction 236

2. 6.2 Primitive Data Types 238

3. 6.3 Character String Types 242

1. History Note 243

4. 6.4 Enumeration Types 247

5. 6.5 Array Types 250

1. History Note 251

2. History Note 251

6. 6.6 Associative Arrays 261

7. 6.7 Record Types 263

8. 6.8 Tuple Types 266

9. 6.9 List Types 268

10. 6.10 Union Types 270

11. 6.11 Pointer and Reference Types 273

1. History Note 276

12. 6.12 Optional Types 285

13. 6.13 Type Checking 286

14. 6.14 Strong Typing 287

15. 6.15 Type Equivalence 288

16. 6.16 Theory and Data Types 292

1. Summary • Bibliographic Notes • Review Questions • Problem Set
• Programming Exercises 294

7. Chapter 7 Expressions and Assignment Statements 301

1. 7.1 Introduction 302

2. 7.2 Arithmetic Expressions 302

3. 7.3 Overloaded Operators 311

4. 7.4 Type Conversions 313

1. History Note 315

5. 7.5 Relational and Boolean Expressions 316

1. History Note 316

6. 7.6 Short-Circuit Evaluation 318

7. 7.7 Assignment Statements 319

1. History Note 323

8. 7.8 Mixed-Mode Assignment 324

1. Summary • Review Questions • Problem Set • Programming
Exercises 324

8. Chapter 8 Statement-Level Control Structures 329

1. 8.1 Introduction 330

2. 8.2 Selection Statements 332

3. 8.3 Iterative Statements 343

4. 8.4 Unconditional Branching 355

1. History Note 356

5. 8.5 Guarded Commands 356

6. 8.6 Conclusions 359

1. Summary • Review Questions • Problem Set • Programming
Exercises 360

9. Chapter 9 Subprograms 365

1. 9.1 Introduction 366

2. 9.2 Fundamentals of Subprograms 366

3. 9.3 Design Issues for Subprograms 374

4. 9.4 Local Referencing Environments 375

5. 9.5 Parameter-Passing Methods 376

1. History Note 384

6. 9.6 Parameters That Are Subprograms 392

1. History Note 394

7. 9.7 Calling Subprograms Indirectly 394

8. 9.8 Design Issues for Functions 396

9. 9.9 Overloaded Subprograms 397

10. 9.10 Generic Subprograms 398

11. 9.11 User-Defined Overloaded Operators 404

12. 9.12 Closures 405

13. 9.13 Coroutines 407

1. Summary • Review Questions • Problem Set • Programming
Exercises 410

10. Chapter 10 Implementing Subprograms 417

1. 10.1 The General Semantics of Calls and Returns 418

2. 10.2 Implementing “Simple” Subprograms 419

3. 10.3 Implementing Subprograms with Stack-Dynamic Local
Variables 421

4. 10.4 Nested Subprograms 429

5. 10.5 Blocks 436

6. 10.6 Implementing Dynamic Scoping 437

1. Summary • Review Questions • Problem Set • Programming
Exercises 441

11. Chapter 11 Abstract Data Types and Encapsulation Constructs 447

1. 11.1 The Concept of Abstraction 448

2. 11.2 Introduction to Data Abstraction 449

3. 11.3 Design Issues for Abstract Data Types 452

4. 11.4 Language Examples 453

1. Interview: BJARNE STROUSTRUP—C++: Its Birth, Its
Ubiquitousness, and Common Criticisms 454

5. 11.5 Parameterized Abstract Data Types 466

6. 11.6 Encapsulation Constructs 471

7. 11.7 Naming Encapsulations 474

1. Summary • Review Questions • Problem Set • Programming
Exercises 478

12. Chapter 12 Support for Object-Oriented Programming 483

1. 12.1 Introduction 484

2. 12.2 Object-Oriented Programming 485

3. 12.3 Design Issues for Object-Oriented Languages 489

4. 12.4 Support for Object-Oriented Programming in Specific
Languages 494

1. Interview: BJARNE STROUSTRUP—On Paradigms and
Better Programming 498

5. 12.5 Implementation of Object-Oriented Constructs 519

6. 12.6 Reflection 522

1. Summary • Review Questions • Problem Set • Programming
Exercises 528

13. Chapter 13 Concurrency 533

1. 13.1 Introduction 534

2. 13.2 Introduction to Subprogram-Level Concurrency 539

3. 13.3 Semaphores 544

4. 13.4 Monitors 549

5. 13.5 Message Passing 551

6. 13.6 Ada Support for Concurrency 552

7. 13.7 Java Threads 560

8. 13.8 C# Threads 570

9. 13.9 Concurrency in Functional Languages 575

10. 13.10 Statement-Level Concurrency 578

1. Summary • Bibliographic Notes • Review Questions • Problem Set
• Programming Exercises 580

14. Chapter 14 Exception Handling and Event Handling 587

1. 14.1 Introduction to Exception Handling 588

1. History Note 592

2. 14.2 Exception Handling in C++ 594

3. 14.3 Exception Handling in Java 598

4. 14.4 Exception Handling in Python and Ruby 605

5. 14.5 Introduction to Event Handling 608

6. 14.6 Event Handling with Java 609

7. 14.7 Event Handling in C# 613

1. Summary • Bibliographic Notes • Review Questions • Problem Set

• Programming Exercises 616

15. Chapter 15 Functional Programming Languages 623

1. 15.1 Introduction 624

2. 15.2 Mathematical Functions 625

3. 15.3 Fundamentals of Functional Programming Languages 628

4. 15.4 The First Functional Programming Language: Lisp 629

5. 15.5 An Introduction to Scheme 633

6. 15.6 Common Lisp 651

7. 15.7 ML 653

8. 15.8 Haskell 658

9. 15.9 F# 663

10. 15.10 Support for Functional Programming in Primarily Imperative
Languages 666

11. 15.11 A Comparison of Functional and Imperative Languages 669

1. Summary • Bibliographic Notes • Review Questions • Problem Set
• Programming Exercises 671

16. Chapter 16 Logic Programming Languages 679

1. 16.1 Introduction 680

2. 16.2 A Brief Introduction to Predicate Calculus 680

3. 16.3 Predicate Calculus and Proving Theorems 684

4. 16.4 An Overview of Logic Programming 686

5. 16.5 The Origins of Prolog 688

6. 16.6 The Basic Elements of Prolog 688

7. 16.7 Deficiencies of Prolog 703

8. 16.8 Applications of Logic Programming 709

1. Summary • Bibliographic Notes • Review Questions • Problem Set
• Programming Exercises 710

1. Bibliography 715

2. Index 725

CONCEPTS OF PROGRAMMING
LANGUAGES
TWELFTH EDITION

1 Preliminaries
1. 1.1 Reasons for Studying Concepts of Programming Languages

2. 1.2 Programming Domains

3. 1.3 Language Evaluation Criteria

4. 1.4 Influences on Language Design

5. 1.5 Language Categories

6. 1.6 Language Design Trade-Offs

7. 1.7 Implementation Methods

8. 1.8 Programming Environments

Before we begin discussing the concepts of programming languages, we must
consider a few preliminaries. First, we explain some reasons why computer
science students and professional software developers should study general
approaches to language design and evaluation. This discussion is especially
valuable for those who believe that a working knowledge of one or two
programming languages is sufficient for computer scientists. Then, we briefly
describe the major programming domains. Next, because the book evaluates
language constructs and features, we present a list of criteria that can serve as
a basis for such judgments. Then, we discuss the two major influences on
language design: machine architecture and program design methodologies.
After that, we introduce the major categories of programming languages.
Next, we describe a few of the most important trade-offs that must be -
considered during language design.

Because this book is also about the implementation of programming -
languages, this chapter includes an overview of the most common general
approaches to implementation. Finally, we briefly describe a few examples of
programming environments and discuss their impact on software production.

1.1 Reasons for Studying Concepts
of Programming Languages
It is natural for students to wonder how they will benefit from the study of
programming language concepts. After all, many other topics in computer -
science are worthy of serious study. In fact, many now believe that there are
more important areas of computing for study than can be covered in a four-
year college curriculum. The following is what we believe to be a compelling
list of potential benefits of studying concepts of programming languages:

Increased capacity to express ideas. It is widely believed that the depth
at which people can think is influenced by the expressive power of the
language in which they communicate their thoughts. Those with only a
weak understanding of natural language are limited in the complexity of
their thoughts, particularly in depth of abstraction. In other words, it is
difficult for people to conceptualize structures they cannot describe,
verbally or in writing.

Programmers, in the process of developing software, are similarly
constrained. The language in which they develop software places limits
on the kinds of control structures, data structures, and abstractions they
can use; thus, the forms of algorithms they can construct are likewise
limited. Awareness of a wider variety of programming language features
can reduce such limitations in software development. Programmers can
increase the range of their software development thought processes by
learning new language constructs.

It might be argued that learning the capabilities of other languages does
not help a programmer who is forced to use a language that lacks those
capabilities. That argument does not hold up, however, because often, -
language constructs can be simulated in other languages that do not
support those constructs directly. For example, a C (Harbison and
Steele, 2002) programmer who had learned the structure and uses of
associative arrays in Perl (Christianson et al., 2013) might design

structures that simulate associative arrays in that language. In other
words, the study of programming language concepts builds an
appreciation for valuable language features and constructs and
encourages programmers to use them, even when the language they are
using does not directly support such features and constructs.

Improved background for choosing appropriate languages. Some
professional programmers have had little formal education in computer
science; rather, they have developed their programming skills
independently or through in-house training programs. Such training
programs often limit instruction to one or two languages that are directly
relevant to the current projects of the organization. Other programmers
received their formal training years ago. The languages they learned
then are no longer widely used, and many features now available in
programming languages were not commonly known at the time. The
result is that many programmers, when given a choice of languages for a
new project, use the language with which they are most familiar, even if
it is poorly suited for the project at hand. If these programmers were
familiar with a wider range of languages and language constructs, they
would be better able to choose the language with the features that best
address the problem.

Some of the features of one language often can be simulated in another
language. However, it is preferable to use a feature whose design has
been integrated into a language than to use a simulation of that feature,
which is often less elegant, more cumbersome, and less safe.

Increased ability to learn new languages. Computer programming is still
a relatively young discipline, and design methodologies, software
development tools, and programming languages are still in a state of
continuous evolution. This makes software development an exciting
profession, but it also means that continuous learning is essential. The
process of learning a new programming language can be lengthy and
difficult, especially for someone who is comfortable with only one or
two languages and has never examined programming language concepts
in general. Once a thorough understanding of the fundamental concepts
of languages is acquired, it becomes far easier to see how these concepts

are incorporated into the design of the language being learned. For
example, programmers who understand the concepts of object-oriented
programming will have a much easier time learning Ruby (Thomas et
al., 2013) than those who have never used those concepts.

The same phenomenon occurs in natural languages. The better you
know the grammar of your native language, the easier it is to learn a
second language. Furthermore, learning a second language has the
benefit of teaching you more about your first language.

The TIOBE Programming Community issues an index (http://
www.tiobe.com/index.php/content/paperinfo/tpci/index.htm) that
is an indicator of the relative popularity of programming languages. For
example, according to the index, Java, C, C++ (Lippman et al., 2012),
and C# (Albahari and Abrahari, 2012) were the four most popular
languages in use in February 2017.1 However, dozens of other
languages were widely used at the time. The index data also show that
the distribution of usage of programming languages is always changing.
The number of languages in use and the dynamic nature of the statistics
imply that every software developer must be prepared to learn different
languages.

1. Note that this index is only one measure of the popularity of
programming languages, and its accuracy is not universally accepted.

Finally, it is essential that practicing programmers know the vocabulary
and fundamental concepts of programming languages so they can read
and understand programming language descriptions and evaluations, as
well as promotional literature for languages and compilers. These are the
sources of information needed in order to choose and learn a language.

Better understanding of the significance of implementation. In learning
the concepts of programming languages, it is both interesting and
necessary to touch on the implementation issues that affect those
concepts. In some cases, an understanding of implementation issues
leads to an understanding of why languages are designed the way they
are. In turn, this knowledge leads to the ability to use a language more
intelligently, as it was designed to be used. We can become better

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.htm

programmers by understanding the choices among programming
language constructs and the consequences of those choices.

Certain kinds of program bugs can be found and fixed only by a
programmer who knows some related implementation details. Another
benefit of understanding implementation issues is that it allows us to
visualize how a computer executes various language constructs. In some
cases, some knowledge of implementation issues provides hints about
the relative efficiency of alternative constructs that may be chosen for a
program. For example, programmers who know little about the
complexity of the implementation of subprogram calls often do not
realize that a small subprogram that is frequently called can be a highly
inefficient design choice.

Because this book touches on only a few of the issues of
implementation, the previous two paragraphs also serve well as rationale
for studying compiler design.

Better use of languages that are already known. Most contemporary
programming languages are large and complex. Accordingly, it is
uncommon for a programmer to be familiar with and use all of the
features of a language he or she uses. By studying the concepts of
programming languages, programmers can learn about previously
unknown and unused parts of the languages they already use and begin
to use those features.

Overall advancement of computing. Finally, there is a global view of
computing that can justify the study of programming language concepts.
Although it is usually possible to determine why a particular
programming language became popular, many believe, at least in
retrospect, that the most popular languages are not always the best
available. In some cases, it might be concluded that a language became
widely used, at least in part, because those in positions to choose
languages were not sufficiently familiar with programming language
concepts.

For example, many people believe it would have been better if ALGOL
60 (Backus et al., 1963) had displaced Fortran (ISO/IEC 1539-1, 2010)

in the early 1960s, because it was more elegant and had much better
control statements, among other reasons. That it did not, is due partly to
the programmers and software development managers of that time,
many of whom did not clearly understand the conceptual design of
ALGOL 60. They found its description difficult to read (which it was)
and even more difficult to understand. They did not appreciate the
benefits of block structure, recursion, and well-structured control
statements, so they failed to see the benefits of ALGOL 60 over Fortran.

Of course, many other factors contributed to the lack of acceptance of
ALGOL 60, as we will see in Chapter 2. However, the fact that
computer users were generally unaware of the benefits of the language
played a significant role.

In general, if those who choose languages were well informed, perhaps
better languages would eventually squeeze out poorer ones.

1.2 Programming Domains
Computers have been applied to a myriad of different areas, from controlling
nuclear power plants to providing video games in mobile phones. Because of
this great diversity in computer use, programming languages with very
different goals have been developed. In this section, we briefly discuss a few
of the most common areas of computer applications and their associated
languages.

1.2.1 Scientific Applications
The first digital computers, which appeared in the late 1940s and early 1950s,
were invented and used for scientific applications. Typically, the scientific
applications of that time used relatively simple data structures, but required
large numbers of floating-point arithmetic computations. The most common
data structures were arrays and matrices; the most common control structures
were counting loops and selections. The early high-level programming
languages invented for scientific applications were designed to provide for
those needs. Their competition was assembly language, so efficiency was a
primary concern. The first language for scientific applications was Fortran.
ALGOL 60 and most of its descendants were also intended to be used in this
area, although they were designed to be used in related areas as well. For
some scientific applications where efficiency is the primary concern, such as
those that were common in the 1950s and 1960s, no subsequent language is
significantly better than Fortran, which explains why Fortran is still used.

1.2.2 Business Applications
The use of computers for business applications began in the 1950s. Special
computers were developed for this purpose, along with special languages.
The first successful high-level language for business was COBOL (ISO/IEC,
2002), the initial version of which appeared in 1960. It probably still is the

most commonly used language for these applications. Business languages are
characterized by facilities for producing elaborate reports, precise ways of
describing and storing decimal numbers and character data, and the ability to
specify decimal arithmetic operations.

There have been few developments in business application languages outside
the development and evolution of COBOL. Therefore, this book includes
only limited discussions of the structures in COBOL.

1.2.3 Artificial Intelligence
Artificial intelligence (AI) is a broad area of computer applications
characterized by the use of symbolic rather than numeric computations.
Symbolic computation means that symbols, consisting of names rather than
numbers, are manipulated. Also, symbolic computation is more conveniently
done with linked lists of data rather than arrays. This kind of programming
sometimes requires more flexibility than other programming domains. For
example, in some AI applications the ability to create and execute code
segments during execution is convenient.

The first widely used programming language developed for AI applications
was the functional language Lisp (McCarthy et al., 1965), which appeared in
1959. Most AI applications developed prior to 1990 were written in Lisp or
one of its close relatives. During the early 1970s, however, an alternative
approach to some of these applications appeared—logic programming using
the Prolog (Clocksin and Mellish, 2013) language. More recently, some AI
applications have been written in systems languages such as Python (Lutz,
2013). Scheme (Dybvig, 2011), a dialect of Lisp, and Prolog are introduced
in Chapters 15 and 16, respectively.

1.2.4 Web Software
The World Wide Web is supported by an eclectic collection of languages,
ranging from markup languages, such as HTML, which is not a programming

language, to general-purpose programming languages, such as Java. Because
of the pervasive need for dynamic Web content, some computation capability
is often included in the technology of content presentation. This functionality
can be provided by embedding programming code in an HTML document.
Such code is often in the form of a scripting language, such as JavaScript
(Flanagan, 2011) or PHP (Tatroe et al., 2013). There are also some markup-
like languages that have been extended to include constructs that control
document processing, which are discussed in Section 1.5 and in Chapter 2.

1.3 Language Evaluation Criteria
As noted previously, the purpose of this book is to examine carefully the
underlying concepts of the various constructs and capabilities of
programming languages. We will also evaluate these features, focusing on
their impact on the software development process, including maintenance. To
do this, we need a set of evaluation criteria. Such a list of criteria is
necessarily controversial, because it is difficult to get even two computer
scientists to agree on the value of some given language characteristic relative
to others. In spite of these differences, most would agree that the criteria
discussed in the following subsections are important.

Some of the characteristics that influence three of the four most important of
these criteria are shown in Table 1.1, and the criteria themselves are
discussed in the following sections.2 Note that only the most important
characteristics are included in the table, mirroring the discussion in the
following subsections. One could probably make the case that if one
considered less important characteristics, virtually all table positions could
include “bullets.”

2. The fourth primary criterion is cost, which is not included in the table
because it is only slightly related to the other criteria and the characteristics
that influence them.

Table 1.1 Language
evaluation criteria and the
characteristics that affect them

Note that some of these characteristics are broad and somewhat vague, such
as writability, whereas others are specific language constructs, such as
exception handling. Furthermore, although the discussion might seem to
imply that the criteria have equal importance, that implication is not intended,
and it is clearly not the case.

1.3.1 Readability
One of the most important criteria for judging a programming language is the
ease with which programs can be read and understood. Before 1970, software
development was largely thought of in terms of writing code. The primary
positive characteristic of programming languages was efficiency. Language
constructs were designed more from the point of view of the computer than
of the computer users. In the 1970s, however, the software life-cycle concept
(Booch, 1987) was developed; coding was relegated to a much smaller role,
and maintenance was recognized as a major part of the cycle, particularly in
terms of cost. Because ease of maintenance is determined in large part by the
readability of programs, readability became an important measure of the
quality of programs and programming languages. This was an important
juncture in the evolution of programming languages. There was a distinct
crossover from a focus on machine orientation to a focus on human
orientation.

Readability must be considered in the context of the problem domain. For
example, if a program that describes a computation is written in a language
not designed for such use, the program may be unnatural and convoluted,
making it unusually difficult to read.

The following subsections describe characteristics that contribute to the
readability of a programming language.

1.3.1.1 Overall Simplicity
The overall simplicity of a programming language strongly affects its
readability. A language with a large number of basic constructs is more
difficult to learn than one with a smaller number. Programmers who must use
a large language often learn a subset of the language and ignore its other
features. This learning pattern is sometimes used to excuse the large number
of language constructs, but that argument is not valid. Readability problems
occur whenever the program’s author has learned a different subset from that
subset with which the reader is familiar.

A second complicating characteristic of a programming language is feature
multiplicity—that is, having more than one way to accomplish a particular
operation. For example, in Java, a user can increment a simple integer
variable in four different ways:

count = count + 1

count += 1

count++

++count

Although the last two statements have slightly different meanings from each
other and from the others in some contexts, all of them have the same
meaning when used as stand-alone expressions. These variations are
discussed in Chapter 7.

A third potential problem is operator overloading, in which a single
operator symbol has more than one meaning. Although this is often useful, it
can lead to reduced readability if users are allowed to create their own

overloading and do not do it sensibly. For example, it is clearly acceptable to
overload + to use it for both integer and floating-point addition. In fact, this
overloading simplifies a language by reducing the number of operators.
However, suppose the programmer defined + used between single-
dimensioned array operands to mean the sum of all elements of both arrays.
Because the usual meaning of vector addition is quite different from this, this
unusual meaning could confuse both the author and the program’s readers.
An even more extreme example of program confusion would be a user
defining + between two vector operands to mean the difference between their
respective first elements. Operator overloading is further discussed in Chapter
7.

Simplicity in languages can, of course, be carried too far. For example, the
form and meaning of most assembly language statements are models of
simplicity, as you can see when you consider the statements that appear in the
next section. This very simplicity, however, makes assembly language
programs less readable. Because they lack more complex control statements,
program structure is less obvious; because the statements are simple, far more
of them are required than in equivalent programs in a high-level language.
These same arguments apply to the less extreme case of high-level languages
with inadequate control and data-structuring constructs.

1.3.1.2 Orthogonality
Orthogonality in a programming language means that a relatively small set
of primitive constructs can be combined in a relatively small number of ways
to build the control and data structures of the language. Furthermore, every
possible combination of primitives is legal and meaningful. For example,
consider data types. Suppose a language has four primitive data types
(integer, float, double, and character) and two type operators (array and
pointer). If the two type operators can be applied to themselves and the four
primitive data types, a large number of data structures can be defined.

The meaning of an orthogonal language feature is independent of the context
of its appearance in a program. (The word orthogonal comes from the
mathematical concept of orthogonal vectors, which are independent of each

other.) Orthogonality follows from a symmetry of relationships among
primitives. A lack of orthogonality leads to exceptions to the rules of the
language. For example, in a programming language that supports pointers, it
should be possible to define a pointer to point to any specific type defined in
the language. However, if pointers are not allowed to point to arrays, many
potentially useful user-defined data structures cannot be defined.

We can illustrate the use of orthogonality as a design concept by comparing
one aspect of the assembly languages of the IBM mainframe computers and
the VAX series of minicomputers. We consider a single simple situation:
adding two 32-bit integer values that reside in either memory or registers and
replacing one of the two values with the sum. The IBM mainframes have two
instructions for this purpose, which have the forms

A Reg1, memory_cell

AR Reg1, Reg2

where Reg1 and Reg2 represent registers. The semantics of these are

Reg1 ← contents(Reg1) + contents(memory_cell)

Reg1 ← contents(Reg1) + contents(Reg2)

The VAX addition instruction for 32-bit integer values is

ADDL operand_1, operand_2

whose semantics is

operand_2 ← contents(operand_1) + contents(operand_2)

In this case, either operand can be a register or a memory cell.

The VAX instruction design is orthogonal in that a single instruction can use
either registers or memory cells as its operands. There are two ways to
specify operands, which can be combined in all possible ways. The IBM
design is not orthogonal. Only two out of four operand combinations
possibilities are legal, and the two require different instructions, A and AR.
The IBM design is more restricted and therefore less writable. For example,
you cannot add two values and store the sum in a memory location.
Furthermore, the IBM design is more difficult to learn because of the

restrictions and the additional instruction.

Orthogonality is closely related to simplicity: The more orthogonal the design
of a language, the fewer exceptions the language rules require. Fewer
exceptions mean a higher degree of regularity in the design, which makes the
language easier to learn, read, and understand. Anyone who has learned a
significant part of the English language can testify to the difficulty of learning
its many rule exceptions (for example, i before e except after c).

As examples of the lack of orthogonality in a high-level language, consider
the following rules and exceptions in C. Although C has two kinds of
structured data types, arrays and records (structs), records can be returned
from functions but arrays cannot. A member of a structure can be any data
type except void or a structure of the same type. An array element can be any
data type except void or a function. Parameters are passed by value, unless
they are arrays, in which case they are, in effect, passed by reference (because
the appearance of an array name without a subscript in a C program is
interpreted to be the address of the array’s first element).

As an example of context dependence, consider the C expression

a + b

This expression often means that the values of a and b are fetched and added
together. However, if a happens to be a pointer and b is an integer, it affects
the value of b. For example, if a points to a float value that occupies four
bytes, then the value of b must be scaled—in this case multiplied by 4—
before it is added to a. Therefore, the type of a affects the treatment of the
value of b. The context of b affects its meaning.

Too much orthogonality can also cause problems. Perhaps the most
orthogonal programming language is ALGOL 68 (van Wijngaarden et al.,
1969). Every language construct in ALGOL 68 has a type, and there are no
restrictions on those types. In addition, most constructs produce values. This
combinational freedom allows extremely complex constructs. For example, a
conditional can appear as the left side of an assignment, along with
declarations and other assorted statements, as long as the result is an address.
This extreme form of orthogonality leads to unnecessary complexity.

Furthermore, because languages require a large number of primitives, a high
degree of orthogonality results in an explosion of combinations. So, even if
the combinations are simple, their sheer numbers lead to complexity.

Simplicity in a language, therefore, is at least in part the result of a
combination of a relatively small number of primitive constructs and a
limited use of the concept of orthogonality.

Some believe that functional languages offer a good combination of
simplicity and orthogonality. A functional language, such as Lisp, is one in
which computations are made primarily by applying functions to given
parameters. In contrast, in imperative languages such as C, C++, and Java,
computations are usually specified with variables and assignment statements.
Functional languages offer potentially the greatest overall simplicity, because
they can accomplish everything with a single construct, the function call,
which can be combined simply with other function calls. This simple
elegance is the reason why some language researchers are attracted to
functional languages as the primary alternative to complex nonfunctional
languages such as Java. Other factors, the most important of which is
probably efficiency, however, have prevented functional languages from
becoming more widely used.

1.3.1.3 Data Types
The presence of adequate facilities for defining data types and data structures
in a language is another significant aid to readability. For example, suppose a
numeric type is used for an indicator flag because there is no Boolean type in
the language. In such a language, for example, in the original version of C,
we might have an assignment such as the following:

timeout = 1

The meaning of this statement is unclear, whereas in a language that includes
Boolean types, we would have the following:

timeout = true

The meaning of this statement is perfectly clear.

1.3.1.4 Syntax Design
The syntax, or form, of the elements of a language has a significant effect on
the readability of programs. Following are some examples of syntactic design
choices that affect readability:

Special words. Program appearance and thus program readability are
strongly influenced by the forms of a language’s special words (for
example, while, class, and for). Especially important is the method of
forming compound statements, or statement groups, primarily in control
constructs. Some languages have used matching pairs of special words
or symbols to form groups. C and its descendants use braces to specify
compound statements. All of these languages have diminished
readability because statement groups are always terminated in the same
way, which makes it difficult to determine which group is being ended
when an end or a right brace appears. Fortran 95 and Ada (ISO/IEC,
2014) make this clearer by using a distinct closing syntax for each type
of statement group. For example, Ada uses end if to terminate a
selection construct and end loop to terminate a loop construct. This is
an example of the conflict between simplicity that results in fewer
reserved words, as in Java, and the greater readability that can result
from using more reserved words, as in Ada.

Another important issue is whether the special words of a language can
be used as names for program variables. If so, then the resulting
programs can be very confusing. For example, in Fortran 95, special
words, such as Do and End, are legal variable names, so the appearance
of these words in a program may or may not connote something special.

Form and meaning. Designing statements so that their appearance at
least partially indicates their purpose is an obvious aid to readability.
Semantics, or meaning, should follow directly from syntax, or form. In
some cases, this principle is violated by two language constructs that are
identical or similar in appearance but have different meanings,

depending perhaps on context. In C, for example, the meaning of the
reserved word static depends on the context of its appearance. If used
on the definition of a variable inside a function, it means the variable is
created at compile time. If used on the definition of a variable that is
outside all functions, then it means the variable is visible only in the file
in which its definition appears; that is, it is not exported from that file.

One of the primary complaints about the shell commands of UNIX
(Robbins, 2005) is that their appearance does no t always suggest their
function. For example, the meaning of the UNIX command grep can be
deciphered only through prior knowledge, or perhaps cleverness and
familiarity with the UNIX editor, ed. The appearance of grep connotes
nothing to UNIX beginners. (In ed, the command /regular_expression/
searches for a substring that matches the regular expression. Preceding
this with g makes it a global command, specifying that the scope of the
search is the whole file being edited. Following the command with p
specifies that lines with the matching substring are to be printed. So
g/regular_expression/p, which can obviously be abbreviated as grep,
prints all lines in a file that contain substrings that match its operand,
which is a regular expression.)

1.3.2 Writability
Writability is a measure of how easily a language can be used to create
programs for a chosen problem domain. Most of the language characteristics
that affect readability also affect writability. This follows directly from the
fact that the process of writing a program requires the programmer frequently
to reread the part of the program that is already written.

As is the case with readability, writability must be considered in the context
of the target problem domain of a language. It simply is not fair to compare
the writability of two languages in the realm of a particular application when
one was designed for that application and the other was not. For example, the
writabilities of Visual BASIC (VB) (Halvorson, 2013) and C are dramatically
different for creating a program that has a graphical user interface (GUI), for
which VB is ideal. Their writabilities are also quite different for writing

systems programs, such as an operating system, for which C was designed.

The following subsections describe the most important characteristics
influencing the writability of a language.

1.3.2.1 Simplicity and Orthogonality
If a language has a large number of different constructs, some programmers
who use the language might not be familiar with all of them. This situation
can lead to a misuse of some features and a disuse of others that may be
either more elegant or more efficient, or both, than those that are used. It may
even be possible, as noted by Hoare (1973), to use unknown features
accidentally, with bizarre results. Therefore, a smaller number of primitive
constructs and a consistent set of rules for combining them (that is,
orthogonality) is much better than simply having a large number of
primitives. A programmer can design a solution to a complex problem after
learning only a simple set of primitive constructs.

On the other hand, too much orthogonality can be a detriment to writability.
Errors in programs can go undetected when nearly any combination of
primitives is legal. This can lead to code absurdities that cannot be discovered
by the compiler.

1.3.2.2 Expressivity
Expressivity in a language can refer to several different characteristics. In a
language such as APL (Gilman and Rose, 1983), it means that there are very
powerful operators that allow a great deal of computation to be accomplished
with a very small program. More commonly, it means that a language has
relatively convenient, rather than cumbersome, ways of specifying
computations. For example, in C, the notation count++ is more convenient
and shorter than count = count + 1. Also, the and then Boolean operator
in Ada is a convenient way of specifying short-circuit evaluation of a
Boolean expression. The inclusion of the for statement in Java makes writing

counting loops easier than with the use of while, which is also possible. All
of these increase the writability of a language.

1.3.3 Reliability
A program is said to be reliable if it performs to its specifications under all
conditions. The following subsections describe several language features that
have a significant effect on the reliability of programs in a given language.

1.3.3.1 Type Checking
Type checking is simply testing for type errors in a given program, either by
the compiler or during program execution. Type checking is an important
factor in language reliability. Because run-time type checking is expensive,
compile-time type checking is more desirable. Furthermore, the earlier errors
in programs are detected, the less expensive it is to make the required repairs.
The design of Java requires checks of the types of nearly all variables and
expressions at compile time. This virtually eliminates type errors at run time
in Java programs. Types and type checking are discussed in depth in Chapter
6.

One example of how failure to type check, at either compile time or run time,
has led to countless program errors is the use of subprogram parameters in
the original C language (Kernighan and Ritchie, 1978). In this language, the
type of an actual parameter in a function call was not checked to determine
whether its type matched that of the corresponding formal parameter in the
function. An int type variable could be used as an actual parameter in a call
to a function that expected a float type as its formal parameter, and neither
the compiler nor the run-time system would detect the inconsistency. For
example, because the bit string that represents the integer 23 is essentially
unrelated to the bit string that represents a floating-point 23, if an integer 23
is sent to a function that expects a floating-point parameter, any uses of the
parameter in the function will produce nonsense. Furthermore, such problems
are often difficult to diagnose.3 The current version of C has eliminated this

problem by requiring all parameters to be type checked. Subprograms and
parameter-passing techniques are discussed in Chapter 9.

3. In response to this and other similar problems, UNIX systems include a
utility program named lint that checks C programs for such problems.

1.3.3.2 Exception Handling
The ability of a program to intercept run-time errors (as well as other unusual
conditions detectable by the program), take corrective measures, and then
continue is an obvious aid to reliability. This language facility is called
exception handling. Ada, C++, Java, and C# include extensive capabilities
for exception handling, but such facilities are practically nonexistent in some
widely used languages, for example, C. Exception handling is discussed in
Chapter 14.

1.3.3.3 Aliasing
Loosely defined, aliasing is having two or more distinct names in a program
that can be used to access the same memory cell. It is now generally accepted
that aliasing is a dangerous feature in a programming language. Most
programming languages allow some kind of aliasing—for example, two
pointers (or references) set to point to the same variable, which is possible in
most languages. In such a program, the programmer must always remember
that changing the value pointed to by one of the two changes the value
referenced by the other. Some kinds of aliasing, as described in Chapters 5
and 9, can be prohibited by the design of a language.

In some languages, aliasing is used to overcome deficiencies in the
language’s data abstraction facilities. Other languages greatly restrict aliasing
to increase their reliability.

1.3.3.4 Readability and Writability

Both readability and writability influence reliability. A program written in a
language that does not support natural ways to express the required
algorithms will necessarily use unnatural approaches. Unnatural approaches
are less likely to be correct for all possible situations. The easier a program is
to write, the more likely it is to be correct.

Readability affects reliability in both the writing and maintenance phases of
the life cycle. Programs that are difficult to read are difficult both to write and
to modify.

1.3.4 Cost
The total cost of a programming language is a function of many of its
characteristics.

First, there is the cost of training programmers to use the language, which is a
function of the simplicity and orthogonality of the language and the
experience of the programmers. Although more powerful languages are not
necessarily more difficult to learn, they often are.

Second, there is the cost of writing programs in the language. This is a
function of the writability of the language, which depends in part on its
closeness in purpose to the particular application. The original efforts to
design and implement high-level languages were driven by the desire to
lower the costs of creating software.

Both the cost of training programmers and the cost of writing programs in a
language can be significantly reduced in a good programming environment.
Programming environments are discussed in Section 1.8.

Third, the cost of executing programs written in a language is greatly
influenced by that language’s design. A language that requires many run-time
type checks will prohibit fast code execution, regardless of the quality of the
compiler. Although execution efficiency was the foremost concern in the
design of early languages, it is now considered to be less important.

A simple trade-off can be made between compilation cost and execution
speed of the compiled code. Optimization is the name given to the collection
of techniques that compilers may use to decrease the size and/or increase the
execution speed of the code they produce. If little or no optimization is done,
compilation can be done much faster than if a significant effort is made to
produce optimized code. The choice between the two alternatives is
influenced by the environment in which the compiler will be used. In a
laboratory for beginning programming students, who often compile their
programs many times during development but use little execution time (their
programs are small and they must execute correctly only once), little or no
optimization should be done. In a production environment, where compiled
programs are executed many times after development, it is better to pay the
extra cost to optimize the code.

Fourth, there is the cost of poor reliability. If the software fails in a critical
system, such as a nuclear power plant or an X-ray machine for medical use,
the cost could be very high. The failures of noncritical systems can also be
very expensive in terms of lost future business or lawsuits over defective
software systems.

The final consideration is the cost of maintaining programs, which includes
both corrections and modifications to add new functionality. The cost of
software maintenance depends on a number of language characteristics,
primarily readability. Because maintenance is often done by individuals other
than the original author of the software, poor readability can make the task
extremely challenging.

The importance of software maintainability cannot be overstated. It has been
estimated that for large software systems with relatively long lifetimes,
maintenance costs can be as high as two to four times as much as
development costs (Sommerville, 2010).

Of all the contributors to language costs, three are most important: program
development, maintenance, and reliability. Because these are functions of
writability and readability, these two evaluation criteria are, in turn, the most
important.

Of course, a number of other criteria could be used for evaluating

programming languages. One example is portability, or the ease with which
programs can be moved from one implementation to another. Portability is
most strongly influenced by the degree of standardization of the language.
Some languages are not standardized at all, making programs in these
languages very difficult to move from one implementation to another. This
problem is alleviated in some cases by the fact that implementations for some
languages now have single sources. Standardization is a time-consuming and
difficult process. A committee began work on producing a standard version
of C++ in 1989. It was approved in 1998.

Generality (the applicability to a wide range of applications) and well--
definedness (the completeness and precision of the language’s official
defining document) are two other criteria.

Most criteria, particularly readability, writability, and reliability, are neither
precisely defined nor accurately measurable. Nevertheless, they are useful
concepts and they provide valuable insight into the design and evaluation of
programming languages.

A final note on evaluation criteria: language design criteria are weighed
differently from different perspectives. Language implementors are
concerned primarily with the difficulty of implementing the constructs and
features of the language. Language users are worried about writability first
and readability later. Language designers are likely to emphasize elegance
and the ability to attract widespread use. These characteristics often conflict
with one another.

1.4 Influences on Language Design
In addition to those factors described in Section 1.3, several other factors
influence the basic design of programming languages. The most important of
these are computer architecture and programming design methodologies.

1.4.1 Computer Architecture
The basic architecture of computers has had a profound effect on language
design. Most of the popular languages of the past 60 years have been
designed around the prevalent computer architecture, called the von
Neumann architecture, after one of its originators, John von Neumann
(pronounced “von Noyman”). These languages are called imperative
languages. In a von Neumann computer, both data and programs are stored in
the same memory. The central processing unit (CPU), which executes
instructions, is separate from the memory. Therefore, instructions and data
must be transmitted, or piped, from memory to the CPU. Results of
operations in the CPU must be moved back to memory. Nearly all digital
computers built since the 1940s have been based on the von Neumann
architecture. The overall structure of a von Neumann computer is shown in
Figure 1.1.

Figure 1.1 The von Neumann
computer architecture

Figure 1.1 Full Alternative Text

Because of the von Neumann architecture, the central features of imperative
languages are variables, which model the memory cells; assignment
statements, which are based on the piping operation; and the iterative form of
repetition, which is the most efficient way to implement repetition on this
architecture. Operands in expressions are piped from memory to the CPU,
and the result of evaluating the expression is piped back to the memory cell
represented by the left side of the assignment. Iteration is fast on von
Neumann computers because instructions are stored in adjacent cells of
memory and repeating the execution of a section of code requires only a
branch instruction. This efficiency discourages the use of recursion for
repetition, although recursion is sometimes more natural.

The execution of a machine code program on a von Neumann architecture
computer occurs in a process called the fetch-execute cycle. As stated earlier,
programs reside in memory but are executed in the CPU. Each instruction to
be executed must be moved from memory to the processor. The address of
the next instruction to be executed is maintained in a register called the
program counter. The fetch-execute cycle can be simply described by the
following algorithm:

initialize the program counter

repeat forever

  fetch the instruction pointed to by the program counter

  increment the program counter to point at the next instruction

  decode the instruction

  execute the instruction

end repeat

The “decode the instruction” step in the algorithm means the instruction is
examined to determine what action it specifies. Program execution terminates
when a stop instruction is encountered, although on an actual computer a stop
instruction is rarely executed. Rather, control transfers from the operating
system to a user program for its execution and then back to the operating
system when the user program execution is complete. In a computer system
in which more than one user program may be in memory at a given time, this
process is far more complex.

As stated earlier, a functional, or applicative, language is one in which the
primary means of computation is applying functions to given parameters.
Programming can be done in a functional language without the kind of
variables that are used in imperative languages, without assignment
statements, and without iteration. Although many computer scientists have
expounded on the myriad benefits of functional languages, such as Scheme, it
is unlikely that they will displace the imperative languages until a non–von

Neumann computer is designed that allows efficient execution of programs in
functional languages. Among those who have bemoaned this fact, perhaps the
most eloquent was John Backus (1978), the principal designer of the original
version of Fortran.

In spite of the fact that the structure of imperative programming languages is
modeled on a machine architecture, rather than on the abilities and
inclinations of the users of programming languages, some believe that using
imperative languages is somehow more natural than using a functional
language. So, these people believe that even if functional programs were as
efficient as imperative programs, the use of imperative programming
languages would still dominate.

1.4.2 Programming Design
Methodologies
The late 1960s and early 1970s brought an intense analysis, begun in large
part by the structured-programming movement, of both the software
development process and programming language design.

An important reason for this research was the shift in the major cost of
computing from hardware to software, as hardware costs decreased and
programmer costs increased. Increases in programmer productivity were
relatively small. In addition, progressively larger and more complex problems
were being solved by computers. Rather than simply solving sets of equations
to simulate satellite tracks, as in the early 1960s, programs were being written
for large and complex tasks, such as controlling large petroleum-refining
facilities and providing worldwide airline reservation systems.

The new software development methodologies that emerged as a result of the
research of the 1970s were called top-down design and stepwise refinement.
The primary programming language deficiencies that were discovered were
incompleteness of type checking and inadequacy of control statements
(requiring the extensive use of gotos).

In the late 1970s, a shift from procedure-oriented to data-oriented program
design methodologies began. Simply put, data-oriented methods emphasize
data design, focusing on the use of abstract data types to solve problems.

For data abstraction to be used effectively in software system design, it must
be supported by the languages used for implementation. The first language to
provide even limited support for data abstraction was SIMULA 67 (Birtwistle
et al., 1973), although that language certainly was not propelled to popularity
because of it. The benefits of data abstraction were not widely recognized
until the early 1970s. However, most languages designed since the late 1970s
support data abstraction, which is discussed in detail in Chapter 11.

The latest step in the evolution of data-oriented software development, which
began in the early 1980s, is object-oriented design. Object-oriented
methodology begins with data abstraction, which encapsulates processing
with data objects and controls access to data, and adds inheritance and
dynamic method binding. Inheritance is a powerful concept that greatly
enhances the potential reuse of existing software, thereby providing the
possibility of significant increases in software development productivity. This
is an important factor in the increase in popularity of object-oriented
languages. Dynamic (run-time) method binding allows more flexible use of
inheritance.

Object-oriented programming developed along with a language that
supported its concepts: Smalltalk (Goldberg and Robson, 1989). Although
Smalltalk never became as widely used as many other languages, support for
object-oriented programming is now part of most popular imperative
languages, including Java, C++, and C#. Object-oriented concepts have also
found their way into functional programming in CLOS (Bobrow et al., 1988)
and F# (Syme et al., 2010), as well as logic programming in Prolog++ (Moss,
1994). Language support for object-oriented programming is discussed in
detail in Chapter 12.

Procedure-oriented programming is, in a sense, the opposite of data-oriented
programming. Although data-oriented methods now dominate software
development, procedure-oriented methods have not been abandoned. On the
contrary, in recent years, a good deal of research has occurred in procedure-
oriented programming, especially in the area of concurrency. These research

efforts brought with them the need for language facilities for creating and
controlling concurrent program units. Java and C# include such capabilities.
Concurrency is discussed in detail in Chapter 13.

All of these evolutionary steps in software development methodologies led to
new language constructs to support them.

1.5 Language Categories
Programming languages are often categorized into four bins: imperative,
functional, logic, and object oriented. However, we do not consider
languages that support object-oriented programming to form a separate
category of languages. We have described how the most popular languages
that support object-oriented programming grew out of imperative languages.
Although the object-oriented software development paradigm differs
significantly from the procedure-oriented paradigm usually used with
imperative languages, the extensions to an imperative language required to
support object-oriented programming are not intensive. For example, the
expressions, assignment statements, and control statements of C and Java are
nearly identical. (On the other hand, the arrays, subprograms, and semantics
of Java are very different from those of C.) Similar statements can be made
for functional languages that support object-oriented programming.

Some authors refer to scripting languages as a separate category of
programming languages. However, languages in this category are bound
together more by their implementation method, partial or full interpretation,
than by a common language design. The languages that are typically called
scripting languages, among them Perl, JavaScript, and Ruby (Flanagan and
Matsumoto, 2008), are imperative languages in every sense.

A logic programming language is an example of a rule-based language. In an
imperative language, an algorithm is specified in great detail, and the specific
order of execution of the instructions or statements must be included. In a
rule-based language, however, rules are specified in no particular order, and
the language implementation system must choose an order in which the rules
are used to produce the desired result. This approach to software
development is radically different from those used with the other two
categories of languages and clearly requires a completely different kind of
language. Prolog, the most commonly used logic programming language, and
logic programming are discussed in Chapter 16.

In recent years, a new category of languages has emerged, the

markup/programming hybrid languages. Markup languages are not
programming languages. For instance, HTML, the most widely used markup
language, is used to specify the layout of information in Web documents.
However, some programming capability has crept into some extensions to
HTML and XML. Among these are the Java Server Pages Standard Tag
Library (JSTL) and eXtensible Stylesheet Language Transformations
(XSLT). Both of these are briefly introduced in Chapter 2. Those languages
cannot be compared to any of the complete programming languages and
therefore will not be discussed after Chapter 2.

1.6 Language Design Trade-Offs
The programming language evaluation criteria described in Section 1.3 -
provide a framework for language design. Unfortunately, that framework is
self-contradictory. In his insightful paper on language design, Hoare (1973)
stated that “there are so many important but conflicting criteria, that their
reconciliation and satisfaction is a major engineering task.”

Two criteria that conflict are reliability and cost of execution. For example,
the Java language definition demands that all references to array elements be
checked to ensure that the index or indices are in their legal ranges. This step
adds a great deal to the cost of execution of Java programs that contain large
numbers of references to array elements. C does not require index range
checking, so C programs execute faster than semantically equivalent Java
programs, although Java programs are more reliable. The designers of Java
traded execution efficiency for reliability.

As another example of conflicting criteria that leads directly to design trade-
offs, consider the case of APL. APL includes a powerful set of operators for
array operands. Because of the large number of operators, a significant
number of new symbols had to be included in APL to represent the operators.
Also, many APL operators can be used in a single, long, complex expression.
One result of this high degree of expressivity is that, for applications
involving many array operations, APL is very writable. Indeed, a huge
amount of computation can be specified in a very small program. Another
result is that APL programs have very poor readability. A compact and
concise expression has a certain mathematical beauty but it is difficult for
anyone other than the programmer to understand. Well-known author Daniel
McCracken (1970) once noted that it took him four hours to read and
understand a four-line APL program. The designer of APL traded readability
for writability.

The conflict between writability and reliability is a common one in language
design. The pointers of C++ can be manipulated in a variety of ways, which
supports highly flexible addressing of data. Because of the potential

reliability problems with pointers, they are not included in Java.

Examples of conflicts among language design (and evaluation) criteria
abound; some are subtle, others are obvious. It is therefore clear that the task
of choosing constructs and features when designing a programming language
requires many compromises and trade-offs.

1.7 Implementation Methods
As described in Section 1.4.1, two of the primary components of a computer
are its internal memory and its processor. The internal memory is used to
store programs and data. The processor is a collection of circuits that
provides a realization of a set of primitive operations, or machine
instructions, such as those for arithmetic and logic operations. In most
computers, some of these instructions, which are sometimes called
macroinstructions, are actually implemented with a set of instructions called
microinstructions, which are defined at an even lower level. Because
microinstructions are never seen by software, they will not be discussed
further here.

The machine language of the computer is its set of instructions. In the
absence of other supporting software, its own machine language is the only
language that most hardware computers “understand.” Theoretically, a
computer could be designed and built with a particular high-level language as
its machine language, but it would be very complex and expensive.
Furthermore, it would be highly inflexible, because it would be difficult (but
not impossible) to use it with other high-level languages. The more practical
machine design choice implements in hardware a very low-level language
that provides the most commonly needed primitive operations and requires
system software to create an interface to programs in higher-level languages.

A language implementation system cannot be the only software on a
computer. Also required is a large collection of programs, called the
operating system, which supplies higher-level primitives than those of the
machine language. These primitives provide system resource management,
input and output operations, a file management system, text and/or program
editors, and a variety of other commonly needed functions. Because language
implementation systems need many of the operating system facilities, they
interface with the operating system rather than directly with the processor (in
machine language).

The operating system and language implementations are layered over the

machine language interface of a computer. These layers can be thought of as
virtual computers, providing interfaces to the user at higher levels. For
example, an operating system and a C compiler provide a virtual C computer.
With other compilers, a machine can become other kinds of virtual
computers. Most computer systems provide several different virtual
computers. User programs form another layer over the top of the layer of
virtual computers. The layered view of a computer is shown in Figure 1.2.

Figure 1.2 Layered interface of

virtual computers, provided by
a typical computer system

Figure 1.2 Full Alternative Text

The implementation systems of the first high-level programming languages,
constructed in the late 1950s, were among the most complex software
systems of that time. In the 1960s, intensive research efforts were made to
understand and formalize the process of constructing these high-level
language implementations. The greatest success of those efforts was in the
area of syntax analysis, primarily because that part of the implementation
process is an application of parts of automata theory and formal language
theory that were then well understood.

1.7.1 Compilation
Programming languages can be implemented by any of three general
methods. At one extreme, programs can be translated into machine language,
which can be executed directly on the computer. This method is called a
compiler implementation and has the advantage of very fast program
execution, once the translation process is complete. Most production
implementations of languages, such as C, COBOL, and C++, are by
compilers.

The language that a compiler translates is called the source language. The
process of compilation and program execution takes place in several phases,
the most important of which are shown in Figure 1.3.

Figure 1.3 The compilation
process

Figure 1.3 Full Alternative Text

The lexical analyzer gathers the characters of the source program into lexical
units. The lexical units of a program are identifiers, special words, operators,
and punctuation symbols. The lexical analyzer ignores comments in the
source program because the compiler has no use for them.

The syntax analyzer takes the lexical units from the lexical analyzer and uses
them to construct hierarchical structures called parse trees. These parse trees
represent the syntactic structure of the program. In many cases, no actual
parse tree structure is constructed; rather, the information that would be
required to build a tree is generated and used directly. Both lexical units and
parse trees are discussed further in Chapter 3. Lexical analysis and syntax
analysis, or parsing, are discussed in Chapter 4.

The intermediate code generator produces a program in a different language,
at an intermediate level between the source program and the final output of
the compiler: the machine language program.4 Intermediate languages
sometimes look very much like assembly languages, and in fact, sometimes
are actual assembly languages. In other cases, the intermediate code is at a
level somewhat higher than an assembly language. The semantic analyzer is
an integral part of the intermediate code generator. The semantic analyzer
checks for errors, such as type errors, that are difficult, if not impossible, to
detect during syntax analysis.

4. Note that the words program and code are often used interchangeably.

Optimization, which improves programs (usually in their intermediate code
version) by making them smaller or faster or both. Because many kinds of
optimization are difficult to do on machine language, most optimization is
done on the intermediate code.

The code generator translates the optimized intermediate code version of the

program into an equivalent machine language program.

The symbol table serves as a database for the compilation process. The
primary contents of the symbol table are the type and attribute information of
each user-defined name in the program. This information is placed in the
symbol table by the lexical and syntax analyzers and is used by the semantic
analyzer and the code generator.

As stated previously, although the machine language generated by a compiler
can be executed directly on the hardware, it must nearly always be run along
with some other code. Most user programs also require programs from the
operating system. Among the most common of these are programs for input
and output. The compiler builds calls to required system programs when they
are needed by the user program. Before the machine language programs
produced by a compiler can be executed, the required programs from the
operating system must be found and linked to the user program. The linking
operation connects the user program to the system programs by placing the
addresses of the entry points of the system programs in the calls to them in
the user program. The user and system code together are sometimes called a
load module, or executable image. The process of collecting system
programs and linking them to user programs is called linking and loading, or
sometimes just linking. It is accomplished by a systems program called a
linker.

In addition to systems programs, user programs must often be linked to
previously compiled programs that reside in libraries. So the linker not only
links a given program to system programs, but also it may link it to other user
or system-supplied programs.

The speed of the connection between a computer’s memory and its processor
often determines the speed of the computer, because instructions often can be
executed faster than they can be moved to the processor for execution. This
connection is called the von Neumann bottleneck; it is the primary limiting
factor in the speed of von Neumann architecture computers. The von
Neumann bottleneck has been one of the primary motivations for the research
and development of parallel computers.

1.7.2 Pure Interpretation
Pure interpretation lies at the opposite end (from compilation) among
implementation methods. With this approach, programs are interpreted by
another program called an interpreter, with no translation whatever. The
interpreter program acts as a software simulation of a machine whose fetch-
execute cycle deals with high-level language program statements rather than
machine instructions. This software simulation obviously provides a virtual
machine for the language.

Pure interpretation has the advantage of allowing easy implementation of
many source-level debugging operations, because all run-time error messages
can refer to source-level units. For example, if an array index is found to be
out of range, the error message can easily indicate the source line of the error
and the name of the array. On the other hand, this method has the serious
disadvantage that execution is 10 to 100 times slower than in compiled
systems. The primary source of this slowness is the decoding of the high-
level language statements, which are far more complex than machine
language instructions (although there may be fewer statements than
instructions in equivalent machine code). Furthermore, regardless of how
many times a statement is executed, it must be decoded every time.
Therefore, statement decoding, rather than the connection between the
processor and memory, is the bottleneck of a pure interpreter.

Another disadvantage of pure interpretation is that it often requires more
space. In addition to the source program, the symbol table must be present
during interpretation. Furthermore, the source program may be stored in a
form designed for easy access and modification rather than one that provides
for minimal size.

Although some simple early languages of the 1960s (APL, SNOBOL
(Griswold et al., 1971), and Lisp) were purely interpreted, by the 1980s, the
approach was rarely used on high-level languages. However, in recent years,
pure interpretation has made a significant comeback with some Web scripting
languages, such as JavaScript and PHP, which are now widely used. The
process of pure interpretation is shown in Figure 1.4.

Figure 1.4 Pure interpretation

1.7.3 Hybrid Implementation

Systems
Some language implementation systems are a compromise between
compilers and pure interpreters; they translate high-level language programs
to an intermediate language designed to allow easy interpretation. This
method is faster than pure interpretation because the source language
statements are decoded only once. Such implementations are called hybrid
implementation systems.

The process used in a hybrid implementation system is shown in Figure 1.5.
Instead of translating intermediate language code to machine code, it simply
interprets the intermediate code.

Figure 1.5 Hybrid
implementation system

Figure 1.5 Full Alternative Text

Perl is implemented with a hybrid system. Perl programs are partially -
compiled to detect errors before interpretation and to simplify the interpreter.

Initial implementations of Java were all hybrid. Its intermediate form, called
byte code, provides portability to any machine that has a byte code
interpreter and an associated run-time system. Together, these are called the
Java Virtual Machine. There are now systems that translate Java byte code
into machine code for faster execution.

A Just-in-Time (JIT) implementation system initially translates programs to
an intermediate language. Then, during execution, it compiles intermediate
language methods into machine code when they are called. The machine code
version is kept for subsequent calls. JIT systems now are widely used for
Java programs. Also, the .NET languages are all implemented with a JIT
system.

Sometimes an implementor may provide both compiled and interpreted
implementations for a language. In these cases, the interpreter is used to
develop and debug programs. Then, after a (relatively) bug-free state is
reached, the programs are compiled to increase their execution speed.

1.7.4 Preprocessors
A preprocessor is a program that processes a program just before the
program is compiled. Preprocessor instructions are embedded in programs.
The preprocessor is essentially a macro expander. Preprocessor instructions
are commonly used to specify that the code from another file is to be
included. For example, the C preprocessor instruction

#include "myLib.h"

causes the preprocessor to copy the contents of myLib.h into the program at
the position of the #include.

Other preprocessor instructions are used to define symbols to represent
expressions. For example, one could use

#define max(A, B) ((A) > (B) ? (A) : (B))

to determine the largest of two given expressions. For example, the
expression

x = max(2 * y, z / 1.73);

would be expanded by the preprocessor to

x = ((2 * y) > (z / 1.73) ? (2 * y) : (z / 1.73);

Notice that this is one of those cases where expression side effects can cause
trouble. For example, if either of the expressions given to the max macro have
side effects—such as z++—it could cause a problem. Because one of the two
expression parameters is evaluated twice, this could result in z being -
incremented twice by the code produced by the macro expansion.

1.8 Programming Environments
A programming environment is the collection of tools used in the
development of software. This collection may consist of only a file system, a
text editor, a linker, and a compiler. Or it may include a large collection of
integrated tools, each accessed through a uniform user interface. In the latter
case, the process of the development and maintenance of software is greatly
enhanced. Therefore, the characteristics of a programming language are not
the only measure of the software development capability of a system. We
now briefly describe several programming environments.

UNIX is an older programming environment, first distributed in the middle
1970s, built around a portable multiprogramming operating system. It
provides a wide array of powerful support tools for software production and
maintenance in a variety of languages. In the past, the most important feature
absent from UNIX was a uniform interface among its tools. This made it
more difficult to learn and to use. However, UNIX is now often used through
a GUI that runs on top of UNIX. Examples of UNIX GUIs are the Solaris
Common Desktop Environment (CDE), GNOME, and KDE. These GUIs
make the interface to UNIX appear similar to that of Windows and
Macintosh systems.

Borland JBuilder is a programming environment that provides an integrated
compiler, editor, debugger, and file system for Java development, where all
four are accessed through a graphical interface. JBuilder is a complex and
powerful system for creating Java software.

Microsoft Visual Studio .NET is a relatively recent step in the evolution of
software development environments. It is a large and elaborate collection of
software development tools, all used through a windowed interface. This
system can be used to develop software in any one of the five .NET
languages: C#, Visual Basic.NET, JScript (Microsoft’s version of
JavaScript), F# (a functional language), and C++/CLI.

NetBeans is a development environment that is primarily used for Java

application development but also supports JavaScript, Ruby, and PHP. Both
Visual Studio and NetBeans are more than development environments—they
are also frameworks, which means they actually provide common parts of the
code of the application.

SUMMARY
The study of programming languages is valuable for some important reasons:
It increases our capacity to use different constructs in writing programs,
enables us to choose languages for projects more intelligently, and makes
learning new languages easier.

Computers are used in a wide variety of problem-solving domains. The
design and evaluation of a particular programming language is highly -
dependent on the domain in which it is to be used.

Among the most important criteria for evaluating languages are readability,
writability, reliability, and overall cost. These will be the basis on which we
examine and judge the various language features discussed in the remainder
of the book.

The major influences on language design have been machine architecture and
software design methodologies.

Designing a programming language is primarily an engineering feat, in which
a long list of trade-offs must be made among features, constructs, and
capabilities.

The major methods of implementing programming languages are
compilation, pure interpretation, and hybrid implementation.

Programming environments have become important parts of software
development systems, in which the language is just one of the components.

REVIEW QUESTIONS
1. Why is it useful for a programmer to have some background in language

design, even though he or she may never actually design a programming
language?

2. How can knowledge of programming language characteristics benefit
the whole computing community?

3. What programming language has dominated scientific computing over
the past 60 years?

4. What programming language has dominated business applications over
the past 60 years?

5. What programming language has dominated artificial intelligence over
the past 60 years?

6. In what language is most of UNIX written?

7. What is the disadvantage of having too many features in a language?

8. How can user-defined operator overloading harm the readability of a
program?

9. What is one example of a lack of orthogonality in the design of C?

10. What language used orthogonality as a primary design criterion?

11. What primitive control statement is used to build more complicated
control statements in languages that lack them?

12. What does it mean for a program to be reliable?

13. Why is type checking the parameters of a subprogram important?

14. What is aliasing?

15. What is exception handling?

16. Why is readability important to writability?

17. How is the cost of compilers for a given language related to the design
of that language?

18. What have been the strongest influences on programming language
design over the past 60 years?

19. What is the name of the category of programming languages
whose structure is dictated by the von Neumann computer architecture?

20. What two programming language deficiencies were discovered as a
result of the research in software development in the 1970s?

21. What are the three fundamental features of an object-oriented
programming language?

22. What language was the first to support the three fundamental features of
object-oriented programming?

23. What is an example of two language design criteria that are in direct
conflict with each other?

24. What are the three general methods of implementing a programming
language?

25. Which produces faster program execution, a compiler or a pure
interpreter?

26. What role does the symbol table play in a compiler?

27. What does a linker do?

28. Why is the von Neumann bottleneck important?

29. What are the advantages in implementing a language with a pure
interpreter?

PROBLEM SET
1. Do you believe our capacity for abstract thought is influenced by our

language skills? Support your opinion.

2. What are some features of specific programming languages you know
whose rationales are a mystery to you?

3. What arguments can you make for the idea of a single language for all
programming domains?

4. What arguments can you make against the idea of a single language for
all programming domains?

5. Name and explain another criterion by which languages can be judged
(in addition to those discussed in this chapter).

6. What common programming language statement, in your opinion, is
most detrimental to readability?

7. Java uses a right brace to mark the end of all compound statements.
What are the arguments for and against this design?

8. Many languages distinguish between uppercase and lowercase letters in
user-defined names. What are the pros and cons of this design decision?

9. Explain the different aspects of the cost of a programming language.

10. What are the arguments for writing efficient programs even though
hardware is relatively inexpensive?

11. Describe some design trade-offs between efficiency and safety in some
language you know.

12. In your opinion, what major features would a perfect programming
language include?

13. Was the first high-level programming language you learned
implemented with a pure interpreter, a hybrid implementation system, or
a compiler? (You may have to research this.)

14. Describe the advantages and disadvantages of some programming
environment you have used.

15. How do type declaration statements for simple variables affect the
readability of a language, considering that some languages do not
require them?

16. Write an evaluation of some programming language you know, using
the criteria described in this chapter.

17. Some programming languages—for example, Pascal—have used the
semicolon to separate statements, while Java uses it to terminate
statements. Which of these, in your opinion, is most natural and least
likely to result in syntax errors? Support your answer.

18. Many contemporary languages allow two kinds of comments: one in
which delimiters are used on both ends (multiple-line comments), and
one in which a delimiter marks only the beginning of the comment (one-
line comments). Discuss the advantages and disadvantages of each of
these with respect to our criteria.

2 Evolution of the Major
Programming Languages

1. 2.1 Zuse’s Plankalkül

2. 2.2 Pseudocodes

3. 2.3 The IBM 704 and Fortran

4. 2.4 Functional Programming: Lisp

5. 2.5 The First Step Toward Sophistication: ALGOL 60

6. 2.6 Computerizing Business Records: COBOL

7. 2.7 The Beginnings of Timesharing: Basic

8. 2.8 Everything for Everybody: PL/I

9. 2.9 Two Early Dynamic Languages: APL and SNOBOL

10. 2.10 The Beginnings of Data Abstraction: SIMULA 67

11. 2.11 Orthogonal Design: ALGOL 68

12. 2.12 Some Early Descendants of the ALGOLs

13. 2.13 Programming Based on Logic: Prolog

14. 2.14 History’s Largest Design Effort: Ada

15. 2.15 Object-Oriented Programming: Smalltalk

16. 2.16 Combining Imperative and Object-Oriented Features: C++

17. 2.17 An Imperative-Based Object-Oriented Language: Java

18. 2.18 Scripting Languages

19. 2.19 The Flagship .NET Language: C#

20. 2.20 Markup-Programming Hybrid Languages

This chapter describes the development of a collection of programming -
languages. It explores the environment in which each was designed and
focuses on the contributions of the language and the motivation for its
development. Overall language descriptions are not included; rather, we
discuss only some of the new features introduced by each language. Of
particular interest are the features that most influenced subsequent languages
or the field of computer science.

This chapter does not include an in-depth discussion of any language feature
or concept; that is left for later chapters. Brief, informal explanations of
features will suffice for our trek through the development of these languages.

We discuss a wide variety of languages and language concepts that will not
be familiar to many readers. These topics are described in detail only in later
chapters. Those who find this unsettling may prefer to delay reading this
chapter until the rest of the book has been studied.

The choice as to which languages to discuss here was subjective, and some -
readers will unhappily note the absence of one or more of their favorites.
However, to keep this historical coverage to a reasonable size, it was
necessary to leave out some languages that some regard highly. The choices
were based on our estimate of each language’s importance to language
development and the computing world as a whole. We also include brief
discussions of some other languages that are referenced later in the book.

The organization of this chapter is as follows: The initial versions of
languages generally are discussed in chronological order. However,
subsequent versions of languages appear with their initial version, rather than
in later sections. For example, Fortran 2003 is discussed in the section with
Fortran I (1956). Also, in some cases, languages of secondary importance
that are related to a language that has its own section appear in that section.

This chapter includes listings of 14 complete example programs, each in a
different language. These programs are not described in this chapter; they are
meant to illustrate the appearance of programs in these languages. Readers
familiar with any of the common imperative languages should be able to read
and understand most of the code in these programs, except those in Lisp,
COBOL, and Smalltalk. (A Scheme function similar to the Lisp example is
discussed in Chapter 15.) The same problem is solved by the Fortran,
ALGOL 60, PL/I, Basic, Pascal, C, Perl, Ada, Java, JavaScript, and C#
programs. Note that most of the contemporary languages in this list support
dynamic arrays, but because of the simplicity of the example problem, we did
not use them in the example programs. Also, in the Fortran 95 program, we
avoided using the features that could have avoided the use of loops
altogether, in part to keep the program simple and readable and in part just to
illustrate the basic loop structure of the language.

Figure 2.1 is a chart of the genealogy of the high-level languages discussed in
this chapter.

Figure 2.1 Genealogy of
common high-level
programming languages

Figure 2.1 Full Alternative Text

2.1 Zuse’s Plankalkül
The first programming language discussed in this chapter is highly unusual in
several respects. For one thing, it was never implemented. Furthermore,
although developed in 1945, its description was not published until 1972.
Because so few people were familiar with the language, some of its
capabilities did not appear in other languages until 15 years after its
development.

2.1.1 Historical Background
Between 1936 and 1945, German scientist Konrad Zuse (pronounced “Tsoo-
zuh”) built a series of complex and sophisticated computers from
electromechanical relays. By early 1945, Allied bombing had destroyed all
but one of his latest models, the Z4, so he moved to a remote Bavarian
village, Hinterstein, and his research group members went their separate
ways.

Working alone, Zuse embarked on an effort to develop a language for
expressing computations for the Z4, a project he had begun in 1943 as a
proposal for his Ph.D. dissertation. He named this language Plankalkül,
which means program calculus. In a lengthy manuscript dated 1945 but not
published until 1972 (Zuse, 1972), Zuse defined Plankalkül and wrote
algorithms in the language to solve a wide variety of problems.

2.1.2 Language Overview
Plankalkül was remarkably complete, with some of its most advanced
features in the area of data structures. The simplest data type in Plankalkül
was the single bit. Integer and floating-point numeric types were built from
the bit type. The floating-point type used twos-complement notation and the
“hidden bit” scheme currently used to avoid storing the most significant bit of

the normalized fraction part of a floating-point value.

In addition to the usual scalar types, Plankalkül included arrays and records
(called structs in the C-based languages). The records could include nested
records.

Although the language had no explicit goto, it did include an iterative
statement similar to the Ada for. It also had the command Fin with a
superscript that specified an exit out of a given number of iteration loop
nestings or to the beginning of a new iteration cycle. Plankalkül included a
selection statement, but it did not allow an else clause.

One of the most interesting features of Zuse’s programs was the inclusion of
mathematical expressions showing the current relationships between program
variables. These expressions stated what would be true during execution at
the points in the code where they appeared. These are very similar to the
assertions of Java and in those in axiomatic semantics, which is discussed in
Chapter 3.

Zuse’s manuscript contained programs of far greater complexity than any
written prior to 1945. Included were programs to sort arrays of numbers; test
the connectivity of a given graph; carry out integer and floating-point
operations, including square root; and perform syntax analysis on logic
formulas that had parentheses and operators in six different levels of
precedence. Perhaps most remarkable were his 49 pages of algorithms for
playing chess, a game in which he was not an expert.

If a computer scientist had found Zuse’s description of Plankalkül in the early
1950s, the single aspect of the language that would have hindered its
implementation as defined would have been the notation. Each statement
consisted of either two or three lines of code. The first line was most like the
statements of current languages. The second line, which was optional,
contained the subscripts of the array references in the first line. The same
method of indicating subscripts was used by Charles Babbage in programs
for his Analytical Engine in the middle of the nineteenth century. The last
line of each Plankalkül statement contained the type names for the variables
mentioned in the first line. This notation is quite intimidating when first seen.

The following example assignment statement, which assigns the value of the
expression A[4} + 1 to A[5], illustrates this notation. The row labeled V is
for subscripts, and the row labeled S is for the data types. In this example, 1.n
means an integer of n bits:

 | A + 1 => A

V | 4  5

S | 1.n  1.n

We can only speculate on the direction that programming language design
might have taken if Zuse’s work had been widely known in 1945 or even
1950. It is also interesting to consider how his work might have been
different had he done it in a peaceful environment surrounded by other
scientists, rather than in Germany in 1945 in virtual isolation.

2.2 Pseudocodes
First, note that the word pseudocode is used here in a different sense than its
contemporary meaning. We call the languages discussed in this section
pseudocodes because that’s what they were named at the time they were
developed and used (the late 1940s and early 1950s). However, they are
clearly not pseudocodes in the contemporary sense.

The computers that became available in the late 1940s and early 1950s were
far less usable than those of today. In addition to being slow, unreliable,
expensive, and having extremely small memories, the machines of that time
were difficult to program because of the lack of supporting software.

There were no high-level programming languages or even assembly
languages, so programming was done in machine code, which is both tedious
and error prone. Among its problems is the use of numeric codes for
specifying instructions. For example, an ADD instruction might be specified
by the code 14 rather than a connotative textual name, even if only a single
letter. This makes programs very difficult to read. A more serious problem is
absolute addressing, which makes program modification tedious and error
prone. For example, suppose we have a machine language program stored in
memory. Many of the instructions in such a program refer to other locations
within the program, usually to reference data or to indicate the targets of
branch instructions. Inserting an instruction at any position in the program
other than at the end invalidates the correctness of all instructions that refer to
addresses beyond the insertion point, because those addresses must be
increased to make room for the new instruction. To make the addition
correctly, all instructions that refer to addresses that follow the addition must
be found and modified. A similar problem occurs with deletion of an
instruction. In this case, however, machine languages often include a “no
operation” instruction that can replace deleted instructions, thereby avoiding
the problem.

These are standard problems with all machine languages and were the
primary motivations for inventing assemblers and assembly languages. In

addition, most programming problems of that time were numerical and
required floating-point arithmetic operations and indexing of some sort to
allow the convenient use of arrays. Neither of these capabilities, however,
was included in the architecture of the computers of the late 1940s and early
1950s. These deficiencies naturally led to the development of somewhat
higher-level languages.

2.2.1 Short Code
The first of these new languages, named Short Code, was developed by John
Mauchly in 1949 for the BINAC computer, which was one of the first
successful stored-program electronic computers. Short Code was later
transferred to a UNIVAC I computer (the first commercial electronic
computer sold in the United States) and, for several years, was one of the
primary means of programming those machines. Although little is known of
the original Short Code because its complete description was never
published, a programming manual for the UNIVAC I version did survive
(Remington-Rand, 1952). It is safe to assume that the two versions were very
similar.

The words of the UNIVAC I’s memory had 72 bits, grouped as 12 six-bit
bytes. Short Code consisted of coded versions of mathematical expressions
that were to be evaluated. The codes were byte-pair values, and many
equations could be coded in a word. The following operation codes were
included:

01 -  06 abs value 1n (n+2)nd power

02)  07 + 2n (n+2)nd root

03 =  08 pause 4n if <= n

04 /  09 (58 print and tab

Variables were named with byte-pair codes, as were locations to be used as
constants. For example, X0 and Y0 could be variables. The statement

X0 = SQRT(ABS(Y0))

would be coded in a word as 00 X0 03 20 06 Y0. The initial 00 was used as

padding to fill the word. Interestingly, there was no multiplication code;
multiplication was indicated by simply placing the two operands next to each
other, as in algebra.

Short Code was not translated to machine code; rather, it was implemented
with a pure interpreter. At the time, this process was called automatic
programming. It clearly simplified the programming process, but at the
expense of execution time. Short Code interpretation was approximately 50
times slower than machine code.

2.2.2 Speedcoding
In other places, interpretive systems were being developed that extended
machine languages to include floating-point operations. The Speedcoding
system developed by John Backus for the IBM 701 is an example of such a
system (Backus, 1954). The Speedcoding interpreter effectively converted the
701 to a virtual three-address floating-point calculator. The system included
pseudoinstructions for the four arithmetic operations on floating-point data,
as well as operations such as square root, sine, arc tangent, exponent, and
logarithm. Conditional and unconditional branches and input/output
conversions were also part of the virtual architecture. To get an idea of the
limitations of such systems, consider that the remaining usable memory after
loading the interpreter was only 700 words and that the add instruction took
4.2 milliseconds to execute. On the other hand, Speedcoding included the
novel facility of automatically incrementing address registers. This facility
did not appear in hardware until the UNIVAC 1107 computers of 1962.
Because of such features, matrix multiplication could be done in 12
Speedcoding instructions. Backus claimed that problems that could take two
weeks to program in machine code could be programmed in a few hours
using Speedcoding.

2.2.3 The UNIVAC “Compiling”
System

Between 1951 and 1953, a team led by Grace Hopper at UNIVAC developed
a series of “compiling” systems named A-0, A-1, and A-2 that expanded a
pseudocode into machine code subprograms in the same way as macros are
expanded into assembly language. The pseudocode source for these
“compilers” was still quite primitive, although even this was a great
improvement over machine code because it made source programs much
shorter. Wilkes (1952) independently suggested a similar process.

2.2.4 Related Work
Other means of easing the task of programming were being developed at
about the same time. At Cambridge University, David J. Wheeler (1950)
developed a method of using blocks of relocatable addresses to solve, at least
partially, the problem of absolute addressing, and later, Maurice V. Wilkes
(also at Cambridge) extended the idea to design an assembly program that
could combine chosen subroutines and allocate storage (Wilkes et al., 1951,
1957). This was indeed an important and fundamental advance.

We should also mention that assembly languages, which are quite different
from the pseudocodes discussed, evolved during the early 1950s. However,
they had little impact on the design of high-level languages.

2.3 The IBM 704 and Fortran
Certainly one of the greatest single advances in computing came with the
introduction of the IBM 704 in 1954, in large measure because its capabilities
prompted the development of Fortran. One could argue that if it had not been
IBM with the 704 and Fortran, it would soon thereafter have been some other
organization with a similar computer and related high-level language.
However, IBM was the first with both the foresight and the resources to
undertake these developments.

2.3.1 Historical Background
One of the primary reasons why the slowness of interpretive systems was
tolerated from the late 1940s to the mid-1950s was the lack of floating-point
hardware in the available computers. All floating-point operations had to be
simulated in software, a very time-consuming process. Because so much
processor time was spent in software floating-point processing, the overhead
of interpretation and the simulation of indexing were relatively insignificant.
As long as floating-point had to be done by software, interpretation was an
acceptable expense. However, many programmers of that time never used
interpretive systems, preferring the efficiency of hand-coded machine (or
assembly) language. The announcement of the IBM 704 system, with both
indexing and floating-point instructions in hardware, heralded the end of the
interpretive era, at least for scientific computation. The inclusion of floating-
point hardware removed the hiding place for the cost of interpretation.

Although Fortran is often credited with being the first compiled high-level
language, the question of who deserves credit for implementing the first such
language is somewhat open. Knuth and Pardo (1977) give the credit to Alick
E. Glennie for his Autocode compiler for the Manchester Mark I computer.
Glennie developed the compiler at Fort Halstead, Royal Armaments Research
Establishment, in England. The compiler was operational by September
1952. However, according to John Backus (Wexelblat, 1981, p. 26),

Glennie’s Autocode was so low level and machine oriented that it should not
be considered a compiled system. Backus gives the credit to Laning and
Zierler at the Massachusetts Institute of Technology.

The Laning and Zierler system (Laning and Zierler, 1954) was the first
algebraic translation system to be implemented. By algebraic, we mean that it
translated arithmetic expressions, used separately coded subprograms to
compute transcendental functions (e.g., sine and logarithm), and included
arrays. The system was implemented on the MIT Whirlwind computer, in
experimental prototype form, in the summer of 1952 and in a more usable
form by May 1953. The translator generated a subroutine call to code each
formula, or expression, in the program. The source language was easy to
read, and the only actual machine instructions included were for branching.
Although this work preceded the work on Fortran, it never escaped MIT.

In spite of these earlier works, the first widely accepted compiled high-level
language was Fortran. The following subsections chronicle this important
development.

2.3.2 Design Process
Even before the 704 system was announced in May 1954, plans were begun
for Fortran. By November 1954, John Backus and his group at IBM had
produced the report titled “The IBM Mathematical FORmula TRANslating
System: FORTRAN” (IBM, 1954). This document described the first version
of Fortran, which we refer to as Fortran 0, prior to its implementation. It also
boldly stated that Fortran would provide the efficiency of hand-coded
programs and the ease of programming of the interpretive pseudocode
systems. In another burst of optimism, the document stated that Fortran
would eliminate coding errors and the debugging process. Based on this
premise, the first Fortran compiler included little syntax error checking.

The environment in which Fortran was developed was as follows: (1)
Computers had small memories and were slow and relatively unreliable; (2)
the primary use of computers was for scientific computations; (3) there were
no existing efficient and effective ways to program computers; and (4)

because of the high cost of computers compared to the cost of programmers,
speed of the generated object code was the primary goal of the first Fortran
compilers. The characteristics of the early versions of Fortran follow directly
from this environment.

2.3.3 Fortran I Overview
Fortran 0 was modified during the implementation period, which began in
January 1955 and continued until the release of the compiler in April 1957.
The implemented language, which we call Fortran I, is described in the first
Fortran Programmer’s Reference Manual, published in October 1956 (IBM,
1956). Fortran I included input/output formatting, variable names of up to six
characters (it had been just two in Fortran 0), user-defined subroutines,
although they could not be separately compiled, the If selection statement,
and the Do loop statement.

All of Fortran I’s control statements were based on 704 instructions. It is not
clear whether the 704 designers dictated the control statement design of
Fortran I or whether the designers of Fortran I suggested these instructions to
the 704 designers.

There were no data-typing statements in the Fortran I language. Variables
whose names began with I, J, K, L, M, and N were implicitly integer type, and
all others were implicitly floating-point. The choice of the letters for this
convention was based on the fact that at that time scientists and engineers
used letters as variable subscripts, usually i, j, and k. In a gesture of
generosity, Fortran’s designers threw in the three additional letters.

The most audacious claim made by the Fortran development group during the
design of the language was that the machine code produced by the compiler
would be about half as efficient as what could be produced by hand.1 This,
more than anything else, made skeptics of potential users and prevented a
great deal of interest in Fortran before its actual release. To almost
everyone’s surprise, however, the Fortran development group nearly
achieved its goal in efficiency. The largest part of the 18 worker-years of
effort used to construct the first compiler had been spent on optimization, and

the results were remarkably effective.

1. In fact, the Fortran team believed that the code generated by their compiler
could be no less than half as fast as handwritten machine code, or the
language would not be adopted by users.

The early success of Fortran is shown by the results of a survey made in April
1958. At that time, roughly half of the code being written for 704s was being
written in Fortran, in spite of the skepticism of most of the programming
world only a year earlier.

2.3.4 Fortran II
The Fortran II compiler was distributed in the spring of 1958. It fixed many
of the bugs in the Fortran I compilation system and added some significant
features to the language, the most important being the independent
compilation of subroutines. Without independent compilation, any change in
a program required that the entire program be recompiled. Fortran I’s lack of
independent-compilation capability, coupled with the poor reliability of the
704, placed a practical restriction on the length of programs to about 300 to
400 lines (Wexelblat, 1981, p. 68). Longer programs had a poor chance of
being compiled completely before a machine failure occurred. The capability
of including precompiled machine language versions of subprograms
shortened the compilation process considerably and made it practical to
develop much larger programs.

2.3.5 Fortrans IV, 77, 90, 95, 2003,
and 2008
A Fortran III was developed, but it was never widely distributed. Fortran IV,
however, became one of the most widely used programming languages of its
time. It evolved over the period 1960 to 1962 and was standardized as
Fortran 66 (ANSI, 1966), although that name was rarely used. Fortran IV was

an improvement over Fortran II in many ways. Among its most important
additions were explicit type declarations for variables, a logical If construct,
and the capability of passing subprograms as parameters to other
subprograms.

Fortran IV was replaced by Fortran 77, which became the new standard in
1978 (ANSI, 1978a). Fortran 77 retained most of the features of Fortran IV
and added character string handling, logical loop control statements, and an
If with an optional Else clause.

Fortran 90 (ANSI, 1992) was dramatically different from Fortran 77. The
most significant additions were dynamic arrays, records, pointers, a multiple
selection statement, and modules. In addition, Fortran 90 subprograms could
be recursively called.

A new concept that was included in the Fortran 90 definition was that of
removing some language features from earlier versions. While Fortran 90
included all of the features of Fortran 77, the language definition included a
list of constructs that were recommended for removal in the next version of
the language.

Fortran 90 included two simple syntactic changes that altered the appearance
of both programs and the literature describing the language. First, the
required fixed format of code, which required the use of specific character
positions for specific parts of statements, was dropped. For example,
statement labels could appear only in the first five positions and statements
could not begin before the seventh position. This rigid formatting of code was
designed around the use of punch cards. The second change was that the
official spelling of FORTRAN became Fortran. This change was
accompanied by the change in convention of using all uppercase letters for
keywords and identifiers in Fortran programs. The new convention was that
only the first letter of keywords and identifiers would be uppercase.

Fortran 95 (INCITS/ISO/IEC, 1997) continued the evolution of the language,
but only a few changes were made. Among other things, a new iteration
construct, Forall, was added to ease the task of parallelizing Fortran
programs.

Fortran 2003 (Metcalf et al., 2004) added support for object-oriented
programming, parameterized derived types, procedure pointers, and
interoperability with the C programming language.

The latest version of Fortran, Fortran 2008 (ISO/IEC 1539-1, 2010), added
support for blocks to define local scopes, co-arrays, which provide a parallel
execution model, and the DO CONCURRENT construct, to specify loops without
interdependencies. A new version, Fortran 2015, is under development and is
scheduled for release in 2018.

2.3.6 Evaluation
The original Fortran design team thought of language design only as a
necessary prelude to the critical task of designing the translator. Furthermore,
it never occurred to them that Fortran would be used on computers not
manufactured by IBM. However, they were forced to consider building
Fortran compilers for other IBM machines only because the successor to the
704, the 709, was announced before the 704 Fortran compiler was released.
The effect that Fortran has had on the use of computers, along with the fact
that all subsequent programming languages owe a debt to Fortran, is indeed
impressive in light of the modest goals of its designers.

One of the features of Fortran I, and all of its successors before 90, that
allows highly optimizing compilers was that the types and storage for all -
variables are fixed before run time. No new variables or space could be
allocated during execution. This was a sacrifice of flexibility to simplicity
and efficiency. It eliminated the possibility of recursive subprograms and
made it difficult to implement data structures that grow or change shape
dynamically. Of course, the kinds of programs that were being built at the
time of the development of the early versions of Fortran were primarily
numerical in nature and were simple in comparison with more recent
software projects. Therefore, the sacrifice was not a great one.

The overall success of Fortran is difficult to overstate: It dramatically
changed the way computers are used. This is, of course, in large part due to
its being the first widely used high-level language. In comparison with

concepts and languages developed later, early versions of Fortran suffer in a
variety of ways, as should be expected. After all, it would not be fair to
compare the performance and comfort of a 1910 Model T Ford with the
performance and comfort of a 2017 Ford Mustang. Nevertheless, in spite of
the inadequacies of Fortran, the momentum of the huge investment in Fortran
software, among other factors, has kept it in use for 60 years.

Alan Perlis, one of the designers of ALGOL 60, said of Fortran in 1978,
“Fortran is the lingua franca of the computing world. It is the language of the
streets in the best sense of the word, not in the prostitutional sense of the
word. And it has survived and will survive because it has turned out to be a
remarkably useful part of a very vital commerce” (Wexelblat, 1981, p. 161).

The following is an example of a Fortran 95 program:

! Fortran 95 Example program

! Input: An integer, List_Len, where List_Len is less

! than 100, followed by List_Len-Integer values

! Output:  The number of input values that are greater
!  than the average of all input values
Implicit none

Integer Dimension(99) :: Int_List

Integer :: List_Len, Counter, Sum, Average, Result

Result= 0

Sum = 0

Read *, List_Len

If ((List_Len > 0) .AND. (List_Len < 100)) Then

! Read input data into an array and compute its sum

 Do Counter = 1, List_Len

 Read *, Int_List(Counter)

 Sum = Sum + Int_List(Counter)

 End Do

! Compute the average

 Average = Sum / List_Len

! Count the values that are greater than the average

 Do Counter = 1, List_Len

 If (Int_List(Counter) > Average) Then

   Result = Result + 1
 End If

 End Do

! Print the result

 Print *, 'Number of values > Average is:', Result

Else

 Print *, 'Error - list length value is not legal'

End If

End Program Example

2.4 Functional Programming: Lisp
The first functional programming language was invented to provide language
features for list processing, the need for which grew out of the first
applications in the area of artificial intelligence (AI).

2.4.1 The Beginnings of Artificial
Intelligence (AI) and List Processing
Interest in AI appeared in the mid-1950s in a number of places. Some of this
interest grew out of linguistics, some from psychology, and some from
mathematics. Linguists were concerned with natural language processing. -
Psychologists were interested in modeling human information storage and
retrieval, as well as other fundamental processes of the brain. Mathematicians
were interested in mechanizing certain intelligent processes, such as theorem
proving. All of these investigations arrived at the same conclusion: Some
method must be developed to allow computers to process symbolic data in
linked lists. At the time, nearly all computation was on numeric data in
arrays.

The concept of list processing was developed by Allen Newell, J. C. Shaw,
and Herbert Simon at the RAND Corporation. It was first published in a
classic paper that describes one of the first AI programs, the Logic Theorist,2
and a language in which it could be implemented (Newell and Simon, 1956).
The language, named IPL-I (Information Processing Language I), was never
implemented. The next version, IPL-II, was implemented on a RAND
Johnniac computer. Development of IPL continued until 1960, when the
description of IPL-V was published (Newell and Tonge, 1960). The low level
of the IPL languages prevented their widespread use. They were actually
assembly languages for a hypothetical computer, implemented with an
interpreter, in which list-processing instructions were included. Another
factor that kept the IPL languages from becoming popular was their

implementation on the obscure Johnniac machine.

2. Logic Theorist discovered proofs for theorems in propositional calculus.

The contributions of the IPL languages were in their list design and their
demonstration that list processing was feasible and useful.

IBM became interested in AI in the mid-1950s and chose theorem proving as
a demonstration area. At the time, the Fortran project was still underway. The
high cost of the Fortran I compiler convinced IBM that their list processing
should be attached to Fortran, rather than in the form of a new language.
Thus, the Fortran list processing language (FLPL) was designed and
implemented as an extension to Fortran. FLPL was used to construct a
theorem prover for plane geometry, which was then considered the easiest
area for mechanical theorem proving.

2.4.2 Lisp Design Process
John McCarthy of MIT took a summer position at the IBM Information
Research Department in 1958. His goal for the summer was to investigate
symbolic computations and to develop a set of requirements for doing such
computations. As a pilot example problem area, he chose differentiation of
algebraic expressions. From this study came a list of language requirements.
Among them were the control flow methods of mathematical functions:
recursion and conditional expressions. The only available high-level language
of the time, Fortran I, had neither of these.

Another requirement that grew from the symbolic-differentiation
investigation was the need for dynamically allocated linked lists and some
kind of implicit deallocation of abandoned lists. McCarthy simply would not
allow his elegant algorithm for differentiation to be cluttered with explicit
deallocation statements.

Because FLPL did not support recursion, conditional expressions, dynamic
storage allocation, or implicit deallocation, it was clear to McCarthy that a
new language was needed.

When McCarthy returned to MIT in the fall of 1958, he and Marvin Minsky
formed the MIT AI Project, with funding from the Research Laboratory for
Electronics at MIT. The first important effort of the project was to produce a
software system for list processing. It was to be used initially to implement a
program proposed by McCarthy called the Advice Taker.3 This application
became the impetus for the development of the list-processing language Lisp.
The first version of Lisp is sometimes called “pure Lisp” because it is a
purely functional language. In the following section, we describe the
development of pure Lisp.

3. Advice Taker represented information with sentences written in a formal
language and used a logical inferencing process to decide what to do.

2.4.3 Language Overview

2.4.3.1 Data Structures
Pure Lisp has only two kinds of data structures: atoms and lists. Atoms are
either symbols, which have the form of identifiers, or numeric literals. The
concept of storing symbolic information in linked lists is natural and was
used in IPL-II. Such structures allow insertions and deletions at any point,
operations that were then thought to be a necessary part of list processing. It
was eventually determined, however, that Lisp programs rarely require these
operations.

Lists are specified by delimiting their elements with parentheses. Simple lists,
in which elements are restricted to atoms, have the form

(A B C D)

Nested list structures are also specified by parentheses. For example, the list

(A (B C) D (E (F G)))

is composed of four elements. The first is the atom A; the second is the sublist
(B C); the third is the atom D; the fourth is the sublist (E (F G)), which has

as its second element the sublist (F G).

Internally, lists are stored as single-linked list structures, in which each node
has two pointers and represents a list element. A node containing an atom has
its first pointer pointing to some representation of the atom, such as its
symbol or numeric value, or a pointer to a sublist. A node for a sublist
element has its first pointer pointing to the first node of the sublist. In both
cases, the second pointer of a node points to the next element of the list. A
list is referenced by a pointer to its first element.

The internal representations of the two lists shown earlier are depicted in
Figure 2.2. Note that the elements of a list are shown horizontally. The last
element of a list has no successor, so its link is NIL, which is represented in
Figure 2.2 as a diagonal line in the element. Sublists are shown with the same
structure.

Figure 2.2 Internal

representation of two Lisp lists
Figure 2.2 Full Alternative Text

2.4.3.2 Processes in Functional
Programming
Lisp was designed as a functional programming language. All computation in
a purely functional program is accomplished by applying functions to
arguments. Neither the assignment statements nor the variables that abound
in imperative language programs are necessary in functional language
programs. Furthermore, repetitive processes can be specified with recursive
function calls, making iteration (loops) unnecessary. These basic concepts of
functional programming make it significantly different from programming in
an imperative language.

2.4.3.3 The Syntax of Lisp
Lisp is very different from the imperative languages, both because it is a
functional programming language and because the appearance of Lisp
programs is so different from those in languages like Java or C++. For
example, the syntax of Java is a complicated mixture of English and algebra,
while Lisp’s syntax is a model of simplicity. Program code and data have
exactly the same form: parenthesized lists. Consider again the list

(A B C D)

When interpreted as data, it is a list of four elements. When viewed as code, it
is the application of the function named A to the three parameters B, C, and D.

2.4.4 Evaluation

Lisp completely dominated AI applications for a quarter century. Much of the
cause of Lisp’s reputation for being highly inefficient has been eliminated.
Many contemporary implementations are compiled, and the resulting code is
much faster than running the source code on an interpreter. In addition to its
success in AI, Lisp pioneered functional programming, which has proven to
be a lively area of research in programming languages. As stated in Chapter
1, many programming language researchers believe functional programming
is a much better approach to software development than procedural
programming using imperative languages.

The following is an example of a Lisp program:

; Lisp Example function

; The following code defines a Lisp predicate function

; that takes two lists as arguments and returns True

; if the two lists are equal, and NIL (false) otherwise

 (DEFUN equal_lists (lis1 lis2)

 (COND

 ((ATOM lis1) (EQ lis1 lis2))

 ((ATOM lis2) NIL)

 ((equal_lists (CAR lis1) (CAR lis2))

    (equal_lists (CDR lis1) (CDR lis2)))
 (T NIL)

)

)

2.4.5 Two Descendants of Lisp
Two dialects of Lisp are now widely used, Scheme and Common Lisp. These
are briefly discussed in the following subsections.

2.4.5.1 Scheme
The Scheme language emerged from MIT in the mid-1970s. It is
characterized by its small size, its exclusive use of static scoping (discussed
in Chapter 5), and its treatment of functions as first-class entities. As first-
class entities, Scheme functions can be assigned to variables, passed as

parameters, and returned as the values of function applications. They can also
be the elements of lists. Early versions of Lisp did not provide all of these
capabilities, nor did they use static scoping.

As a small language with simple syntax and semantics, Scheme is well suited
to educational applications, such as courses in functional programming and
general introductions to programming. Scheme is described in some detail in
Chapter 15.

2.4.5.2 Common Lisp
During the 1970s and early 1980s, a large number of different dialects of
Lisp were developed and used. This led to the familiar problem of lack of
portability among programs written in the various dialects. Common Lisp -
(Graham, 1996) was created in an effort to rectify this situation. Common
Lisp was designed by combining the features of several dialects of Lisp
developed in the early 1980s, including Scheme, into a single language.
Being such an amalgam, Common Lisp is a relatively large and complex
language. Its basis, however, is pure Lisp, so its syntax, primitive functions,
and fundamental nature come from that language.

Recognizing the flexibility provided by dynamic scoping as well as the
simplicity of static scoping, Common Lisp allows both. The default scoping
for variables is static, but by declaring a variable to be special, that variable
becomes dynamically scoped.

Common Lisp has a large number of data types and structures, including
records, arrays, complex numbers, and character strings. It also has a form of
packages for modularizing collections of functions and data providing access
control.

Common Lisp is further described in Chapter 15.

2.4.6 Related Languages

ML (MetaLanguage; Ullman, 1998) was originally designed in the 1980s by
Robin Milner at the University of Edinburgh as a metalanguage for a
program verification system named Logic for Computable Functions (LCF;
Milner et al., 1997). ML is primarily a functional language, but it also
supports imperative programming. Unlike Lisp and Scheme, the type of
every variable and expression in ML can be determined at compile time.
Types are associated with objects rather than names. Types of names and
expressions are inferred from their context.

Unlike Lisp and Scheme, ML does not use the parenthesized functional
syntax that originated with lambda expressions. Rather, the syntax of ML
resembles that of the imperative languages, such as Java and C++.

Miranda was developed by David Turner (1986) at the University of Kent in
Canterbury, England, in the early 1980s. Miranda is based partly on the
languages ML, SASL, and KRC. Haskell (Hudak and Fasel, 1992) is based in
large part on Miranda. Like Miranda, it is a purely functional language,
having no variables and no assignment statement. Another distinguishing
characteristic of Haskell is its use of lazy evaluation. This means that no
expression is evaluated until its value is required. This leads to some
surprising capabilities in the language.

Caml (Cousineau et al., 1998) and its dialect that supports object-oriented
programming, OCaml (Smith, 2006), descended from ML and Haskell.
Finally, F# is a relatively new typed language based directly on OCaml. F#
(Syme et al., 2010) is a .NET language with direct access to the whole .NET
library. Being a .NET language also means it can smoothly interoperate with
any other .NET language. F# supports both functional programming and
procedural programming. It also fully supports object-oriented programming.

ML, Haskell, and F# are further discussed in Chapter 15.

2.5 The First Step Toward
Sophistication: ALGOL 60
ALGOL 60 strongly influenced subsequent programming languages and is
therefore of central importance in any historical study of languages.

2.5.1 Historical Background
ALGOL 60 was the result of efforts to design a universal programming
language for scientific applications. By late 1954, the Laning and Zierler
algebraic system had been in operation for over a year, and the first report on
Fortran had been published. Fortran became a reality in 1957, and several
other high-level languages were being developed. Most notable among them
were IT, which was designed by Alan Perlis at Carnegie Tech, and two
languages for the UNIVAC computers, MATH-MATIC and UNICODE. The
proliferation of languages made program sharing among users difficult.
Furthermore, the new languages were all growing up around single
architectures, some for UNIVAC computers and some for IBM 700-series
machines. In response to this blossoming of machine-dependent languages,
several major computer user groups in the United States, including SHARE
(the IBM scientific user group) and USE (UNIVAC Scientific Exchange, the
large-scale UNIVAC scientific user group), submitted a petition to the
Association for Computing Machinery (ACM) on May 10, 1957, to form a
committee to study and recommend action to create a machine-independent
scientific programming language. Although Fortran might have been a
candidate, it could not become a universal language, because at the time it
was solely owned by IBM.

Previously, in 1955, GAMM (a German acronym for Society for Applied
Mathematics and Mechanics) had formed a committee to design one
universal, machine-independent algorithmic language. The desire for this new
language was in part due to the Europeans’ fear of being dominated by IBM.

By late 1957, however, the appearance of several high-level languages in the
United States convinced the GAMM subcommittee that their effort had to be
widened to include the Americans, and a letter of invitation was sent to
ACM. In April 1958, after Fritz Bauer of GAMM presented the formal
proposal to ACM, the two groups officially agreed to a joint language design
project.

2.5.2 Early Design Process
GAMM and ACM each sent four members to the first design meeting. The
meeting, which was held in Zurich from May 27 to June 1, 1958, began with
the following goals for the new language:

The syntax of the language should be as close as possible to standard
mathematical notation, and programs written in it should be readable
with little further explanation.

It should be possible to use the language for the description of
algorithms in printed publications.

Programs in the new language must be mechanically translatable into
machine language.

The first goal indicated that the new language was to be used for scientific
programming, which was the primary computer application area at that time.
The second was something entirely new to the computing business. The last
goal is an obvious necessity for any programming language.

The Zurich meeting succeeded in producing a language that met the stated
goals, but the design process required innumerable compromises, both among
individuals and between the two sides of the Atlantic. In some cases, the
compromises were not so much over great issues as they were over spheres of
influence. The question of whether to use a comma (the European method) or
a period (the American method) for a decimal point is one example.

2.5.3 ALGOL 58 Overview
The language designed at the Zurich meeting was named the International
Algorithmic Language (IAL). It was suggested during the design that the
language be named ALGOL, for ALGOrithmic Language, but the name was
rejected because it did not reflect the international scope of the committee.
During the following year, however, the name was changed to ALGOL, and
the language subsequently became known as ALGOL 58.

In many ways, ALGOL 58 was a descendant of Fortran, which is quite
natural. It generalized many of Fortran’s features and added several new
constructs and concepts. Some of the generalizations had to do with the goal
of not tying the language to any particular machine, and others were attempts
to make the language more flexible and powerful. A rare combination of
simplicity and elegance emerged from the effort.

ALGOL 58 formalized the concept of data type, although only variables that
were not floating-point required explicit declaration. It added the idea of
compound statements, which most subsequent languages incorporated. Some
features of Fortran that were generalized were the following: Identifiers were
allowed to have any length, as opposed to Fortran I’s restriction to six or
fewer characters; any number of array dimensions was allowed, unlike
Fortran I’s limitation to no more than three; the lower bound of arrays could
be specified by the programmer, whereas in Fortran it was implicitly 1;
nested selection statements were allowed, which was not the case in Fortran I.

ALGOL 58 acquired the assignment operator in a rather unusual way. Zuse
used the form

expression => variable

for the assignment statement in Plankalkül. Although Plankalkül had not yet
been published, some of the European members of the ALGOL 58 committee
were familiar with the language. The committee dabbled with the Plankalkül
assignment form but, because of arguments about character set limitations,4
the greater-than symbol was changed to a colon. Then, largely at the

insistence of the Americans, the whole statement was turned around to the
Fortran form

4. The card punches of that time did not include the greater-than symbol.

variable := expression

The Europeans preferred the opposite form, but that would be the reverse of
Fortran.

2.5.4 Reception of the ALGOL 58
Report
In December 1958, publication of the ALGOL 58 report (Perlis and
Samelson, 1958) was greeted with enthusiasm. In the United States, the new
language was viewed more as a collection of ideas for programming language
design than as a universal standard language. Actually, the ALGOL 58 report
was not meant to be a finished product but rather a preliminary document for
international discussion. Nevertheless, three major design and
implementation efforts used the report as their basis. At the University of
Michigan, the MAD language was born (Arden et al., 1961). The U.S. Naval
Electronics Group produced the NELIAC language (Huskey et al., 1963). At
System Development Corporation, JOVIAL was designed and implemented
(Shaw, 1963). JOVIAL, an acronym for Jules’ Own Version of the
International Algebraic Language, represents the only language based on
ALGOL 58 to achieve widespread use (Jules was Jules I. Schwartz, one of
JOVIAL’s designers). JOVIAL became widely used because it was the
official scientific language for the U.S. Air Force for a quarter century.

The rest of the U.S. computing community was not so kind to the new
language. At first, both IBM and its major scientific user group, SHARE,
seemed to embrace ALGOL 58. IBM began an implementation shortly after
the report was published, and SHARE formed a subcommittee, SHARE IAL,
to study the language. The subcommittee subsequently recommended that
ACM standardize ALGOL 58 and that IBM implement it for all of the 700-

series computers. The enthusiasm was short-lived, however. By the spring of
1959, both IBM and SHARE, through their Fortran experience, had had
enough of the pain and expense of getting a new language started, both in
terms of developing and using the first-generation compilers and in terms of
training users in the new language and persuading them to use it. By the
middle of 1959, both IBM and SHARE had developed such a vested interest
in Fortran that they decided to retain it as the scientific language for the IBM
700-series machines, thereby abandoning ALGOL 58.

2.5.5 ALGOL 60 Design Process
During 1959, ALGOL 58 was furiously debated in both Europe and the
United States. Large numbers of suggested modifications and additions were
published in the European ALGOL Bulletin and in Communications of the
ACM. One of the most important events of 1959 was the presentation of the
work of the Zurich committee to the International Conference on Information
Processing, for there Backus introduced his new notation for describing the
syntax of programming languages, which later became known as BNF
(Backus-Naur form). BNF is described in detail in Chapter 3.

In January 1960, the second ALGOL meeting was held, this time in Paris.
The purpose of the meeting was to debate the 80 suggestions that had been
formally submitted for consideration. Peter Naur of Denmark had become
heavily involved in the development of ALGOL, even though he had not
been a member of the Zurich group. It was Naur who created and published
the ALGOL Bulletin. He spent a good deal of time studying Backus’s paper
that introduced BNF and decided that BNF should be used to describe
formally the results of the 1960 meeting. After making a few relatively minor
changes to BNF, he wrote a description of the new proposed language in
BNF and handed it out to the members of the 1960 group at the beginning of
the meeting.

2.5.6 ALGOL 60 Overview

Although the 1960 meeting lasted only six days, the modifications made to
ALGOL 58 were dramatic. Among the most important new developments
were the following:

The concept of block structure was introduced. This allowed the
programmer to localize parts of programs by introducing new data
environments, or scopes.

Two different means of passing parameters to subprograms were
allowed: pass by value and pass by name.

Procedures were allowed to be recursive. The ALGOL 58 description
was unclear on this issue. Note that although recursion was new for the
imperative languages, Lisp had already provided recursive functions in
1959.

Stack-dynamic arrays were allowed. A stack-dynamic array is one for
which the subscript range or ranges are specified by variables, so that
the size of the array is set at the time storage is allocated to the array,
which happens when the declaration is reached during execution. Stack-
dynamic arrays are described in detail in Chapter 6.

Several features that might have had a dramatic impact on the success or
failure of the language were proposed and rejected. Most important among
these were input and output statements with formatting, which were omitted
because they were thought to be machine-dependent.

The ALGOL 60 report was published in May 1960 (Naur, 1960). A number
of ambiguities still remained in the language description, and a third meeting
was scheduled for April 1962 in Rome to address the problems. At this
meeting the group dealt only with problems; no additions to the language
were allowed. The results of this meeting were published under the title
“Revised Report on the Algorithmic Language ALGOL 60” (Backus et al.,
1963).

2.5.7 Evaluation

In some ways, ALGOL 60 was a great success; in other ways, it was a dismal
failure. It succeeded in becoming, almost immediately, the only acceptable
formal means of communicating algorithms in computing literature, and it
remained that for more than 20 years. Every imperative programming
language designed since 1960 owes something to ALGOL 60. In fact, most
are direct or indirect descendants; examples include PL/I, SIMULA 67,
ALGOL 68, C, Pascal, Ada, C++, Java, and C#.

The ALGOL 58/ALGOL 60 design effort included a long list of firsts. It was
the first time that an international group attempted to design a programming
language. It was the first language that was designed to be machine
independent. It was also the first language whose syntax was formally
described. This successful use of the BNF formalism initiated several
important fields of computer science: formal languages, parsing theory, and
BNF-based compiler design. Finally, the structure of ALGOL 60 affected
machine architecture. In the most striking example of this, an extension of the
language was used as the systems language of a series of large-scale
computers, the Burroughs B5000, B6000, and B7000 machines, which were
designed with a hardware stack to implement efficiently the block structure
and recursive subprograms of the language.

On the other side of the coin, ALGOL 60 never achieved widespread use in
the United States. Even in Europe, where it was more popular than in the
United States, it never became the dominant language. There are a number of
reasons for its lack of acceptance. For one thing, some of the features of
ALGOL 60 turned out to be too flexible; they made understanding difficult
and implementation inefficient. The best example of this is the pass-by-name
method of passing parameters to subprograms, which is explained in
Chapter 9. The difficulties of implementing ALGOL 60 are evidenced by
Rutishauser’s statement in 1967 that few, if any, implementations included
the full ALGOL 60 language (Rutishauser, 1967, p. 8).

The lack of input and output statements in the language was another major
reason for its lack of acceptance. Implementation-dependent input/output
made programs difficult to port to other computers.

Ironically, one of the most important contributions to computer science
associated with ALGOL 60, BNF, was also a factor in its lack of acceptance.

Although BNF is now considered a simple and elegant means of syntax
description, in 1960 it seemed strange and complicated.

Finally, although there were many other problems, the entrenchment of
Fortran among users and the lack of support by IBM were probably the most
important factors in ALGOL 60’s failure to gain widespread use.

The ALGOL 60 effort was never really complete, in the sense that -
ambiguities and obscurities were always a part of the language description
(Knuth, 1967).

The following is an example of an ALGOL 60 program:

comment ALGOL 60 Example Program

 Input: An integer, listlen, where listlen is less than

 100, followed by listlen-integer values

 Output: The number of input values that are greater than

 the average of all the input values ;

begin

 integer array intlist [1:99];

 integer listlen, counter, sum, average, result;

 sum := 0;

 result := 0;

 readint (listlen);

 if (listlen > 0) ^ (listlen < 100) then

 begin

comment Read input into an array and compute the average;

 for counter := 1 step 1 until listlen do

 begin

 readint (intlist[counter]);

 sum := sum + intlist[counter]

 end;

comment Compute the average;

 average := sum / listlen;

comment Count the input values that are > average;

 for counter := 1 step 1 until listlen do

 if intlist[counter] > average

 then result := result + 1;

comment Print result;

 printstring("The number of values > average is:");

 printint (result)

 end

 else

 printstring ("Error-input list length is not legal";

end

2.6 Computerizing Business
Records: COBOL
The story of COBOL is, in a sense, the opposite of that of ALGOL 60.
Although it has been used for nearly 60 years, COBOL has had little effect on
the design of subsequent languages, except for PL/I. It may still be the most
widely used language,5 although it is difficult to be sure one way or the
other. Perhaps the most important reason why COBOL has had little
influence is that few have attempted to design a new language for business
applications since it appeared. That is due in part to how well COBOL’s
capabilities meet the needs of its application area. Another reason is that a
great deal of growth in business computing over the past 30 years has
occurred in small businesses. In these businesses, very little software
development has taken place. Instead, most of the software used is purchased
as off-the-shelf packages for various general business applications.

5. In the late 1990s, in a study associated with the Y2K problem, it was
estimated that there were approximately 800 million lines of COBOL in
regular use in the 22 square miles of Manhattan.

2.6.1 Historical Background
The beginning of COBOL is somewhat similar to that of ALGOL 60, in the
sense that the language was designed by a committee of people meeting for
relatively short periods of time. At the time, in 1959, the state of business
computing was similar to the state of scientific computing several years
earlier, when Fortran was being designed. One compiled language for
business applications, FLOW-MATIC, had been implemented in 1957, but it
belonged to one manufacturer, UNIVAC, and was designed for that
company’s computers. Another language, AIMACO, was being used by the
U.S. Air Force, but it was only a minor variation of FLOW-MATIC. IBM
had designed a programming language for business applications, COMTRAN

(COMmercial TRANslator), but it had not yet been implemented. Several
other language design projects were being planned.

2.6.2 FLOW-MATIC
The origins of FLOW-MATIC are worth at least a brief discussion, because it
was the primary progenitor of COBOL. In December 1953, Grace Hopper at
Remington-Rand UNIVAC wrote a proposal that was indeed prophetic. It
suggested that “mathematical programs should be written in mathematical
notation, data processing programs should be written in English statements”
(Wexelblat, 1981, p. 16). Unfortunately, in 1953, it was impossible to
convince nonprogrammers that a computer could be made to understand
English words. It was not until 1955 that a similar proposal had some hope of
being funded by UNIVAC management, and even then it took a prototype
system to do the final convincing. Part of this selling process involved
compiling and running a small program, first using English keywords, then
using French keywords, and then using German keywords. This
demonstration was considered remarkable by UNIVAC management and was
instrumental in their acceptance of Hopper’s proposal.

2.6.3 COBOL Design Process
The first formal meeting on the subject of a common language for business
applications, which was sponsored by the Department of Defense, was held at
the Pentagon on May 28 and 29, 1959 (exactly one year after the Zurich
ALGOL meeting). The consensus of the group was that the language, then
named CBL (Common Business Language), should have the following
general characteristics: Most agreed that it should use English as much as
possible, although a few argued for a more mathematical notation. The
language must be easy to use, even at the expense of being less powerful, in
order to broaden the base of those who could program computers. In addition
to making the language easy to use, it was believed that the use of English
would allow managers to read programs. Finally, the design should not be
overly restricted by the problems of its implementation.

One of the overriding concerns at the meeting was that steps to create this
universal language should be taken quickly, as a lot of work was already
being done to create other business languages. In addition to the existing
languages, RCA and Sylvania were working on their own business
applications languages. It was clear that the longer it took to produce a
universal language, the more difficult it would be for the language to become
widely used. On this basis, it was decided that there should be a quick study
of existing languages. For this task, the Short Range Committee was formed.

There were early decisions to separate the statements of the language into two
categories—data description and executable operations—and to have
statements in these two categories be in different parts of programs. One of
the debates of the Short Range Committee was over the inclusion of
subscripts. Many committee members argued that subscripts were too
complex for the people in data processing, who were thought to be
uncomfortable with mathematical notation. Similar arguments revolved
around whether arithmetic expressions should be included. The final report of
the Short Range Committee, which was completed in December 1959,
described the language that was later named COBOL 60.

The language specification for COBOL 60, published by the Government
Printing Office in April 1960 (Department of Defense, 1960), was described
as “initial.” Revised versions were published in 1961 and 1962 (Department
of Defense, 1961, 1962). The language was standardized by the American
National Standards Institute (ANSI) group in 1968. The next three revisions
were standardized by ANSI in 1974, 1985, and 2002. The language continues
to evolve today.

2.6.4 Evaluation
The COBOL language originated a number of novel concepts, some of which
eventually appeared in other languages. For example, the DEFINE verb of
COBOL 60 was the first high-level language construct for macros. More
important, hierarchical data structures (records), which first appeared in
Plankalkül, were first implemented in COBOL. They have been included in
most of the imperative languages designed since then. COBOL was also the

first language that allowed names to be truly connotative, because it allowed
both long names (up to 30 characters) and word-connector characters
(hyphens).

Overall, the data division is the strong part of COBOL’s design, whereas the
procedure division is relatively weak. Every variable is defined in detail in
the data division, including the number of decimal digits and the location of
the implied decimal point. File records are also described with this level of
detail, as are lines to be output to a printer, which makes COBOL ideal for
printing accounting reports. Perhaps the most important weakness of the
original procedure division was in its lack of functions. Versions of COBOL
prior to the 1974 standard also did not allow subprograms with parameters.

Our final comment on COBOL: It was the first programming language whose
use was mandated by the Department of Defense (DoD). This mandate came
after its initial development, because COBOL was not designed specifically
for the DoD. In spite of its merits, COBOL probably would not have survived
without that mandate. The poor performance of the early compilers simply
made the language too expensive to use. Eventually, of course, compilers
became more efficient and computers became much faster and cheaper and
had much larger memories. Together, these factors allowed COBOL to
succeed, inside and outside DoD. Its appearance led to the electronic
mechanization of accounting, an important development by any measure.

The following is an example of a COBOL program. This program reads a file
named BAL-FWD-File that contains inventory information about a certain
collection of items. Among other things, each item record includes the
number currently on hand (BAL-ON-HAND) and the item’s reorder point (BAL-
REORDER-POINT). The reorder point is the threshold number of items on hand
at which more must be ordered. The program produces a list of items that
must be reordered as a file named REORDER-LISTING.

IDENTIFICATION DIVISION.

PROGRAM-ID. PRODUCE-REORDER-LISTING.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. DEC-VAX.

OBJECT-COMPUTER. DEC-VAX.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

 SELECT BAL-FWD-FILE ASSIGN TO READER.

 SELECT REORDER-LISTING ASSIGN TO LOCAL-PRINTER.

DATA DIVISION.

FILE SECTION.

FD BAL-FWD-FILE

 LABEL RECORDS ARE STANDARD

 RECORD CONTAINS 80 CHARACTERS.

01 BAL-FWD-CARD.

 02 BAL-ITEM-NO PICTURE IS 9(5).

 02 BAL-ITEM-DESC PICTURE IS X(20).

 02 FILLER PICTURE IS X(5).

 02 BAL-UNIT-PRICE PICTURE IS 999V99.

 02 BAL-REORDER-POINT PICTURE IS 9(5).

 02 BAL-ON-HAND PICTURE IS 9(5).

 02 BAL-ON-ORDER PICTURE IS 9(5).

 02 FILLER PICTURE IS X(30).

FD REORDER-LISTING

 LABEL RECORDS ARE STANDARD

 RECORD CONTAINS 132 CHARACTERS.

01 REORDER-LINE.

 02 RL-ITEM-NO PICTURE IS Z(5).

 02 FILLER PICTURE IS X(5).

 02 RL-ITEM-DESC PICTURE IS X(20).

 02 FILLER PICTURE IS X(5).

 02 RL-UNIT-PRICE PICTURE IS ZZZ.99.

 02 FILLER PICTURE IS X(5).

 02 RL-AVAILABLE-STOCK PICTURE IS Z(5).

 02 FILLER PICTURE IS X(5).

 02 RL-REORDER-POINT PICTURE IS Z(5).

 02 FILLER PICTURE IS X(71).

WORKING-STORAGE SECTION.

01 SWITCHES.

 02 CARD-EOF-SWITCH PICTURE IS X.

01 WORK-FIELDS.

 02 AVAILABLE-STOCK PICTURE IS 9(5).

PROCEDURE DIVISION.

000-PRODUCE-REORDER-LISTING.

 OPEN INPUT BAL-FWD-FILE.

 OPEN OUTPUT REORDER-LISTING.

 MOVE "N" TO CARD-EOF-SWITCH.

 PERFORM 100-PRODUCE-REORDER-LINE

 UNTIL CARD-EOF-SWITCH IS EQUAL TO "Y".

 CLOSE BAL-FWD-File.

 CLOSE REORDER-LISTING.

 STOP RUN.

100-PRODUCE-REORDER-LINE.

 PERFORM 110-READ-INVENTORY-RECORD.

 IF CARD-EOF-SWITCH IS NOT EQUAL TO "Y"]

 PERFORM 120-CALCULATE-AVAILABLE-STOCK

 IF AVAILABLE-STOCK IS LESS THAN BAL-REORDER-POINT

 PERFORM 130-PRINT-REORDER-LINE.

110-READ-INVENTORY-RECORD.

 READ BAL-FWD-FILE RECORD

 AT END

 MOVE "Y" TO CARD-EOF-SWITCH.

120-CALCULATE-AVAILABLE-STOCK.

ADD BAL-ON-HAND BAL-ON-ORDER

 GIVING AVAILABLE-STOCK.

130-PRINT-REORDER-LINE.

 MOVE SPACE TO REORDER-LINE.

 MOVE BAL-ITEM-NO TO RL-ITEM-NO.

 MOVE BAL-ITEM-DESC TO RL-ITEM-DESC.

 MOVE BAL-UNIT-PRICE TO RL-UNIT-PRICE.

 MOVE AVAILABLE-STOCK TO RL-AVAILABLE-STOCK.

 MOVE BAL-REORDER-POINT TO RL-REORDER-POINT.

 WRITE REORDER-LINE.

2.7 The Beginnings of Timesharing:
Basic
Basic (Mather and Waite, 1971) is another programming language that has
enjoyed widespread use but has gotten little respect. Like COBOL, it has
largely been ignored by computer scientists. Also, like COBOL, in its earliest
versions it was inelegant and included only a meager set of control
statements.

Basic was very popular on microcomputers in the late 1970s and early 1980s.
This followed directly from two of the main characteristics of early versions
of Basic. It was easy for beginners to learn, especially those who were not
science oriented, and its smaller dialects could be implemented on computers
with very small memories.6 When the capabilities of microcomputers grew
and other languages were implemented, the use of Basic waned. A strong
resurgence in the use of Basic began with the appearance of Visual Basic
(Microsoft, 1991) in the early 1990s.

6. Some early microcomputers included Basic interpreters that resided in
4096 bytes of ROM.

2.7.1 Design Process
Basic (Beginner’s All-purpose Symbolic Instruction Code) was originally
designed at Dartmouth College (now Dartmouth University) in New
Hampshire by two mathematicians, John Kemeny and Thomas Kurtz, who, in
the early 1960s, developed compilers for a variety of dialects of Fortran and
ALGOL 60. Their science students generally had little trouble learning or
using those languages in their studies. However, Dartmouth was primarily a
liberal arts institution, where science and engineering students made up only
about 25 percent of the student body. It was decided in the spring of 1963 to
design a new language especially for liberal arts students. This new language

would use terminals as the method of computer access. The goals of the
system were as follows:

1. It must be easy for nonscience students to learn and use.

2. It must be “pleasant and friendly.”

3. It must provide fast turnaround for homework.

4. It must allow free and private access.

5. It must consider user time more important than computer time.

The last goal was indeed a revolutionary concept. It was based at least partly
on the belief that computers would become significantly cheaper as time went
on, which they certainly did.

The combination of the second, third, and fourth goals led to the time-shared
aspect of Basic. Only with individual access through terminals by numerous
simultaneous users could these goals be met in the early 1960s.

In the summer of 1963, Kemeny began work on the compiler for the first
version of Basic, using remote access to a GE 225 computer. Design and
coding of the operating system for Basic began in the fall of 1963. At 4:00
a.m. on May 1, 1964, the first program using the timeshared Basic was typed
in and run. In June, the number of terminals on the system grew to 11, and by
the fall it had ballooned to 20.

2.7.2 Language Overview
The original version of Basic was very small and, oddly, was not interactive:
There was no way for an executing program to get input data from the user.
Programs were typed in, compiled, and run, in a sort of batch-oriented way.
The original Basic had only 14 different statement types and a single data
type—floating-point. Because it was believed that few of the targeted users
would appreciate the difference between integer and floating-point types, the
type was referred to as “numbers.” Overall, it was a very limited language,

though quite easy to learn.

2.7.3 Evaluation
The most important aspect of the original Basic was that it was the first
widely used language that was used through terminals connected to a remote
computer.7 Terminals had just begun to be available at that time. Before then,
most programs were entered into computers through either punched cards or
paper tape.

7. Lisp initially was used through terminals, but it was not widely used in the
early 1960s.

Much of the design of Basic came from Fortran, with some minor influence
from the syntax of ALGOL 60. Later, it grew in a variety of ways, with little
or no effort made to standardize it. The American National Standards
Institute issued a Minimal Basic standard (ANSI, 1978b), but this represented
only the bare minimum of language features. In fact, the original Basic was
very similar to Minimal Basic.

Although it may seem surprising, Digital Equipment Corporation used a
rather elaborate version of Basic named Basic-PLUS to write significant
portions of their largest operating system for the PDP-11 minicomputers,
RSTS, in the 1970s.

Basic has been criticized for the poor structure of programs written in it,
among other things. By the evaluation criteria discussed in Chapter 1,
specifically readability and reliability, the language does indeed fare very
poorly. Clearly, the early versions of the language were not meant for and
should not have been used for serious programs of any significant size. Later
versions are much better suited to such tasks.

The resurgence of Basic in the 1990s was driven by the appearance of Visual
Basic (VB). VB became widely used in large part because it provided a
simple way of building graphical user interfaces (GUIs), hence the name
Visual Basic. When .NET appeared, a new version of VB came with it,

VB.NET. Although it was a significant departure from earlier versions of
VB, it quickly displaced the older language. Perhaps the most important
difference between VB and the .NET version is that the later version fully
supports object-oriented programming.

The following is an example of a Basic program:

REM Basic Example Program

REM Input: An integer, listlen, where listlen is less

REM than 100, followed by listlen-integer values

REM Output: The number of input values that are greater

REM than the average of all input values

 DIM intlist(99)

 result = 0

 sum = 0

 INPUT listlen

 IF listlen > 0 AND listlen < 100 THEN

REM Read input into an array and compute the sum

 FOR counter = 1 TO listlen

 INPUT intlist(counter)

 sum = sum + intlist(counter)

 NEXT counter

REM Compute the average

 average = sum / listlen

REM Count the number of input values that are > average

 FOR counter = 1 TO listlen

 IF intlist(counter) > average

 THEN result = result + 1

 NEXT counter

REM Print the result

 PRINT "The number of values that are > average is:";

 result

 ELSE

 PRINT "Error-input list length is not legal"

 END IF

END

interview
User Design and Language Design

ALAN COOPER

Best-selling author of About Face: The Essentials of User Interface Design,
Alan Cooper also had a large hand in designing what can be touted as the
language with the most concern for user interface design, Visual Basic. For
him, it all comes down to a vision for humanizing technology.

SOME INFORMATION ON THE
BASICS
How did you get started in all of this? I’m a high school dropout with an
associate degree in programming from a California community college. My
first job was as a programmer for American President Lines (one of the
United States’ oldest ocean transportation companies) in San Francisco.
Except for a few months here and there, I’ve remained self-employed.

What is your current job? Founder and chairman of Cooper, the company
that humanizes technology (www.cooper.com).

What is or was your favorite job? Interaction design consultant.

http://www.cooper.com

You are very well known in the fields of language design and user
interface design. Any thoughts on designing languages versus designing
software, versus designing anything else? It’s pretty much the same in the
world of software: Know your user.

ABOUT THAT EARLY
WINDOWS RELEASE
In the 1980s, you started using Windows and have talked about being
lured by its plusses: the graphical user interface support and the
dynamically linked library that let you create tools that configured
themselves. What about the parts of Windows that you eventually helped
shape? I was very impressed by Microsoft’s inclusion of support for practical
multitasking in Windows. This included dynamic relocation and interprocess
communications.

MSDOS.exe was the shell program for the first few releases of Windows. It
was a terrible program, and I believed that it could be improved dramatically,
and I was the guy to do it. In my spare time, I immediately began to write a
better shell program than the one Windows came with. I called it Tripod.
Microsoft’s original shell, MSDOS.exe, was one of the main stumbling
blocks to the initial success of Windows. Tripod attempted to solve the
problem by being easier to use and to configure.

When was that “Aha!” moment? It wasn’t until late in 1987, when I was
interviewing a corporate client, that the key design strategy for Tripod
popped into my head. As the IS manager explained to me his need to create
and publish a wide range of shell solutions to his disparate user base, I
realized the conundrum that there is no such thing as an ideal shell. Every
user would need their own personal shell, configured to their own needs and
skill levels. In an instant, I perceived the solution to the shell design problem:
It would be a shell construction set; a tool where each user would be able to
construct exactly the shell that he or she needed for a unique mix of
applications and training.

What is so compelling about the idea of a shell that can be
individualized? Instead of me telling the users what the ideal shell was, they
could design their own, personalized ideal shell. With a customizable shell, a
programmer would create a shell that was powerful and wide ranging but also
somewhat dangerous, whereas an IT manager would create a shell that could
be given to a desk clerk that exposed only those few application-specific
tools that the clerk used.

“MSDOS.exe was the shell program for the first few releases of
Windows. It was a terrible program, and I believed that it could be
improved dramatically, and I was the guy to do it. In my spare time, I
immediately began to write a better shell program than the one
Windows came with.”

How did you get from writing a shell program to collaborating with
Microsoft? Tripod and Ruby are the same thing. After I signed a deal with
Bill Gates, I changed the name of the prototype from Tripod to Ruby. I then
used the Ruby prototype as prototypes should be used: as a disposable model
for constructing release-quality code. Which is what I did. MS took the
release version of Ruby and added QuickBasic to it, creating VB. All of those
original innovations were in Tripod/Ruby.

RUBY AS THE INCUBATOR FOR
VISUAL BASIC
Let’s revisit your interest in early Windows and that DLL feature. The
DLL wasn’t a thing, it was a facility in the OS. It allowed a programmer to
build code objects that could be linked to at run time as opposed to only at
compile time. This is what allowed me to invent the dynamically extensible
parts of VB, where controls can be added by third-party vendors.

The Ruby product embodied many significant advances in software design,
but two of them stand out as exceptionally successful. As I mentioned, the
dynamic linking capability of Windows had always intrigued me, but having
the tools and knowing what to do with them were two different things. With

Ruby, I finally found two practical uses for dynamic linking, and the original
program contained both. First, the language was both installable and could be
extended dynamically. Second, the palette of gizmos could be added to
dynamically.

Was your language in Ruby the first to have a dynamic linked library
and to be linked to a visual front end? As far as I know, yes.

Using a simple example, what would this enable a programmer to do
with his or her program? Purchase a control, such as a grid control, from a
third-party vendor, install it on his or her computer, and have the grid control
appear as an integral part of the language, including the visual programming
front end.

Why do they call you “the father of Visual Basic”? Ruby came with a
small language, one suited only for executing the dozen or so simple
commands that a shell program needs. However, this language was
implemented as a chain of DLLs, any number of which could be installed at
run time. The internal parser would identify a verb and then pass it along the
chain of DLLs until one of them acknowledged that it knew how to process
the verb. If all of the DLLs passed, there was a syntax error. From our earliest
discussions, both Microsoft and I had entertained the idea of growing the
language, possibly even replacing it altogether with a “real” language. C was
the candidate most frequently mentioned, but eventually, Microsoft took
advantage of this dynamic interface to unplug our little shell language and
replace it entirely with Quick-Basic. This new marriage of language to visual
front end was static and permanent, and although the original dynamic
interface made the coupling possible, it was lost in the process.

SOME FINAL COMMENTS ON
NEW IDEAS
In the world of programming and programming tools, including
languages and environments, what projects most interest you? I’m
interested in creating programming tools that are designed to help users

instead of programmers.

What’s the most critical rule, famous quote, or design idea to keep in
mind? Bridges are not built by engineers. They are built by ironworkers.

Similarly, software programs are not built by engineers. They are built by
programmers.

2.8 Everything for Everybody: PL/I
PL/I represents the first large-scale attempt to design a language that could be
used for a broad spectrum of application areas. All previous and most
subsequent languages have focused on one particular application area, such
as science, artificial intelligence, or business.

2.8.1 Historical Background
Like Fortran, PL/I was developed as an IBM product. By the early 1960s, the
users of computers in industry had settled into two separate and quite
different camps: scientific and business. From the IBM point of view,
scientific programmers could use either the large-scale 7090 or the small-
scale 1620 IBM computers. This group used floating-point data and arrays
extensively. Fortran was the primary language, although some assembly
language also was used. They had their own user group, SHARE, and had
little contact with anyone who worked on business applications.

For business applications, people used the large 7080 or the small 1401 IBM
computers. They needed the decimal and character string data types, as well
as elaborate and efficient input and output facilities. They used COBOL,
although in early 1963 when the PL/I story begins, the conversion from
assembly language to COBOL was far from complete. This category of users
also had its own user group, GUIDE, and seldom had contact with scientific
users.

In early 1963, IBM planners perceived the beginnings of a change in this
situation. The two widely separated computer user groups were moving
toward each other in ways that were thought certain to create problems.
Scientists began to gather large files of data to be processed. This data
required more sophisticated and more efficient input and output facilities.
Business applications people began to use regression analysis to build
management information systems, which required floating-point data and

arrays. It began to appear that computing installations would soon require
two separate computers and technical staffs, supporting two very different
programming languages.8

8. At the time, large computer installations required both full-time hardware
and full-time system software maintenance staff.

These perceptions naturally led to the concept of designing a single universal
computer that would be capable of doing both floating-point and decimal
arithmetic, and therefore both scientific and business applications. Thus was
born the concept of the IBM System/360 line of computers. Along with this
came the idea of a programming language that could be used for both
business and scientific applications. For good measure, features to support
systems programming and list processing were thrown in. Therefore, the new
language was to replace Fortran, COBOL, Lisp, and the systems applications
of assembly language.

2.8.2 Design Process
The design effort began when IBM and SHARE formed the Advanced
Language Development Committee of the SHARE Fortran Project in October
1963. This new committee quickly met and formed a subcommittee called the
3 ⨯ 3 Committee, so named because it had three members from IBM and
three from SHARE. The 3 ⨯ 3 Committee met for three or four days every
other week to design the language.

As with the Short Range Committee for COBOL, the initial design was
scheduled for completion in a remarkably short time. Apparently, regardless
of the scope of a language design effort, in the early 1960s the prevailing
belief was that it could be done in three months. The first version of PL/I,
which was then named Fortran VI, was supposed to be completed by
December, less than three months after the committee was formed. The
committee pleaded successfully on two different occasions for extensions,
moving the due date back to January and then to late February 1964.

The initial design concept was that the new language would be an extension

of Fortran IV, maintaining compatibility, but that goal was dropped quickly
along with the name Fortran VI. Until 1965, the language was known as NPL
(New Programming Language). The first published report on NPL was given
at the SHARE meeting in March 1964. A more complete description
followed in April, and the version that would actually be implemented was
published in December 1964 (IBM, 1964) by the compiler group at the IBM
Hursley Laboratory in England, which was chosen to do the implementation.
In 1965, the name was changed to PL/I to avoid the confusion of the name
NPL with the National Physical Laboratory in England. If the compiler had
been developed outside the United Kingdom, the name might have remained
NPL.

2.8.3 Language Overview
Perhaps the best single-sentence description of PL/I is that it included what
were then considered the best parts of ALGOL 60 (recursion and block
structure), Fortran IV (separate compilation with communication through
global data), and COBOL 60 (data structures, input/output, and report-
generating facilities), along with an extensive collection of new constructs, all
somehow cobbled together. Because PL/I is no longer a popular language, we
will not attempt, even briefly, to discuss all the features of the language, or
even its most controversial constructs. Instead, we will mention some of the
language’s contributions to the pool of knowledge of programming
languages.

PL/I was the first programming language to have the following facilities:

Programs were allowed to create concurrently executing subprograms.
Although this was a good idea, it was poorly developed in PL/I.

It was possible to detect and handle 23 different types of exceptions, or
run-time errors.

Subprograms were allowed to be used recursively, but the capability
could be disabled, allowing more efficient linkage for nonrecursive
subprograms.

Pointers were included as a data type.

Cross-sections of arrays could be referenced. For example, the third row
of a matrix could be referenced as if it were a single-dimensioned array.

2.8.4 Evaluation
Any evaluation of PL/I must begin by recognizing the ambitiousness of the
design effort. In retrospect, it appears naive to think that so many constructs
could have been combined successfully. However, that judgment must be
tempered by acknowledging that there was little language design experience
at the time. Overall, the design of PL/I was based on the premise that any
construct that was useful and could be implemented should be included, with
insufficient concern about how a programmer could understand and make
effective use of such a collection of constructs and features. Edsger Dijkstra,
in his Turing Award Lecture (Dijkstra, 1972), made one of the strongest
criticisms of the complexity of PL/I: “I absolutely fail to see how we can
keep our growing programs firmly within our intellectual grip when by its
sheer baroqueness the programming language—our basic tool, mind you!—
already escapes our intellectual control.”

In addition to the problem with the complexity due to its large size, PL/I
suffered from a number of what are now considered to be poorly designed
constructs. Among these were pointers, exception handling, and concurrency,
although we must point out that in all cases, these constructs had not
appeared in any previous language.

In terms of usage, PL/I must be considered at least a partial success. In the
1970s, it enjoyed significant use in both business and scientific applications.
It was also widely used during that time as an instructional vehicle in
colleges, primarily in several subset forms, such as PL/C (Cornell, 1977) and
PL/CS (Conway and Constable, 1976).

The following is an example of a PL/I program:

/* PL/I PROGRAM EXAMPLE

 INPUT: AN INTEGER, LISTLEN, WHERE LISTLEN IS LESS THAN

 100, FOLLOWED BY LISTLEN-INTEGER VALUES

 OUTPUT: THE NUMBER OF INPUT VALUES THAT ARE GREATER THAN

 THE AVERAGE OF ALL INPUT VALUES */

PLIEX: PROCEDURE OPTIONS (MAIN);

 DECLARE INTLIST (1:99) FIXED.

 DECLARE (LISTLEN, COUNTER, SUM, AVERAGE, RESULT) FIXED;

 SUM = 0;

 RESULT = 0;

 GET LIST (LISTLEN);

 IF (LISTLEN > 0) & (LISTLEN < 100) THEN

 DO;

/* READ INPUT DATA INTO AN ARRAY AND COMPUTE THE SUM */

 DO COUNTER = 1 TO LISTLEN;

 GET LIST (INTLIST (COUNTER));

 SUM = SUM + INTLIST (COUNTER);

 END;

/* COMPUTE THE AVERAGE */

 AVERAGE = SUM / LISTLEN;

/* COUNT THE NUMBER OF VALUES THAT ARE > AVERAGE */

 DO COUNTER = 1 TO LISTLEN;

 IF INTLIST (COUNTER) > AVERAGE THEN

 RESULT = RESULT + 1;

 END;

/* PRINT RESULT */

 PUT SKIP LIST ('THE NUMBER OF VALUES > AVERAGE IS:');

 PUT LIST (RESULT);

 END;

ELSE

 PUT SKIP LIST ('ERROR-INPUT LIST LENGTH IS ILLEGAL');

END PLIEX;

2.9 Two Early Dynamic Languages:
APL and SNOBOL
The structure of this section is different from that of the other sections
because the languages discussed here are very different. Neither APL nor
SNOBOL had much influence on later mainstream languages.9 Some of the
interesting features of APL are discussed later in the book.

9. However, they have had some influence on some nonmainstream
languages (J is based on APL, ICON is based on SNOBOL, and AWK is
partially based on SNOBOL).

In appearance and in purpose, APL and SNOBOL are quite different. They
share two fundamental characteristics, however: dynamic typing and dynamic
storage allocation. Variables in both languages are essentially untyped. A
variable acquires a type when it is assigned a value, at which time it assumes
the type of the value assigned. Storage is allocated to a variable only when it
is assigned a value, because before that there is no way to know the amount
of storage that will be needed.

2.9.1 Origins and Characteristics
of APL
APL (Brown et al., 1988) was designed around 1960 by Kenneth E. Iverson
at IBM. It was not originally designed to be an implemented programming
language but rather was intended to be a vehicle for describing computer
architecture. APL was first described in the book from which it gets its name,
A Programming Language (Iverson, 1962). In the mid-1960s, the first
implementation of APL was developed at IBM.

APL has a large number of powerful operators that are specified with a large

number of symbols, which created a problem for implementors. Initially,
APL was used through IBM printing terminals. These terminals had special
optional print balls that provided the odd character set required by the -
language. One reason APL has so many operators is that it provides a large
number of unit operations on arrays. For example, the transpose of any
matrix is done with a single operator. The large collection of operators
provides very high expressivity but also makes APL programs difficult to
read. Therefore, people think of APL as a language that is best used for
“throw-away” programming. Although programs can be written quickly, they
should be discarded after use because they are difficult to maintain.

APL has been around for over 55 years and is still used today, although not
widely. Furthermore, it has not changed a great deal over its lifetime.

2.9.2 Origins and Characteristics
of SNOBOL
SNOBOL (pronounced “snowball”; Griswold et al., 1971) was designed in
the early 1960s by three people at Bell Laboratories: D. J. Farber, R. E.
Griswold, and I. P. Polonsky (Farber et al., 1964). It was designed
specifically for text processing. The heart of SNOBOL is a collection of
powerful operations for string pattern matching. One of the early applications
of SNOBOL was for writing text editors. Because the dynamic nature of
SNOBOL makes it slower than alternative languages, it is no longer used for
such programs. However, SNOBOL is still a live and supported language that
is used for a variety of text-processing tasks in several different application
areas.

2.10 The Beginnings of Data
Abstraction: SIMULA 67
Although SIMULA 67 never achieved widespread use and had little impact
on the programmers and computing of its time, some of the constructs it
introduced make it historically important.

2.10.1 Design Process
Two Norwegians, Kristen Nygaard and Ole-Johan Dahl, developed the
language SIMULA I between 1962 and 1964 at the Norwegian Computing
Center (NCC) in Oslo. They were primarily interested in using computers for
simulation but also worked in operations research. SIMULA I was designed
exclusively for system simulation and was first implemented in late 1964 on
a UNIVAC 1107 computer.

As soon as the SIMULA I implementation was completed, Nygaard and Dahl
began efforts to extend the language by adding new features and modifying
some existing constructs in order to make the language useful for general-
purpose applications. The result of this work was SIMULA 67, whose design
was first presented publicly in March 1967 (Dahl and Nygaard, 1967). We
will discuss only SIMULA 67, although some of the features of interest in
SIMULA 67 are also in SIMULA I.

2.10.2 Language Overview
SIMULA 67 is an extension of ALGOL 60, taking both block structure and
the control statements from that language. The primary deficiency of ALGOL
60 (and other languages at that time) for simulation applications was the
design of its subprograms. Simulation requires subprograms that are allowed
to restart at the position where they previously stopped. Subprograms with

this kind of control are known as coroutines because the caller and called
subprograms have a somewhat equal relationship with each other, rather than
the rigid master/slave relationship they have in most imperative languages.

To provide support for coroutines in SIMULA 67, the class construct was
developed. This was an important development because the concept of data
abstraction began with it and data abstraction provides the foundation for
object-oriented programming.

It is interesting to note that the important concept of data abstraction was not
developed and attributed to the class construct until 1972, when Hoare (1972)
recognized the connection.

2.11 Orthogonal Design: ALGOL 68
ALGOL 68 was the source of several new ideas in language design, some of
which were subsequently adopted by other languages. We include it here for
that reason, even though it never achieved widespread use in either Europe or
the United States.

2.11.1 Design Process
The development of the ALGOL family did not end when the revised report
on ALGOL 60 appeared in 1962, although it was six years until the next
design iteration was published. The resulting language, ALGOL 68 (van
Wijngaarden et al., 1969), was dramatically different from its predecessor.

One of the most interesting innovations of ALGOL 68 was one of its primary
design criteria: orthogonality. Recall our discussion of orthogonality in
Chapter 1. The use of orthogonality resulted in several innovative features of
ALGOL 68, one of which is described in the following section.

2.11.2 Language Overview
One important result of orthogonality in ALGOL 68 was its inclusion of user-
defined data types. Earlier languages, such as Fortran, included only a few
basic data structures. PL/I included a larger number of data structures, which
made it harder to learn and difficult to implement, but it still could not
provide an appropriate data structure for every need.

The approach of ALGOL 68 to data structures was to provide a few primitive
types and structures and allow the user to combine those primitives to define
a large number of different structures. This provision for user-defined data
types was carried over to some extent into all of the major imperative
languages designed since then. User-defined data types are valuable because

they allow the user to design data abstractions that fit particular problems
very closely. All aspects of data types are discussed in Chapter 6.

As another first in the area of data types, ALGOL 68 introduced the kind of
dynamic arrays that will be termed implicit heap-dynamic in Chapter 5. A
dynamic array is one in which the declaration does not specify subscript
bounds. Assignments to a dynamic array cause allocation of required storage.
In ALGOL 68, dynamic arrays are called flex arrays.

2.11.3 Evaluation
ALGOL 68 includes a significant number of features that had not been
previously used. Its use of orthogonality, which some may argue was
overdone, was nevertheless revolutionary.

ALGOL 68 repeated one of the sins of ALGOL 60, however, and it was an
important factor in its limited popularity. The language was described using
an elegant and concise but also unknown metalanguage. Before one could
read the language-describing document (van Wijngaarden et al., 1969), he or
she had to learn the new metalanguage, called van Wijngaarden grammars,
which were far more complex than BNF. To make matters worse, the
designers invented a collection of words to explain the grammar and the
language. For example, keywords were called indicants, substring extraction
was called trimming, and the process of a subprogram execution was called a
coercion of deproceduring, which might be meek, firm, or something else.

It is natural to contrast the design of PL/I with that of ALGOL 68, because
they appeared only a few years apart. ALGOL 68 achieved writability by the
principle of orthogonality: a few primitive concepts and the unrestricted use
of a few combining mechanisms. PL/I achieved writability by including a
large number of fixed constructs. ALGOL 68 extended the elegant simplicity
of ALGOL 60, whereas PL/I simply threw together the features of several
languages to attain its goals. Of course, it must be remembered that the goal
of PL/I was to provide a unified tool for a broad class of problems, whereas
ALGOL 68 was targeted to a single class: scientific applications.

PL/I achieved far greater acceptance than ALGOL 68, due largely to IBM’s
promotional efforts and the problems of understanding and implementing
ALGOL 68. Implementation was a difficult problem for both, but PL/I had
the resources of IBM to apply to building a compiler. ALGOL 68 enjoyed no
such benefactor.

2.12 Some Early Descendants of the
ALGOLs
All imperative languages owe some of their design to ALGOL 60 and/or
ALGOL 68. This section discusses some of the early descendants of these
languages.

2.12.1 Simplicity by Design: Pascal

2.12.1.1 Historical Background
Niklaus Wirth (Wirth is pronounced “Virt”) was a member of the
International Federation of Information Processing (IFIP) Working Group
2.1, which was created to continue the development of ALGOL in the mid-
1960s. In August 1965, Wirth and C. A. R. (“Tony”) Hoare contributed to
that effort by presenting to the group a somewhat modest proposal for
additions and modifications to ALGOL 60 (Wirth and Hoare, 1966). The
majority of the group rejected the proposal as being too small an
improvement over ALGOL 60. Instead, a much more complex revision was
developed, which eventually became ALGOL 68. Wirth, along with a few
other group members, did not believe that the ALGOL 68 report should have
been released, based on the complexity of both the language and the
metalanguage used to describe it. This position later proved to have some
validity because the ALGOL 68 documents, and therefore the language, were
indeed found to be challenging by the computing community.

The Wirth and Hoare version of ALGOL 60 was named ALGOL-W. It was
implemented at Stanford University and was used primarily as an
instructional vehicle, but only at a few universities. The primary
contributions of ALGOL-W were the value-result method of passing
parameters and the case statement for multiple selection. The value-result

method is an alternative to ALGOL 60’s pass-by-name method. Both are
discussed in Chapter 9. The case statement is discussed in Chapter 8.

Wirth’s next major design effort, again based on ALGOL 60, was his most
successful: Pascal.10 The original published definition of Pascal appeared in
1971 (Wirth, 1971). This version was modified somewhat in the
implementation process and is described in Wirth (1973). The features that
are often ascribed to Pascal in fact came from earlier languages. For example,
user-defined data types were introduced in ALGOL 68, the case statement in
ALGOL-W, and Pascal’s records are similar to those of COBOL and PL/I.

10. Pascal is named after Blaise Pascal, a seventeenth-century French
philosopher and mathematician who invented the first mechanical adding
machine in 1642 (among other things).

2.12.1.2 Evaluation
The largest impact of Pascal was on the teaching of programming. In 1970,
most students of computer science, engineering, and science were introduced
to programming with Fortran, although some universities used PL/I,
languages based on PL/I, and ALGOL-W. By the mid-1970s, Pascal had
become the most widely used language for this purpose. This was quite
natural, because Pascal was designed specifically for teaching programming.
It was not until the late 1990s that Pascal was no longer the most commonly
used language for teaching programming in colleges and universities.

Because Pascal was designed as a teaching language, it lacks several features
that are essential for many kinds of applications. The best example of this is
the impossibility of writing a subprogram that takes as a parameter an array
of variable length. Another example is the lack of any separate compilation
capability. These deficiencies naturally led to many nonstandard dialects,
such as Turbo Pascal.

Pascal’s popularity, for both teaching programming and other applications,
was based primarily on its remarkable combination of simplicity and
expressivity. Although there are some insecurities in Pascal, it is still a

relatively safe language, particularly when compared with Fortran or C. By
the mid-1990s, the popularity of Pascal was on the decline, both in industry
and in universities, primarily due to the rise of Modula-2, Ada, and C++, all
of which included features not available in Pascal.

The following is an example of a Pascal program:

{Pascal Example Program

 Input: An integer, listlen, where listlen is less than

 100, followed by listlen-integer values

 Output: The number of input values that are greater than

 the average of all input values }

program pasex (input, output);

 type intlisttype = array [1..99] of integer;

 var

 intlist : intlisttype;

 listlen, counter, sum, average, result : integer;

 begin

 result := 0;

 sum := 0;

 readln (listlen);

 if ((listlen > 0) and (listlen < 100)) then

 begin

{ Read input into an array and compute the sum }

 for counter := 1 to listlen do

 begin

 readln (intlist[counter]);

 sum := sum + intlist[counter]

 end;

{ Compute the average }

 average := sum / listlen;

{ Count the number of input values that are > average }

 for counter := 1 to listlen do

 if (intlist[counter] > average) then

 result := result + 1;

{ Print the result }

 writeln ('The number of values > average is:',

 result)

 end { of the then clause of if ((listlen > 0 ... }

 else

 writeln ('Error-input list length is not legal')

end.

2.12.2 A Portable Systems

Language: C
Like Pascal, C contributed little to the previously known collection of
language features, but it has been widely used over a long period of time.
Although originally designed for systems programming, C is well suited for a
wide variety of applications.

2.12.2.1 Historical Background
C’s ancestors include CPL, BCPL, B, and ALGOL 68. CPL was developed at
Cambridge University in the early 1960s. BCPL is a simple systems
language, also developed at Cambridge, this time by Martin Richards in 1967
(Richards, 1969).

The first work on the UNIX operating system was done in the late 1960s by
Ken Thompson at Bell Laboratories. The first version was written in
assembly language. The first high-level language implemented under UNIX
was B, which was based on BCPL. B was designed and implemented by
Thompson in 1970.

Neither BCPL nor B is a typed language, which is an oddity among high-
level languages, although both are much lower-level than a language such as
Java. Being untyped means that all data are considered machine words,
which, although simple, leads to many complications and insecurities. For
example, there is the problem of specifying floating-point rather than integer
arithmetic in an expression. In one implementation of BCPL, the variable
operands of a floating-point operation were preceded by periods. Variable
operands not preceded by periods were considered to be integers. An
alternative to this would have been to use different symbols for the floating-
point operators.

This problem, along with several others, led to the development of a new
typed language based on B. Originally called NB but later named C, it was
designed and implemented by Dennis Ritchie at Bell Laboratories in 1972
(Kernighan and Ritchie, 1978). In some cases through BCPL, and in other

cases directly, C was influenced by ALGOL 68. This is seen in its for and
switch statements, in its assigning operators, and in its treatment of pointers.

The only “standard” for C in its first decade and a half was the book by
Kernighan and Ritchie (1978).11 Over that time span, the language slowly
evolved, with different implementors adding different features. In 1989,
ANSI produced an official description of C (ANSI, 1989), which included
many of the features that implementors had already incorporated into the
language. This standard was updated in 1999 (ISO, 1999). This later version
includes a few significant changes to the language. Among these are a
complex data type, a Boolean data type, and C++-style comments (//). We
will refer to the 1989 version, which has long been called ANSI C, as C89;
we will refer to the 1999 version as C99.

11. This language is often referred to as “K & R C.”

2.12.2.2 Evaluation
C has adequate control statements and data-structuring facilities to allow its
use in many application areas. It also has a rich set of operators that provide a
high degree of expressiveness.

One of the most important reasons why C is both liked and disliked is its lack
of complete type checking. For example, in versions before C99, functions
could be written for which parameters were not type checked. Those who like
C appreciate the flexibility; those who do not like it find it too insecure. A
major reason for its great increase in popularity in the 1980s was that a
compiler for it was part of the widely used UNIX operating system. This
inclusion in UNIX provided an essentially free and quite good compiler that
was available to programmers on many different kinds of computers.

The following is an example of a C program:

/* C Example Program

 Input: An integer, listlen, where listlen is less than

 100, followed by listlen-integer values

 Output: The number of input values that are greater than

 the average of all input values */

int main (){

 int intlist[99], listlen, counter, sum, average, result;

 sum = 0;

 result = 0;

 scanf("%d", &listlen);

 if ((listlen > 0) && (listlen < 100)) {

/* Read input into an array and compute the sum */

 for (counter = 0; counter < listlen; counter++) {

 scanf("%d", &intlist[counter]);

 sum += intlist[counter];

 }

/* Compute the average */

 average = sum / listlen;

/* Count the input values that are > average */

 for (counter = 0; counter < listlen; counter++)

 if (intlist[counter] > average) result++;

/* Print result */

 printf("Number of values > average is:%d\n", result);

 }

 else

 printf("Error-input list length is not legal\n");

}

2.13 Programming Based on Logic:
Prolog
Simply put, logic programming is the use of a formal logic notation to
communicate computational processes to a computer. Predicate calculus is
the notation used in current logic programming languages.

Programming in logic programming languages is nonprocedural. Programs in
such languages do not state exactly how a result is to be computed but rather
describe the necessary form and/or characteristics of the result. What is
needed to provide this capability in logic programming languages is a concise
means of supplying the computer with both the relevant information and an
inferencing process for computing desired results. Predicate calculus supplies
the basic form of communication to the computer, and the proof method,
named resolution, developed first by Robinson (1965), supplies the
inferencing technique.

2.13.1 Design Process
During the early 1970s, Alain Colmerauer and Phillippe Roussel in the -
Artificial Intelligence Group at the University of Aix-Marseille, together with
Robert Kowalski of the Department of Artificial Intelligence at the University
of Edinburgh, developed the fundamental design of Prolog. The primary
components of Prolog are a method for specifying predicate calculus
propositions and an implementation of a restricted form of resolution. Both
predicate calculus and resolution are described in Chapter 16. The first Prolog
interpreter was developed at Marseille in 1972. The version of the language
that was implemented is described in Roussel (1975). The name Prolog is
from programming logic.

2.13.2 Language Overview

Prolog programs consist of collections of statements. Prolog has only a few
kinds of statements, but they can be complex.

One common use of Prolog is as a kind of intelligent database. This
application provides a simple framework for discussing the Prolog language.

The database of a Prolog program consists of two kinds of statements: facts
and rules. The following are examples of fact statements:

mother(joanne, jake).

father(vern, joanne).

These state that joanne is the mother of jake, and vern is the father of
joanne.

An example of a rule statement is

grandparent(X, Z) :- parent(X, Y), parent(Y, Z).

This states that it can be deduced that X is the grandparent of Z if it is true
that X is the parent of Y and Y is the parent of Z, for some specific values for
the variables X, Y, and Z.

The Prolog database can be interactively queried with goal statements, an
example of which is

father(bob, darcie).

This asks if bob is the father of darcie. When such a query, or goal, is
presented to the Prolog system, it uses its resolution process to attempt to
determine the truth of the statement. If it can conclude that the goal is true, it
displays “true.” If it cannot prove it, it displays “false.”

2.13.3 Evaluation
In the 1980s, there was a relatively small group of computer scientists who
believed that logic programming provided the best hope for escaping from
the complexity of imperative languages, and also from the enormous problem

of producing the large amount of reliable software that was needed. So far,
however, there are two major reasons why logic programming has not
become more widely used. First, as with some other nonimperative
approaches, programs written in logic languages thus far have proven to be
highly inefficient relative to equivalent imperative programs. Second, it has
been determined that it is an effective approach for only a few relatively
small areas of application: certain kinds of database management systems and
some areas of AI.

There is a dialect of Prolog that supports object-oriented programming:
Prolog++ (Moss, 1994). Logic programming and Prolog are described in
greater detail in Chapter 16.

2.14 History’s Largest Design
Effort: Ada
The Ada language is the result of the most extensive and expensive language
design effort ever undertaken. The following paragraphs briefly describe the
evolution of Ada.

2.14.1 Historical Background
The Ada language was developed for the Department of Defense (DoD), so
the state of their computing environment was instrumental in determining its
form. By 1974, over half of the applications of computers in DoD were
embedded systems. An embedded system is one in which the computer
hardware is embedded in the device it controls or for which it provides
services. Software costs were rising rapidly, primarily because of the
increasing complexity of systems. More than 450 different programming
languages were in use for DoD projects, and none of them was standardized
by DoD. Every defense contractor could define a new and different language
for every contract.12 Because of this language proliferation, application
software was rarely reused. Furthermore, no software development tools were
created (because they are usually language dependent). A great many
languages were in use, but none was actually suitable for embedded systems
applications. For these reasons, in 1974, the Army, Navy, and Air Force each
independently proposed the development of a single high-level language for
embedded systems.

12. This result was largely due to the widespread use of assembly language
for embedded systems, along with the fact that most embedded systems used
specialized processors.

2.14.2 Design Process

Noting this widespread interest, in January 1975, Malcolm Currie, director of
Defense Research and Engineering, formed the High-Order Language
Working Group (HOLWG), initially headed by Lt. Col. William Whitaker of
the Air Force. The HOLWG had representatives from all of the military
services and liaisons with Great Britain, France, and what was then West
Germany. Its initial charter was to do the following:

Identify the requirements for a new DoD high-level language.

Evaluate existing languages to determine whether there was a viable
candidate.

Recommend adoption or implementation of a minimal set of
programming languages.

In April 1975, the HOLWG produced the Strawman requirements document
for the new language (Department of Defense, 1975a). This was distributed
to military branches, federal agencies, selected industrial and university
representatives, and interested parties in Europe.

The Strawman document was followed by Woodenman (Department of
Defense, 1975b) in August 1975, Tinman (Department of Defense, 1976) in
January 1976, Ironman (Department of Defense, 1977) in January 1977, and
finally Steelman (Department of Defense, 1978) in June 1978.

After a tedious process, the many submitted proposals for the language were
narrowed down to four finalists, all of which were based on Pascal. In May
1979, the Cii Honeywell/Bull language design proposal was chosen from the
four finalists as the design that would be used. The Cii Honeywell/Bull
design team in France, the only foreign competitor among the final four, was
led by Jean Ichbiah.

In the spring of 1979, Jack Cooper of the Navy Materiel Command
recommended the name for the new language, Ada, which was then adopted.
The name commemorates Augusta Ada Byron (1815–1851), countess of
Lovelace, mathematician, and daughter of poet Lord Byron. She is generally
recognized as being the world’s first programmer. She worked with Charles
Babbage on his mechanical computers, the Difference and Analytical

Engines, writing programs for several numerical processes.

The design and the rationale for Ada were published by ACM in its
SIGPLAN Notices (ACM, 1979) and distributed to a readership of more than
10,000 people. A public test and evaluation conference was held in October
1979 in Boston, with representatives from over 100 organizations from the
United States and Europe. By November, more than 500 language reports had
been received from 15 different countries. Most of the reports suggested
small modifications rather than drastic changes and outright rejections. Based
on the language reports, the next version of the requirements specification,
the Stoneman document (Department of Defense, 1980), was released in
February 1980.

A revised version of the language design was completed in July 1980 and
was accepted as MIL-STD 1815, the standard Ada Language Reference
Manual. The number 1815 was chosen because it was the year of the birth of
Augusta Ada Byron. Another revised version of the Ada Language Reference
Manual was released in July 1982. In 1983, the American National Standards
Institute standardized Ada. This “final” official version is described in Goos
and Hartmanis (1983). The Ada language design was then frozen for a
minimum of five years.

2.14.3 Language Overview
This subsection briefly describes four of the major contributions of the Ada
language.

Packages in the Ada language provide the means for encapsulating data
objects, specifications for data types, and procedures. This, in turn, provides
the support for the use of data abstraction in program design.

The Ada language includes extensive facilities for exception handling, which
allow the programmer to gain control after any one of a wide variety of
exceptions, or run-time errors, has been detected.

Program units can be generic in Ada. For example, it is possible to write a

sort procedure that uses an unspecified type for the data to be sorted. Such a
generic procedure must be instantiated for a specified type before it can be
used, which is done with a statement that causes the compiler to generate a
version of the procedure with the given type. The availability of such generic
units increases the range of program units that might be reused, rather than
duplicated, by programmers.

The Ada language also provides for concurrent execution of special program
units, named tasks, using the rendezvous mechanism. Rendezvous is the
name of a method of intertask communication and synchronization.

2.14.4 Evaluation
Perhaps the most important aspects of the design of the Ada language to
consider are the following:

Because the design was competitive, there were no limits on
participation.

The Ada language embodies most of the concepts of software
engineering and language design of the late 1970s. Although one can
question the actual approaches used to incorporate these features, as well
as the wisdom of including such a large number of features in a
language, most agree that the features are valuable.

Although most people did not anticipate it, the development of a
compiler for the Ada language was a difficult task. Only in 1985, almost
four years after the language design was completed, did truly usable Ada
compilers begin to appear.

The most serious criticism of Ada in its first few years was that it was too
large and too complex. In particular, Hoare (1981) stated that it should not be
used for any application where reliability is critical, which is precisely the
type of application for which it was designed. On the other hand, others have
praised it as the epitome of language design for its time. In fact, even Hoare
eventually softened his view of the language.

The following is an example of an Ada program:

-- Ada Example Program

-- Input: An integer, List_Len, where List_Len is less

-- than 100, followed by List_Len-integer values

-- Output: The number of input values that are greater

-- than the average of all input values

with Ada.Text_IO, Ada.Integer.Text_IO;

use Ada.Text_IO, Ada.Integer.Text_IO;

procedure Ada_Ex is

 type Int_List_Type is array (1..99) of Integer;

 Int_List : Int_List_Type;

 List_Len, Sum, Average, Result : Integer;

begin

 Result:= 0;

 Sum := 0;

 Get (List_Len);

 if (List_Len > 0) and (List_Len < 100) then

-- Read input data into an array and compute the sum

 for Counter := 1 .. List_Len loop

 Get (Int_List(Counter));

 Sum := Sum + Int_List(Counter);

 end loop;

-- Compute the average

 Average := Sum / List_Len;

-- Count the number of values that are > average

 for Counter := 1 .. List_Len loop

 if Int_List(Counter) > Average then

 Result:= Result+ 1;

 end if;

 end loop;

-- Print result

 Put ("The number of values > average is:");

 Put (Result);

 New_Line;

 else

 Put_Line ("Error-input list length is not legal");

 end if;

end Ada_Ex;

2.14.5 Ada 95 and Ada 2005
Two of the most important new features of Ada 95 are described briefly in
the following paragraphs. In the remainder of the book, we will use the name

Ada 83 for the original version and Ada 95 (its actual name) for the later
version when it is important to distinguish between the two versions. In
discussions of language features common to both versions, we will use the
name Ada. The Ada 95 standard language is defined in ARM (1995).

The type derivation mechanism of Ada 83 is extended in Ada 95 to allow
adding new components to those inherited from a base class. This provides
for inheritance, a key ingredient in object-oriented programming languages.
Dynamic binding of subprogram calls to subprogram definitions is
accomplished through subprogram dispatching, which is based on the tag
value of derived types through classwide types. This feature provides for
polymorphism, another principal feature of object-oriented programming.

The rendezvous mechanism of Ada 83 provided only a cumbersome and
inefficient means of sharing data among concurrent processes. It was
necessary to introduce a new task to control access to the shared data. The
protected objects of Ada 95 offer an attractive alternative to this. The shared
data is encapsulated in a syntactic structure that controls all access to the data,
either by rendezvous or by subprogram call.

It is widely believed that the popularity of Ada 95 suffered because the
Department of Defense stopped requiring its use in military software systems.
There were, of course, other factors that hindered its growth in popularity.
Most important among these was the widespread acceptance of C++ for
object-oriented programming, which occurred before Ada 95 was released.

There were several additions to Ada 95 to get Ada 2005. Among these were
interfaces, similar to those of Java, more control of scheduling algorithms,
and synchronized interfaces.

Ada is widely used in both commercial and defense avionics, air traffic
control, and rail transportation, as well as in other areas.

2.15 Object-Oriented
Programming: Smalltalk
Smalltalk was the first programming language that fully supported object--
oriented programming. It is therefore an important part of any discussion of
the evolution of programming languages.

2.15.1 Design Process
The concepts that led to the development of Smalltalk originated in the Ph.D.
dissertation work of Alan Kay in the late 1960s at the University of Utah
(Kay, 1969). Kay had the remarkable foresight to predict the future
availability of powerful desktop computers. Recall that the first
microcomputer systems were not marketed until the mid-1970s, and they
were only remotely related to the machines envisioned by Kay, which were
seen to execute a million or more instructions per second and contain several
megabytes of memory. Such machines, in the form of workstations, became
widely available only in the early 1980s.

Kay believed that desktop computers would be used by nonprogrammers and
thus would need very powerful human-interfacing capabilities. The
computers of the late 1960s were largely batch oriented and were used
exclusively by professional programmers and scientists. For use by
nonprogrammers, Kay determined, a computer would have to be highly
interactive and use sophisticated graphics in its user interface. Some of the
graphics concepts came from the LOGO experience of Seymour Papert, in
which graphics were used to aid children in the use of computers (Papert,
1980).

Kay originally envisioned a system he called Dynabook, which was meant to
be a general information processor. It was based in part on the Flex language,
which he had helped design. Flex was based primarily on SIMULA 67.

Dynabook used the paradigm of the typical desk, on which there are a
number of papers, some partially covered. The top sheet is often the focus of
attention, with the others temporarily out of focus. The display of Dynabook
would model this scene, using screen windows to represent various sheets of
paper on the desktop. The user would interact with such a display both
through keystrokes and by touching the screen with his or her fingers. After
the preliminary design of Dynabook earned him a Ph.D., Kay’s goal became
to see such a machine constructed.

Kay found his way to the Xerox Palo Alto Research Center (Xerox PARC)
and presented his ideas on Dynabook. This led to his employment there and
the subsequent birth of the Learning Research Group at Xerox. The first
charge of the group was to design a language to support Kay’s programming
paradigm and implement it on the best personal computer then available.
These efforts resulted in an “Interim” Dynabook, consisting of a Xerox Alto
workstation and Smalltalk-72 software. Together, they formed a research tool
for further development. A number of research projects were conducted with
this system, including several experiments to teach programming to children.
Along with the experiments came further developments, leading to a
sequence of languages that ended with Smalltalk-80. As the language grew,
so did the power of the hardware on which it resided. By 1980, both the
language and the Xerox hardware nearly matched the early vision of Alan
Kay.

2.15.2 Language Overview
The Smalltalk world is populated by nothing but objects, from integer
constants to large complex software systems. All computing in Smalltalk is
done by the same uniform technique: sending a message to an object to
invoke one of its methods. A reply to a message is an object, which either
returns the requested information or simply notifies the sender that the
requested processing has been completed. The fundamental difference
between a message and a subprogram call is this: A message is sent to a data
object, specifically to one of the methods defined for the object. The called
method is then executed, often modifying the data of the object to which the
message was sent; a subprogram call is a message to the code of a

subprogram. Usually the data to be processed by the subprogram is sent to it
as a parameter.13

13. Of course, a method call can also pass data to be processed by the called
method.

In Smalltalk, object abstractions are classes, which are very similar to the
classes of SIMULA 67. Instances of the class can be created and are then the
objects of the program.

The syntax of Smalltalk is unlike that of most other programming language,
in large part because of the use of messages, rather than arithmetic and logic
expressions and conventional control statements. One of the Smalltalk
control constructs is illustrated in the example in the next subsection.

2.15.3 Evaluation
Smalltalk has done a great deal to promote two separate aspects of
computing: graphical user interfaces and object-oriented programming. The
windowing systems that are now the dominant method of user interfaces to
software systems grew out of Smalltalk. Today, the most significant software
design methodologies and programming languages are object oriented.
Although the origin of some of the ideas of object-oriented languages came
from SIMULA 67, they reached maturation in Smalltalk. It is clear that
Smalltalk’s impact on the computing world is extensive and will be long-
lived.

The following is an example of a Smalltalk class definition:

"Smalltalk Example Program"

"The following is a class definition, instantiations of which can draw equilateral polygons of any number of sides"

class name Polygon

superclass Object

instance variable names ourPen

numSides

sideLength

"Class methods"

 "Create an instance"

 new

 ^ super new getPen

 "Get a pen for drawing polygons"

 getPen

 ourPen <- Pen new defaultNib: 2

 "Instance methods"

 "Draw a polygon"

 draw

 numSides timesRepeat: [ourPen go: sideLength;

 turn: 360 // numSides]

 "Set length of sides"

 length: len

 sideLength <- len

 "Set number of sides"

 sides: num

 numSides <- num

2.16 Combining Imperative and
Object-Oriented Features: C++
The origins of C were discussed in Section 2.12; the origins of Simula 67
were discussed in Section 2.10; the origins of Smalltalk were discussed in
Section 2.15. C++ builds language facilities, borrowed from Simula 67, on
top of C to support much of what Smalltalk pioneered. C++ has evolved from
C through a sequence of modifications to improve its imperative features and
to add constructs to support object-oriented programming.

2.16.1 Design Process
The first step from C toward C++ was made by Bjarne Stroustrup at Bell
Laboratories in 1980. The initial modifications to C included the addition of
function parameter type checking and conversion and, more significantly,
classes, which are related to those of SIMULA 67 and Smalltalk. Also
included were derived classes, public/private access control of inherited
components, constructor and destructor methods, and friend classes. During
1981, inline functions, default parameters, and overloading of the assignment
operator were added. The resulting language was called C with Classes and is
described in Stroustrup (1983).

It is useful to consider some goals of C with Classes. The primary goal was to
provide a language in which programs could be organized as they could be
organized in SIMULA 67—that is, with classes and inheritance. A second
important goal was that there should be little or no performance penalty
relative to C. For example, array index range checking was not even
considered because a significant performance disadvantage, relative to C,
would result. A third goal of C with Classes was that it could be used for
every application for which C could be used, so virtually none of the features
of C would be removed, not even those considered to be unsafe.

By 1984, this language was extended by the inclusion of virtual methods,
which provide dynamic binding of method calls to specific method
definitions, method name and operator overloading, and reference types. This
version of the language was called C++. It is described in Stroustrup (1984).

In 1985, the first available implementation appeared: a system named Cfront,
which translated C++ programs into C programs. This version of Cfront and
the version of C++ it implemented were named Release 1.0. It is described in
Stroustrup (1986).

Between 1985 and 1989, C++ continued to evolve, based largely on user
reactions to the first distributed implementation. This next version was named
Release 2.0. Its Cfront implementation was released in June 1989. The most
important features added to C++ Release 2.0 were support for multiple
inheritance (classes with more than one parent class) and abstract classes,
along with some other enhancements. Abstract classes are described in
Chapter 12.

Release 3.0 of C++ evolved between 1989 and 1990. It added templates,
which provide parameterized types, and exception handling. The current
version of C++, which was standardized in 1998, is described in ISO (1998).

In 2002, Microsoft released its .NET computing platform, which included a
new version of C++, named Managed C++, or MC++. MC++ extends C++ to
provide access to the functionality of the .NET Framework. The additions
include properties, delegates, interfaces, and a reference type for garbage--
collected objects. Properties are discussed in Chapter 11. Delegates are
briefly discussed in the introduction to C# in Section 2.19. Because .NET
does not support multiple inheritance, neither does MC++.

2.16.2 Language Overview
Because C++ has both functions and methods, it supports both procedural
and object-oriented programming.

Operators in C++ can be overloaded, meaning the user can create operators

for existing operators on user-defined types. C++ methods can also be
overloaded, meaning the user can define more than one method with the same
name, provided either the numbers or types of their parameters are different.

Dynamic binding in C++ is provided by virtual methods. These methods
define type-dependent operations, using overloaded methods, within a
collection of classes that are related through inheritance. A pointer to an
object of class A can also point to objects of classes that have class A as an
ancestor. When this pointer points to an overloaded virtual method, the
method of the current type is chosen dynamically.

Both methods and classes can be templated, which means that they can be
parameterized. For example, a method can be written as a templated method
to allow it to have versions for a variety of parameter types. Classes enjoy the
same flexibility.

C++ supports multiple inheritance. The exception-handling constructs of C++
are discussed in Chapter 14.

2.16.3 Evaluation
C++ rapidly became and remains a widely used language. One factor in its
popularity is the availability of good and inexpensive compilers. Another
factor is that it is almost completely backward compatible with C (meaning
that C programs, with few changes, can be compiled as C++ programs), and
in most implementations it is possible to link C++ code with C code—and
thus relatively easy for the many C programmers to learn C++. Finally, at the
time C++ first appeared, when object-oriented programming began to receive
widespread interest, C++ was the only available language that was suitable
for large commercial software projects.

On the negative side, because C++ is a very large and complex language, it
clearly suffers drawbacks similar to those of PL/I. It inherited most of the
insecurities of C, which make it less safe than languages such as Ada and
Java.

2.16.4 A Replacement for
Objective-C, Swift
Beginning with MAC OS X in 2002, Apple systems software was written in
Objective-C. Swift was developed by Apple as an improved replacement for
Objective-C. Work on Swift began in 2010 by Chris Lattner. The language
was introduced in 2014, with version 2 being introduced in 2015. The first
version was proprietary, but the second is open source. It is currently
implemented under all of Apple’s operating systems, as well as on Linux.

Among the features of Swift are a tuple data type, an option type (variables of
this type can have a special no-value value), protocols (similar to Java -
interfaces), two categories of types, class and struct, which support reference
types and value types, as in C#, generic types, no pointers, a safer switch -
construct, in which the default is to not fall through to the next option, and all
statement collections, including a single statement, must be enclosed in
braces in all control constructs.

Statements need not be terminated with semicolons, unless there are two or
more statements on the same line. Types of data need not be declared, as type
inferencing is used. Unlike C and C++, assignment statements do not return a
value, so using x = 0 is not legal in a Boolean expression. This eliminates a
common error in C and C++ programs, in which x = 0 is typed instead of x
== 0. Heap allocated objects are automatically reclaimed, using reference
counters.

Swift programs can interact with Objective-C code and Swift uses the same
libraries as that language. Swift is already the tenth most popular
programming language, according to the TIOBE Community Report.

2.16.5 Another Related Language:
Delphi

Delphi (Lischner, 2000) is a hybrid language, similar to C++ and Objective-
C, in that it was created by adding object-oriented support, among other
things, to an existing imperative language, in this case Pascal. Apple
designed an object-oriented version of Pascal, named Object Pascal, but
subsequently dropped the project. Borland, which had developed Turbo
Pascal for Windows, also designed an object-oriented version of Pascal,
based on Turbo Pascal, also named Object Pascal. For several reasons,
Borland renamed Object Pascal as Delphi. The first product with that name,
which included an integrated development environment (IDE), was released
in 1995. Some consider the IDE to be Delphi and the underlying
programming language to be Object Pascal. Other suppliers of similar
products continue to refer to the language as Object Pascal.

Many of the differences between C++ and Delphi are a result of the
predecessor language and the surrounding programming cultures from which
they are derived. Because C is a powerful but potentially unsafe language,
C++ also fits that description, at least in the areas of array subscript range
checking, pointer arithmetic, and its numerous type coercions. Similarly,
because Pascal is more elegant and safer than C, Delphi is more elegant and
safer than C++. Delphi is also less complex than C++. For example, Delphi
does not include user-defined operator overloading, generic subprograms,
and parameterized classes, all of which are part of C++.

Delphi was designed by Anders Hejlsberg, who had previously developed the
Turbo Pascal system. Hejlsberg, who moved to Microsoft in 1996, was the
lead designer of C#.

2.17 An Imperative-Based Object-
Oriented Language: Java
Java’s designers started with C++, removed some constructs, changed some,
and added a few others. The resulting language provides much of the power
and flexibility of C++, but in a smaller, simpler, and safer language. Since
that initial design, Java has grown considerably.

2.17.1 Design Process
Java, like many programming languages, was designed for an application for
which there appeared to be no satisfactory existing language. In 1990, Sun
Microsystems determined there was a need for a programming language for
embedded consumer electronic devices, such as toasters, microwave ovens,
and interactive TV systems. Reliability was one of the primary goals for such
a language. It may not seem that reliability would be an important factor in
the software for a microwave oven. If an oven had malfunctioning software,
it probably would not pose a grave danger to anyone and most likely would
not lead to large legal settlements. However, if the software in a particular
model was found to be erroneous after a million units had been manufactured
and sold, their recall would entail significant cost. Therefore, reliability is an
important characteristic of the software in consumer electronic products.

After considering C and C++, it was decided that neither would be
satisfactory for developing software for consumer electronic devices.
Although C was relatively small, it did not provide support for object-
oriented programming, which they deemed a necessity. C++ supported
object-oriented programming, but it was judged to be too large and complex,
in part because it also supported procedure-oriented programming. It was also
believed that neither C nor C++ provided the necessary level of reliability.
So, a new language, later named Java, was designed. Its design was guided
by the fundamental goal of providing greater simplicity and reliability than

C++ was believed to provide.

Although the initial impetus for Java was consumer electronics, none of the
products with which it was used in its early years were ever marketed.
Starting in 1993, when the World Wide Web became widely used, and
largely because of the new graphical browsers, Java was found to be a useful
tool for Web programming. In particular, Java applets, which are relatively
small Java programs that are interpreted in Web browsers and whose output
can be included in displayed Web documents, quickly became very popular
in the middle to late 1990s. In the first few years of Java popularity, the Web
was its most common application.

The Java design team was headed by James Gosling, who had previously
designed the UNIX emacs editor and the NeWS windowing system.

2.17.2 Language Overview
As we stated previously, Java is based on C++ but it was specifically
designed to be smaller, simpler, and more reliable. Like C++, Java has both
classes and primitive types. Java arrays are instances of a predefined class,
whereas in C++ they are not, although many C++ users build wrapper classes
for arrays to add features like index range checking, which is implicit in Java.

Java does not have pointers, but its reference types provide some of the
capabilities of pointers. These references are used to point to class instances.
All objects are allocated on the heap. References are always implicitly
dereferenced, when necessary. So they behave more like ordinary scalar
variables.

Java has a primitive Boolean type named boolean, used mainly for the
control expressions of its control statements (such as if and while). Unlike C
and C++, arithmetic expressions cannot be used for control expressions.

One significant difference between Java and many of its predecessors that
support object-oriented programming, including C++, is that it is not possible
to write stand-alone subprograms in Java. All Java subprograms are methods

and are defined in classes. Furthermore, methods can be called through a
class or object only. One consequence of this is that while C++ supports both
procedural and object-oriented programming, Java supports object-oriented
programming only.

Another important difference between C++ and Java is that C++ supports
multiple inheritance directly in its class definitions. Java supports only single
inheritance of classes, although some of the benefits of multiple inheritance
can be gained by using its interface construct.

Among the C++ constructs that were not copied into Java are structs and
unions.

Java includes a relatively simple form of concurrency control through its
synchronized modifier, which can appear on methods and blocks. In either
case, it causes a lock to be attached. The lock ensures mutually exclusive
access or execution. In Java, it is relatively easy to create concurrent
processes, which in Java are called threads.

Java uses implicit storage deallocation for its objects, often called garbage
collection. This frees the programmer from needing to delete objects
explicitly when they are no longer needed. Programs written in languages
that do not have garbage collection often suffer from what is sometimes
called memory leakage, which means that storage is allocated but never
deallocated. This can obviously lead to eventual depletion of all available
storage. Object deallocation is discussed in detail in Chapter 6.

Unlike C and C++, Java includes assignment type coercions (implicit type
conversions) only if they are widening (from a “smaller” type to a “larger”
type). So int to float coercions are done across the assignment operator, but
float to int coercions are not.

2.17.3 Evaluation
The designers of Java did well at trimming the excess and/or unsafe features
of C++. For example, the elimination of half of the assignment coercions that

are done in C++ was clearly a step toward higher reliability. Index range
checking of array accesses also makes the language safer. The addition of
concurrency enhances the range of applications that can be written in the
language, as do the class libraries for graphical user interfaces, database
access, and networking.

Java’s portability, at least in intermediate form, has often been attributed to
the design of the language, but it is not. Any language can be translated to an
intermediate form and “run” on any platform that has a virtual machine for
that intermediate form. The price of this kind of portability is the cost of
interpretation, which traditionally has been about an order of magnitude more
than execution of machine code. The initial version of the Java interpreter,
called the Java Virtual Machine (JVM), indeed was at least 10 times slower
than equivalent compiled C programs. However, many Java programs are
now translated to machine code before being executed, using Just-in-Time
(JIT) compilers. This makes the efficiency of Java programs competitive with
that of programs in conventionally compiled languages such as C++, at least
when array index range checking is not considered.

The use of Java increased faster than that of any other programming
language. Initially, this was due to its value in programming dynamic Web
documents. Clearly, one of the reasons for Java’s rapid rise to prominence is
simply that programmers like its design. Some developers thought C++ was
too large and complex to be practical and safe. Java offered them an
alternative that has much of the power of C++, but in a simpler, safer
language. Another reason is that the compiler/interpreter system for Java is
free and easily obtained on the Web. Java is now widely used in a variety of
different applications areas.

The most recent version of Java, Java SE8, appeared in 2014. Since the first
version, significant features have been added to the language. Among these
are an enumeration class, generics, a new iteration construct, lambda
expressions, and numerous class libraries.

The following is an example of a Java program:

// Java Example Program

// Input: An integer, listlen, where listlen is less

// than 100, followed by length-integer values

// Output: The number of input data that are greater than

// the average of all input values

import java.io.*;

class IntSort {

public static void main(String args[]) throws IOException {

 DataInputStream in = new DataInputStream(System.in);

 int listlen,

 counter,

 sum = 0,

 average,

 result = 0;

 int[] intlist = new int[99];

 listlen = Integer.parseInt(in.readLine());

 if ((listlen > 0) && (listlen < 100)) {

/* Read input into an array and compute the sum */

 for (counter = 0; counter < listlen; counter++) {

 intlist[counter] =

 Integer.valueOf(in.readLine()).intValue();

 sum += intlist[counter];

 }

/* Compute the average */

 average = sum / listlen;

/* Count the input values that are > average */

 for (counter = 0; counter < listlen; counter++)

 if (intlist[counter] > average) result++;

/* Print result */

 System.out.println(

 "\nNumber of values > average is:" + result);

 } //** end of then clause of if ((listlen > 0) ...

 else System.out.println(

 "Error-input list length is not legal\n");

 } //** end of method main

} //** end of class IntSort

2.18 Scripting Languages
Scripting languages have evolved over the past 35 years. Early scripting -
languages were used by putting a list of commands, called a script, in a file
to be interpreted. The first of these languages, named sh (for shell), began as
a small collection of commands that were interpreted as calls to system
subprograms that performed utility functions, such as file management and
simple file filtering. To this were added variables, control flow statements,
functions, and various other capabilities, and the result is a complete
programming language. One of the most powerful and widely known of these
is ksh (Bolsky and Korn, 1995), which was developed by David Korn at Bell
Laboratories.

Another scripting language is awk, developed by Al Aho, Brian Kernighan,
and Peter Weinberger at Bell Laboratories (Aho et al., 1988). awk began as a
report-generation language but later became a more general-purpose
language.

2.18.1 Origins and Characteristics
of Perl
The Perl language, developed by Larry Wall, was originally a combination of
sh and awk. Perl has grown significantly since its beginnings and is now a
powerful, although still somewhat primitive, programming language.
Although it is still often called a scripting language, it is actually more similar
to a typical imperative language, since it is always compiled, at least into an
intermediate language, before it is executed. Furthermore, it has all the
constructs to make it applicable to a wide variety of areas of computational
problems.

Perl has a number of interesting features, only a few of which are mentioned
in this chapter and discussed later in the book.

Variables in Perl are statically typed and implicitly declared. There are three
distinctive namespaces for variables, denoted by the first character of the
variables’ names. All scalar variable names begin with dollar signs ($), all
array names begin with at signs (@), and all hash names (hashes are briefly
described below) begin with percent signs (%). This convention makes
variable names in programs more readable than those of most other
programming languages.

Perl includes a large number of implicit variables. Some of them are used to
store Perl parameters, such as the particular form of newline character or
characters that are used in the implementation. Implicit variables are
commonly used as default parameters to built-in functions and default
operands for some operators. The implicit variables have distinctive—
although cryptic—names, such as $! and @_. The implicit variables’ names,
like the user-defined variable names, use the three namespaces, so $! is the
name of a scalar variable.

Perl’s arrays have two characteristics that set them apart from the arrays of
the common imperative languages. First, they have dynamic length, meaning
that they can grow and shrink as needed during execution. Second, arrays can
be sparse, meaning that there can be gaps between the elements. These gaps
do not take space in memory, and the iteration statement used for arrays,
foreach, iterates over the missing elements.

Perl includes associative arrays, which are called hashes. These data
structures are indexed by strings and are implicitly controlled hash tables.
The Perl system supplies the hash function and increases the size of the
structure when necessary.

Perl is a powerful, but somewhat dangerous, language. Its scalar type stores
both strings and numbers, which are normally stored in double-precision -
floating-point form. Depending on the context, numbers may be coerced to
strings and vice versa. If a string is used in numeric context and the string
cannot be converted to a number, zero is used and there is no warning or
error message provided for the user. This can lead to errors that are not
detected by the compiler or run-time system. Array indexing cannot be
checked, because there is no set subscript range for any array. References to
nonexistent elements return undef, which is interpreted as zero in numeric

context. So, there is also no error detection in array element access.

Perl’s initial use was as a UNIX utility for processing text files. It was and
still is widely used as a UNIX system administration tool. When the World
Wide Web appeared, Perl achieved widespread use as a common gateway
interface language for use with the Web, although it is now rarely used for
that purpose. Perl is used as a general-purpose language for a variety of
applications, such as computational biology and artificial intelligence.

The following is an example of a Perl program:

Perl Example Program

Input: An integer, $listlen, where $listlen is less

than 100, followed by $listlen-integer values.

Output: The number of input values that are greater than

the average of all input values.

($sum, $result) = (0, 0);

$listlen = <STDIN>;

if (($listlen > 0) && ($listlen < 100)) {

Read input into an array and compute the sum

 for ($counter = 0; $counter < $listlen; $counter++) {

 $intlist[$counter] = <STDIN>;

 } #- end of for (counter ...

Compute the average

 $average = $sum / $listlen;

Count the input values that are > average

 foreach $num (@intlist) {

 if ($num > $average) { $result++; }

 } #- end of foreach $num ...

Print result

 print "Number of values > average is: $result \n";

} #- end of if (($listlen ...

else {

 print "Error--input list length is not legal \n";

}

2.18.2 Origins and Characteristics
of JavaScript
Use of the Web exploded in the mid-1990s after the first graphical browsers

appeared. The need for computation associated with HTML documents,
which by themselves are completely static, quickly became critical.
Computation on the server side was made possible with the common gateway
interface (CGI), which allowed HTML documents to request the execution of
programs on the server, with the results of such computations returned to the
browser in the form of HTML documents. Computation on the browser end
became available with the advent of Java applets. Both of these approaches
have now been replaced for the most part by newer technologies, primarily
scripting languages.

JavaScript was originally developed by Brendan Eich at Netscape. Its original
name was Mocha. It was later renamed LiveScript. In late 1995, LiveScript
became a joint venture of Netscape and Sun Microsystems and its name was
changed to JavaScript. JavaScript has gone through extensive evolution,
moving from version 1.0 to version 1.5 by adding many new features and
capabilities. A language standard for JavaScript was developed in the late
1990s by the European Computer Manufacturers Association (ECMA) as
ECMA-262. This standard has also been approved by the International
Standards Organization (ISO) as ISO-16262. Microsoft’s version of
JavaScript is named JScript .NET.

Although a JavaScript interpreter could be embedded in many different
applications, its most common use is embedded in Web browsers. JavaScript
code is embedded in HTML documents and interpreted by the browser when
the documents are displayed. The primary uses of JavaScript in Web
programming are to validate form input data and create dynamic HTML
documents.

In spite of its name, JavaScript is related to Java only through the use of
similar syntax. Java is strongly typed, but JavaScript is dynamically
typed (see Chapter 5). JavaScript’s character strings and its arrays have
dynamic length. Because of this, array indices are not checked for validity,
although this is required in Java. Java fully supports object-oriented
programming, but JavaScript supports neither inheritance nor dynamic
binding of method calls to methods.

One of the most important uses of JavaScript is for dynamically creating and
modifying HTML documents. JavaScript defines an object hierarchy that

matches a hierarchical model of an HTML document, which is defined by the
Document Object Model. Elements of an HTML document are accessed
through these objects, providing the basis for dynamic control of the elements
of documents.

Following is a JavaScript script for the problem previously solved in several
languages in this chapter. Note that it is assumed that this script will be called
from an HTML document and interpreted by a Web browser.

// example.js

// Input: An integer, listLen, where listLen is less

// than 100, followed by listLen-numeric values

// Output: The number of input values that are greater

// than the average of all input values

var intList = new Array(99);

var listLen, counter, sum = 0, result = 0;

listLen = prompt (

 "Please type the length of the input list", "");

if ((listLen > 0) && (listLen < 100)) {

// Get the input and compute its sum

 for (counter = 0; counter < listLen; counter++) {

 intList[counter] = prompt (

 "Please type the next number", "");

 sum += parseInt(intList[counter]);

 }

// Compute the average

 average = sum / listLen;

// Count the input values that are > average

 for (counter = 0; counter < listLen; counter++)

 if (intList[counter] > average) result++;

// Display the results

 document.write("Number of values > average is: ",

 result, "
");

} else

 document.write(

 "Error - input list length is not legal
");

2.18.3 Origins and Characteristics
of PHP
PHP (Tatroe et al., 2013) was developed by Rasmus Lerdorf, an employee of

the Apache Group, in 1994. His initial motivation was to provide a tool to
help track visitors to his personal Web site. In 1995, he developed a package
called Personal Home Page Tools, which became the first publicly distributed
version of PHP. Originally, PHP was an abbreviation for Personal Home
Page. Later, its user community began using the recursive name PHP:
Hypertext Preprocessor, which subsequently forced the original name into
obscurity. PHP is now developed, distributed, and supported as an open-
source product. PHP processors are resident on most Web servers.

PHP is an HTML-embedded server-side scripting language specifically
designed for Web applications. PHP code is interpreted on the Web server
when an HTML document in which it is embedded has been requested by a
browser. PHP code usually produces HTML code as output, which replaces
the PHP code in the HTML document. Therefore, a Web browser never sees
PHP code.

PHP is similar to JavaScript in its syntactic appearance, the dynamic nature
of its strings and arrays, and its use of dynamic typing. PHP’s arrays are a
combination of JavaScript’s arrays and Perl’s hashes.

The original version of PHP did not support object-oriented programming.
Abstract classes, interfaces, destructors, and access controls for class
members have since been added to the language.

PHP allows simple access to HTML form data, so form processing is easy
with PHP. PHP provides support for many different database management
systems. This makes it a useful language for building programs that need
Web access to databases.

The current version of PHP is 7, released in 2015.

2.18.4 Origins and Characteristics
of Python
Python (Lutz, 2013) is an object-oriented interpreted scripting language. Its

initial design was by Guido van Rossum at Stichting Mathematisch Centrum
in the Netherlands in the early 1990s. Its development is being continued by
the Python Software Foundation. Python is being used for the same kinds of
applications as Perl: system administration and other relatively small
computing tasks. Python is an open-source system that is available for most
common computing platforms. The Python implementation is available at
www.python.org, which also has extensive information regarding Python.

Python’s syntax is not based directly on any commonly used language. It is
type checked, but dynamically typed. Instead of arrays, Python includes three
kinds of data structures: lists; immutable lists, which are called tuples; and
hashes, which are called dictionaries. There is a collection of list methods,
such as append, insert, remove, and sort, as well as a collection of methods
for dictionaries, such as keys, values, copy, and has_key. Python also
supports list comprehensions, which originated with the Haskell
language. List comprehensions are discussed in Section 15.8.

Python is object oriented, includes the pattern-matching capabilities of Perl,
and has exception handling. Garbage collection is used to reclaim objects
when they are no longer needed.

Support for form processing is provided by the cgi module. Modules that
support cookies, networking, and database access are also available.

Python includes support for concurrency with its threads, as well as support
for network programming with its sockets. It also has more support for
functional programming than other nonfunctional programming languages.

One of the more interesting features of Python is that it can be easily
extended by any user. The modules that support the extensions can be written
in any compiled language. Extensions can add functions, variables, and
object types. These extensions are implemented as additions to the Python
interpreter.

2.18.5 Origins and Characteristics

http://www.python.org

of Ruby
Ruby (Thomas et al., 2005) was designed by Yukihiro Matsumoto (aka Matz)
in the early 1990s and released in 1996. Since then it has continually evolved.
The motivation for Ruby was dissatisfaction of its designer with Perl and
Python. Although both Perl and Python support object-oriented
programming,14 neither is a pure object-oriented language, at least in the
sense that each has primitive (nonobject) types and each supports functions.

14. Actually, Python’s support for object-oriented programming is partial.

The primary characterizing feature of Ruby is that it is a pure object-oriented
language, just as is Smalltalk. Every data value is an object and all operations
are via method calls. The operators in Ruby are only syntactic mechanisms to
specify method calls for the corresponding operations. Because they are
methods, they can be redefined. All classes, predefined or user defined, can
be subclassed.

Both classes and objects in Ruby are dynamic in the sense that methods can
be dynamically added to either. This means that both classes and objects can
have different sets of methods at different times during execution. So,
different instantiations of the same class can behave differently. Collections
of methods, data, and constants can be included in the definition of a class.

The syntax of Ruby is related to that of Eiffel and Ada. There is no need to
declare variables, because dynamic typing is used. The scope of a variable is
specified in its name: A variable whose name begins with a letter has local
scope; one that begins with @ is an instance variable; one that begins with $
has global scope. A number of features of Perl are present in Ruby, including
implicit variables with silly names, such as $_.

As is the case with Python, any user can extend and/or modify Ruby. Ruby is
culturally interesting because it is the first programming language designed in
Japan that has achieved relatively widespread use in the United States.

2.19 The Flagship .NET Language:
C#
C#, along with the development platform .NET,15 was announced by
Microsoft in 2000. In January 2002, production versions of both were
released.

15. The .NET development system is briefly discussed in Chapter 1.

2.19.1 Design Process
C# is based on C++ and Java but includes some ideas from Delphi and Visual
Basic. Its lead designer, Anders Hejlsberg, also designed Turbo Pascal and -
Delphi, which explains the Delphi parts of the heritage of C#.

The purpose of C# is to provide a language for component-based software
development, specifically for such development in the .NET Framework. In
this environment, components from a variety of languages easily can be
combined to form systems. All of the .NET languages, which include C#,
VB.NET, Managed C++, F#, and JScript .NET,16 use the common type
system (CTS). The CTS provides a common class library. All types in all five
.NET languages inherit from a single class root, System.Object. Compilers
that conform to the CTS specification create objects that can be combined
into software systems. All .NET languages are compiled into the same
intermediate form, Intermediate Language (IL).17 Unlike Java, however, the
IL is never interpreted. A Just-in-Time compiler is used to translate IL into
machine code before it is executed.

16. Many other languages have been modified to be .NET languages.

17. Initially, IL was called MSIL (Microsoft Intermediate Language), but
apparently many people thought that name was too long.

2.19.2 Language Overview
Many believe that one of Java’s most important advances over C++ lies in the
fact that it excludes some of C++’s features. For example, C++ supports
multiple inheritance, pointers, structs, enum types, operator overloading, and a
goto statement, but Java includes none of these. The designers of C#
obviously disagreed with this wholesale removal of features, because all of
these except multiple inheritance have been included in C#.

To the credit of C#’s designers, however, in several cases, the C# version of a
C++ feature has been improved. For example, the enum types of C# are safer
than those of C++, because they are never implicitly converted to integers.
This allows them to be more type safe. The struct type was changed
significantly, resulting in a truly useful construct, whereas in C++ it serves
virtually no purpose. C#’s structs are discussed in Chapter 12. C# takes a stab
at improving the switch statement that is used in C, C++, and Java. C#’s
switch is discussed in Chapter 8.

Although C++ includes function pointers, they share the lack of safety that is
inherent in C++’s pointers to variables. C# includes a new type, delegates,
which are both object-oriented and type-safe references to subprograms.
Delegates are used for implementing event handlers, controlling the
execution of threads, and callbacks.18 Callbacks are implemented in Java
with interfaces; in C++, method pointers are used.

18. When an object calls a method of another object and needs to be notified
when that method has completed its task, the called method calls its caller
back. This is known as a callback.

In C#, methods can take a variable number of parameters, as long as they are
all the same type. This is specified by the use of a formal parameter of array
type, preceded by the params reserved word.

Both C++ and Java use two distinct typing systems: one for primitives and
one for objects. In addition to being confusing, this leads to a frequent need
to convert values between the two systems—for example, to put a primitive

value into a collection that stores objects. C# makes the conversion between
values of the two typing systems partially implicit through the implicit
boxing and unboxing operations, which are discussed in detail in Chapter
12.19

19. This feature was added to Java in Java 5.0.

Among the other features of C# are rectangular arrays, which are not
supported in most programming languages, and a foreach statement, which
is an iterator for arrays and collection objects. A similar foreach statement is
found in Perl, PHP, and Java 5.0. Also, C# includes properties, which are an
alternative to public data members. Properties are specified as data members
with get and set methods, which are implicitly called when references and
assignments are made to the associated data members.

C# has evolved continuously and quickly from its initial release in 2002. The
most recent version is C# 7.0. New in C# 7.0 are tuples and a form of pattern
matching.

2.19.3 Evaluation
C# was meant to be an improvement over both C++ and Java as a general--
purpose programming language. Although it can be argued that some of its
features are a step backward, C# includes some constructs that move it
beyond its predecessors. Some of its features will surely be adopted by other
programming languages of the future.

The following is an example of a C# program:

// C# Example Program

// Input: An integer, listlen, where listlen is less than

// 100, followed by listlen-integer values.

// Output: The number of input values that are greater

// than the average of all input values.

using System;

public class Ch2example {

 static void Main() {

 int[] intlist;

 int listlen,

 counter,

 sum = 0,

 average,

 result = 0;

 intList = new int[99];

 listlen = Int32.Parse(Console.readLine());

 if ((listlen > 0) && (listlen < 100)) {

// Read input into an array and compute the sum

 for (counter = 0; counter < listlen; counter++) {

 intList[counter] =

 Int32.Parse(Console.readLine());

 sum += intList[counter];

 } //- end of for (counter ...

// Compute the average

 average = sum / listlen;

// Count the input values that are > average

 foreach (int num in intList)

 if (num > average) result++;

// Print result

 Console.WriteLine(

 "Number of values > average is:" + result);

 } //- end of if ((listlen ...

 else

 Console.WriteLine(

 "Error--input list length is not legal");

 } //- end of method Main

} //- end of class Ch2example

2.20 Markup-Programming Hybrid
Languages
A markup-programming hybrid language is a markup language in which
some of the elements can specify programming actions, such as control flow
and computation. The following subsections introduce two such hybrid
languages, XSLT and JSP.

2.20.1 XSLT
eXtensible markup language (XML) is a metamarkup language. Such a
language is used to define markup languages. XML-derived markup
languages are used to define XML data documents. Although XML
documents are human readable, they are processed by computers. This
processing sometimes consists only of transformations to alternative forms
that can be effectively displayed or printed. In many cases, such
transformations are to HTML, which can be displayed by a Web browser. In
other cases, the data in the document is processed, just as with other forms of
data files.

The transformation of XML documents to HTML documents is specified in
another markup language, eXtensible stylesheet language transformations
(XSLT) (www.w3.org/TR/XSLT). XSLT can specify programming-like
operations. Therefore, XSLT is a markup-programming hybrid language.
XSLT was defined by the World Wide Web Consortium (W3C) in the late
1990s.

An XSLT processor is a program that takes as input an XML data document
and an XSLT document (which is also in the form of an XML document). In
this processing, the XML data document is transformed to another XML
document,20 using the transformations described in the XSLT document. The
XSLT document specifies transformations by defining templates, which are

data patterns that could be found by the XSLT processor in the XML input
file. Associated with each template in the XSLT document are its
transformation instructions, which specify how the matching data is to be
transformed before being put in the output document. So, the templates (and
their associated processing) act as subprograms, which are “executed” when
the XSLT processor finds a pattern match in the data of the XML document.

20. The output document of the XSLT processor could also be in HTML or
plain text.

XSLT also has programming constructs at a lower level. For example, a
looping construct is included, which allows repeated parts of the XML
document to be selected. There is also a sort process. These lower-level
constructs are specified with XSLT tags, such as <for-each>.

2.20.2 JSP
The “core” part of the Java Server Pages Standard Tag Library (JSTL) is
another markup-programming hybrid language, although its form and
purpose are different from those of XSLT. Before discussing JSTL, it is
necessary to introduce the ideas of servlets and Java Server Pages (JSP). A
servlet is an instance of a Java class that resides on and is executed on a Web
server system. The execution of a servlet is requested by a markup document
being displayed by a Web browser. The servlet’s output, which is in the form
of an HTML document, is returned to the requesting browser. A program that
runs in the Web server process, called a servlet container, controls the
execution of servlets. Servlets are commonly used for form processing and
for database access.

JSP is a collection of technologies designed to support dynamic Web
documents and provide other processing needs of Web documents. When a
JSP document, which is often a mixture of HTML and Java, is requested by a
browser, the JSP processor program, which resides on a Web server system,
converts the document to a servlet. The document’s embedded Java code is
copied to the servlet. The plain HTML is copied into Java print statements
that output it as is. The JSTL markup in the JSP document is processed, as

discussed in the following paragraph. The servlet produced by the JSP
processor is run by the servlet container.

The JSTL defines a collection of XML action elements that control the
processing of the JSP document on the Web server. These elements have the
same form as other elements of HTML and XML. One of the most
commonly used JSTL control action elements is if, which specifies a
Boolean expression as an attribute.21 The content of the if element (the text
between the opening tag (<if>) and its closing tag (</if>)) is HTML code
that will be included in the output document only if the Boolean expression
evaluates to true. The if element is related to the C/C++ #if preprocessor
command. The JSP container processes the JSTL parts of JSP documents in a
way that is similar to how the C/C++ preprocessor processes C and C++
programs. The preprocessor commands are instructions for the preprocessor
to specify how the output file is to be constructed from the input file.
Similarly, JSTL control action elements are instructions for the JSP processor
to specify how to build the XML output file from the XML input file.

21. An attribute in HTML, which is embedded in the opening tag of an
element, provides further information about that element.

One common use of the if element is for the validation of form data
submitted by a browser user. Form data is accessible by the JSP processor
and can be tested with the if element to ensure that it is sensible data. If not,
the if element can insert an error message for the user in the output
document.

For multiple selection control, JSTL has choose, when, and otherwise
elements. JSTL also includes a forEach element, which iterates over
collections, which typically are form values from a client. The forEach
element can include begin, end, and step attributes to control its iterations.

SUMMARY
We have investigated the development of a number of programming
languages. This chapter gives the reader a good perspective on current issues
in language design. We have set the stage for an in-depth discussion of the
important features of contemporary languages.

BIBLIOGRAPHIC NOTES
Perhaps the most important source of historical information about the
development of early programming languages is History of Programming
Languages, edited by Richard Wexelblat (1981). It contains the
developmental background and environment of 13 important programming
languages, as told by the designers themselves. A similar work resulted from
a second “history” conference, published as a special issue of ACM SIGPLAN
Notices (ACM, 1993a). In this work, the history and evolution of 13 more
programming languages are discussed.

The paper “Early Development of Programming Languages” (Knuth and
Pardo, 1977), which is part of the Encyclopedia of Computer Science and
Technology, is an excellent 85-page work that details the development of
languages up to and including Fortran. The paper includes example programs
to demonstrate the features of many of those languages.

Another book of great interest is Programming Languages: History and -
Fundamentals, by Jean Sammet (1969). It is a 785-page work filled with
details of 80 programming languages of the 1950s and 1960s. Sammet has
also published several updates to her book, such as Roster of Programming
Languages for 1974–75 (1976).

REVIEW QUESTIONS
1. In what year was Plankalkül designed? In what year was that design

published?

2. What two common data structures were included in Plankalkül?

3. How were the pseudocodes of the early 1950s implemented?

4. Speedcoding was invented to overcome two significant shortcomings of
the computer hardware of the early 1950s. What were they?

5. Why was the slowness of interpretation of programs acceptable in the
early 1950s?

6. What hardware capability that first appeared in the IBM 704 computer
strongly affected the evolution of programming languages? Explain
why.

7. In what year was the Fortran design project begun?

8. What was the primary application area of computers at the time Fortran
was designed?

9. What was the source of all of the control flow statements of Fortran I?

10. What was the most significant feature added to Fortran I to get Fortran
II?

11. What control flow statements were added to Fortran IV to get Fortran
77?

12. Which version of Fortran was the first to have any sort of dynamic
variables?

13. Which version of Fortran was the first to have character string handling?

14. Why were linguists interested in artificial intelligence in the late 1950s?

15. Where was Lisp developed? By whom?

16. In what way are Scheme and Common Lisp opposites of each other?

17. What dialect of Lisp is used for introductory programming courses at
some universities?

18. What two professional organizations together designed ALGOL 60?

19. In what version of ALGOL did block structure appear?

20. What missing language element of ALGOL 60 damaged its chances for
widespread use?

21. What language was designed to describe the syntax of ALGOL 60?

22. On what programming language was COBOL based?

23. In what year did the COBOL design process begin?

24. What data structure that appeared in COBOL originated with
Plankalkül?

25. What organization was most responsible for the early success of
COBOL (in terms of extent of use)?

26. What user group was the target of the first version of Basic?

27. Why was Basic an important language in the early 1980s?

28. PL/I was designed to replace what two languages?

29. For what new line of computers was PL/I designed?

30. What features of SIMULA 67 are now important parts of some object-
oriented languages?

31. What innovation of data structuring was introduced in ALGOL 68 but is
often credited to Pascal?

32. What design criterion was used extensively in ALGOL 68?

33. What language introduced the case statement?

34. What operators in C were modeled on similar operators in ALGOL 68?

35. What are two characteristics of C that make it less safe than Pascal?

36. What is a nonprocedural language?

37. What are the two kinds of statements that populate a Prolog database?

38. What is the primary application area for which Ada was designed?

39. What are the concurrent program units of Ada called?

40. What Ada construct provides support for abstract data types?

41. What populates the Smalltalk world?

42. What three concepts are the basis for object-oriented programming?

43. Why does C++ include the features of C that are known to be unsafe?

44. What language was Swift designed to replace?

45. What do the Ada and COBOL languages have in common?

46. What was the first application for Java?

47. What characteristic of Java is most evident in JavaScript?

48. How does the typing system of PHP and JavaScript differ from that of
Java?

49. What array structure is included in C# but not in C, C++, or Java?

50. What two languages was the original version of Perl meant to replace?

51. For what application area is JavaScript most widely used?

52. What is the relationship between JavaScript and PHP, in terms of their
use?

53. PHP’s primary data structure is a combination of what two data
structures from other languages?

54. What data structure does Python use in place of arrays?

55. What characteristic does Ruby share with Smalltalk?

56. What characteristic of Ruby’s arithmetic operators makes them unique
among those of other languages?

57. What deficiency of the switch statement of C is addressed with the
changes made by C# to that statement?

58. What is the primary platform on which C# is used?

59. What are the inputs to an XSLT processor?

60. What is the output of an XSLT processor?

61. What element of the JSTL is related to a subprogram?

62. To what is a JSP document converted by a JSP processor?

63. Where are servlets executed?

PROBLEM SET
1. What features of Plankalkül do you think would have had the greatest

influence on Fortran 0 if the Fortran designers had been familiar with
Plankalkül?

2. Determine the capabilities of Backus’s 701 Speedcoding system, and
compare them with those of a contemporary programmable hand
calculator.

3. Write a short history of the A-0, A-1, and A-2 systems designed by
Grace Hopper and her associates.

4. Compare the facilities of Fortran 0 with those of the Laning and Zierler
system.

5. Which of the three original goals of the ALGOL design committee, in
your opinion, was most difficult to achieve at that time?

6. Make an educated guess as to the most common syntax error in Lisp
programs.

7. Lisp began as a pure functional language but gradually acquired more
and more imperative features. Why?

8. Describe in detail the three most important reasons, in your opinion,
why ALGOL 60 did not become a very widely used language.

9. Why, in your opinion, did COBOL allow long identifiers when Fortran
and ALGOL did not?

10. Outline the major motivation of IBM in developing PL/I.

11. Was IBM’s assumption, on which it based its decision to develop PL/I,
correct, given the history of computers and language developments since
1964?

12. Describe, in your own words, the concept of orthogonality in
programming language design.

13. What is the primary reason why PL/I became more widely used than
ALGOL 68?

14. What are the arguments both for and against the idea of a typeless
language?

15. Are there any logic programming languages other than Prolog?

16. What is your opinion of the argument that languages that are too
complex are too dangerous to use, and we should therefore keep all
languages small and simple?

17. Do you think language design by committee is a good idea? Support
your opinion.

18. Languages continually evolve. What sort of restrictions do you think are
appropriate for changes in programming languages? Compare your
answers with the evolution of Fortran.

19. Build a table identifying all of the major language developments,
together with when they occurred, in what language they first appeared,
and the identities of the developers.

20. There have been some public interchanges between Microsoft and Sun
concerning the design of Microsoft’s J++ and C# and Sun’s Java. Read
some of these documents, which are available on their respective Web
sites, and write an analysis of the disagreements concerning the
delegates.

21. In recent years data structures have evolved within scripting languages
to replace traditional arrays. Explain the chronological sequence of these
developments.

22. Explain two reasons why pure interpretation is an acceptable
implementation method for several recent scripting languages.

23. Why, in your opinion, do new scripting languages appear more
frequently than new compiled languages?

24. Give a brief general description of a markup-programming hybrid
language.

PROGRAMMING EXERCISES
1. To understand the value of records in a programming language, write a

small program in a C-based language that uses an array of structs that
store student information, including name, age, GPA as a float, and
grade level as a string (e.g., “freshmen,” etc.). Also, write the same
program in the same language without using structs.

2. To understand the value of recursion in a programming language, write
a program that implements quicksort, first using recursion and then
without recursion.

3. To understand the value of counting loops, write a program that
implements matrix multiplication using counting loop constructs. Then
write the same program using only logical loops—for example, while
loops.

3 Describing Syntax and Semantics
1. 3.1 Introduction

2. 3.2 The General Problem of Describing Syntax

3. 3.3 Formal Methods of Describing Syntax

4. 3.4 Attribute Grammars

5. 3.5 Describing the Meanings of Programs: Dynamic Semantics

This chapter begins by defining the terms syntax and semantics. Then, a
detailed discussion of the most common method of describing syntax,
context-free grammars (also known as Backus-Naur Form), is presented.
Included in this discussion are derivations, parse trees, ambiguity,
descriptions of operator precedence and associativity, and extended Backus-
Naur Form. Attribute grammars, which can be used to describe both the
syntax and static semantics of programming languages, are discussed next. In
the last section, three formal methods of describing semantics—operational,
axiomatic, and denotational semantics—are introduced. Because of the
inherent complexity of the semantics description methods, our discussion of
them is brief. One could easily write an entire book on just one of the three
(as several authors have).

3.1 Introduction
The task of providing a concise yet understandable description of a
programming language is difficult but essential to the language’s success.
ALGOL 60 and ALGOL 68 were first presented using concise formal
descriptions; in both cases, however, the descriptions were not easily
understandable, partly because each used a new notation. The levels of
acceptance of both languages suffered as a result. On the other hand, some
languages have suffered the problem of having many slightly different
dialects, a result of a simple but informal and imprecise definition.

One of the problems in describing a language is the diversity of the people
who must understand the description. Among these are initial evaluators,
implementors, and users. Most new programming languages are subjected to
a period of scrutiny by potential users, often people within the organization
that employs the language’s designer, before their designs are completed.
These are the initial evaluators. The success of this feedback cycle depends
heavily on the clarity of the description.

Programming language implementors obviously must be able to determine
how the expressions, statements, and program units of a language are formed,
and also their intended effect when executed. The difficulty of the
implementors’ job is, in part, determined by the completeness and precision
of the language description.

Finally, language users must be able to determine how to encode software
solutions by referring to a language reference manual. Textbooks and courses
enter into this process, but language manuals are usually the only
authoritative printed information source about a language.

The study of programming languages, like the study of natural languages, can
be divided into examinations of syntax and semantics. The syntax of a
programming language is the form of its expressions, statements, and -
program units. Its semantics is the meaning of those expressions, statements,
and program units. For example, the syntax of a Java while statement is

while (boolean_expr) statement

The semantics of this statement form is that when the current value of the
Boolean expression is true, the embedded statement is executed. Then control
implicitly returns to the Boolean expression to repeat the process. If the
Boolean expression is false, control transfers to the statement following the
while construct.

Although they are often separated for discussion purposes, syntax and
semantics are closely related. In a well-designed programming language,
semantics should follow directly from syntax; that is, the appearance of a
statement should strongly suggest what the statement is meant to accomplish.

Describing syntax is easier than describing semantics, partly because a
concise and universally accepted notation is available for syntax description,
but none has yet been developed for semantics.

3.2 The General Problem of
Describing Syntax
A language, whether natural (such as English) or artificial (such as Java), is a
set of strings of characters from some alphabet. The strings of a language are
called sentences or statements. The syntax rules of a language specify which
strings of characters from the language’s alphabet are in the language.
English, for example, has a large and complex collection of rules for
specifying the syntax of its sentences. By comparison, even the largest and
most complex programming languages are syntactically very simple.

Formal descriptions of the syntax of programming languages, for simplicity’s
sake, often do not include descriptions of the lowest-level syntactic units.
These small units are called lexemes. The description of lexemes can be
given by a lexical specification, which is usually separate from the syntactic
description of the language. The lexemes of a programming language include
its numeric literals, operators, and special words, among others. One can
think of programs as strings of lexemes rather than of characters.

Lexemes are partitioned into groups—for example, the names of variables,
methods, classes, and so forth in a programming language form a group
called identifiers. Each lexeme group is represented by a name, or token. So,
a token of a language is a category of its lexemes. For example, an identifier
is a token that can have lexemes, or instances, such as sum and total. In
some cases, a token has only a single possible lexeme. For example, the
token for the arithmetic operator symbol + has just one possible lexeme.
Consider the following Java statement:

index = 2 * count + 17;

The lexemes and tokens of this statement are

The example language descriptions in this chapter are very simple, and most
include lexeme descriptions.

3.2.1 Language Recognizers
In general, languages can be formally defined in two distinct ways: by
recognition and by generation (although neither provides a definition that is
practical by itself for people trying to learn or use a programming language).
Suppose we have a language L that uses an alphabet ∑ of characters. To
define L formally using the recognition method, we would need to construct a
mechanism R, called a recognition device, capable of reading strings of
characters from the alphabet ∑. R would indicate whether a given input string
was or was not in L. In effect, R would either accept or reject the given
string. Such devices are like filters, separating legal sentences from those that
are incorrectly formed. If R, when fed any string of characters over ∑,
accepts it only if it is in L, then R is a description of L. Because most useful
languages are, for all practical purposes, infinite, this might seem like a

lengthy and ineffective process. Recognition devices, however, are not used
to enumerate all of the sentences of a language—they have a different
purpose.

The syntax analysis part of a compiler is a recognizer for the language the
compiler translates. In this role, the recognizer need not test all possible
strings of characters from some set to determine whether each is in the
language. Rather, it need only determine whether given programs are in the
language. In effect then, the syntax analyzer determines whether the given
programs are syntactically correct. The structure of syntax analyzers, also
known as parsers, is discussed in Chapter 4.

3.2.2 Language Generators
A language generator is a device that can be used to generate the sentences of
a language. We can think of the generator as having a button that produces a
sentence of the language every time it is pushed. Because the particular
sentence that is produced by a generator when its button is pushed is
unpredictable, a generator seems to be a device of limited usefulness as a
language descriptor. However, people prefer certain forms of generators over
recognizers because they can more easily read and understand them. By
contrast, the syntax-checking portion of a compiler (a language recognizer) is
not as useful a language description for a programmer because it can be used
only in trial-and-error mode. For example, to determine the correct syntax of
a particular statement using a compiler, the programmer can only submit a
speculated version and note whether the compiler accepts it. On the other
hand, it is often possible to determine whether the syntax of a particular
statement is correct by comparing it with the structure of the generator.

There is a close connection between formal generation and recognition
devices for the same language. This was one of the seminal discoveries in
computer science, and it led to much of what is now known about formal
languages and compiler design theory. We return to the relationship of
generators and recognizers in the next section.

3.3 Formal Methods of Describing
Syntax
This section discusses the formal language-generation mechanisms, usually
called grammars, that are commonly used to describe the syntax of
programming languages.

3.3.1 Backus-Naur Form and
Context-Free Grammars
In the middle to late 1950s, two men, Noam Chomsky and John Backus, in
unrelated research efforts, developed the same syntax description formalism,
which subsequently became the most widely used method for programming
language syntax.

3.3.1.1 Context-Free Grammars
In the mid-1950s, Noam Chomsky, a noted linguist (among other things),
described four classes of generative devices or grammars that define four
classes of languages (Chomsky, 1956, 1959). Two of these grammar classes,
named context-free and regular, turned out to be useful for describing the
syntax of programming languages. The forms of the tokens of programming
languages can be described by regular grammars. The syntax of whole
programming languages, with minor exceptions, can be described by context-
free grammars. Because Chomsky was a linguist, his primary interest was the
theoretical nature of natural languages. He had no interest at the time in the
artificial languages used to communicate with computers. So it was not until
later that his work was applied to programming languages.

3.3.1.2 Origins of Backus-Naur
Form
Shortly after Chomsky’s work on language classes, the ACM-GAMM group
began designing ALGOL 58. A landmark paper describing ALGOL 58 was
presented by John Backus, a prominent member of the ACM-GAMM group,
at an international conference in 1959 (Backus, 1959). This paper introduced
a new formal notation for specifying programming language syntax. The new
notation was later modified slightly by Peter Naur for the description of
ALGOL 60 (Naur, 1960). This revised method of syntax description became
known as Backus-Naur Form, or simply BNF.

BNF is a natural notation for describing syntax. In fact, something similar to
BNF was used by Panini to describe the syntax of Sanskrit several hundred
years before Christ (Ingerman, 1967).

Although the use of BNF in the ALGOL 60 report was not immediately
accepted by computer users, it soon became and is still the most popular
method of concisely describing programming language syntax.

It is remarkable that BNF is nearly identical to Chomsky’s generative devices
for context-free languages, called context-free grammars. In the remainder
of the chapter, we refer to context-free grammars simply as grammars. -
Furthermore, the terms BNF and grammar are used interchangeably.

3.3.1.3 Fundamentals
A metalanguage is a language that is used to describe another language.
BNF is a metalanguage for programming languages.

BNF uses abstractions for syntactic structures. A simple Java assignment
statement, for example, might be represented by the abstraction <assign>
(pointed brackets are often used to delimit names of abstractions). The actual
definition of <assign> can be given by

<assign> → <var> = <expression>

The text on the left side of the arrow, which is aptly called the left-hand side
(LHS), is the abstraction being defined. The text to the right of the arrow is
the definition of the LHS. It is called the right-hand side (RHS) and consists
of some mixture of tokens, lexemes, and references to other abstractions.
(Actually, tokens are also abstractions.) Altogether, the definition is called a
rule, or production. In the example rule just given, the abstractions <var>
and <expression> obviously must be defined for the <assign> definition to be
useful.

This particular rule specifies that the abstraction <assign> is defined as an
instance of the abstraction <var>, followed by the lexeme =, followed by an
instance of the abstraction <expression>. One example sentence whose
syntactic structure is described by the rule is

total = subtotal1 + subtotal2

The abstractions in a BNF description, or grammar, are often called
nonterminal symbols, or simply nonterminals, and the lexemes and tokens
of the rules are called terminal symbols, or simply terminals. A BNF
description, or grammar, is a collection of rules.

Nonterminal symbols can have two or more distinct definitions, representing
two or more possible syntactic forms in the language. Multiple definitions
can be written as a single rule, with the different definitions separated by the
symbol |, meaning logical OR. For example, a Java if statement can be
described with the rules

<if_stmt> → if (<logic_expr>) <stmt>

<if_stmt> → if (<logic_expr>) <stmt> else <stmt>

or with the rule

<if_stmt> → if (<logic_expr>) <stmt>

| if (<logic_expr>) <stmt> else <stmt>

In these rules, <stmt> represents either a single statement or a compound
statement.

Although BNF is simple, it is sufficiently powerful to describe nearly all of
the syntax of programming languages. In particular, it can describe lists of
similar constructs, the order in which different constructs must appear, and
nested structures to any depth, and even imply operator precedence and
operator associativity.

3.3.1.4 Describing Lists
Variable-length lists in mathematics are often written using an ellipsis (. . .);
1, 2, . . . is an example. BNF does not include the ellipsis, so an alternative
method is required for describing lists of syntactic elements in programming
languages (for example, a list of identifiers appearing on a data declaration
statement). For BNF, the alternative is recursion. A rule is recursive if its
LHS appears in its RHS. The following rules illustrate how recursion is used
to describe lists:

<ident_list> → identifier

| identifier, <ident_list>

This defines <ident_list> as either a single token (identifier) or an identifier
followed by a comma and another instance of <ident_list>. Recursion is used
to describe lists in many of the example grammars in the remainder of this
chapter.

3.3.1.5 Grammars and Derivations
A grammar is a generative device for defining languages. The sentences of
the language are generated through a sequence of applications of the rules,
beginning with a special nonterminal of the grammar called the start symbol.
This sequence of rule applications is called a derivation. In a grammar for a
complete programming language, the start symbol represents a complete

program and is often named <program>. The simple grammar shown in
Example 3.1 is used to illustrate derivations.

EXAMPLE 3.1 A Grammar for a
Small Language

<program> → begin <stmt_list> end

<stmt_list> → <stmt>

| <stmt> ; <stmt_list>

<stmt> → <var> = <expression>

<var> → A | B | C

<expression> → <var> + <var>

| <var> - <var>

| <var>

The language described by the grammar of Example 3.1 has only one
statement form: assignment. A program consists of the special word begin,
followed by a list of statements separated by semicolons, followed by the
special word end. An expression is either a single variable or two variables
separated by either a + or - operator. The only variable names in this
language are A, B, and C.

A derivation of a program in this language follows:

<program> => begin <stmt_list> end

     => begin <stmt> ; <stmt_list> end

     => begin <var> = <expression> ; <stmt_list> end

     => begin A = <expression> ; <stmt_list> end

     => begin A = <var> + <var> ; <stmt_list> end

     => begin A = B + <var> ; <stmt_list> end

     => begin A = B + C ; <stmt_list> end

     => begin A = B + ; <stmt> end

     => begin A = B + C ; <var> = <expression> end

     => begin A = B + C ; B = <expression> end

     => begin A = B + C ; B = <var> end

     => begin A = B + C ; B = C end

This derivation, like all derivations, begins with the start symbol, in this case
<program>. The symbol => is read “derives.” Each successive string in the
sequence is derived from the previous string by replacing one of the
nonterminals with one of that nonterminal’s definitions. Each of the strings in
the derivation, including <program>, is called a sentential form.

In this derivation, the replaced nonterminal is always the leftmost
nonterminal in the previous sentential form. Derivations that use this order of
replacement are called leftmost derivations. The derivation continues until
the sentential form contains no nonterminals. That sentential form, consisting
of only terminals, or lexemes, is the generated sentence.

In addition to leftmost, a derivation may be rightmost or in an order that is
neither leftmost nor rightmost. Derivation order has no effect on the language
generated by a grammar.

By choosing alternative RHSs of rules with which to replace nonterminals in
the derivation, different sentences in the language can be generated. By
exhaustively choosing all combinations of choices, the entire language can be
generated. This language, like most others, is infinite, so one cannot generate
all the sentences in the language in finite time.

Example 3.2 is another example of a grammar for part of a typical -
programming language.

EXAMPLE 3.2 A Grammar for
Simple Assignment Statements

<assign> → <id> = <expr>

<id> → A| B | C

<expr> → <id> + <expr>

| <id> * <expr>

| (<expr>)

| <id>

The grammar of Example 3.2 describes assignment statements whose right
sides are arithmetic expressions with multiplication and addition operators
and parentheses. For example, the statement

A = B * (A + C)

is generated by the leftmost derivation:

<assign> => <id> = <expr>

    => A = <expr>

    => A = <id> * <expr>

    => A = B * <expr>

    => A = B * (<expr>)

    => A = B * (<id> + <expr>)

    => A = B * (A + <expr>)

    => A = B * (A + <id>)

    => A = B * (A + C)

3.3.1.6 Parse Trees
One of the most attractive features of grammars is that they naturally describe
the hierarchical syntactic structure of the sentences of the languages they
define. These hierarchical structures are called parse trees. For example, the
parse tree in Figure 3.1 shows the structure of the assignment statement
derived previously.

Figure 3.1 A parse tree for the
simple statement A = B * (A +
C)

Figure 3.1 Full Alternative Text

Every internal node of a parse tree is labeled with a nonterminal symbol;
every leaf is labeled with a terminal symbol. Every subtree of a parse tree
describes one instance of an abstraction in the sentence.

3.3.1.7 Ambiguity
A grammar that generates a sentential form for which there are two or more
distinct parse trees is said to be ambiguous. Consider the grammar shown in
Example 3.3, which is a minor variation of the grammar shown in Example
3.2.

EXAMPLE 3.3 An Ambiguous
Grammar for Simple Assignment
Statements

<assign> → <id> = <expr>

<id> → A | B | C

<expr> → <expr> + <expr>

| <expr> * <expr>

| (<expr>)

| <id>

The grammar of Example 3.3 is ambiguous because the sentence

A = B + C * A

has two distinct parse trees, as shown in Figure 3.2. The ambiguity occurs
because the grammar specifies slightly less syntactic structure than does the
grammar of Example 3.2. Rather than allowing the parse tree of an
expression to grow only on the right, this grammar allows growth on both the
left and the right.

Figure 3.2 Two distinct parse
trees for the same sentence, A =
B + C * A

Figure 3.2 Full Alternative Text

Syntactic ambiguity of language structures is a problem because compilers
often base the semantics of those structures on their syntactic form.

Specifically, the compiler chooses the code to be generated for a statement by
examining its parse tree. If a language structure has more than one parse tree,
then the meaning of the structure cannot be determined uniquely. This
problem is discussed in two specific examples in the following subsections.

There are several other characteristics of a grammar that are sometimes
useful in determining whether a grammar is ambiguous.1 They include the
following: (1) if the grammar generates a sentence with more than one
leftmost derivation and (2) if the grammar generates a sentence with more
than one rightmost derivation.

1. Note that it is mathematically impossible to determine whether an arbitrary
grammar is ambiguous.

Some parsing algorithms can be based on ambiguous grammars. When such a
parser encounters an ambiguous construct, it uses nongrammatical
information provided by the designer to construct the correct parse tree. In
many cases, an ambiguous grammar can be rewritten to be unambiguous but
still generate the desired language.

3.3.1.8 Operator Precedence
When an expression includes two different operators, for example, x + y *
z, one obvious semantic issue is the order of evaluation of the two operators
(for example, in this expression is it add and then multiply, or vice versa?).
This semantic question can be answered by assigning different precedence
levels to operators. For example, if * has been assigned higher precedence
than + (by the language designer), multiplication will be done first, regardless
of the order of appearance of the two operators in the expression.

As stated previously, a grammar can describe a certain syntactic structure so
that part of the meaning of the structure can be determined from its parse tree.
In particular, the fact that an operator in an arithmetic expression is generated
lower in the parse tree (and therefore must be evaluated first) can be used to
indicate that it has precedence over an operator produced higher up in the
tree. In the first parse tree of Figure 3.2, for example, the multiplication

operator is generated lower in the tree, which could indicate that it has
precedence over the addition operator in the expression. The second parse
tree, however, indicates just the opposite. It appears, therefore, that the two
parse trees indicate conflicting precedence information.

Notice that although the grammar of Example 3.2 is not ambiguous, the
precedence order of its operators is not the usual one. In this grammar, a
parse tree of a sentence with multiple operators, regardless of the particular
operators involved, has the rightmost operator in the expression at the lowest
point in the parse tree, with the other operators in the tree moving
progressively higher as one moves to the left in the expression. For example,
in the expression A + B * C, * is the lowest in the tree, indicating it is to be
done first. However, in the expression A * B + C, + is the lowest, indicating
it is to be done first.

A grammar can be written for the simple expressions we have been
discussing that is both unambiguous and specifies a consistent precedence of
the + and * operators, regardless of the order in which the operators appear in
an expression. The correct ordering is specified by using separate
nonterminal symbols to represent the operands of the operators that have
different precedence. This requires additional nonterminals and some new
rules. Instead of using <expr> for both operands of both + and *, we could
use three nonterminals to represent operands, which allows the grammar to
force different operators to different levels in the parse tree. If <expr> is the
root symbol for expressions, + can be forced to the top of the parse tree by
having <expr> directly generate only + operators, using the new nonterminal,
<term>, as the right operand of +. Next, we can define <term> to generate *
operators, using <term> as the left operand and a new nonterminal, <factor>,
as its right operand. Now, * will always be lower in the parse tree, simply
because it is farther from the start symbol than + in every derivation. The
grammar of Example 3.4 is such a grammar.

EXAMPLE 3.4 An Unambiguous
Grammar for Expressions

<assign> → <id> = <expr>

<id> → A | B | C

<expr> → <expr> + <term>

| <term>

<term> → <term> * <factor>

| <factor>

<factor> → (<expr>)

| <id>

The grammar in Example 3.4 generates the same language as the grammars
of Examples 3.2 and 3.3, but it is unambiguous and it specifies the usual
precedence order of multiplication and addition operators. The following
derivation of the sentence A = B + C * A uses the grammar of Example 3.4:

<assign> => <id> = <expr>

    => A = <expr>

    => A = <expr> + <term>

    => A = <term> + <term>

    => A = <factor> + <term>

    => A = <id> + <term>

    => A = B + <term>

    => A = B + <term> * <factor>

    => A = B + <factor> * <factor>

    => A = B + <id> * <factor>

    => A = B + C * <factor>

    => A = B + C * <id>

    => A = B + C * A

The unique parse tree for this sentence, using the grammar of Example 3.4,
is shown in Figure 3.3.

Figure 3.3 The unique parse

tree for A = B + C * A using an
unambiguous grammar

Figure 3.3 Full Alternative Text

The connection between parse trees and derivations is very close: Either can
easily be constructed from the other. Every derivation with an unambiguous
grammar has a unique parse tree, although that tree can be represented by
different derivations. For example, the following derivation of the sentence A
= B + C * A is different from the derivation of the same sentence given
previously. This is a rightmost derivation, whereas the previous one is
leftmost. Both of these derivations, however, are represented by the same
parse tree.

<assign> => <id> = <expr>

    => <id> = <expr> + <term>

    => <id> = <expr> + <term> * <factor>

    => <id> = <expr> + <term> * <id>

    => <id> = <expr> + <term> * A

    => <id> = <expr> + <factor> * A

    => <id> = <expr> + <id> * A

    => <id> = <expr> + C * A

    => <id> = <term> + C * A

    => <id> = <factor> + C * A

    => <id> = <id> + C * A

    => <id> = B + C * A

    => A = B + C * A

3.3.1.9 Associativity of Operators
When an expression includes two operators that have the same precedence
(as * and / usually have)—for example, A / B * C—a semantic rule is
required to specify which should have precedence.2 This rule is named
associativity.

2. An expression with two occurrences of the same operator has the same
issue; for example, A / B / C.

As was the case with precedence, a grammar for expressions may correctly
imply operator associativity. Consider the following example of an
assignment statement:

A = B + C + A

The parse tree for this sentence, as defined with the grammar of Example 3.4,
is shown in Figure 3.4.

Figure 3.4 A parse tree for A =
B + C + A illustrating the

associativity of addition
Figure 3.4 Full Alternative Text

The parse tree of Figure 3.4 shows the left addition operator lower than the
right addition operator. This is the correct order if addition is meant to be left
associative, which is typical. In most cases, the associativity of addition in a
computer is irrelevant. In mathematics, addition is associative, which means
that left and right associative orders of evaluation mean the same thing. That
is, (A + B) + C = A + (B + C). Floating-point addition in a computer,
however, is not necessarily associative. For example, suppose floating-point
values store seven digits of accuracy. Consider the problem of adding 11
numbers together, where one of the numbers is 107 and the other ten are 1. If
the small numbers (the 1’s) are each added to the large number, one at a time,
there is no effect on that number, because the small numbers occur in the
eighth digit of the large number. However, if the small numbers are first
added together and the result is added to the large number, the result in
seven-digit accuracy is 1.000001 * 107. Subtraction and division are not
associative, whether in mathematics or in a computer. Therefore, correct
associativity may be essential for an expression that contains either of them.

When a grammar rule has its LHS also appearing at the beginning of its RHS,
the rule is said to be left recursive. This left recursion specifies left
associativity. For example, the left recursion of the rules of the grammar of
Example 3.4 causes it to make both addition and multiplication left
associative. Unfortunately, left recursion disallows the use of some important
syntax analysis algorithms. When one of these algorithms is to be used, the
grammar must be modified to remove the left recursion. This, in turn,
disallows the grammar from precisely specifying that certain operators are
left associative. Fortunately, left associativity can be enforced by the
compiler, even though the grammar does not dictate it.

In most languages that provide it, the exponentiation operator is right
associative. To indicate right associativity, right recursion can be used. A
grammar rule is right recursive if the LHS appears at the right end of the
RHS. Rules such as

<factor> → <exp> ** <factor>

|<exp>

<exp> → (<expr>)

|id

could be used to describe exponentiation as a right-associative operator.

3.3.1.10 An Unambiguous Grammar
for if-else
The BNF rules for a Java if-else statement are as follows:

<if_stmt> → if (<logic_expr>) <stmt>

if (<logic_expr>) <stmt> else <stmt>

If we also have <stmt> → <if_stmt>, this grammar is ambiguous. The
simplest sentential form that illustrates this ambiguity is

if (<logic_expr>) if (<logic_expr>) <stmt> else <stmt>

The two parse trees in Figure 3.5 show the ambiguity of this sentential form.
Consider the following example of this construct:

Figure 3.5 Two distinct parse
trees for the same sentential
form

Figure 3.5 Full Alternative Text

if (done == true)

if (denom == 0)

  quotient = 0;

  else quotient = num / denom;

The problem is that if the upper parse tree in Figure 3.5 is used as the basis
for translation, the else clause would be executed when done is not true,
which probably is not what was intended by the author of the construct. We
will examine the practical problems associated with this else-association
problem in Chapter 8.

We will now develop an unambiguous grammar that describes this if
statement. The rule for if constructs in many languages is that an else clause,
when present, is matched with the nearest previous unmatched then clause.
Therefore, there cannot be an if statement without an else between a then
clause and its matching else. So, for this situation, statements must be
distinguished between those that are matched and those that are unmatched,
where unmatched statements are else-less ifs and all other statements are
matched. The problem with the earlier grammar is that it treats all statements
as if they had equal syntactic significance—that is, as if they were all
matched.

To reflect the different categories of statements, different abstractions, or
nonterminals, must be used. The unambiguous grammar based on these ideas
follows:

<stmt> → <matched> | <unmatched>

<matched> → if (<logic_expr>) <matched> else <matched>

|any non-if statement

<unmatched> → if (<logic_expr>) <stmt>

|if (<logic_expr>) <matched> else <unmatched>

There is just one possible parse tree, using this grammar, for the following
sentential form:

if (<logic_expr>) if (<logic_expr>) <stmt> else <stmt>

3.3.2 Extended BNF
Because of a few minor inconveniences in BNF, it has been extended in
several ways. Most extended versions are called Extended BNF, or simply
EBNF, even though they are not all exactly the same. The extensions do not
enhance the descriptive power of BNF; they only increase its readability and
writability.

Three extensions are commonly included in the various versions of EBNF.
The first of these denotes an optional part of an RHS, which is delimited by
brackets. For example, a C if-else statement can be described as

<if_stmt> → if (<expression>) <statement> [else <statement>]

Without the use of the brackets, the syntactic description of this statement
would require the following two rules:

<if_stmt> → if (<expression>) <statement>

|if (<expression>) <statement> else <statement>

The second extension is the use of braces in a RHS to indicate that the
enclosed part can be repeated indefinitely or left out altogether. This
extension allows lists to be built with a single rule, instead of using recursion
and two rules. For example, lists of identifiers separated by commas can be
described by the following rule:

<ident_list> → <identifier> {, <identifier>}

This is a replacement of the recursion by a form of implied iteration; the part

enclosed within braces can be iterated any number of times.

The third common extension deals with multiple-choice options. When a
single element must be chosen from a group, the options are placed in
parentheses and separated by the OR operator, |. For example,

<term> → <term> (* | / | %) <factor>

In BNF, a description of this <term> would require the following three rules:

<term> → <term> * <factor>

| <term> / <factor>

| <term> % <factor>

The brackets, braces, and parentheses in the EBNF extensions are
metasymbols, which means they are notational tools and not terminal
symbols in the syntactic entities they help describe. In cases where these
metasymbols are also terminal symbols in the language being described, the
instances that are terminal symbols can be underlined or quoted. Example 3.5
illustrates the use of braces and multiple choices in an EBNF grammar.

EXAMPLE 3.5 BNF and EBNF
Versions of an Expression
Grammar
BNF:

<expr> → <expr> + <term>

| <expr> - <term>

| <term>

<term> → <term> * <factor>

| <term> / <factor>

| <factor>

<factor> → <exp> ** <factor>

<exp>

<exp> → (<expr>)

| id

EBNF:

<expr> → <term> {(+ | -) <term>}

<term> → <factor> {(* | /) <factor>}

<factor> → <exp> { ** <exp>}

<exp> → (<expr>)

| id

The BNF rule

<expr> → <expr> + <term>

clearly specifies—in fact forces—the + operator to be left associative.
However, the EBNF version,

<expr> → <term> {+ <term>}

does not imply the direction of associativity. This problem is overcome in a
syntax analyzer based on an EBNF grammar for expressions by designing the
syntax analysis process to enforce the correct associativity. This is discussed
further in Chapter 4.

Some versions of EBNF allow a numeric superscript to be attached to the
right brace to indicate an upper limit to the number of times the enclosed part
can be repeated. Also, some versions use a plus (+) superscript to indicate one
or more repetitions. For example,

<compound> → begin <stmt> {<stmt>} end

and

<compound> → begin {<stmt>}+ end

are equivalent.

In recent years, some variations on BNF and EBNF have appeared. Among
these are the following:

In place of the arrow, a colon is used and the RHS is placed on the next
line.

Instead of a vertical bar to separate alternative RHSs, they are simply
placed on separate lines.

In place of square brackets to indicate something being optional, the
subscript opt is used. For example,

Constructor Declarator→SimpleName (FormalParameterListopt)

Rather than using the | symbol in a parenthesized list of elements to
indicate a choice, the words “one of” are used. For example,

AssignmentOperator → one of = *= /= %= += -=

<<= >>= &= ^= |=

There is a standard for EBNF, ISO/IEC 14977:1996 (1996), but it is rarely
used. The standard uses the equal sign (=) instead of an arrow in rules,
terminates each RHS with a semicolon, and requires quotes on all terminal
symbols. It also specifies a host of other notational rules.

3.3.3 Grammars and Recognizers
Earlier in this chapter, we suggested that there is a close relationship between
generation and recognition devices for a given language. In fact, given a -
context-free grammar, a recognizer for the language generated by the
grammar can be algorithmically constructed. A number of software systems
have been developed that perform this construction. Such systems allow the
quick creation of the syntax analysis part of a compiler for a new language
and are therefore quite valuable. One of the first of these syntax analyzer
generators is named yacc (yet another compiler compiler) (Johnson, 1975).
There are now many such systems available.

3.4 Attribute Grammars
An attribute grammar is a device used to describe more of the structure of a
programming language than can be described with a context-free grammar.
An attribute grammar is an extension to a context-free grammar. The
extension allows certain language rules to be conveniently described, such as
type compatibility. Before we formally define the form of attribute grammars,
we must clarify the concept of static semantics.

history note
Attribute grammars have been used in a wide variety of applications. They
have been used to provide complete descriptions of the syntax and static
semantics of programming languages (Watt, 1979); they have been used as
the formal definition of a language that can be input to a compiler generation
system (Farrow, 1982); and they have been used as the basis of several
syntax-directed editing systems (Teitelbaum and Reps, 1981; Fischer et al.,
1984). In addition, attribute grammars have been used in natural-language
processing systems (Correa, 1992).

3.4.1 Static Semantics
There are some characteristics of programming languages that are difficult to
describe with BNF, and some that are impossible. As an example of a syntax
rule that is difficult to specify with BNF, consider type compatibility rules. In
Java, for example, a floating-point value cannot be assigned to an integer
type variable, although the opposite is legal. Although this restriction can be
specified in BNF, it requires additional nonterminal symbols and rules. If all
of the typing rules of Java were specified in BNF, the grammar would
become too large to be useful, because the size of the grammar determines
the size of the syntax analyzer.

As an example of a syntax rule that cannot be specified in BNF, consider the
common rule that all variables must be declared before they are referenced. It
has been proven that this rule cannot be specified in BNF.

These problems exemplify the categories of language rules called static
semantics rules. The static semantics of a language is only indirectly related
to the meaning of programs during execution; rather, it has to do with the
legal forms of programs (syntax rather than semantics). Many static semantic
rules of a language state its type constraints. Static semantics is so named
because the analysis required to check these specifications can be done at
compile time.

Because of the problems of describing static semantics with BNF, a variety of
more powerful mechanisms has been devised for that task. One such
mechanism, attribute grammars, was designed by Knuth (1968) to describe
both the syntax and the static semantics of programs.

Attribute grammars are a formal approach both to describing and checking
the correctness of the static semantics rules of a program. Although they are
not always used in a formal way in compiler design, the basic concepts of
attribute grammars are at least informally used in every compiler (see Aho
et al., 1988).

Dynamic semantics, which is the meaning of expressions, statements, and
program units, is discussed in Section 3.5.

3.4.2 Basic Concepts
Attribute grammars are context-free grammars to which have been added
attributes, attribute computation functions, and predicate functions.
Attributes, which are associated with grammar symbols (the terminal and
nonterminal symbols), are similar to variables in the sense that they can have
values assigned to them. Attribute computation functions, sometimes
called semantic functions, are associated with grammar rules. They are used
to specify how attribute values are computed. Predicate functions, which
state the static semantic rules of the language, are associated with grammar

rules.

These concepts will become clearer after we formally define attribute
grammars and provide an example.

3.4.3 Attribute Grammars Defined
An attribute grammar is a grammar with the following additional features:

Associated with each grammar symbol X is a set of attributes A(X). The
set A(X) consists of two disjoint sets S(X) and I(X), called synthesized
and inherited attributes, respectively. Synthesized attributes are used to
pass semantic information up a parse tree, while inherited attributes
pass semantic information down and across a tree.

Associated with each grammar rule is a set of semantic functions and a
possibly empty set of predicate functions over the attributes of the
symbols in the grammar rule. For a rule the X0→X1 … Xn, synthesized
attributes of X0 are computed with semantic functions of the form
S(X0)=f(A(X1), …, A(Xn)). So the value of a synthesized attribute on a
parse tree node depends only on the values of the attributes on that
node’s children nodes. Inherited attributes of symbols Xj, 1≤j≤n (in the
rule above), are computed with a semantic function of the form
I(Xj=f(A(X0), …, A(Xn)). So the value of an inherited attribute on a
parse tree node depends on the attribute values of that node’s parent
node and those of its sibling nodes. Note that, to avoid circularity,
inherited attributes are often restricted to functions of the form
I(Xj)=f(A(X0), …, A(X(_{j−1}))). This form prevents an inherited
attribute from depending on itself or on attributes to the right in the
parse tree.

A predicate function has the form of a Boolean expression on the union
of the attribute set {A(X0), …, A(Xn)} and a set of literal attribute
values. The only derivations allowed with an attribute grammar are
those in which every predicate associated with every nonterminal is true.
A false predicate function value indicates a violation of the syntax or

static semantics rules of the language.

A parse tree of an attribute grammar is the parse tree based on its underlying
BNF grammar, with a possibly empty set of attribute values attached to each
node. If all the attribute values in a parse tree have been computed, the tree is
said to be fully attributed. Although in practice it is not always done this
way, it is convenient to think of attribute values as being computed after the
complete unattributed parse tree has been constructed by the compiler.

3.4.4 Intrinsic Attributes
Intrinsic attributes are synthesized attributes of leaf nodes whose values are
determined outside the parse tree. For example, the type of an instance of a
variable in a program could come from the symbol table, which is used to
store variable names and their types. The contents of the symbol table are set
based on earlier declaration statements. Initially, assuming that an
unattributed parse tree has been constructed and that attribute values are
needed, the only attributes with values are the intrinsic attributes of the leaf
nodes. Given the intrinsic attribute values on a parse tree, the semantic
functions can be used to compute the remaining attribute values.

3.4.5 Examples of Attribute
Grammars
As a very simple example of how attribute grammars can be used to describe
static semantics, consider the following fragment of an attribute grammar that
describes the rule that the name on the end of an Ada procedure must match
the procedure’s name. (This rule cannot be stated in BNF.) The string
attribute of <proc_name>, denoted by <proc_name>.string, is the actual
string of characters that were found immediately following the reserved word
procedure by the compiler. Notice that when there is more than one
occurrence of a nonterminal in a syntax rule in an attribute grammar, the
nonterminals are subscripted with brackets to distinguish them. Neither the

subscripts nor the brackets are part of the described language.

Syntax rule: <proc_def> → procedure <proc_name>[1]

               <proc_body> end <proc_name>[2];

Predicate: <proc_name>[1]string == <proc_name>[2].string

In this example, the predicate rule states that the name string attribute of the
<proc_name> nonterminal in the subprogram header must match the name
string attribute of the <proc_name> nonterminal following the end of the
subprogram.

Next, we consider a larger example of an attribute grammar. In this case, the
example illustrates how an attribute grammar can be used to check the type
rules of a simple assignment statement. The syntax and static semantics of
this assignment statement are as follows: The only variable names are A, B,
and C. The right side of the assignments can be either a variable or an
expression in the form of a variable added to another variable. The variables
can be one of two types: int or real. When there are two variables on the right
side of an assignment, they need not be the same type. The type of the
expression when the operand types are not the same is always real. When
they are the same, the expression type is that of the operands. The type of the
left side of the assignment must match the type of the right side. So the types
of operands in the right side can be mixed, but the assignment is valid only if
the target and the value resulting from evaluating the right side have the same
type. The attribute grammar specifies these static semantic rules.

The syntax portion of our example attribute grammar is

<assign> → <var> = <expr>

<expr> → <var> + <var>

| <var>

<var> → A | B | C

The attributes for the nonterminals in the example attribute grammar are

described in the following paragraphs:

actual_type—A synthesized attribute associated with the nonterminals
<var> and <expr>. It is used to store the actual type, int or real, of a
variable or expression. In the case of a variable, the actual type is
intrinsic. In the case of an expression, it is determined from the actual
types of the child node or children nodes of the <expr> nonterminal.

expected_type—An inherited attribute associated with the nonterminal
<expr>. It is used to store the type, either int or real, that is expected for
the expression, as determined by the type of the variable on the left side
of the assignment statement.

The complete attribute grammar follows in Example 3.6.

EXAMPLE 3.6 An Attribute
Grammar for Simple Assignment
Statements

1. Syntax rule: <assign> → <var> = <expr>

Semantic rule: <expr>.expected_type ← <var>.actual_type

2. Syntax rule: <expr> → <var>[2] + <var>[3]

Semantic rule: <expr>.actual_type ←

            if (<var>[2].actual_type = int) and

              (<var>[3].actual_type = int)

            then int

           else real

           end if

Predicate: <expr>.actual_type == <expr>.expected_type

3. Syntax rule: <expr> → <var>

Semantic rule: <expr>.actual_type ← <var>.actual_type

Predicate: <expr>.actual_type == <expr>.expected_type

4. Syntax rule: <var> → A | B | C

Semantic rule: <var>.actual_type ← look-up(<var>.string)

The look-up function looks up a given variable name in the symbol table and
returns the variable’s type.

A parse tree of the sentence A = A + B generated by the grammar in Example
3.6 is shown in Figure 3.6. As in the grammar, bracketed numbers are added
after the repeated node labels in the tree so they can be referenced
unambiguously.

Figure 3.6 A parse tree for A =
A + B

Figure 3.6 Full Alternative Text

3.4.6 Computing Attribute Values
Now, consider the process of computing the attribute values of a parse tree,
which is sometimes called decorating the parse tree. If all attributes were
inherited, this could proceed in a completely top-down order, from the root to
the leaves. Alternatively, it could proceed in a completely bottom-up order,
from the leaves to the root, if all the attributes were synthesized. Because our

grammar has both synthesized and inherited attributes, the evaluation process
cannot be in any single direction. The following is an evaluation of the
attributes, in an order in which it is possible to compute them:

1. <var>.actual_type ← look-up(A) (Rule 4)

2. <expr>.expected_type ← <var>.actual_type (Rule 1)

3. <var>[2].actual_type ← look-up(A) (Rule 4)

<var>[3].actual_type ← look-up(B) (Rule 4)

4. <expr>.actual_type ← either int or real (Rule 2)

5. <expr>.expected_type == <expr>.actual_type is either

            TRUE or FALSE (Rule 2)

The tree in Figure 3.7 shows the flow of attribute values in the example of
Figure 3.6. Solid lines show the parse tree; dashed lines show attribute flow
in the tree.

Figure 3.7 The flow of
attributes in the tree

Figure 3.7 Full Alternative Text

The tree in Figure 3.8 shows the final attribute values on the nodes. In this
example, A is defined as a real and B is defined as an int.

Figure 3.8 A fully attributed
parse tree

Figure 3.8 Full Alternative Text

Determining attribute evaluation order for the general case of an attribute
grammar is a complex problem, requiring the construction of a dependency
graph to show all attribute dependencies.

3.4.7 Evaluation
Checking the static semantic rules of a language is an essential part of all
compilers. Even if a compiler writer has never heard of an attribute grammar,
he or she would need to use the fundamental ideas of attribute grammars to
design the checks of static semantics rules for his or her compiler.

One of the main difficulties in using an attribute grammar to describe all of
the syntax and static semantics of a real contemporary programming -
language is the size and complexity of the attribute grammar. The large
number of attributes and semantic rules required for a complete programming

language make such grammars difficult to write and read. Furthermore, the
attribute values on a large parse tree are costly to evaluate. On the other hand,
less formal attribute grammars are a powerful and commonly used tool for
compiler writers, who are more interested in the process of producing a
compiler than they are in formalism.

3.5 Describing the Meanings of
Programs: Dynamic Semantics
We now turn to the difficult task of describing the dynamic semantics, or
meaning, of the expressions, statements, and program units of a programming
language. Because of the power and naturalness of the available notation,
describing syntax is a relatively simple matter. On the other hand, no
universally accepted notation or approach has been devised for dynamic
semantics. In this section, we briefly describe several of the methods that
have been developed. For the remainder of this section, when we use the term
semantics, we mean dynamic semantics.

There are several different reasons underlying the need for a methodology
and notation for describing semantics. Programmers obviously need to know
precisely what the statements of a language do before they can use them
effectively in their programs. Compiler writers must know exactly what
language constructs mean to design implementations for them correctly. If
there were a precise semantics specification of a programming language,
programs written in the language potentially could be proven correct without
testing. Also, compilers could be shown to produce programs that exhibited
exactly the behavior given in the language definition; that is, their correctness
could be verified. A complete specification of the syntax and semantics of a
programming language could be used by a tool to generate a compiler for the
language automatically. Finally, language designers, who would develop the
semantic descriptions of their languages, could in the process discover
ambiguities and inconsistencies in their designs.

Software developers and compiler designers typically determine the
semantics of programming languages by reading English explanations in
language manuals. Because such explanations are often imprecise and
incomplete, this approach is clearly unsatisfactory. Due to the lack of
complete semantics specifications of programming languages, programs are
rarely proven correct without testing, and commercial compilers are never
generated automatically from language descriptions.

Scheme, a functional language described in Chapter 15, is one of only a few
programming languages whose definition includes a formal semantics
description. However, the method used is not one described in this chapter, as
this chapter is focused on approaches that are suitable for imperative
languages.

3.5.1 Operational Semantics
The idea behind operational semantics is to describe the meaning of a
statement or program by specifying the effects of running it on a machine.
The effects on the machine are viewed as the sequence of changes in its state,
where the machine’s state is the collection of the values in its storage. An
obvious operational semantics description, then, is given by executing a
compiled version of the program on a computer. Most programmers have, on
at least one occasion, written a small test program to determine the meaning
of some programming language construct, often while learning the language.
Essentially, what such a programmer is doing is using operational semantics
to determine the meaning of the construct.

There are several problems with using this approach for complete formal
semantics descriptions. First, the individual steps in the execution of machine
language and the resulting changes to the state of the machine are too small
and too numerous. Second, the storage of a real computer is too large and
complex. There are usually several levels of memory devices, as well as
connections to enumerable other computers and memory devices through
networks. Therefore, machine languages and real computers are not used for
formal operational semantics. Rather, intermediate-level languages and
interpreters for idealized computers are designed specifically for the process.

There are different levels of uses of operational semantics. At the highest
level, the interest is in the final result of the execution of a complete program.
This is sometimes called natural operational semantics. At the lowest level,
operational semantics can be used to determine the precise meaning of a
program through an examination of the complete sequence of state changes
that occur when the program is executed. This use is sometimes called
structural operational semantics.

3.5.1.1 The Basic Process
The first step in creating an operational semantics description of a language is
to design an appropriate intermediate language, where the primary desired
characteristic of the language is clarity. Every construct of the intermediate
language must have an obvious and unambiguous meaning. This language is
at the intermediate level, because machine language is too low-level to be
easily understood and another high-level language is obviously not suitable.
If the semantics description is to be used for natural operational semantics, a
virtual machine (an interpreter) must be constructed for the intermediate
language. The virtual machine can be used to execute either single
statements, code segments, or whole programs. The semantics description
can be used without a virtual machine if the meaning of a single statement is
all that is required. In this use, which is structural operational semantics, the
intermediate code can be visually inspected.

The basic process of operational semantics is not unusual. In fact, the concept
is frequently used in programming textbooks and programming language
reference manuals. For example, the semantics of the C for construct can be
described in terms of simpler statements, as in

The human reader of such a description is the virtual computer and is
assumed to be able to “execute” the instructions in the definition correctly
and recognize the effects of the “execution.”

The intermediate language and its associated virtual machine used for formal
operational semantics descriptions are often highly abstract. The intermediate

language is meant to be convenient for the virtual machine, rather than for
human readers. For our purposes, however, a more human-oriented
intermediate language could be used. As such an example, consider the
following list of statements, which would be adequate for describing the
semantics of the simple control statements of a typical programming
language:

ident = var

ident = ident + 1

ident = ident – 1

goto label

if var relop var goto label

In these statements, relop is one of the relational operators from the set {=,
<>, >, <, <=, <=}, ident is an identifier, and var is either an identifier or a
constant. These statements are all simple and therefore easy to understand
and implement.

A slight generalization of these three assignment statements allows more
general arithmetic expressions and assignment statements to be described.
The new statements are

ident = var bin_op var

ident = un_op var

where bin_op is a binary arithmetic operator and un_op is a unary operator.
Multiple arithmetic data types and automatic type conversions, of course,
complicate this generalization. Adding just a few more relatively simple
instructions would allow the semantics of arrays, records, pointers, and
subprograms to be described.

In Chapter 8, the semantics of various control statements are described using
this intermediate language.

3.5.1.2 Evaluation
The first and most significant use of formal operational semantics was to
describe the semantics of PL/I (Wegner, 1972). That particular abstract
machine and the translation rules for PL/I were together named the Vienna
Definition Language (VDL), after the city where IBM designed it.

Operational semantics provides an effective means of describing semantics
for language users and language implementors, as long as the descriptions are
kept simple and informal. The VDL description of PL/I, unfortunately, is so
complex that it serves no practical purpose.

Operational semantics depends on programming languages of lower levels,
not mathematics. The statements of one programming language are described
in terms of the statements of a lower-level programming language. This
approach can lead to circularities, in which concepts are indirectly defined in
terms of themselves. The methods described in the following two sections are
much more formal, in the sense that they are based on mathematics and logic,
not programming languages.

3.5.2 Denotational Semantics
Denotational semantics is the most rigorous and most widely known formal
method for describing the meaning of programs. It is solidly based on
recursive function theory. A thorough discussion of the use of denotational
semantics to describe the semantics of programming languages is necessarily
long and complex. It is our intent to provide the reader with an introduction
to the central concepts of denotational semantics, along with a few simple
examples that are relevant to programming language specifications.

The process of constructing a denotational semantics specification for a
programming language requires one to define for each language entity both a
mathematical object and a function that maps instances of that language
entity onto instances of the mathematical object. Because the objects are
rigorously defined, they model the exact meaning of their corresponding

entities. The idea is based on the fact that there are rigorous ways of
manipulating mathematical objects but not programming language constructs.
The difficulty with this method lies in creating the objects and the mapping
functions. The method is named denotational because the mathematical
objects denote the meaning of their corresponding syntactic entities.

The mapping functions of a denotational semantics programming language
specification, like all functions in mathematics, have a domain and a range.
The domain is the collection of values that are legitimate parameters to the
function; the range is the collection of objects to which the parameters are
mapped. In denotational semantics, the domain is called the syntactic
domain, because it is syntactic structures that are mapped. The range is
called the semantic domain.

Denotational semantics is related to operational semantics. In operational
semantics, programming language constructs are translated into simpler
programming language constructs, which become the basis of the meaning of
the construct. In denotational semantics, programming language constructs
are mapped to mathematical objects, either sets or, more often, functions.
However, unlike operational semantics, denotational semantics does not
model the step-by-step computational processing of programs.

3.5.2.1 Two Simple Examples
We use a very simple language construct, character string representations of
binary numbers, to introduce the denotational method. The syntax of such
binary numbers can be described by the following grammar rules:

<bin_num> → '0'

      | '1'

      | <bin_num> '0'

      | <bin_num> '1'

A parse tree for the example binary number, 110, is shown in Figure 3.9.

Notice that we put apostrophes around the syntactic digits to show they are
not mathematical digits. This is similar to the relationship between ASCII
coded digits and mathematical digits. When a program reads a number as a
string, it must be converted to a mathematical number before it can be used as
a value in the program.

Figure 3.9 A parse tree of the
binary number 110

Figure 3.9 Full Alternative Text

The syntactic domain of the mapping function for binary numbers is the set
of all character string representations of binary numbers. The semantic
domain is the set of nonnegative decimal numbers, symbolized by N.

To describe the meaning of binary numbers using denotational semantics, we
associate the actual meaning (a decimal number) with each rule that has a
single terminal symbol as its RHS.

In our example, decimal numbers must be associated with the first two
grammar rules. The other two grammar rules are, in a sense, computational
rules, because they combine a terminal symbol, to which an object can be
associated, with a nonterminal, which can be expected to represent some
construct. Presuming an evaluation that progresses upward in the parse tree,
the nonterminal in the right side would already have its meaning attached. So,
a syntax rule with a nonterminal as its RHS would require a function that
computed the meaning of the LHS, which represents the meaning of the
complete RHS.

The semantic function, named Mbin, maps the syntactic objects, as described
in the previous grammar rules, to the objects in N, the set of non-negative
decimal numbers. The function Mbin is defined as follows:

 Mbin ('0') = 0

Mbin ('1') = 1

Mbin (<bin_num> '0') = 2 * Mbin (<bin_num>)

Mbin (<bin_num>'1') = 2 * Mbin (<bin_num>) + 1

The meanings, or denoted objects (which in this case are decimal numbers),
can be attached to the nodes of the parse tree shown on the previous page,
yielding the tree in Figure 3.10. This is syntax-directed semantics. Syntactic
entities are mapped to mathematical objects with concrete meaning.

Figure 3.10 A parse tree with
denoted objects for 110

Figure 3.10 Full Alternative Text

In part because we need it later, we now show a similar example for
describing the meaning of syntactic decimal literals. In this case, the syntactic
domain is the set of character string representations of decimal numbers. The
semantic domain is once again the set N.

<dec_num> → '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7''8'|'9'

    |<dec_num> ('0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9')

The denotational mappings for these syntax rules are

Mdec ('0') = 0, Mdec ('1') = 1, Mdec ('2') = 2, . . ., Mdec ('9') = 9

Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>)

Mdec (<dec_num> '1') = 10 * Mdec (<dec_num>) +1

. . .

Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) +9

In the following sections, we present the denotational semantics descriptions
of a few simple constructs. The most important simplifying assumption made
here is that both the syntax and static semantics of the constructs are correct.
In addition, we assume that only two scalar types are included: integer and
Boolean.

3.5.2.2 The State of a Program
The denotational semantics of a program could be defined in terms of state
changes in an ideal computer. Operational semantics are defined in this way,
and denotational semantics are defined in nearly the same way. In a further
simplification, however, denotational semantics is defined in terms of only
the values of all of the program’s variables. So, denotational semantics uses
the state of the program to describe meaning, whereas operational semantics
uses the state of a machine. The key difference between operational
semantics and denotational semantics is that state changes in operational
semantics are defined by coded algorithms, written in some programming
language, whereas in denotational semantics, state changes are defined by
mathematical functions.

Let the state s of a program be represented as a set of ordered pairs, as
follows:

s = { <i1, v1>, <i2, v2>, …, <in, vn>}

Each i is the name of a variable, and the associated v’s are the current values
of those variables. Any of the v’s can have the special value undef, which
indicates that its associated variable is currently undefined. Let VARMAP be
a function of two parameters: a variable name and the program state. The

value of VARMAP (ij, s) is vj (the value paired with ij in state s). Most
semantics mapping functions for programs and program constructs map states
to states. These state changes are used to define the meanings of programs
and program constructs. Some language constructs—for example,
expressions—are mapped to values, not states.

3.5.2.3 Expressions
Expressions are fundamental to most programming languages. We assume
here that expressions have no side effects. Furthermore, we deal with only
very simple expressions: The only operators are + and *, and an expression
can have at most one operator; the only operands are scalar integer variables
and integer literals; there are no parentheses; and the value of an expression is
an integer. Following is the BNF description of these expressions:

<expr> → <dec_num> | <var> | <binary_expr>

<binary_expr> → <left_expr> <operator> <right_expr>

<left_expr> → <dec_num> | <var>

<right_expr> → <dec_num> | <var>

<operator> → + | *

The only error we consider in expressions is a variable having an undefined
value. Obviously, other errors can occur, but most of them are machine--
dependent. Let Z be the set of integers, and let error be the error value. Then
Z∪ {error} is the semantic domain for the denotational specification for our
expressions.

The mapping function for a given expression E and state s follows. To
distinguish between mathematical function definitions and the assignment
statements of programming languages, we use the symbol Δ = to define
mathematical functions. The implication symbol, =>, used in this definition
connects the form of an operand with its associated case (or switch)
construct. Dot notation is used to refer to the child nodes of a node. For

example, <binary_expr>.<left_expr> refers to the left child node of
<binary_expr>.

Me(<expr>, s) Δ= case <expr> of

         <dec_num>=> Mdec (<dec_num>, s)

         <var> =>if VARMAP (<var>, s) == undef

               then error

               else VARMAP(<var>, s)

         <binary_expr> =>

          if(Me (<binary_expr>.<left_expr>,s) == undef
OR

            Me (<binary_expr>.<right_expr>, s) ==
undef)

          then error

          else if (<binary_expr>.<operator> == '+')

              then Me (<binary_expr>.<left_expr>, s)
+

                  Me (<binary_expr>.<right_expr>,
s)

              else Me (<binary_expr>.<left_expr>, s)
*

                 Me (<binary_expr>.<right_expr>,
s)

3.5.2.4 Assignment Statements

An assignment statement is an expression evaluation plus the setting of the
target variable to the expression’s value. In this case, the meaning function
maps a state to a state. This function can be described with the following:

Ma (x = E, s) Δ= if Me (E, s) == error

            then error

            else s' = {< i1, v1′ >, < i2, v2′>, . . . , < in, vn′>},
where

                for j = 1, 2, . . . , n

                 if ij == x

                then vj′ = Me (E, s)

                else vj′ = VARMAP(ij,, s)

Note that the comparison in the third last line above, ij == x, is of names, not
values.

3.5.2.5 Logical Pretest Loops
The denotational semantics of a logical pretest loop is deceptively simple. To
expedite the discussion, we assume that there are two other existing mapping
functions, Msl and Mb, that map statement lists and states to states and
Boolean expressions to Boolean values (or error), respectively. The function
is

 M1 (while B do L, s) Δ= if Mb (B, s) == undef

            then error

            else if Mb (B, s) == false

              then s

              else if Msl (L, s) == error

                 then error

                 else M1 (while B do L, Msl (L,
s))

The meaning of the loop is simply the value of the program variables after
the statements in the loop have been executed the prescribed number of
times, assuming there have been no errors. In essence, the loop has been
converted from iteration to recursion, where the recursion control is
mathematically defined by other recursive state mapping functions.
Recursion is easier to describe with mathematical rigor than iteration.

One significant observation at this point is that this definition, like actual
program loops, may compute nothing because of nontermination.

3.5.2.6 Evaluation
Objects and functions, such as those used in the earlier constructs, can be
defined for the other syntactic entities of programming languages. When a
complete system has been defined for a given language, it can be used to
determine the meaning of complete programs in that language. This provides
a framework for thinking about programming in a highly rigorous way.

history note
A significant amount of work has been done on the possibility of using
denotational language descriptions to generate compilers automatically
(Jones, 1980; Milos et al., 1984; Bodwin et al., 1982). These efforts have
shown that the method is feasible, but the work has never progressed to the
point where it can be used to generate useful compilers.

As stated previously, denotational semantics can be used as an aid to
language design. For example, statements for which the denotational

semantic description is complex and difficult may indicate to the designer
that such statements may also be difficult for language users to understand
and that an alternative design may be in order.

Because of the complexity of denotational descriptions, they are of little use
to language users. On the other hand, they provide an excellent way to
describe a language concisely.

Although the use of denotational semantics is normally attributed to Scott and
Strachey (1971), the general denotational approach to language description
can be traced to the nineteenth century (Frege, 1892).

3.5.3 Axiomatic Semantics
Axiomatic semantics, thus named because it is based on mathematical logic,
is the most abstract approach to semantics specification discussed in this
chapter. Rather than directly specifying the meaning of a program, axiomatic
semantics specifies what can be proven about the program. Recall that one of
the possible uses of semantic specifications is to prove the correctness of
programs.

In axiomatic semantics, there is no model of the state of a machine or
program or model of state changes that take place when the program is
executed. The meaning of a program is based on relationships among
program variables and constants, which are the same for every execution of
the program.

Axiomatic semantics has two distinct applications: program verification and
program semantics specification. This section focuses on program
verification in its description of axiomatic semantics.

Axiomatic semantics was defined in conjunction with the development of an
approach to proving the correctness of programs. Such correctness proofs,
when they can be constructed, show that a program performs the computation
described by its specification. In a proof, each statement of a program is both
preceded and followed by a logical expression that specifies constraints on

program variables. These, rather than the entire state of an abstract machine
(as with operational semantics), are used to specify the meaning of the
statement. The notation used to describe constraints—indeed, the language of
axiomatic semantics—is predicate calculus. Although simple Boolean
expressions are often adequate to express constraints, in some cases they are
not.

When axiomatic semantics is used to specify formally the meaning of a
statement, the meaning is defined by the statement’s effect on assertions
about the data affected by the statement.

3.5.3.1 Assertions
The logical expressions used in axiomatic semantics are called predicates, or
assertions. An assertion immediately preceding a program statement
describes the constraints on the program variables at that point in the
program. An assertion immediately following a statement describes the new
constraints on those variables (and possibly others) after execution of the
statement. These assertions are called the precondition and postcondition,
respectively, of the statement. For two adjacent statements, the postcondition
of the first serves as the precondition of the second. Developing an axiomatic
description or proof of a given program requires that every statement in the
program has both a precondition and a postcondition.

In the following sections, we examine assertions from the point of view that
preconditions for statements are computed from given postconditions,
although it is possible to consider these in the opposite sense. We assume all
variables are integer type. As a simple example, consider the following
assignment statement and postcondition:

sum = 2 * x + 1 {sum > 1}

Precondition and postcondition assertions are presented in braces to
distinguish them from parts of program statements. One possible
precondition for this statement is {x > 10}.

In axiomatic semantics, the meaning of a specific statement is defined by its

precondition and its postcondition. In effect, the two assertions specify
precisely the effect of executing the statement.

In the following subsections, we focus on correctness proofs of statements
and programs, which is a common use of axiomatic semantics. The more
general concept of axiomatic semantics is to state precisely the meaning of
statements and programs in terms of logic expressions. Program verification
is one application of axiomatic descriptions of languages.

3.5.3.2 Weakest Preconditions
The weakest precondition is the least restrictive precondition that will
guarantee the validity of the associated postcondition. For example, in the
statement and postcondition given in Section 3.5.3.1, {x > 10}, {x > 50},
and {x > 1000} are all valid preconditions. The weakest of all preconditions
in this case is {x > 0}.

If the weakest precondition can be computed from the most general
postcondition for each of the statement types of a language, then the
processes used to compute these preconditions provide a concise description
of the semantics of that language. Furthermore, correctness proofs can be
constructed for programs in that language. A program proof is begun by
using the characteristics of the results of the program’s execution as the
postcondition of the last statement of the program. This postcondition, along
with the last statement, is used to compute the weakest precondition for the
last statement. This precondition is then used as the postcondition for the
second last statement. This process continues until the beginning of the
program is reached. At that point, the precondition of the first statement states
the conditions under which the program will compute the desired results. If
these conditions are implied by the input specification of the program, the
program has been verified to be correct.

An inference rule is a method of inferring the truth of one assertion on the
basis of the values of other assertions. The general form of an inference rule
is as follows:

S1, S2, …, SnS

This rule states that if S1, S2, . . . , and Sn are true, then the truth of S can be
inferred. The top part of an inference rule is called its antecedent; the bottom
part is called its consequent.

An axiom is a logical statement that is assumed to be true. Therefore, an
axiom is an inference rule without an antecedent.

For some program statements, the computation of a weakest precondition
from the statement and a postcondition is simple and can be specified by an
axiom. In most cases, however, the weakest precondition can be specified
only by an inference rule.

To use axiomatic semantics with a given programming language, whether for
correctness proofs or for formal semantics specifications, either an axiom or
an inference rule must exist for each kind of statement in the language. In the
following subsections, we present an axiom for assignment statements and
inference rules for statement sequences, selection statements, and logical
pretest loop statements. Note that we assume that neither arithmetic nor -
Boolean expressions have side effects.

3.5.3.3 Assignment Statements
The precondition and postcondition of an assignment statement together
define its meaning. To define the meaning of an assignment statement there
must be a way to compute its precondition from its postcondition.

Let x = E be a general assignment statement and Q be its postcondition. Then,
its weakest precondition, P, is defined by the axiom

P = QxSE

which means that P is computed as Q with all instances of x replaced by E.
For example, if we have the assignment statement and postcondition

a = b / 2 - 1 {a < 10}

the weakest precondition is computed by substituting b / 2 - 1 for a in the
postcondition {a < 10}, as follows:

b / 2 - 1 < 10

b < 22

Thus, the weakest precondition for the given assignment statement and
postcondition is {b < 22}. Remember that the assignment axiom is
guaranteed to be correct only in the absence of side effects. An assignment
statement has a side effect if it changes some variable other than its target.

The usual notation for specifying the axiomatic semantics of a given
statement form is

{P} S {Q}

where P is the precondition, Q is the postcondition, and S is the statement
form. In the case of the assignment statement, the notation is

{QxSE} x = E{Q}

As another example of computing a precondition for an assignment
statement, consider the following:

x = 2 * y - 3 {x > 25}

The precondition is computed as follows:

2 * y - 3 > 25

y > 14

So {y > 14} is the weakest precondition for this assignment statement and
postcondition.

Note that the appearance of the left side of the assignment statement in its
right side does not affect the process of computing the weakest precondition.
For example, for

x = x + y - 3 {x > 10}

the weakest precondition is

x + y - 3 > 10

y > 13 - x

Recall that axiomatic semantics was developed to prove the correctness of
programs. In light of that, it is natural at this point to wonder how the axiom
for assignment statements can be used to prove anything. Here is how: A
given assignment statement with both a precondition and a postcondition can
be considered a logical statement, or theorem. If the assignment axiom, when
applied to the postcondition and the assignment statement, produces the given
precondition, the theorem is proved. For example, consider the following
logical statement:

{x > 3} x = x - 3 {x > 0}

Using the assignment axiom on the statement and its postcondition produces
{x > 3}, which is the given precondition. Therefore, we have proven the
example logical statement.

Next, consider the following logical statement:

{x > 5} x = x - 3 {x > 0}

In this case, the given precondition, {x > 5}, is not the same as the assertion
produced by the axiom. However, it is obvious that {x > 5} implies {x > 3}.
To use this in a proof, an inference rule named the rule of consequence is
needed. The form of the rule of consequence is

{P} S {Q}, P′ => P, Q => Q′{P′} S{Q′}

The => symbol means “implies,” and S can be any program statement. The
rule can be stated as follows: If the logical statement {P} S{Q} is true, the
assertion P′ implies the assertion P, and the assertion Q implies the assertion
Q′, then it can be inferred that {P′} S{Q′}. In other words, the rule of
consequence says that a postcondition can always be weakened and a
precondition can always be strengthened. This is quite useful in program
proofs. For example, it allows the completion of the proof of the last logical
statement example above. If we let P be {x > 3}, Q and Q′ be {x > 0}, and P

′ be {x > 5}, we have

{x > 3}x = x − 3{x > 0},(x > 5)=>{x > 3},(x > 0)=>(x > 0)
{x > 5}x = x − 3{x > 0}

The first term of the antecedent ({x > 3} x = x - 3 {x > 0}) was proven
with the assignment axiom. The second and third terms are obvious.
Therefore, by the rule of consequence, the consequent is true.

3.5.3.4 Sequences
The weakest precondition for a sequence of statements cannot be described
by an axiom, because the precondition depends on the particular kinds of
statements in the sequence. In this case, the precondition can only be
described with an inference rule. Let S1 and S2 be adjacent program
statements. If S1 and S2 have the following pre- and postconditions

{P1} S1 {P2} {P2} S2 {P3}

the inference rule for such a two-statement sequence is

{P1} S1 {P2}, {P2} S2 {P3}{P1} S1, S2 {P3}

So, for our example, {P1} S1; S2 {P3} describes the axiomatic semantics of
the sequence S1; S2. The inference rule states that to get the sequence
precondition, the precondition of the second statement is computed. This new
assertion is then used as the postcondition of the first statement, which can
then be used to compute the precondition of the first statement, which is also
the precondition of the whole sequence. If S1 and S2 are the assignment
statements

x1=E1

and

x2=E2

then we have

{P3x2→E2} x2=E2 {P3} {(P3x2→E2)x1→E1} x1=E1 {P3x2→E2}

Therefore, the weakest precondition for the sequence x1 = E1; x2 = E2 with
postcondition P3 is {(P3x2→E2)x1→E1}.

For example, consider the following sequence and postcondition:

y = 3 * x + 1;

x = y + 3;

{x < 10}

The precondition for the second assignment statement is

y < 7

which is used as the postcondition for the first statement. The precondition
for the first assignment statement can now be computed:

3 * x + 1 < 7

x < 2

So, {x < 2} is the precondition of both the first statement and the two--
statement sequence.

3.5.3.5 Selection
We next consider the inference rule for selection statements, the general form
of which is

if B then S1 else S2

We consider only selections that include else clauses. The inference rule is

{B and P} S1 {Q}, {(not B) and P} S2 {Q}
{P} if B bb{then} S1 bb{else} S2 {Q}}

This rule specifies that selection statements must be proven both when the

Boolean control expression is true and when it is false. The first logical
statement above the line represents the then clause; the second represents the
else clause. According to the inference rule, we need a precondition P that
can be used in the precondition of both the then and else clauses.

Consider the following example of the computation of the precondition using
the selection inference rule. The example selection statement is

if x > 0 then

 y = y - 1

else

 y = y + 1

Suppose the postcondition, Q, for this selection statement is {y > 0}. We can
use the axiom for assignment on the then clause

y = y - 1 {y > 0}

This produces {y - 1 > 0} or {y > 1}. It can be used as the P part of the
precondition for the then clause. Now we apply the same axiom to the else
clause

y = y + 1 {y > 0}

which produces the precondition {y + 1 > 0} or {y > -1}. Because {y >
1} => {y > -1}, the rule of consequence allows us to use {y > 1} for the
precondition of the whole selection statement.

3.5.3.6 Logical Pretest Loops
Another essential construct of imperative programming languages is the
logical pretest, or while loop. Computing the weakest precondition for a
while loop is inherently more difficult than for a sequence, because the
number of iterations cannot always be predetermined. In a case where the
number of iterations is known, the loop can be unrolled and treated as a
sequence.

The problem of computing the weakest precondition for loops is similar to

the problem of proving a theorem about all positive integers. In the latter
case, induction is normally used, and the same inductive method can be used
for some loops. The principal step in induction is finding an inductive
hypothesis. The corresponding step in the axiomatic semantics of a while
loop is finding an assertion called a loop invariant, which is crucial to
finding the weakest precondition.

The inference rule for computing the precondition for a while loop is as
follows:

{I and B} S {I}{I} while B do S end {I and (not B)}

In this rule, I is the loop invariant. This seems simple, but it is not. The
complexity lies in finding an appropriate loop invariant.

The axiomatic description of a while loop is written as

{P} while B do S end {Q}

The loop invariant must satisfy a number of requirements to be useful. First,
the weakest precondition for the while loop must guarantee the truth of the
loop invariant. In turn, the loop invariant must guarantee the truth of the
postcondition upon loop termination. These constraints move us from the
inference rule to the axiomatic description. During execution of the loop, the
truth of the loop invariant must be unaffected by the evaluation of the loop-
controlling Boolean expression and the loop body statements. Hence, the
name invariant.

Another complicating factor for while loops is the question of loop
termination. A loop that does not terminate cannot be correct, and in fact
computes nothing. If Q is the postcondition that holds immediately after loop
exit, then a precondition P for the loop is one that guarantees Q at loop exit
and also guarantees that the loop terminates.

The complete axiomatic description of a while construct requires all of the
following to be true, in which I is the loop invariant:

P => I

{I and B} S { I }

(I and (not B)) => Q

the loop terminates

If a loop computes a sequence of numeric values, it may be possible to find a
loop invariant using an approach that is used for determining the inductive
hypothesis when mathematical induction is used to prove a statement about a
mathematical sequence. The relationship between the number of iterations
and the precondition for the loop body is computed for a few cases, with the
hope that a pattern emerges that will apply to the general case. It is helpful to
treat the process of producing a weakest precondition as a function, wp. In
general

wp(statement, postcondition)=precondition

A wp function is often called a predicate transformer, because it takes a
predicate, or assertion, as a parameter and returns another predicate.

To find I, the loop postcondition Q is used to compute preconditions for
several different numbers of iterations of the loop body, starting with none. If
the loop body contains a single assignment statement, the axiom for
assignment statements can be used to compute these cases. Consider the
example loop:

while y <> x do y = y + 1 end {y = x}

Remember that the equal sign is being used for two different purposes here.
In assertions, it means mathematical equality; outside assertions, it means the
assignment operator.

For zero iterations, the weakest precondition is, obviously,

{y = x}

For one iteration, it is

wp(y = y + 1, {y = x}) = {y + 1 = x}, or {y = x - 1}

For two iterations, it is

wp(y = y + 1, {y = x - 1})={y + 1 = x - 1}, or {y = x - 2}

For three iterations, it is

wp(y = y + 1, {y = x - 2})={y + 1 = x - 2}, or {y = x – 3}

It is now obvious that {y < x} will suffice for cases of one or more
iterations. Combining this with {y = x} for the zero iterations case, we get {y
<= x}, which can be used for the loop invariant. A precondition for the while
statement can be determined from the loop invariant. In fact, I can be used as
the precondition, P.

We must ensure that our choice satisfies the four criteria for I for our example
loop. First, because P = I, P => I. The second requirement is that the following
must be true:

{ I and B } S { I }

In our example, we have

{y <= x and y <> x} y = y + 1 {y <= x}

Applying the assignment axiom to

y = y + 1 {y <= x}

we get {y + 1 <= x}, which is equivalent to {y < x}, which is implied by {y
<= x and y <> x}. So, the earlier statement is proven.

Next, we must have

{I and (not B)} => Q

In our example, we have

{(y <= x) and not (y <> x)} => {y = x}

{(y <= x) and (y = x)} => {y = x}

{y = x} => {y = x}

So, this is obviously true. Next, loop termination must be considered. In this
example, the question is whether the loop

{y <= x} while y <> x do y = y + 1 end {y = x}

terminates. Recalling that x and y are assumed to be integer variables, it is
easy to see that this loop does terminate. The precondition guarantees that y
initially is not larger than x. The loop body increments y with each iteration,
until y is equal to x. No matter how much smaller y is than x initially, it will
eventually become equal to x. So the loop will terminate. Because our choice
of I satisfies all four criteria, it is a satisfactory loop invariant and loop
precondition.

The previous process used to compute the invariant for a loop does not
always produce an assertion that is the weakest precondition (although it does
in the example).

As another example of finding a loop invariant using the approach used in
mathematical induction, consider the following loop statement:

while s > 1 do s = s / 2 end {s = 1}

As before, we use the assignment axiom to try to find a loop invariant and a
precondition for the loop. For zero iterations, the weakest precondition is {s
= 1}.

For one iteration, it is

wp(s = s / 2, {s = 1}) = {s / 2 = 1}, or {s = 2}

For two iterations, it is

wp(s = s / 2, {s = 2}) = {s / 2 = 2}, or {s = 4}

For three iterations, it is

wp(s = s / 2, {s = 4}) = {s / 2 = 4}, or {s = 8}

From these cases, we can see clearly that the invariant is

{s is a nonnegative power of 2}

Once again, the computed I can serve as P, and I passes the four
requirements. Unlike our earlier example of finding a loop precondition, this
one clearly is not a weakest precondition. Consider using the precondition {s
> 1}. The logical statement

{s > 1} while s > 1 do s = s / 2 end {s = 1}

can easily be proven, and this precondition is significantly broader than the
one computed earlier. The loop and precondition are satisfied for any positive
value for s, not just powers of 2, as the process indicates. Because of the rule
of consequence, using a precondition that is stronger than the weakest
precondition does not invalidate a proof.

Finding loop invariants is not always easy. It is helpful to understand the
nature of these invariants. First, a loop invariant is a weakened version of the
loop postcondition and also a precondition for the loop. So, I must be weak
enough to be satisfied prior to the beginning of loop execution, but when
combined with the loop exit condition, it must be strong enough to force the
truth of the postcondition.

Because of the difficulty of proving loop termination, that requirement is
often ignored. If loop termination can be shown, the axiomatic description of
the loop is called total correctness. If the other conditions can be met but
termination is not guaranteed, it is called partial correctness.

In more complex loops, finding a suitable loop invariant, even for partial
correctness, requires a good deal of ingenuity. Because computing the
precondition for a while loop depends on finding a loop invariant, proving
the correctness of programs with while loops using axiomatic semantics can
be difficult.

3.5.3.7 Program Proofs

This section provides validations for two simple programs. The first example
of a correctness proof is for a very short program, consisting of a sequence of
three assignment statements that interchange the values of two variables.

{x = A AND y = B}

t = x;

x = y;

y = t;

{x = B AND y = A}

Because the program consists entirely of assignment statements in a
sequence, the assignment axiom and the inference rule for sequences can be
used to prove its correctness. The first step is to use the assignment axiom on
the last statement and the postcondition for the whole program. This yields
the precondition

{x = B AND t = A}

Next, we use this new precondition as a postcondition on the middle
statement and compute its precondition, which is

{y = B AND t = A}

Next, we use this new assertion as the postcondition on the first statement
and apply the assignment axiom, which yields

{y = B AND x = A}

which is the same as the precondition on the program, except for the order of
operands on the AND operator. Because AND is a symmetric operator, our proof
is complete.

The following example is a proof of correctness of a pseudocode program
that computes the factorial function.

{n >= 0}

count = n;

fact = 1;

while count <> 0 do

 fact = fact * count;

 count = count - 1;

end

{fact = n!}

The method described earlier for finding the loop invariant does not work for
the loop in this example. Some ingenuity is required here, which can be aided
by a brief study of the code. The loop computes the factorial function in order
of the last multiplication first; that is, (n - 1) * n is done first, assuming n
is greater than 1. So, part of the invariant can be the following:

fact = (count + 1) * (count + 2) * . . . * (n - 1) * n

But we also must ensure that count is always nonnegative, which we can do
by adding that to the assertion above, to get the following:

I = (fact = (count + 1) * . . . * n) AND (count >= 0)

Next, we must confirm that this I meets the requirements for invariants. Once
again we let I also be used for P, so P clearly implies I. The next question is

{ I and B } S { I }

I and B is the following:

((fact = (count + 1) * . . . * n) AND (count >= 0)) AND

 (count <> 0)

This reduces to

(fact = (count + 1) * . . . * n) AND (count > 0)

In our case, we must compute the precondition of the body of the loop, using
the invariant for the postcondition. For

{P} count = count - 1 {I}

we compute P to be

{(fact = count * (count + 1) * . . . * n) AND

 (count >= 1)}

Using this as the postcondition for the first assignment in the loop body,

{P} fact = fact * count {(fact = count * (count + 1)

                        * . . . * n) AND (count >= 1)}

In this case, P is

{(fact = (count + 1) * . . . * n) AND (count >= 1)}

It is clear that I and B implies this P, so by the rule of consequence,

{I AND B} S {I}

is true. Finally, the last test of I is

I AND (NOT B) => Q

For our example, this is

((fact = (count + 1) * . . . * n) AND (count >= 0)) AND

(count = 0)) => fact = n!

This is clearly true, for when count = 0, the first part is precisely the
definition of factorial. So, our choice of I meets the requirements for a loop
invariant. Now we can use our P (which is the same as I) from the while as
the postcondition on the second assignment of the program

{P} fact = 1 {(fact = (count + 1) * . . . * n) AND

 (count >= 0)}

which yields for P

(1 = (count + 1) * . . . * n) AND (count >= 0))

Using this as the postcondition for the first assignment in the code

{P} count = n {(1 = (count + 1) * . . . * n) AND

 (count >= 0))}

produces for P

{(n + 1) * . . . * n = 1) AND (n >= 0)}

The left operand of the AND operator is true (because 1 = 1) and the right
operand is exactly the precondition of the whole code segment, {n >= 0}.
Therefore, the program has been proven to be correct.

3.5.3.8 Evaluation
As stated previously, to define the semantics of a complete programming
language using the axiomatic method, there must be an axiom or an inference
rule for each statement type in the language. Defining axioms or inference
rules for some of the statements of programming languages has proven to be
a difficult task. An obvious solution to this problem is to design the language
with the axiomatic method in mind, so that only statements for which axioms
or inference rules can be written are included. Unfortunately, such a language
would necessarily leave out some useful and powerful statements.

Axiomatic semantics is a powerful tool for research into program correctness
proofs, and it provides an excellent framework in which to reason about
programs, both during their construction and later. Its usefulness in
describing the meaning of programming languages to language users and
compiler writers is, however, highly limited.

SUMMARY
Backus-Naur Form and context-free grammars are equivalent metalanguages
that are well suited for the task of describing the syntax of programming
languages. Not only are they concise descriptive tools, but also the parse trees
that can be associated with their generative actions give graphical evidence of
the underlying syntactic structures. Furthermore, they are naturally related to
recognition devices for the languages they generate, which leads to the
relatively easy construction of syntax analyzers for compilers for these
languages.

An attribute grammar is a descriptive formalism that can describe both the
syntax and static semantics of a language. Attribute grammars are extensions
to context-free grammars. An attribute grammar consists of a grammar, a set
of attributes, a set of attribute computation functions, and a set of predicates
that describe static semantics rules.

This chapter provides brief introductions to three methods of semantic
description: operational, denotational, and axiomatic. Operational semantics
is a method of describing the meaning of language constructs in terms of their
effects on an ideal machine. In denotational semantics, mathematical objects
are used to represent the meanings of language constructs. Language entities
are converted to these mathematical objects with recursive functions.
Axiomatic semantics, which is based on formal logic, was devised as a tool
for proving the correctness of programs.

BIBLIOGRAPHIC NOTES
Syntax description using context-free grammars and BNF are thoroughly -
discussed in Cleaveland and Uzgalis (1976).

Research in axiomatic semantics was begun by Floyd (1967) and further
developed by Hoare (1969). The semantics of a large part of Pascal was
described by Hoare and Wirth (1973) using this method. The parts they did
not complete involved functional side effects and goto statements. These
were found to be the most difficult to describe.

The technique of using preconditions and postconditions during the
development of programs is described (and advocated) by Dijkstra (1976)
and also discussed in detail in Gries (1981).

Good introductions to denotational semantics can be found in Gordon (1979)
and Stoy (1977). Introductions to all of the semantics description methods
discussed in this chapter can be found in Marcotty et al. (1976). Another
good reference for much of the chapter material is Pagan (1981). The form of
the denotational semantic functions in this chapter is similar to that found in
Meyer (1990).

REVIEW QUESTIONS
1. Define syntax and semantics.

2. Who are language descriptions for?

3. Describe the operation of a general language generator.

4. Describe the operation of a general language recognizer.

5. What is the difference between a sentence and a sentential form?

6. Define a left-recursive grammar rule.

7. What three extensions are common to most EBNFs?

8. Distinguish between static and dynamic semantics.

9. What purpose do predicates serve in an attribute grammar?

10. What is the difference between a synthesized and an inherited attribute?

11. How is the order of evaluation of attributes determined for the trees of a
given attribute grammar?

12. What is the primary use of attribute grammars?

13. Explain the primary uses of a methodology and notation for describing
the semantics of programming languages.

14. Why can machine languages not be used to define statements in
operational semantics?

15. Describe the two levels of uses of operational semantics.

16. In denotational semantics, what are the syntactic and semantic domains?

17. What is stored in the state of a program for denotational semantics?

18. Which semantics approach is most widely known?

19. What two things must be defined for each language entity in order to
construct a denotational description of the language?

20. Which part of an inference rule is the antecedent?

21. What is a predicate transformer function?

22. What does partial correctness mean for a loop construct?

23. On what branch of mathematics is axiomatic semantics based?

24. On what branch of mathematics is denotational semantics based?

25. What is the problem with using a software pure interpreter for
operational semantics?

26. Explain what the preconditions and postconditions of a given statement
mean in axiomatic semantics.

27. Describe the approach of using axiomatic semantics to prove the
correctness of a given program.

28. Describe the basic concept of denotational semantics.

29. In what fundamental way do operational semantics and denotational
semantics differ?

PROBLEM SET
1. The two mathematical models of language description are generation

and recognition. Describe how each can define the syntax of a
programming language.

2. Write EBNF descriptions for the following:

1. A Java class definition header statement

2. A Java method call statement

3. A C switch statement

4. A C union definition

5. C float literals

3. Rewrite the BNF of Example 3.4 to give + precedence over * and force +
to be right associative.

4. Rewrite the BNF of Example 3.4 to add the ++ and -- unary operators of
Java.

5. Write a BNF description of the Boolean expressions of Java, including
the three operators &&, ||, and ! and the relational expressions.

6. Using the grammar in Example 3.2, show a parse tree and a leftmost
derivation for each of the following statements:

1. A = A * (B + (C * A))

2. B = C * (A * C + B)

3. A = A * (B + (C))

7. Using the grammar in Example 3.4, show a parse tree and a leftmost
derivation for each of the following statements:

1. A = (A + B) * C

2. A = B + C + A

3. A = A * (B + C)

4. A = B * (C * (A + B))

8. Prove that the following grammar is ambiguous:

<S> → <A>

<A> → <A> + <A> | <id>

<id> → a | b | c

9. Modify the grammar of Example 3.4 to add a unary minus operator that
has higher precedence than either + or *.

10. Describe, in English, the language defined by the following grammar:

<S> → <A> <C>

<A> → a <A> | a

 → b | b

<C> → c <C> | c

11. Consider the following grammar:

<S> → <A> a b

<A> → <A> b | b

 → a | a

Which of the following sentences are in the language generated by this
grammar?

1. baab

2. bbbab

3. bbaaaaaS

4. bbaab

12. Consider the following grammar:

<S> → a <S> c | <A> | b

<A> → c <A> | c

 → d | <A>

Which of the following sentences are in the language generated by this
grammar?

1. abcd

2. acccbd

3. acccbcc

4. acd

5. accc

13. Write a grammar for the language consisting of strings that have n
copies of the letter a followed by the same number of copies of the letter
b, where n > 0. For example, the strings ab, aaaabbbb, and
aaaaaaaabbbbbbbb are in the language but a, abb, ba, and aaabb are not.

14. Draw parse trees for the sentences aabb and aaaabbbb, as derived from
the grammar of Problem 13.

15. Convert the BNF of Example 3.1 to EBNF.

16. Convert the BNF of Example 3.3 to EBNF.

17. Convert the following EBNF to BNF:

S→A{bA}

A→a[b]A

18. What is the difference between an intrinsic attribute and a nonintrinsic
synthesized attribute?

19. Write an attribute grammar whose BNF basis is that of Example 3.6 in
Section 3.4.5 but whose language rules are as follows: Data types cannot
be mixed in expressions, but assignment statements need not have the
same types on both sides of the assignment operator.

20. Write an attribute grammar whose base BNF is that of Example 3.2 and
whose type rules are the same as for the assignment statement example
of Section 3.4.5.

21. Using the virtual machine instructions given in Section 3.5.1.1, give an
operational semantic definition of the following:

1. Java do-while

2. Ada for

3. C++ if-then-else

4. C for

5. C switch

22. Write a denotational semantics mapping function for the following
statements:

1. Ada for

2. Java do-while

3. Java Boolean expressions

4. Java for

5. C switch

23. Compute the weakest precondition for each of the following assignment
statements and postconditions:

1. a = 2 * (b - 1) - 1 {a > 0}

2. b = (c + 10) / 3 {b > 6}

3. a = a + 2 * b - 1 {a > 1}

4. x = 2 * y + x - 1 {x > 11}

24. Compute the weakest precondition for each of the following sequences
of assignment statements and their postconditions:

1. a = 2 * b + 1;

b = a - 3

{b < 0}

2. a = 3 * (2 * b + a);

b = 2 * a - 1

{b > 5}

25. Compute the weakest precondition for each of the following selection
constructs and their postconditions:

1. if (a == b)

 b = 2 * a + 1

else

 b = 2 * a;

{b > 1}

2. if (x < y)

 x = x + 1

else

 x = 3 * x

{x < 0}

3. if (x > y)

  y = 2 * x + 1

else

  y = 3 * x - 1;

{y > 3}

26. Explain the four criteria for proving the correctness of a logical pretest
loop construct of the form while B do S end.

27. Prove that (n+1) *…* n=1.

28. Prove the following program is correct:

{n > 0}

count = n;

sum = 0;

while count <> 0 do

 sum = sum + count;

 count = count - 1;

end

{sum = 1 + 2 + . . . + n}

4 Lexical and Syntax Analysis
1. 4.1 Introduction

2. 4.2 Lexical Analysis

3. 4.3 The Parsing Problem

4. 4.4 Recursive-Descent Parsing

5. 4.5 Bottom-Up Parsing

This chapter begins with an introduction to lexical analysis, along with a -
simple example. Next, the general parsing problem is discussed, including the
two primary approaches to parsing, and the complexity of parsing. Then, we -
introduce the recursive-descent implementation technique for top-down
parsers, including examples of parts of a recursive-descent parser and a trace
of a parse using one. The last section discusses bottom-up parsing and the LR
parsing algorithm. This section includes an example of a small LR parsing
table and the parse of a string using the LR parsing process.

4.1 Introduction
A serious investigation of compiler design requires at least a semester of
intensive study, including the design and implementation of a compiler for a
small but realistic programming language. The first part of such a course is
devoted to lexical and syntax analyses. The syntax analyzer is the heart of a
compiler, because several other important components, including the
semantic analyzer and the intermediate code generator, are driven by the
actions of the syntax analyzer.

Some readers may wonder why a chapter on any part of a compiler would be
included in a book on programming languages. There are at least two reasons
to include a discussion of lexical and syntax analyses in this text: First,
syntax analyzers are based directly on the grammars discussed in Chapter 3,
so it is natural to discuss them as an application of grammars. Second, lexical
and syntax analyzers are needed in numerous situations outside compiler
design. Many applications, among them program listing formatters, programs
that compute the complexity of programs, and programs that must analyze
and react to the contents of a configuration file, all need to do lexical and
syntax analyses. Therefore, lexical and syntax analyses are important topics
for software developers, even if they never need to write a compiler.
Furthermore, some computer science programs no longer require students to
take a compiler design course, which leaves students with no instruction in
lexical or syntax analysis. In those cases, this chapter can be covered in the
programming language course. In degree programs that require a compiler
design course, this chapter can be skipped.

Three different approaches to implementing programming languages
are introduced in Chapter 1: compilation, pure interpretation, and hybrid
implementation. The compilation approach uses a program called a compiler,
which translates programs written in a high-level programming language into
machine code. Compilation is typically used to implement programming
languages that are used for large applications, often written in languages such
as C++ and COBOL. Pure interpretation systems perform no translation;
rather, programs are interpreted in their original form by a software

interpreter. Pure interpretation is usually used for smaller systems in which
execution efficiency is not critical, such as scripts embedded in HTML
documents, written in languages such as JavaScript. Hybrid implementation
systems translate programs written in high-level languages into intermediate
forms, which are interpreted. These systems are now more widely used than
ever, thanks in large part to the popularity of scripting languages.
Traditionally, hybrid systems have resulted in much slower program
execution than compiler systems. However, in recent years the use of Just-in-
Time (JIT) compilers has become widespread, particularly for Java programs
and programs written for the Microsoft .NET system. A JIT compiler, which
translates intermediate code to machine code, is used on methods at the time
they are first called. In effect, a JIT compiler transforms a hybrid system to a
delayed compiler system.

All three of the implementation approaches just discussed use both lexical
and syntax analyzers.

Syntax analyzers, or parsers, are nearly always based on a formal description
of the syntax of programs. The most commonly used syntax-description
formalism is context-free grammars, or BNF, which is introduced in Chapter
3. Using BNF, as opposed to using some informal syntax description, has at
least three compelling advantages. First, BNF descriptions of the syntax of
programs are clear and concise, both for humans and for software systems
that use them. Second, the BNF description can be used as the direct basis for
the syntax analyzer. Third, implementations based on BNF are relatively easy
to maintain because of their modularity.

Nearly all compilers separate the task of analyzing syntax into two distinct
parts, lexical analysis and syntax analysis, although this terminology is
confusing. The lexical analyzer deals with small-scale language constructs,
such as names and numeric literals. The syntax analyzer deals with the large-
scale constructs, such as expressions, statements, and program units. Section
4.2 introduces lexical analyzers. Sections 4.3, 4.4, and 4.5 discuss syntax
analyzers.

There are three reasons why lexical analysis is separated from syntax
analysis:

1. Simplicity—Techniques for lexical analysis are less complex than those
required for syntax analysis, so the lexical-analysis process can be
simpler if it is separate. Also, removing the low-level details of lexical
analysis from the syntax analyzer makes the syntax analyzer both
smaller and less complex.

2. Efficiency—Although it pays to optimize the lexical analyzer, because
lexical analysis requires a significant portion of total compilation time, it
is not fruitful to optimize the syntax analyzer. Separation facilitates this
selective optimization.

3. Portability—Because the lexical analyzer reads input program files and
often includes buffering of that input, it is somewhat platform
dependent. However, the syntax analyzer can be platform independent.
It is always good to isolate machine-dependent parts of any software
system.

4.2 Lexical Analysis
A lexical analyzer is essentially a pattern matcher. A pattern matcher attempts
to find a substring of a given string of characters that matches a given
character pattern. Pattern matching is a traditional part of computing. One of
the earliest uses of pattern matching was with text editors, such as the ed line
editor, which was introduced in an early version of UNIX. Since then, pattern
matching has found its way into some programming languages—for example,
Perl and JavaScript. It is also available through the standard class libraries of
Java, C++, and C#.

A lexical analyzer serves as the front end of a syntax analyzer. Technically,
lexical analysis is a part of syntax analysis. A lexical analyzer performs
syntax analysis at the lowest level of program structure. An input program
appears to a compiler as a single string of characters. The lexical analyzer
collects characters into logical groupings and assigns internal codes to the
groupings according to their structure. In Chapter 3, these logical groupings
are named lexemes, and the internal codes for categories of these groupings
are named tokens. Lexemes are recognized by matching the input character
string against character string patterns. Although tokens are usually
represented as integer values, for the sake of readability of lexical and syntax
analyzers, they are often referenced through named constants.

Consider the following example of an assignment statement:

result = oldsum - value / 100;

Following are the tokens and lexemes of this statement:

Lexical analyzers extract lexemes from a given input string and produce the
corresponding tokens. In the early days of compilers, lexical analyzers often
processed an entire source program file and produced a file of tokens and
lexemes. Now, however, most lexical analyzers are subprograms that locate
the next lexeme in the input, determine its associated token code, and return
them to the caller, which is the syntax analyzer. So, each call to the lexical
analyzer returns a single lexeme and its token. The only view of the input
program seen by the syntax analyzer is the output of the lexical analyzer, one
token at a time.

The lexical-analysis process includes skipping comments and white space
outside lexemes, as they are not relevant to the meaning of the program.
Also, the lexical analyzer inserts lexemes for user-defined names into the
symbol table, which is used by later phases of the compiler. Finally, lexical
analyzers detect syntactic errors in tokens, such as ill-formed floating-point
literals, and report such errors to the user.

There are three approaches for building a lexical analyzer:

1. Write a formal description of the token patterns of the language using a

descriptive language related to regular expressions.1 These descriptions
are used as input to a software tool that automatically generates a lexical
analyzer. There are many such tools available for this. The oldest of
these, named lex, is commonly included as part of UNIX systems.

1. These regular expressions are the basis for the pattern-matching
facilities now part of many programming languages, either directly or
through a class library.

2. Design a state transition diagram that describes the token patterns of the
language and write a program that implements the diagram.

3. Design a state transition diagram that describes the token patterns of the
language and hand-construct a table-driven implementation of the state
diagram.

A state transition diagram, or just state diagram, is a directed graph. The
nodes of a state diagram are labeled with state names. The arcs are labeled
with the input characters that cause the transitions among the states. An arc
may also include actions the lexical analyzer must perform when the
transition is taken.

State diagrams of the form used for lexical analyzers are representations of a
class of mathematical machines called finite automata. Finite automata can
be designed to recognize members of a class of languages called regular
languages. Regular grammars are generative devices for regular languages.
The tokens of a programming language are a regular language, and a lexical
analyzer is a finite automaton.

We now illustrate lexical-analyzer construction with a state diagram and the
code that implements it. The state diagram could simply include states and
transitions for each and every token pattern. However, that approach results
in a very large and complex diagram, because every node in the state diagram
would need a transition for every character in the character set of the
language being analyzed. We therefore consider ways to simplify it.

Suppose we need a lexical analyzer that recognizes only arithmetic
expressions, including variable names and integer literals as operands.

Assume that the variable names consist of strings of uppercase letters,
lowercase letters, and digits but must begin with a letter. Names have no
length limitation. The first thing to observe is that there are 52 different
characters (any uppercase or lowercase letter) that can begin a name, which
would require 52 transitions from the transition diagram’s initial state.
However, a lexical analyzer is interested only in determining that it is a name
and is not concerned with which specific name it happens to be. Therefore,
we define a character class named LETTER for all 52 letters and use a single
transition on the first letter of any name.

Another opportunity for simplifying the transition diagram is with the integer
literal tokens. There are 10 different characters that could begin an integer
literal lexeme. This would require 10 transitions from the start state of the
state diagram. Because specific digits are not a concern of the lexical
analyzer, we can build a much more compact state diagram if we define a
character class named DIGIT for digits and use a single transition on any
character in this character class to a state that collects integer literals.

Because our names can include digits, the transition from the node following
the first character of a name can use a single transition on LETTER or DIGIT
to continue collecting the characters of a name.

Next, we define some utility subprograms for the common tasks inside the
lexical analyzer. First, we need a subprogram, which we can name getChar,
that has several duties. When called, getChar gets the next character of input
from the input program and puts it in the global variable nextChar. getChar
also must determine the character class of the input character and put it in the
global variable charClass. The lexeme being built by the lexical analyzer,
which could be implemented as a character string or an array, will be named
lexeme.

We implement the process of putting the character in nextChar into the string
array lexeme in a subprogram named addChar. This subprogram must be
explicitly called because programs include some characters that need not be
put in lexeme, for example the white-space characters between lexemes. In a
more realistic lexical analyzer, comments also would not be placed in
lexeme.

When the lexical analyzer is called, it is convenient if the next character of
input is the first character of the next lexeme. Because of this, a function
named getNonBlank is used to skip white space every time the analyzer is
called.

Finally, a subprogram named lookup is needed to compute the token code for
the single-character tokens. In our example, these are parentheses and the
arithmetic operators. Token codes are numbers arbitrarily assigned to tokens
by the compiler writer.

The state diagram in Figure 4.1 describes the patterns for our tokens. It
includes the actions required on each transition of the state diagram.

Figure 4.1 A state diagram to

recognize names, parentheses,
and arithmetic operators

Figure 4.1 Full Alternative Text

The following is a C implementation of a lexical analyzer specified in the
state diagram of Figure 4.1, including a main driver function for testing
purposes:

/* front.c - a lexical analyzer system for simple

 arithmetic expressions */

#include <stdio.h>

#include <ctype.h>

/* Global declarations */

/* Variables */

int charClass;

char lexeme [100];

char nextChar;

int lexLen;

int token;

int nextToken;

FILE *in_fp, *fopen();

/* Function declarations */

void addChar();

void getChar();

void getNonBlank();

int lex();

/* Character classes */

#define LETTER 0

#define DIGIT 1

#define UNKNOWN 99

/* Token codes */

#define INT_LIT 10

#define IDENT 11

#define ASSIGN_OP 20

#define ADD_OP 21

#define SUB_OP 22

#define MULT_OP 23

#define DIV_OP 24

#define LEFT_PAREN 25

#define RIGHT_PAREN 26

/**/

/* main driver */

main() {

/* Open the input data file and process its contents */

 if ((in_fp = fopen("front.in", "r")) == NULL)

 printf("ERROR - cannot open front.in \n");

 else {

 getChar();

 do {

 lex();

 } while (nextToken! = EOF);

 }

}

/***/

/* lookup - a function to lookup operators and parentheses

 and return the token */

int lookup(char ch) {

 switch (ch) {

 case '(':

 addChar();

 nextToken = LEFT_PAREN;

 break;

 case ')':

 addChar();

 nextToken = RIGHT_PAREN;

 break;

 case '+':

 addChar();

 nextToken = ADD_OP;

 break;

 case '-':

 addChar();

 nextToken = SUB_OP;

 break;

 case '*':

 addChar();

 nextToken = MULT_OP;

 break;

 case '/':

 addChar();

 nextToken = DIV_OP;

 break;

 default:

 addChar();

 nextToken = EOF;

 break;

 }

 return nextToken;

}

/***/

/* addChar - a function to add nextChar to lexeme */

void addChar() {

 if (lexLen <= 98) {

 lexeme[lexLen++] = nextChar;

 lexeme[lexLen] = 0;

 }

 else

 printf("Error - lexeme is too long \n");

}

/***/

/* getChar - a function to get the next character of

 input and determine its character class */

 void getChar() {

 if ((nextChar = getc(in_fp)) = EOF) {

 if (isalpha(nextChar))

 charClass = LETTER;

 else if (isdigit(nextChar))

 charClass = DIGIT;

 else charClass = UNKNOWN;

 }

 else

 charClass = EOF;

}

/***/

/* getNonBlank - a function to call getChar until it

 returns a non-whitespace character */

void getNonBlank() {

 while (isspace(nextChar))

 getChar();

}

/

***/

/* lex - a simple lexical analyzer for arithmetic

 expressions */

int lex() {

 lexLen = 0;

 getNonBlank();

 switch (charClass) {

/* Parse identifiers */

 case LETTER:

 addChar();

 getChar();

 while (charClass == LETTER || charClass == DIGIT) {

 addChar();

 getChar();

 }

 nextToken = IDENT;

 break;

/* Parse integer literals */

 case DIGIT:

 addChar();

 getChar();

 while (charClass == DIGIT) {

 addChar();

 getChar();

 }

 nextToken = INT_LIT;

 break;

/* Parentheses and operators */

 case UNKNOWN:

 lookup(nextChar);

 getChar();

 break;

/* EOF */

 case EOF:

 nextToken = EOF;

 lexeme[0] = 'E';

 lexeme[1] = 'O';

 lexeme[2] = 'F';

 lexeme[3] = 0;

 break;

 } /* End of switch */

 printf("Next token is: %d, Next lexeme is %s\n",

 nextToken, lexeme);

 return nextToken;

} /* End of function lex */

This code illustrates the relative simplicity of lexical analyzers. Of course, we
have left out input buffering, as well as some other important details. -
Furthermore, we have dealt with a very small and simple input language.

Consider the following expression:

(sum + 47) / total

Following is the output of the lexical analyzer of front.c when used on this
expression:

Next token is: 25 Next lexeme is (

Next token is: 11 Next lexeme is sum

Next token is: 21 Next lexeme is +

Next token is: 10 Next lexeme is 47

Next token is: 26 Next lexeme is)

Next token is: 24 Next lexeme is /

Next token is: 11 Next lexeme is total

Next token is: -1 Next lexeme is EOF

Names and reserved words in programs have similar patterns. Although it is
possible to build a state diagram to recognize every specific reserved word of
a programming language, that would result in a prohibitively large state
diagram. It is much simpler and faster to have the lexical analyzer recognize
names and reserved words with the same pattern and use a lookup in a table
of reserved words to determine which names are reserved words. Using this
approach considers reserved words to be exceptions in the names token
category.

A lexical analyzer often is responsible for the initial construction of the
symbol table, which acts as a database of names for the compiler. The entries
in the symbol table store information about user-defined names, as well as the
attributes of the names. For example, if the name is that of a variable, the
variable’s type is one of its attributes that will be stored in the symbol table.
Names are usually placed in the symbol table by the lexical analyzer. The
attributes of a name are usually put in the symbol table by some part of the
compiler that is subsequent to the actions of the lexical analyzer.

4.3 The Parsing Problem
The part of the process of analyzing syntax that is referred to as syntax
analysis is often called parsing. We will use these two interchangeably.

This section discusses the general parsing problem and introduces the two
main categories of parsing algorithms, top-down and bottom-up, as well as
the complexity of the parsing process.

4.3.1 Introduction to Parsing
Parsers for programming languages construct parse trees for given programs.
In some cases, the parse tree is only implicitly constructed, meaning that
perhaps only a traversal of the tree is generated. But in all cases, the
information required to build the parse tree is created during the parse. Both
parse trees and derivations include all of the syntactic information needed by
a language processor.

There are two distinct goals of syntax analysis: First, the syntax analyzer
must check the input program to determine whether it is syntactically correct.
When an error is found, the analyzer must produce a diagnostic message and
recover. In this case, recovery means it must get back to a normal state and
continue its analysis of the input program. This step is required so that the
compiler finds as many errors as possible during a single analysis of the input
program. If it is not done well, error recovery may create more errors, or at
least more error messages. The second goal of syntax analysis is to produce a
complete parse tree, or at least trace the structure of the complete parse tree,
for syntactically correct input. The parse tree (or its trace) is used as the basis
for translation.

Parsers are categorized according to the direction in which they build parse
trees. The two broad classes of parsers are top-down, in which the tree is
built from the root downward to the leaves, and bottom-up, in which the
parse tree is built from the leaves upward to the root.

In this chapter, we use a small set of notational conventions for grammar
symbols and strings to make the discussion less cluttered. For formal
languages, they are as follows:

1. Terminal symbols—lowercase letters at the beginning of the alphabet (a,
b, . . .)

2. Nonterminal symbols—uppercase letters at the beginning of the
alphabet (A, B, . . .)

3. Terminals or nonterminals—uppercase letters at the end of the alphabet
(W, X, Y, Z)

4. Strings of terminals—lowercase letters at the end of the alphabet (w, x,
y, z)

5. Mixed strings (terminals and/or nonterminals)—lowercase Greek letters
(α, β, δ, γ)

For programming languages, terminal symbols are the small-scale syntactic
constructs of the language, what we have referred to as lexemes. The
nonterminal symbols of programming languages are usually connotative
names or abbreviations, surrounded by angle brackets—for example,
<while_statement>, <expr>, and <function_def>. The sentences of a
language (programs, in the case of a programming language) are strings of
terminals. Mixed strings describe right-hand sides (RHSs) of grammar rules
and are used in parsing algorithms.

4.3.2 Top-Down Parsers
A top-down parser traces or builds a parse tree in preorder. A preorder
traversal of a parse tree begins with the root. Each node is visited before its
branches are followed. Branches from a particular node are followed in left-
to-right order. This corresponds to a leftmost derivation.

In terms of the derivation, a top-down parser can be described as follows:
Given a sentential form that is part of a leftmost derivation, the parser’s task

is to find the next sentential form in that leftmost derivation. The general
form of a left sentential form is xAα, whereby our notational conventions x is
a string of terminal symbols, A is a nonterminal, and α is a mixed string.
Because x contains only terminals, A is the leftmost nonterminal in the
sentential form, so it is the one that must be expanded to get the next
sentential form in a leftmost derivation. Determining the next sentential form
is a matter of choosing the correct grammar rule that has A as its LHS. For
example, if the current sentential form is xAα and the A-rules are
A→bB, A→cBb, and A→a, a top-down parser must choose among these
three rules to get the next sentential form, which could be xbBα, xcBbα, or
xaα. This is the parsing decision problem for top-down parsers.

Different top-down parsing algorithms use different information to make
parsing decisions. The most common top-down parsers choose the correct
RHS for the leftmost nonterminal in the current sentential form by comparing
the next token of input with the first symbols that can be generated by the
RHSs of those rules. Whichever RHS has that token at the left end of the
string it generates is the correct one. So, in the sentential form xAα, the parser
would use whatever token would be the first generated by A to determine
which A-rule should be used to get the next sentential form. In the example
above, the three RHSs of the A-rules all begin with different terminal
symbols. The parser can easily choose the correct RHS based on the next
token of input, which must be a, b, or c in this example. In general, choosing
the correct RHS is not so straightforward, because some of the RHSs of the
leftmost nonterminal in the current sentential form may begin with a
nonterminal.

The most common top-down parsing algorithms are closely related. A
recursive-descent parser is a coded version of a syntax analyzer based
directly on the BNF description of the syntax of language. The most common
alternative to recursive descent is to use a parsing table, rather than code, to
implement the BNF rules. Both of these, which are called LL algorithms, are
equally powerful, meaning they work on the same subset of all context-free
grammars. The first L in LL specifies a left-to-right scan of the input; the
second L specifies that a leftmost derivation is generated. Section 4.4
introduces the recursive-descent approach to implementing an LL parser.

4.3.3 Bottom-Up Parsers
A bottom-up parser constructs a parse tree by beginning at the leaves and
progressing toward the root. This parse order corresponds to the reverse of a
rightmost derivation. That is, the sentential forms of the derivation are
produced in order of last to first. In terms of the derivation, a bottom-up
parser can be described as follows: Given a right sentential form α, the parser
must determine what substring of α is the RHS of the rule in the grammar that
must be reduced to its LHS to produce the previous sentential form in the
rightmost derivation. For example, the first step for a bottom-up parser is to
determine which substring of the initial given sentence is the RHS to be
reduced to its corresponding LHS to get the second last sentential form in the
derivation. The process of finding the correct RHS to reduce is complicated
by the fact that a given right sentential form may include more than one RHS
from the grammar of the language being parsed. The correct RHS is called
the handle. A right sentential form is a sentential form that appears in a
rightmost derivation.

Consider the following grammar and derivation:

S → aAc

A→aA | b

S => aAc => aaAc => aabc

A bottom-up parser of this sentence, aabc, starts with the sentence and must
find the handle in it. In this example, this is an easy task, for the string
contains only one RHS, b. When the parser replaces b with its LHS, A, it gets
the second to last sentential form in the derivation, aaAc. In the general case,
as stated previously, finding the handle is much more difficult, because a
sentential form may include several different RHSs.

A bottom-up parser finds the handle of a given right sentential form by
examining the symbols on one or both sides of a possible handle. Symbols to
the right of the possible handle are usually tokens in the input that have not
yet been analyzed.

The most common bottom-up parsing algorithms are in the LR family, where
the L specifies a left-to-right scan of the input and the R specifies that a
rightmost derivation is generated.

4.3.4 The Complexity of Parsing
Parsing algorithms that work for any unambiguous grammar are complicated
and inefficient. In fact, the complexity of such algorithms is O(n3), which
means the amount of time they take is on the order of the cube of the length
of the string to be parsed. This relatively large amount of time is required
because these algorithms frequently must back up and reparse part of the
sentence being analyzed. Reparsing is required when the parser has made a
mistake in the parsing process. Backing up the parser also requires that part
of the parse tree being constructed (or its trace) must be dismantled and
rebuilt. O(n3) algorithms are normally not useful for practical processes, such
as syntax analysis for a compiler, because they are far too slow. In situations
such as this, computer scientists often search for algorithms that are faster,
though less general. Generality is traded for efficiency. In terms of parsing,
faster algorithms have been found that work for only a subset of the set of all
possible grammars. These algorithms are acceptable as long as the subset
includes grammars that describe programming languages. (Actually, as
discussed in Chapter 3, the whole class of context-free grammars is not
adequate to describe all of the syntax of most programming languages.)

All algorithms used for the syntax analyzers of commercial compilers have
complexity O(n), which means the time they take is linearly related to the
length of the string to be parsed. This is vastly more efficient than O(n3)
algorithms.

4.4 Recursive-Descent Parsing
This section introduces the recursive-descent top-down parser
implementation process.

4.4.1 The Recursive-Descent
Parsing Process
A recursive-descent parser is so named because it consists of a collection of
subprograms, many of which are recursive, and it produces a parse tree in
top-down order. This recursion is a reflection of the nature of programming
languages, which include several different kinds of nested structures. For
example, statements are often nested in other statements. Also, parentheses in
expressions must be properly nested. The syntax of these structures is
naturally described with recursive grammar rules.

EBNF is ideally suited for recursive-descent parsers. Recall from Chapter 3
that the primary EBNF extensions are braces, which specify that what they
enclose can appear zero or more times, and brackets, which specify that what
they enclose can appear once or not at all. Note that in both cases, the
enclosed symbols are optional. Consider the following examples:

<if_statement> → if <logic_expr> <statement> [else <statement>]

<ident_list> → ident {, ident}

In the first rule, the else clause of an if statement is optional. In the second,
an <ident_list> is an identifier, followed by zero or more repetitions of a
comma and an identifier.

A recursive-descent parser has a subprogram for each nonterminal in its
associated grammar. The responsibility of the subprogram associated with a
particular nonterminal is as follows: When given an input string, it traces out

the parse tree that can be rooted at that nonterminal and whose leaves match
the input string. In effect, a recursive-descent parsing subprogram is a parser
for the language (set of strings) that is generated by its associated
nonterminal.

Consider the following EBNF description of simple arithmetic expressions:

<expr> → <term> {(+ | -) <term>}

<term> → <factor> {(* | /) <factor>}

<factor> → id | int_constant | (<expr>)

Recall from Chapter 3 that an EBNF grammar for arithmetic expressions,
such as this one, does not force any associativity rule. Therefore, when using
such a grammar as the basis for a compiler, one must take care to ensure that
the code generation process, which is normally driven by syntax analysis,
produces code that adheres to the associativity rules of the language. This can
be done easily when recursive-descent parsing is used.

In the following recursive-descent function, expr, the lexical analyzer is the
function that is implemented in Section 4.2. It gets the next lexeme and puts
its token code in the global variable nextToken. The token codes are defined
as named constants, as in Section 4.2.

A recursive-descent subprogram for a rule with a single RHS is relatively
simple. For each terminal symbol in the RHS, that terminal symbol is
compared with nextToken. If they do not match, it is a syntax error. If they
match, the lexical analyzer is called to get the next input token. For each
nonterminal, the parsing subprogram for that nonterminal is called.

The recursive-descent subprogram for the first rule in the previous example
grammar, written in C, is

/* expr

 Parses strings in the language generated by the rule:

 <expr> -> <term> {(+ | -) <term>}

 */

void expr() {

 printf("Enter <expr>\n");

/* Parse the first term */

 term();

/* As long as the next token is + or -, get

 the next token and parse the next term */

 while (nextToken == ADD_OP || nextToken == SUB_OP) {

 lex();

 term();

 }

 printf("Exit <expr>\n");

} /* End of function expr */

Notice that the expr function includes tracing output statements, which are
included to produce the example output shown later in this section.

Recursive-descent parsing subprograms are written with the convention that
each one leaves the next token of input in nextToken. So, whenever a parsing
function begins, it assumes that nextToken has the code for the leftmost
token of the input that has not yet been used in the parsing process.

The part of the language that the expr function parses consists of one or more
terms, separated by either plus or minus operators. This is the language
generated by the nonterminal <expr>. Therefore, first it calls the function that
parses terms (term). Then it continues to call that function as long as it finds
ADD_OP or SUB_OP tokens (which it passes over by calling lex). This
recursive-descent function is simpler than most, because its associated rule
has only one RHS. Furthermore, it does not include any code for syntax error
detection or recovery, because there are no detectable errors associated with
the grammar rule.

A recursive-descent parsing subprogram for a nonterminal whose rule has
more than one RHS begins with code to determine which RHS is to be
parsed. Each RHS is examined (at compiler construction time) to determine
the set of terminal symbols that can appear at the beginning of sentences it
can generate. By matching these sets against the next token of input, the
parser can choose the correct RHS.

The parsing subprogram for <term> is similar to that for <expr>:

/* term

 Parses strings in the language generated by the rule:

 <term> -> <factor> {(* | /) <factor>)

 */

void term() {

 printf("Enter <term>\n");

/* Parse the first factor */

 factor();

/* As long as the next token is * or /, get the

 next token and parse the next factor */

 while (nextToken == MULT_OP || nextToken == DIV_OP) {

 lex();

 factor();

 }

 printf("Exit <term>\n");

} /* End of function term */

The function for the <factor> nonterminal of our arithmetic expression
grammar must choose between its two RHSs. It also includes error detection.
In the function for <factor>, the reaction to detecting a syntax error is simply
to call the error function. In a real parser, a diagnostic message must be
produced when an error is detected. Furthermore, parsers must recover from
the error so that the parsing process can continue.

/* factor

 Parses strings in the language generated by the rule:

 <factor> -> id | int_constant | (<expr)

 */

void factor() {

 printf("Enter <factor>\n");

/* Determine which RHS */

 if (nextToken == IDENT || nextToken == INT_LIT)

/* Get the next token */

 lex();

/* If the RHS is (<expr>), call lex to pass over the

 left parenthesis, call expr, and check for the right

 parenthesis */

 else {

 if (nextToken == LEFT_PAREN) {

 lex();

 expr();

 if (nextToken == RIGHT_PAREN)

 lex();

 else

 error();

 } /* End of if (nextToken == ... */

/* It was not an id, an integer literal, or a left

 parenthesis */

 else error();

 } /* End of else */

 printf("Exit <factor>\n");;

} /* End of function factor */

Following is the trace of the parse of the example expression (sum + 47) /
total, using the parsing functions expr, term, and factor, and the function
lex from Section 4.2. Note that the parse begins by calling lex and the start
symbol routine, in this case, expr.

Next token is: 25 Next lexeme is (

Enter <expr>

Enter <term>

Enter <factor>

Next token is: 11 Next lexeme is sum

Enter <expr>

Enter <term>

Enter <factor>

Next token is: 21 Next lexeme is +

Exit <factor>

Exit <term>

Next token is: 10 Next lexeme is 47

Enter <term>

Enter <factor>

Next token is: 26 Next lexeme is)

Exit <factor>

Exit <term>

Exit <expr>

Next token is: 24 Next lexeme is /

Exit <factor>

Next token is: 11 Next lexeme is total

Enter <factor>

Next token is: -1 Next lexeme is EOF

Exit <factor>

Exit <term>

Exit <expr>

The parse tree traced by the parser for the preceding expression is shown in
Figure 4.2.

Figure 4.2 Parse tree for (sum +
47)/ total

Figure 4.2 Full Alternative Text

One more example grammar rule and parsing function should help solidify
the reader’s understanding of recursive-descent parsing. Following is a
grammatical description of the Java if statement:

<ifstmt> → if (<boolexpr>) <statement> [else <statement>]

The recursive-descent subprogram for this rule follows:

/* Function ifstmt

 Parses strings in the language generated by the rule:

 <ifstmt> -> if (<boolexpr>) <statement>

 [else <statement>]

 */

void ifstmt() {

/* Be sure the first token is 'if' */

 if (nextToken = IF_CODE)

 error();

 else {

/* Call lex to get to the next token */

 lex();

/* Check for the left parenthesis */

 if (nextToken = LEFT_PAREN)

 error();

 else {

/* Parse the Boolean expression */

 boolexpr();

/* Check for the right parenthesis */

 if (nextToken = RIGHT_PAREN)

 error();

 else {

/* Parse the then clause */

 statement();

/* If an else is next, parse the else clause */

 if (nextToken == ELSE_CODE) {

/* Call lex to get over the else */

 lex();

 statement();

 } /* end of if (nextToken == ELSE_CODE ... */

 } /* end of else of if (nextToken != RIGHT ... */

 } /* end of else of if (nextToken != LEFT ... */

 } /* end of else of if (nextToken != IF_CODE ... */

} /* end of ifstmt */

Notice that this function uses parser functions for statements and Boolean
expressions that are not given in this section.

The objective of these examples is to convince you that a recursive-descent
parser can be easily written if an appropriate grammar is available for the
language. The characteristics of a grammar that allows a recursive-descent
parser to be built are discussed in the following subsection.

4.4.2 The LL Grammar Class
Before choosing to use recursive descent as a parsing strategy for a compiler
or other program analysis tool, one must consider the limitations of the
approach, in terms of grammar restrictions. This section discusses these
restrictions and their possible solutions.

One simple grammar characteristic that causes a catastrophic problem for LL
parsers is left recursion. For example, consider the following rule:

A→A+B

A recursive-descent parser subprogram for A immediately calls itself to parse
the first symbol in its RHS. That activation of the A parser subprogram then
immediately calls itself again, and again, and so forth. It is easy to see that
this leads nowhere (except to stack overflow).

The left recursion in the rule A→A+B is called direct left recursion,
because it occurs in one rule. Direct left recursion can be eliminated from a
grammar by the following process:

For each nonterminal, A,

1. Group the A-rules as A→Aα1, | ⋯ | Aαm | β1 | β2 | ⋯ | βn where none of
the β's begins with A

2. Replace the original A-rules with

A→β1A′ | β2A′ | ⋯ | βnA′ A′→α1A′ | α2A′ | αmA′ | ε

Note that ε specifies the empty string. A rule that has ε as its RHS is called an
erasure rule, because its use in a derivation effectively erases its LHS from
the sentential form.

Consider the following example grammar and the application of the above
process:

E→E+T | T T→T * F | F F→(E)+id

For the E-rules, we have α1 = + T and β = T, so we replace the E-rules with

E→T E′ E′→+T E′ | ε

For the T-rules, we have α1 = *F and β = F, so we replace the T-rules with

T→F T′ T  ′→*F T′ | ε

Because there is no left recursion in the F-rules, they remain the same, so the
complete replacement grammar is

E→T E′ E′→+T E′ | ε T→F T′ T′→ * F T′ | ε F→(E) | id

This grammar generates the same language as the original grammar but is not
left recursive.

As was the case with the expression grammar written using EBNF in Section
4.4.1, this grammar does not specify left associativity of operators. However,
it is relatively easy to design the code generation based on this grammar so
that the addition and multiplication operators will have left associativity.

Indirect left recursion poses the same problem as direct left recursion. For
example, suppose we have

A → B a A B → A b

A recursive-descent parser for these rules would have the A subprogram
immediately call the subprogram for B, which immediately calls the A
subprogram. So, the problem is the same as for direct left recursion. The
problem of left recursion is not confined to the recursive-descent approach to
building top-down parsers. It is a problem for all top-down parsing
algorithms. Fortunately, left recursion is not a problem for bottom-up parsing
algorithms.

There is an algorithm to modify a given grammar to remove indirect left
recursion (Aho et al., 2006), but it is not covered here. When writing a -
grammar for a programming language, one can usually avoid including left

recursion, both direct and indirect.

Left recursion is not the only grammar trait that disallows top-down parsing.
Another is whether the parser can always choose the correct RHS on the basis
of the next token of input, using only the first token generated by the leftmost
nonterminal in the current sentential form. There is a relatively simple test of
a non-left recursive grammar that indicates whether this can be done, called
the pairwise disjointness test. This test requires the ability to compute a set
based on the RHSs of a given nonterminal symbol in a grammar. These sets,
which are called FIRST, are defined as

FIRST (α) = {a | α =>* aβ} (IF α =>* ε, ε is in FIRST (α))

in which =>* means 0 or more derivation steps.

An algorithm to compute FIRST for any mixed string α can be found in Aho
et al. (2006). For our purposes, FIRST can usually be computed by inspection
of the grammar.

The pairwise disjointness test is as follows:

For each nonterminal, A, in the grammar that has more than one RHS, for
each pair of rules, A→αi and A→αj, it must be true that

FIRST(αi)∩FIRST(αj)=ϕ

(The intersection of the two sets, FIRST(αi) and FIRST(αj), must be empty.)

In other words, if a nonterminal A has more than one RHS, the first terminal
symbol that can be generated in a derivation for each of them must be unique
to that RHS. Consider the following rules:

A→aB | bAb | Bb B→cB | d

The FIRST sets for the RHSs of the A-rules are {a}, {b}, and {c}, {d}, which
are clearly disjoint. Therefore, these rules pass the pairwise disjointness test.
What this means, in terms of a recursive-descent parser, is that the code of the
subprogram for parsing the nonterminal A can choose which RHS it is
dealing with by seeing only the first terminal symbol of input (token) that is

generated by the nonterminal. Now consider the rules

A→aB | BAb B→aA | b

The FIRST sets for the RHSs in the A-rules are {a} and {a}, {b} which are
clearly not disjoint. So, these rules fail the pairwise disjointness test. In terms
of the parser, the subprogram for A could not determine which RHS was
being parsed by looking at the next symbol of input, because if it were an a, it
could be either RHS. This issue is of course more complex if one or more of
the RHSs begin with nonterminals.

In many cases, a grammar that fails the pairwise disjointness test can be
modified so that it will pass the test. For example, consider the rule

<variable> → identifier | identifier [<expression>]

This states that a <variable> is either an identifier or an identifier followed by
an expression in brackets (a subscript). These rules clearly do not pass the
pairwise disjointness test, because both RHSs begin with the same terminal,
identifier. This problem can be alleviated through a process called left
factoring.

We now take an informal look at left factoring. Consider our rules for
<variable>. Both RHSs begin with identifier. The parts that follow identifier
in the two RHSs are ε (the empty string) and [<expression>]. The two rules
can be replaced by the following two rules:

<variable> → identifier <new>

<new> →ε | [<expression>]

It is not difficult to see that together, these two rules generate the same
language as the two rules with which we began. However, these two pass the
pairwise disjointness test.

If the grammar is being used as the basis for a recursive-descent parser, an
alternative to left factoring is available. With an EBNF extension, the
problem disappears in a way that is very similar to the left factoring solution.

Consider the original rules above for <variable>. The subscript can be made
optional by placing it in square brackets, as in

<variable> → identifier [[<expression>]]

In this rule, the outer brackets are metasymbols that indicate that what is
inside is optional. The inner brackets are terminal symbols of the
programming language being described. The point is that we replaced two
rules with a single rule that generates the same language but passes the
pairwise disjointness test.

A formal algorithm for left factoring can be found in Aho et al. (2006). Left
factoring cannot solve all pairwise disjointness problems of grammars. In
some cases, rules must be rewritten in other ways to eliminate the problem.

4.5 Bottom-Up Parsing
This section introduces the general process of bottom-up parsing and includes
a description of the LR parsing algorithm.

4.5.1 The Parsing Problem for
Bottom-Up Parsers
Consider the following grammar for arithmetic expressions:

E→E + T | T

T→T * F | F

F→ (E) | id

Notice that this grammar generates the same arithmetic expressions as the
example in Section 4.4. The difference is that this grammar is left recursive,
which is acceptable to bottom-up parsers. Also note that grammars for
bottom-up parsers normally do not include metasymbols such as those used
to specify extensions to BNF. The following rightmost derivation illustrates
this grammar:

E => E+T

  => E + T * F

  => E + T * id

  => E + F * id

  => E + id * id

  => T + id * id

  => F + id * id

  => id + id * id

The underlined part of each sentential form in this derivation is the RHS that
is rewritten as its corresponding LHS to get the previous sentential form. The
process of bottom-up parsing produces the reverse of a rightmost derivation.
So, in the example derivation, a bottom-up parser starts with the last
sentential form (the input sentence) and produces the sequence of sentential
forms from there until all that remains is the start symbol, which in this
grammar is E. In each step, the task of the bottom-up parser is to find the
specific RHS, the handle, in the sentential form that must be rewritten to get
the next (previous) sentential form. As mentioned earlier, a right sentential
form may include more than one RHS. For example, the right sentential form

E + T * id

includes three RHSs, E+T, T and id. Only one of these is the handle. For
example, if the RHS E+T were chosen to be rewritten in this sentential form,
the resulting sentential form would be E * id, but E * id is not a legal right
sentential form for the given grammar.

The handle of a right sentential form is unique. The task of a bottom-up
parser is to find the handle of any given right sentential form that can be
generated by its associated grammar. Formally, handle is defined as follows:

Definition: β is the handle of the right sentential form γ=αβw if and
only if S => *rm αAw =>rmαβw

In this definition, =>rm specifies a rightmost derivation step, and => *rm
specifies zero or more rightmost derivation steps. Although the definition of a
handle is mathematically concise, it provides little help in finding the handle
of a given right sentential form. In the following, we provide the definitions
of several substrings of sentential forms that are related to handles. The
purpose of these is to provide some intuition about handles.

Definition: β is a phrase of the right sentential form γ if and only if
S =>* γ=α1Aα2 =>+α1βα2

In this definition, =>+ means one or more derivation steps.

Definition: β is a simple phrase of the right sentential form γ if and only
if S =>* γ=α1Aα2 =>+α1βα2

If these two definitions are compared carefully, it is clear that they differ only
in the last derivation specification. The definition of phrase uses one or more
steps, while the definition of simple phrase uses exactly one step.

The definitions of phrase and simple phrase may appear to have the same
lack of practical value as that of a handle, but that is not true. Consider what a
phrase is relative to a parse tree. It is the string of all of the leaves of the
partial parse tree that is rooted at one particular internal node of the whole
parse tree. A simple phrase is just a phrase that takes a single derivation step
from its root nonterminal node. In terms of a parse tree, a phrase can be
derived from a single nonterminal in one or more tree levels, but a simple
phrase can be derived in just a single tree level. Consider the parse tree
shown in Figure 4.3.

Figure 4.3 A parse tree for
E+T * id

The leaves of the parse tree in Figure 4.3 comprise the sentential form
E+T * id. Because there are three internal nodes, there are three phrases.
Each internal node is the root of a subtree, whose leaves are a phrase. The
root node of the whole parse tree, E, generates all of the resulting sentential
form, E+T * id, which is a phrase. The internal node, T, generates the leaves
T * id, which is another phrase. Finally, the internal node, F, generates id,
which is also a phrase. So, the phrases of the sentential form E+T * id are
E+T * id, and id. Notice that phrases are not necessarily RHSs in the
underlying grammar.

The simple phrases are a subset of the phrases. In the previous example, the
only simple phrase is id. A simple phrase is always a RHS in the grammar.

The reason for discussing phrases and simple phrases is this: The handle of

any rightmost sentential form is its leftmost simple phrase. So now we have a
highly intuitive way to find the handle of any right sentential form, assuming
we have the grammar and can draw a parse tree. This approach to finding
handles is of course not practical for a parser. (If you already have a parse
tree, why do you need a parser?) Its only purpose is to provide the reader
with some intuitive feel for what a handle is, relative to a parse tree, which is
easier than trying to think about handles in terms of sentential forms.

We can now consider bottom-up parsing in terms of parse trees, although the
purpose of a parser is to produce a parse tree. Given the parse tree for an
entire sentence, you easily can find the handle, which is the first thing to
rewrite in the sentence to get the previous sentential form. Then the handle
can be pruned from the parse tree and the process repeated. Continuing to the
root of the parse tree, the entire rightmost derivation can be constructed.

4.5.2 Shift-Reduce Algorithms
Bottom-up parsers are often called shift-reduce algorithms, because shift
and reduce are the two most common actions they specify. An integral part of
every bottom-up parser is a stack. As with other parsers, the input to a
bottom-up parser is the stream of tokens of a program and the output is a
sequence of grammar rules. The shift action moves the next input token onto
the parser’s stack. A reduce action replaces an RHS (the handle) on top of the
parser’s stack by its corresponding LHS. Every parser for a programming
language is a pushdown automaton (PDA), because a PDA is a recognizer
for a context-free language. You need not be intimate with PDAs to
understand how a bottom-up parser works, although it helps. A PDA is a very
simple mathematical machine that scans strings of symbols from left to right.
A PDA is so named because it uses a pushdown stack as its memory. PDAs
can be used as recognizers for context-free languages. Given a string of
symbols over the alphabet of a context-free language, a PDA that is designed
for the purpose can determine whether the string is or is not a sentence in the
language. In the process, the PDA can produce the information needed to
construct a parse tree for the sentence.

With a PDA, the input string is examined, one symbol at a time, left to right.

The input is treated very much as if it were stored in another stack, because
the PDA never sees more than the leftmost symbol of the input.

Note that a recursive-descent parser is also a PDA. In that case, the stack is
that of the run-time system, which records subprogram calls (among other
things), which correspond to the nonterminals of the grammar.

4.5.3 LR Parsers
Many different bottom-up parsing algorithms have been devised. Most of
them are variations of a process called LR. LR parsers use a relatively small
program and a parsing table that is built for a specific programming language.
The original LR algorithm was designed by Donald Knuth (Knuth, 1965).
This algorithm, which is sometimes called canonical LR, was not used in the
years immediately following its publication because producing the required
parsing table required large amounts of computer time and memory.
Subsequently, several variations on the canonical LR table construction
process were developed (DeRemer, 1971; DeRemer and Pennello, 1982).
These are characterized by two properties: (1) They require far less computer
resources to produce the required parsing table than the canonical LR
algorithm, and (2) they work on smaller classes of grammars than the
canonical LR algorithm.

There are three advantages to LR parsers:

1. They can be built for all programming languages.

2. They can detect syntax errors as soon as it is possible in a left-to-right
scan.

3. The LR class of grammars is a proper superset of the class parsable by
LL parsers (for example, many left recursive grammars are LR, but none
are LL).

The only disadvantage of LR parsing is that it is difficult to produce by hand
the parsing table for a given grammar for a complete programming language.

This is not a serious disadvantage, however, for there are several programs
available that take a grammar as input and produce the parsing table, as -
discussed later in this section.

Prior to the appearance of the LR parsing algorithm, there were a number of
parsing algorithms that found handles of right sentential forms by looking
both to the left and to the right of the substring of the sentential form that was
suspected of being the handle. Knuth’s insight was that one could effectively
look to the left of the suspected handle all the way to the bottom of the parse
stack to determine whether it was the handle. But all of the information in the
parse stack that was relevant to the parsing process could be represented by a
single state, which could be stored on the top of the stack. In other words,
Knuth discovered that regardless of the length of the input string, the length
of the sentential form, or the depth of the parse stack, there were only a
relatively small number of different situations, as far as the parsing process is
concerned. Each situation could be represented by a state and stored in the
parse stack, one state symbol for each grammar symbol on the stack. At the
top of the stack would always be a state symbol, which represented the
relevant information from the entire history of the parse, up to the current
time. We will use subscripted uppercase S’s to represent the parser states.

Figure 4.4 shows the structure of an LR parser. The contents of the parse
stack for an LR parser have the following form:

Figure 4.4 The structure of an
LR parser

Figure 4.4 Full Alternative Text

S0X1S1X2…XmSm (top)

where the S’s are state symbols and the X’s are grammar symbols. An LR
parser configuration is a pair of strings (stack, input), with the detailed form

(S0X1S1X2S2…XmSm, aiAi+1…an$)

Notice that the input string has a dollar sign at its right end. This sign is put
there during initialization of the parser. It is used for normal termination of
the parser. Using this parser configuration, we can formally define the LR
parser process, which is based on the parsing table.

An LR parsing table has two parts, named ACTION and GOTO. The
ACTION part of the table specifies most of what the parser does. It has state
symbols as its row labels and the terminal symbols of the grammar as its
column labels. Given a current parser state, which is represented by the state
symbol on top of the parse stack, and the next symbol (token) of input, the
parse table specifies what the parser should do. The two primary parser
actions are shift and reduce. Either the parser shifts the next input symbol
onto the parse stack, along with a state symbol, or it already has the handle on
top of the stack, which it reduces to the LHS of the rule whose RHS is the
same as the handle. Two other actions are possible: accept, which means the
parser has successfully completed the parse of the input, and error, which
means the parser has detected a syntax error.

The rows of the GOTO part of the LR parsing table have state symbols as
labels. This part of the table has nonterminals as column labels. The values in
the GOTO part of the table indicate which state symbol should be pushed
onto the parse stack after a reduction has been completed, which means the
handle has been removed from the parse stack and the new nonterminal has
been pushed onto the parse stack. The specific symbol is found at the row

whose label is the state symbol on top of the parse stack after the handle and
its associated state symbols have been removed. The column of the GOTO
table that is used is the one with the label, that is the LHS of the rule used in
the reduction.

Consider the traditional grammar for arithmetic expressions that follows:

1. E→E + T

2. E→T

3. T→T * F

4. T→F

5. F→ (E)

6. F→id

The rules of this grammar are numbered to provide a simple way to reference
them in a parsing table.

Figure 4.5 shows the LR parsing table for this grammar. Abbreviations are
used for the actions: R for reduce and S for shift. R4 means reduce using
rule 4; S6 means shift the next symbol of input onto the stack and push state
6 onto the stack. Empty positions in the ACTION table indicate syntax errors.
In a complete parser, these could have calls to error-handling routines.

Figure 4.5 The LR parsing
table for an arithmetic
expression grammar

Figure 4.5 Full Alternative Text

LR parsing tables can easily be constructed using a software tool, such as
yacc (Johnson, 1975), which takes the grammar as input. Although LR
parsing tables can be produced by hand, for a grammar of a real
programming language, the task would be lengthy, tedious, and error prone.
For real compilers, LR parsing tables are always generated with software

tools.

The initial configuration of an LR parser is

(S0, a1…an$)

The parser actions are informally defined as follows:

1. The Shift process is simple: The next symbol of input is pushed onto the
stack, along with the state symbol that is part of the Shift specification in
the ACTION table.

2. For a Reduce action, the handle must be removed from the stack.
Because for every grammar symbol on the stack there is a state symbol,
the number of symbols removed from the stack is twice the number of
symbols in the handle. After removing the handle and its associated state
symbols, the LHS of the rule is pushed onto the stack. Finally, the
GOTO table is used, with the row label being the symbol that was
exposed when the handle and its state symbols were removed from the
stack, and the column label being the nonterminal that is the LHS of the
rule used in the reduction.

3. When the action is Accept, the parse is complete and no errors were
found.

4. When the action is Error, the parser calls an error-handling routine.

Although there are many parsing algorithms based on the LR concept, they
differ only in the construction of the parsing table. All LR parsers use this
same parsing algorithm.

Perhaps the best way to become familiar with the LR parsing process is
through an example. Initially, the parse stack has the single symbol 0, which
represents state 0 of the parser. The input contains the input string with an
end marker, in this case a dollar sign, attached to its right end. At each step,
the parser actions are dictated by the top (rightmost in Figure 4.4) symbol of
the parse stack and the next (leftmost in Figure 4.4) token of input. The
correct action is chosen from the corresponding cell of the ACTION part of

the parse table. The GOTO part of the parse table is used after a reduction
action. Recall that GOTO is used to determine which state symbol is placed
on the parse stack after a reduction.

Following is a trace of a parse of the string id + id * id, using the LR parsing
algorithm and the parsing table shown in Figure 4.5.

The algorithms to generate LR parsing tables from given grammars, which
are described in Aho et al. (2006), are not overly complex but are beyond the
scope of a book on programming languages. As stated previously, there are a
number of different software systems available to generate LR parsing tables.

SUMMARY
Syntax analysis is a common part of language implementation, regardless of
the implementation approach used. Syntax analysis is normally based on a
formal syntax description of the language being implemented. A context-free
grammar, which is also called BNF, is the most common approach for
describing syntax. The task of syntax analysis is usually divided into two
parts: lexical analysis and syntax analysis. There are several reasons for
separating lexical analysis—namely, simplicity, efficiency, and portability.

A lexical analyzer is a pattern matcher that isolates the small-scale parts of a
program, which are called lexemes. Lexemes occur in categories, such as
integer literals and names. These categories are called tokens. Each token is
assigned a numeric code, which along with the lexeme is what the lexical
analyzer produces. There are three distinct approaches to constructing a
lexical analyzer: using a software tool to generate a table for a table-driven
analyzer, building such a table by hand, and writing code to implement a state
diagram description of the tokens of the language being implemented. The
state diagram for tokens can be reasonably small if character classes are used
for transitions, rather than having transitions for every possible character
from every state node. Also, the state diagram can be simplified by using a
table lookup to recognize reserved words.

Syntax analyzers have two goals: to detect syntax errors in a given program
and to produce a parse tree, or possibly only the information required to build
such a tree, for a given program. Syntax analyzers are either top-down,
meaning they construct leftmost derivations and a parse tree in top-down
order, or bottom-up, in which case they construct the reverse of a rightmost
derivation and a parse tree in bottom-up order. Parsers that work for all
unambiguous grammars have complexity O(n3). However, parsers used for
implementing syntax analyzers for programming languages work on
subclasses of unambiguous grammars and have complexity O(n).

A recursive-descent parser is an LL parser that is implemented by writing
code directly from the grammar of the source language. EBNF is ideal as the

basis for recursive-descent parsers. A recursive-descent parser has a
subprogram for each nonterminal in the grammar. The code for a given
grammar rule is simple if the rule has a single RHS. The RHS is examined
left to right. For each nonterminal, the code calls the associated subprogram
for that nonterminal, which parses whatever the nonterminal generates. For
each terminal, the code compares the terminal with the next token of input. If
they match, the code simply calls the lexical analyzer to get the next token. If
they do not, the subprogram reports a syntax error. If a rule has more than
one RHS, the subprogram must first determine which RHS it should parse. It
must be possible to make this determination on the basis of the next token of
input.

Two distinct grammar characteristics prevent the construction of a recursive-
descent parser based on the grammar. One of these is left recursion. The
process of eliminating direct left recursion from a grammar is relatively
simple. Although we do not cover it, an algorithm exists to remove both
direct and indirect left recursion from a grammar. The other problem is
detected with the pairwise disjointness test, which tests whether a parsing
subprogram can determine which RHS is being parsed on the basis of the
next token of input. Some grammars that fail the pairwise disjointness test
often can be modified to pass it, using left factoring.

The parsing problem for bottom-up parsers is to find the substring of the
current sentential form that must be reduced to its associated LHS to get the
next (previous) sentential form in the rightmost derivation. This substring is
called the handle of the sentential form. A parse tree can provide an intuitive
basis for recognizing a handle. A bottom-up parser is a shift-reduce
algorithm, because in most cases it either shifts the next lexeme of input onto
the parse stack or reduces the handle that is on top of the stack.

The LR family of shift-reduce parsers is the most commonly used bottom-up
parsing approach for programming languages, because parsers in this family
have several advantages over alternatives. An LR parser uses a parse stack,
which contains grammar symbols and state symbols to maintain the state of
the parser. The top symbol on the parse stack is always a state symbol that
represents all of the information in the parse stack that is relevant to the
parsing process. LR parsers use two parsing tables: ACTION and GOTO.

The ACTION part specifies what the parser should do, given the state symbol
on top of the parse stack and the next token of input. The GOTO table is used
to determine which state symbol should be placed on the parse stack after a
reduction has been done.

REVIEW QUESTIONS
1. What are three reasons why syntax analyzers are based on grammars?

2. Explain the three reasons why lexical analysis is separated from syntax
analysis.

3. Define lexeme and token.

4. What are the primary tasks of a lexical analyzer?

5. Describe briefly the three approaches to building a lexical analyzer.

6. What is a state transition diagram?

7. Why are character classes used, rather than individual characters, for the
letter and digit transitions of a state diagram for a lexical analyzer?

8. What are the two distinct goals of syntax analysis?

9. Describe the differences between top-down and bottom-up parsers.

10. Describe the parsing problem for a top-down parser.

11. Describe the parsing problem for a bottom-up parser.

12. Explain why compilers use parsing algorithms that work on only a
subset of all grammars.

13. Why are named constants used, rather than numbers, for token codes?

14. Describe how a recursive-descent parsing subprogram is written for a
rule with a single RHS.

15. Explain the two grammar characteristics that prohibit them from being
used as the basis for a top-down parser.

16. What is the FIRST set for a given grammar and sentential form?

17. Describe the pairwise disjointness test.

18. What is left factoring?

19. What is a phrase of a sentential form?

20. What is a simple phrase of a sentential form?

21. What is the handle of a sentential form?

22. What is the mathematical machine on which both top-down and bottom-
up parsers are based?

23. Describe three advantages of LR parsers.

24. What was Knuth’s insight in developing the LR parsing technique?

25. Describe the purpose of the ACTION table of an LR parser.

26. Describe the purpose of the GOTO table of an LR parser.

27. Is left recursion a problem for LR parsers?

PROBLEM SET
1. Perform the pairwise disjointness test for the following grammar rules.

1. A→aB | b | cBB

2. B→aB | bA | aBb

3. C→aaA | b | caB

2. Perform the pairwise disjointness test for the following grammar rules.

1. S→aSb | bAA

2. A→B{aB} | a

3. B→aB | a

3. Show a trace of the recursive descent parser given in Section 4.4.1 for
the string a + b * c.

4. Show a trace of the recursive descent parser given in Section 4.4.1 for
the string a * (b + c).

5. Given the following grammar and the right sentential form, draw a parse
tree and show the phrases and simple phrases, as well as the handle.

S→aAb | bBAA→ab | aABB→aB | b

1. aaAbb

2. bBab

3. aaAbBb

6. Given the following grammar and the right sentential form, draw a parse
tree and show the phrases and simple phrases, as well as the handle.

S→AbB | bAcA→Ab | aBBB→Ac | cBb | c

1. aAcccbbc

2. AbcaBccb

3. baBcBbbc

7. Show a complete parse, including the parse stack contents, input string,
and action for the string id * (id + id), using the grammar and parse
table in Section 4.5.3.

8. Show a complete parse, including the parse stack contents, input string,
and action for the string (id + id) * id, using the grammar and parse
table in Section 4.5.3.

9. Get the algorithm to remove the indirect left recursion from a grammar
from Aho et al. (2006). Use this algorithm to remove all left recursion
from the following grammar: S→Aa | BbA→Aa | Abc | c | SbB→bb

PROGRAMMING EXERCISES
1. Design a state diagram to recognize one form of the comments of the C-

based programming languages, those that begin with /* and end with */.

2. Design a state diagram to recognize the floating-point literals of your
favorite programming language.

3. Write and test the code to implement the state diagram of Problem 1.

4. Write and test the code to implement the state diagram of Problem 2.

5. Modify the lexical analyzer given in Section 4.2 to recognize the
following list of reserved words and return their respective token codes:
for (FOR_CODE, 30), if (IF_CODE, 31), else (ELSE_CODE, 32), while
(WHILE_CODE, 33), do (DO_CODE, 34), int (INT_CODE, 35), float
(FLOAT_CODE, 36), switch (SWITCH_CODE, 37).

6. Convert the lexical analyzer (which is written in C) given in Section 4.2
to Java.

7. Convert the recursive descent parser routines for <expr>, <term>, and
<factor> given in Section 4.4.1 to Java.

8. For those rules that pass the test in Problem 1, write a recursive-descent
parsing subprogram that parses the language generated by the rules.
Assume you have a lexical analyzer named lex and an error-handling
subprogram named error, which is called whenever a syntax error is
detected.

9. For those rules that pass the test in Problem 2, write a recursive-descent
parsing subprogram that parses the language generated by the rules.
Assume you have a lexical analyzer named lex and an error-handling
subprogram named error, which is called whenever a syntax error is
detected.

10. Implement and test the LR parsing algorithm given in Section 4.5.3.

11. Write an EBNF rule that describes the while statement of Java or C++.
Write the recursive-descent subprogram in Java or C++ for this rule.

12. Write an EBNF rule that describes the for statement of Java or C++.
Write the recursive-descent subprogram in Java or C++ for this rule.

5 Names, Bindings, and Scopes
1. 5.1 Introduction

2. 5.2 Names

3. 5.3 Variables

4. 5.4 The Concept of Binding

5. 5.5 Scope

6. 5.6 Scope and Lifetime

7. 5.7 Referencing Environments

8. 5.8 Named Constants

This chapter introduces the fundamental semantic issues of variables.
It begins by describing the nature of names and special words in
programming languages. The attributes of variables, including type, address,
and value, are then discussed, including the issue of aliases. The important
concepts of binding and binding times are introduced next, including the
different possible binding times for variable attributes and how they define
four different categories of variables. Following that, two very different
scoping rules for names, static and dynamic, are described, along with the
concept of a referencing environment of a statement. Finally, named
constants and variable initialization are discussed.

5.1 Introduction
Imperative programming languages are, to varying degrees, abstractions of
the underlying von Neumann computer architecture. The architecture’s two
primary components are its memory, which stores both instructions and data,
and its processor, which provides operations for modifying the contents of
the memory. The abstractions in a language for the memory cells of the
machine are variables. In some cases, the characteristics of the abstractions
are very close to the characteristics of the cells; an example of this is an
integer variable, which is usually represented directly in one or more bytes of
memory. In other cases, the abstractions are far removed from the
organization of the hardware memory, as with a three-dimensional array,
which requires a software mapping function to support the abstraction.

A variable can be characterized by a collection of properties, or attributes, the
most important of which is type, a fundamental concept in programming
languages. Designing the data types of a language requires that a variety of
issues be considered. (Data types are discussed in Chapter 6.) Among the
most important of these issues are the scope and lifetime of variables.

Functional programming languages allow expressions to be named. These
named expressions appear like assignments to variable names in imperative
languages, but are fundamentally different in that they cannot be changed.
So, they are like the named constants of the imperative languages. Pure
functional languages do not have variables that are like those of the
imperative languages. However, many functional languages do include such
variables.

In the remainder of this book, families of languages will often be referred to
as if they were single languages. For example, Fortran will mean all of the
versions of Fortran. This is also the case for Ada. Likewise, a reference to C
will mean the original version of C, as well as C89 and C99. When a specific
version of a language is named, it is because it is different from the other
family members within the topic being discussed. If we add a plus sign (+) to
the name of a version of a language, we mean all versions of the language

beginning with the one named. For example, Fortran 95+ means all versions
of Fortran beginning with Fortran 95. The phrase C-based languages will be
used to refer to C, Objective-C, C++, Java, and C#.1

1. We were tempted to include the scripting languages JavaScript and PHP as
C-based languages, but decided they were just a bit too different from their
ancestors.

5.2 Names
Before beginning our discussion of variables, the design of one of the
fundamental attributes of variables, names, must be covered. Names are also
associated with subprograms, formal parameters, and other program
constructs. The term identifier is often used interchangeably with name.

5.2.1 Design Issues
The following are the primary design issues for names:

Are names case sensitive?

Are the special words of the language reserved words or keywords?

These issues are discussed in the following two subsections, which also
include examples of several design choices.

5.2.2 Name Forms
A name is a string of characters used to identify some entity in a program.

C99 has no length limitation on its internal names, but only the first 63 are
significant. External names in C99 (those defined outside functions, which
must be handled by the linker) are restricted to 31 characters. Names in Java
and C# have no length limit, and all characters in them are significant. C++
does not specify a length limit on names, although implementors sometimes
do.

Names in most programming languages have the same form: a letter followed
by a string consisting of letters, digits, and underscore characters (_).
Although the use of underscore characters to form names was widely used in

the 1970s and 1980s, that practice is now far less popular. In the C-based
languages, it has to a large extent been replaced by the so-called camel
notation, in which all of the words of a multiple-word name except the first
are capitalized, as in myStack.2 Note that the use of underscores and mixed
case in names is a programming style issue, not a language design issue.

2. It is called “camel” because words written in it often have embedded
uppercase letters, which look like a camel’s humps.

history note
The earliest programming languages used single-character names. This
notation was natural because early programming was primarily mathematical,
and mathematicians have long used single-character names for unknowns in
their formal notations.

Fortran I broke with the tradition of the single-character name, allowing up to
six characters in its names.

All variable names in PHP must begin with a dollar sign. In Perl, the special
character at the beginning of a variable’s name, $, @, or %, specifies its type
(although in a different sense than in other languages). In Ruby, special
characters at the beginning of a variable’s name, @ or @@, indicate that the
variable is an instance or a class variable, respectively.

In many languages, notably the C-based languages, uppercase and lowercase
letters in names are distinct; that is, names in these languages are case
sensitive. For example, the following three names are distinct in C++: rose,
ROSE, and Rose. To some people, this is a serious detriment to readability,
because names that look very similar in fact denote different entities. In that
sense, case sensitivity violates the design principle that language constructs
that look similar should have similar meanings. But in languages whose
variable names are case-sensitive, although Rose and rose look similar, there
is no connection between them.

Obviously, not everyone agrees that case sensitivity is bad for names. In C,

the problems of case sensitivity are avoided by the convention that variable
names do not include uppercase letters. In Java and C#, however, the problem
cannot be escaped because many of the predefined names include both
uppercase and lowercase letters. For example, the Java method for converting
a string to an integer value is parseInt, and spellings such as ParseInt and
parseint are not recognized. This is a problem of writability rather than
readability, because the need to remember specific case usage makes it more
difficult to write correct programs. It is a kind of intolerance on the part of the
language designer, which is enforced by the compiler.

5.2.3 Special Words
Special words in programming languages are used to make programs more
readable by naming actions to be performed. They also are used to separate
the syntactic parts of statements and programs. In most languages, special
words are classified as reserved words, which means they cannot be
redefined by programmers. But in some, such as Fortran, they are only
keywords, which means they can be redefined.

A reserved word is a special word of a programming language that cannot
be used as a name. There is one potential problem with reserved words: If the
language includes a large number of reserved words, the user may have
difficulty making up names that are not reserved. The best example of this is
COBOL, which has 300 reserved words. Unfortunately, some of the most
commonly chosen names by programmers are in the list of reserved words—
for example, LENGTH, BOTTOM, DESTINATION, and COUNT.

In program code examples in this book, reserved words are presented in
boldface.

In most languages, names that are defined in other program units, such as
Java packages and C and C++ libraries, can be made visible to a program.
These names are predefined, but visible only if explicitly imported. Once
imported, they cannot be redefined.

5.3 Variables
A program variable is an abstraction of a computer memory cell or collection
of cells. Programmers often think of variables as names for memory
locations, but there is much more to a variable than just a name.

The move from machine languages to assembly languages was largely one of
replacing absolute numeric memory addresses for data with names, making
programs far more readable and therefore easier to write and maintain.
Assembly languages also provided an escape from the problem of manual
absolute addressing, because the translator that converted the names to actual
addresses also chose those addresses.

A variable can be characterized as a sextuple of attributes: (name, address,
value, type, lifetime, and scope). Although this may seem too complicated for
such an apparently simple concept, it provides the clearest way to explain the
various aspects of variables.

Our discussion of variable attributes will lead to examinations of the
important related concepts of aliases, binding, binding times, declarations,
scoping rules, and referencing environments.

The name, address, type, and value attributes of variables are discussed in the
following subsections. The lifetime and scope attributes are discussed in
Sections 5.4.3 and 5.5, respectively.

5.3.1 Name
Variable names are the most common names in programs. They were
discussed at length in Section 5.2 in the general context of entity names in
programs. Most variables have names. The ones that do not are discussed in
Section 5.4.3.3.

5.3.2 Address
The address of a variable is the machine memory address with which it is
associated. This association is not as simple as it may appear. In many
languages, it is possible for the same variable to be associated with different
addresses at different times during the execution of the program. For
example, if a subprogram has a local variable that is allocated from the run-
time stack when the subprogram is called, different calls may result in that
variable having different addresses. These are in a sense different
instantiations of the same variable.

The process of associating variables with addresses is further discussed in
Section 5.4.3. An implementation model for subprograms and their
activations is discussed in Chapter 10.

The address of a variable is sometimes called its l-value, because the address
is what is required when the name of a variable appears in the left side of an
assignment.

It is possible to have multiple variables that have the same address. When
more than one variable name can be used to access the same memory
location, the variables are called aliases. Aliasing is a hindrance to readability
because it allows a variable to have its value changed by an assignment to a
different variable. For example, if variables named total and sum are aliases,
any change to the value of total also changes the value of sum and vice
versa. A reader of the program must always remember that total and sum are
different names for the same memory cell. Because there can be any number
of aliases in a program, this can be very difficult in practice. Aliasing also
makes program verification more difficult.

Aliases can be created in programs in several different ways. One common
way in C and C++ is with their union types. Unions are discussed at length in
Chapter 6.

Two pointer variables are aliases when they point to the same memory
location. The same is true for reference variables. This kind of aliasing is

simply a side effect of the nature of pointers and references. When a C++
pointer is set to point at a named variable, the pointer, when dereferenced,
and the variable’s name are aliases.

Aliasing can be created in many languages through subprogram
parameters. These kinds of aliases are discussed in Chapter 9.

The time when a variable becomes associated with an address is very
important to an understanding of programming languages. This subject is
discussed in Section 5.4.3.

5.3.3 Type
The type of a variable determines the range of values the variable can store
and the set of operations that are defined for values of the type. For example,
the int type in Java specifies a value range of −2147483648 to 2147483647
and arithmetic operations for addition, subtraction, multiplication, division,
and modulus.

5.3.4 Value
The value of a variable is the contents of the memory cell or cells associated
with the variable. It is convenient to think of computer memory in terms of
abstract cells, rather than physical cells. The physical cells, or individually
addressable units, of most contemporary computer memories are eight-bit
units called bytes. A byte size is too small for most program variables. An
abstract memory cell has the size required by the variable with which it is
associated. For example, although floating-point values may occupy four
physical bytes in a particular implementation of a particular language, a
floating-point value is thought of as occupying a single abstract memory cell.
The value of each simple nonstructured type is considered to occupy a single
abstract cell. Henceforth, the term memory cell will mean abstract memory
cell.

A variable’s value is sometimes called its r-value because it is what is

required when the name of the variable appears in the right side of an
assignment statement. To access the r-value, the l-value must be determined
first. Such determinations are not always simple. For example, scoping rules
can greatly complicate matters, as is discussed in Section 5.5.

5.4 The Concept of Binding
A binding is an association between an attribute and an entity, such as
between a variable and its type or value, or between an operation and a
symbol. The time at which a binding takes place is called binding time.
Binding and binding times are prominent concepts in the semantics of
programming languages. Bindings can take place at language design time,
language implementation time, compile time, load time, link time, or run
time. For example, the asterisk symbol (*) is usually bound to the
multiplication operation at language design time. A data type, such as int in
C, is bound to a range of possible values at language implementation time. At
compile time, a variable in a Java program is bound to a particular data type.
A variable may be bound to a storage cell when the program is loaded into
memory. That same binding does not happen until run time in some cases, as
with variables declared in Java methods. A call to a library subprogram is
bound to the subprogram code at link time.

Consider the following C++ assignment statement:

count = count + 5;

Some of the bindings and their binding times for the parts of this assignment
statement are as follows:

The type of count is bound at compile time.

The set of possible values of count is bound at compiler design time.

The meaning of the operator symbol + is bound at compile time, when
the types of its operands have been determined.

The internal representation of the literal 5 is bound at compiler design
time.

The value of count is bound at execution time with this statement.

A complete understanding of the binding times for the attributes of program
entities is a prerequisite for understanding the semantics of a programming
language. For example, to understand what a subprogram does, one must
understand how the actual parameters in a call are bound to the formal
parameters in its definition. To determine the current value of a variable, it
may be necessary to know when the variable was bound to storage and with
which statement or statements.

5.4.1 Binding of Attributes to
Variables
A binding is static if it first occurs before run time begins and remains
unchanged throughout program execution. If the binding first occurs during
run time or can change in the course of program execution, it is called
dynamic. The physical binding of a variable to a storage cell in a virtual
memory environment is complex, because the page or segment of the address
space in which the cell resides may be moved in and out of memory many
times during program execution. In a sense, such variables are bound and
unbound repeatedly. These bindings, however, are maintained by computer
hardware, and the changes are invisible to the program and the user. Because
they are not important to the discussion, we are not concerned with these
hardware bindings. The essential point is to distinguish between static and
dynamic bindings.

5.4.2 Type Bindings
Before a variable can be referenced in a program, it must be bound to a data
type. The two important aspects of this binding are how the type is specified
and when the binding takes place. Types can be specified statically through
some form of explicit or implicit declaration.

5.4.2.1 Static Type Binding

An explicit declaration is a statement in a program that lists variable names
and specifies that they are a particular type. An implicit declaration is a
means of associating variables with types through default conventions, rather
than declaration statements. In this case, the first appearance of a variable
name in a program constitutes its implicit declaration. Both explicit and
implicit declarations create static bindings to types.

Most widely used programming languages that use static type binding
exclusively and were designed since the mid-1960s require explicit
declarations of all variables (Visual Basic, ML, C#, and Swift are some
exceptions).

Implicit variable type binding is done by the language processor, either a
compiler or an interpreter. There are several different bases for implicit
variable type bindings. The simplest of these is naming conventions. In this
case, the compiler or interpreter binds a variable to a type based on the
syntactic form of the variable’s name.

Although they are a minor convenience to programmers, implicit declarations
can be detrimental to reliability because they prevent the compilation process
from detecting some typographical and programmer errors.

Some of the problems with implicit declarations can be avoided by requiring
names for specific types to begin with particular special characters. For
example, in Perl any name that begins with $ is a scalar, which can store
either a string or a numeric value. If a name begins with @, it is an array; if it
begins with a %, it is a hash structure.3 This creates different namespaces for
different type variables. In this scenario, the names @apple and %apple are
unrelated, because each is from a different namespace. Furthermore, a
program reader always knows the type of a variable when reading its name.

3. Both arrays and hashes are considered types—both can store any scalar in
their elements.

Another kind of implicit type declarations uses context. This is sometimes
called type inference. In the simpler case, the context is the type of the value
assigned to the variable in a declaration statement. For example, in C# a var
declaration of a variable must include an initial value, whose type is taken as

the type of the variable. Consider the following declarations:

var sum = 0;

var total = 0.0;

var name = "Fred";

The types of sum, total, and name are int, float, and string, respectively.
Keep in mind that these are statically typed variables—their types are fixed
for the lifetime of the unit in which they are declared.

Visual Basic, Swift, and the functional languages ML, Haskell, OCaml, and
F# also use type inferencing.

5.4.2.2 Dynamic Type Binding
With dynamic type binding, the type of a variable is not specified by a
declaration statement, nor can it be determined by the spelling of its name.
Instead, the variable is bound to a type when it is assigned a value in an
assignment statement. When the assignment statement is executed, the
variable being assigned is bound to the type of the value of the expression on
the right side of the assignment. Such an assignment may also bind the
variable to an address and a memory cell, because different type values may
require different amounts of storage. Any variable can be assigned any type
value. Furthermore, a variable’s type can change any number of times during
program execution. It is important to realize that the type of a variable whose
type is dynamically bound may be temporary.

When the type of a variable is statically bound, the name of the variable can
be thought of being bound to a type, in the sense that the type and name of a
variable are simultaneously bound. However, when a variable’s type is
dynamically bound, its name can be thought of as being only temporarily
bound to a type. In reality, the names of variables are never bound to types.
Names can be bound to variables and variables can be bound to types.

Languages in which types are dynamically bound are dramatically different
from those in which types are statically bound. The primary advantage of
dynamic binding of variables to types is that it provides more programming

flexibility. For example, a program to process numeric data in a language that
uses dynamic type binding can be written as a generic program, meaning that
it is capable of dealing with data of any numeric type. Whatever type data is
input will be acceptable, because the variables in which the data are to be
stored can be bound to the correct type when the data is assigned to the
variables after input. By contrast, because of static binding of types, one
cannot write a C program to process data without knowing the type of that
data.

Before the mid-1990s, the most commonly used programming languages
used static type binding, the primary exceptions being some functional
languages such as Lisp. However, since then there has been a significant shift
to languages that use dynamic type binding. In Python, Ruby, JavaScript, and
PHP, type binding is dynamic. For example, a JavaScript script may contain
the following statement:

list = [10.2, 3.5];

Regardless of the previous type of the variable named list, this assignment
causes it to become the name of a single-dimensioned array of length 2. If the
statement

list = 47;

followed the previous example assignment, list would become the name of
a scalar variable.

The option of dynamic type binding was included in C# 2010. A variable can
be declared to use dynamic type binding by including the dynamic reserved
word in its declaration, as in the following example:

dynamic any;

This is similar, although also different from declaring any to have type
object. It is similar in that any can be assigned a value of any type, just as if
it were declared object. It is different in that it is not useful for several
different situations of interoperation; for example, with dynamically typed
languages such as IronPython and IronRuby (.NET versions of Python and
Ruby, respectively). However, it is useful when data of unknown type come

into a program from an external source. Class members, properties, method
parameters, method return values, and local variables can all be declared
dynamic.

In pure object-oriented languages—for example, Ruby—all variables are
references and do not have types; all data are objects and any variable can
reference any object. Variables in such languages are, in a sense, all the same
type—they are references. However, unlike the references in Java, which are
restricted to referencing one specific type of value, variables in Ruby can
reference any object.

There are two disadvantages to dynamic type binding. First, it causes
programs to be less reliable, because the error-detection capability of the
compiler is diminished relative to a compiler for a language with static type
bindings. Dynamic type binding allows any variable to be assigned a value of
any type. Incorrect types of right sides of assignments are not detected as
errors; rather, the type of the left side is simply changed to the incorrect type.
For example, suppose that in a particular JavaScript program, i and x are
currently the names of scalar numeric variables and y is currently the name of
an array. Furthermore, suppose that the program needs the assignment
statement

i = x;

but because of a keying error, it has the assignment statement

i = y;

In JavaScript (or any other language that uses dynamic type binding), no
error is detected in this statement by the interpreter—the type of the variable
named i is simply changed to an array. But later uses of i will expect it to be
a scalar, and correct results will be impossible. In a language with static type
binding, such as Java, the compiler would detect the error in the assignment i
= y, and the program would not get to execution.

Note that this disadvantage is also present to some extent in some languages
that use static type binding, such as C and C++, which in many cases
automatically convert the type of the RHS of an assignment to the type of the

LHS.

Perhaps the greatest disadvantage of dynamic type binding is cost. The cost
of implementing dynamic attribute binding is considerable, particularly in
execution time. Type checking must be done at run time. Furthermore, every
variable must have a run-time descriptor associated with it to maintain the
current type. The storage used for the value of a variable must be of varying
size, because different type values require different amounts of storage.

Finally, languages that have dynamic type binding for variables are usually
implemented using pure interpreters rather than compilers. Computers do not
have instructions whose operand types are not known at compile time.
Therefore, a compiler cannot build machine instructions for the expression a
+ b if the types of a and b are not known at compile time. Pure interpretation
typically takes at least 10 times as long as it does to execute equivalent
machine code. Of course, if a language is implemented with a pure
interpreter, the time to do dynamic type binding is hidden by the overall time
of interpretation, so it seems less costly in that environment. On the other
hand, languages with static type bindings are seldom implemented by pure
interpretation, because programs in these languages can be easily translated
to very efficient machine code versions.

5.4.3 Storage Bindings and
Lifetime
The fundamental character of an imperative programming language is in
large part determined by the design of the storage bindings for its variables. It
is therefore important to have a clear understanding of these bindings.

The memory cell to which a variable is bound somehow must be taken from a
pool of available memory. This process is called allocation. Deallocation is
the process of placing a memory cell that has been unbound from a variable
back into the pool of available memory.

The lifetime of a variable is the time during which the variable is bound to a

specific memory location. So, the lifetime of a variable begins when it is
bound to a specific cell and ends when it is unbound from that cell. To
investigate storage bindings of variables, it is convenient to separate scalar
(unstructured) variables into four categories, according to their lifetimes.
These categories are named static, stack-dynamic, explicit heap-dynamic, and
implicit heap-dynamic. In the following sections, we discuss the definitions
of these four categories, along with their purposes, advantages, and
disadvantages.

5.4.3.1 Static Variables
A static variable is one that is bound to a memory cell before program
execution begins and remains bound to that same memory cell until program
execution terminates. Statically bound variables have several valuable
applications in programming. Globally accessible variables are often used
throughout the execution of a program, thus making it necessary to have them
bound to the same storage during that execution. Sometimes it is convenient
to have subprograms that are history sensitive. Such a subprogram must have
local static variables.

One advantage of static variables is efficiency. All addressing of static
variables can be direct;4 other kinds of variables often require indirect
addressing, which is slower. Also, no run-time overhead is incurred for
allocation and deallocation of static variables, although this time is often
negligible.

4. In some implementations, static variables are addressed through a base
register, making accesses to them as costly as for stack-allocated variables.

One disadvantage of static binding to storage is reduced flexibility; in
particular, a language that has only static variables cannot support recursive
subprograms. Another disadvantage is that storage cannot be shared among
variables. For example, suppose a program has two subprograms, both of
which require large arrays. Furthermore, suppose that the two subprograms
are never active at the same time. If the arrays are static, they cannot share
the same storage.

C and C++ allow programmers to include the static specifier on a variable
definition in a function, making the variables it defines static. Note that when
the static modifier appears in the declaration of a variable in a class
definition in C++, Java, and C#, it also implies that the variable is a class
variable, rather than an instance variable. Class variables are created statically
some time before the class is first instantiated.

5.4.3.2 Stack-Dynamic Variables
Stack-dynamic variables are those whose storage bindings are created when
their declaration statements are elaborated, but whose types are statically
bound. Elaboration of such a declaration refers to the storage allocation and
binding process indicated by the declaration, which takes place when
execution reaches the code to which the declaration is attached. Therefore,
elaboration occurs during run time. For example, the variable declarations
that appear at the beginning of a Java method are elaborated when the method
is called and the variables defined by those declarations are deallocated when
the method completes its execution.

As their name indicates, stack-dynamic variables are allocated from the run-
time stack.

Some languages—for example, C++ and Java—allow variable declarations to
occur anywhere a statement can appear. In some implementations of these
languages, all of the stack-dynamic variables declared in a function or
method (not including those declared in nested blocks) may be bound to
storage at the beginning of execution of the function or method, even though
the declarations of some of these variables do not appear at the beginning. In
such cases, the variable becomes visible at the declaration, but the storage
binding (and initialization, if it is specified in the declaration) occurs when
the function or method begins execution. The fact that storage binding of a
variable takes place before it becomes visible does not affect the semantics of
the language.

The advantages of stack-dynamic variables are as follows: To be useful, at
least in most cases, recursive subprograms require some form of dynamic

local storage so that each active copy of the recursive subprogram has its own
version of the local variables. These needs are conveniently met by stack-
dynamic variables. Even in the absence of recursion, having stack-dynamic
local storage for subprograms is not without merit, because all subprograms
share the same memory space for their locals.

The disadvantages, relative to static variables, of stack-dynamic variables are
the run-time overhead of allocation and deallocation, possibly slower
accesses because indirect addressing is required, and the fact that
subprograms cannot be history sensitive. The time required to allocate and
deallocate stack-dynamic variables is not significant, because all of the stack-
dynamic variables that are declared at the beginning of a subprogram are
allocated and deallocated together, rather than by separate operations.

In Java, C++, and C#, variables defined in methods are by default stack
dynamic.

All attributes other than storage are statically bound to stack-dynamic scalar
variables. That is not the case for some structured types, as is discussed in
Chapter 6. Implementation of allocation/deallocation processes for stack--
dynamic variables is discussed in Chapter 10.

5.4.3.3 Explicit Heap-Dynamic
Variables
Explicit heap-dynamic variables are nameless (abstract) memory cells that
are allocated and deallocated by explicit run-time instructions written by the
programmer. These variables, which are allocated from and deallocated to the
heap, can only be referenced through pointer or reference variables. The heap
is a collection of storage cells whose organization is highly disorganized due
to the unpredictability of its use. The pointer or reference variable that is used
to access an explicit heap-dynamic variable is created as any other scalar
variable. An explicit heap-dynamic variable is created by either an operator
(for example, in C++) or a call to a system subprogram provided for that
purpose (for example, in C).

In C++, the allocation operator, named new, uses a type name as its operand.
When executed, an explicit heap-dynamic variable of the operand type is
created and its address is returned. Because an explicit heap-dynamic variable
is bound to a type at compile time, that binding is static. However, such
variables are bound to storage at the time they are created, which is during
run time.

In addition to a subprogram or operator for creating explicit heap-dynamic
variables, some languages include a subprogram or operator for explicitly
destroying them.

As an example of explicit heap-dynamic variables, consider the following
C++ code segment:

int *intnode; // Create a pointer

intnode = new int; // Create the heap-dynamic variable

. . .

delete intnode; // Deallocate the heap-dynamic variable

 // to which intnode points

In this example, an explicit heap-dynamic variable of int type is created by
the new operator. This variable can then be referenced through the pointer,
intnode. Later, the variable is deallocated by the delete operator. C++
requires the explicit deallocation operator delete, because it does not use
implicit storage reclamation, such as garbage collection.

In Java, all data except the primitive scalars are objects. Java objects are
explicitly heap dynamic and are accessed through reference variables. Java
has no way of explicitly destroying a heap-dynamic variable; rather, implicit
garbage collection is used. Garbage collection is discussed in Chapter 6.

C# has both explicit heap-dynamic and stack-dynamic objects, all of which
are implicitly deallocated. In addition, C# supports C++-style pointers. Such
pointers are used to reference heap, stack, and even static variables and
objects. These pointers have the same dangers as those of C++, and the
objects they reference on the heap are not implicitly deallocated. Pointers are
included in C# to allow C# components to interoperate with C and C++
components. To discourage their use, and also to make clear to any program
reader that the code uses pointers, the header of any method that defines a

pointer must include the reserved word unsafe.

Explicit heap-dynamic variables are often used to construct dynamic
structures, such as linked lists and trees, that need to grow and/or shrink
during execution. Such structures can be built conveniently using pointers or
references and explicit heap-dynamic variables.

The disadvantages of explicit heap-dynamic variables are the difficulty of
using pointer and reference variables correctly, the cost of references to the
variables, and the complexity of the required storage management
implementation. This is essentially the problem of heap management, which
is costly and complicated. Implementation methods for explicit heap-dynamic
variables are discussed at length in Chapter 6.

5.4.3.4 Implicit Heap-Dynamic
Variables
Implicit heap-dynamic variables are bound to heap storage only when they
are assigned values. In fact, all their attributes are bound every time they are
assigned. For example, consider the following JavaScript assignment
statement:

highs = [74, 84, 86, 90, 71];

Regardless of whether the variable named highs was previously used in the
program or what it was used for, it is now an array of five numeric values.

The advantage of such variables is that they have the highest degree of
flexibility, allowing highly generic code to be written. One disadvantage of
implicit heap-dynamic variables is the run-time overhead of maintaining all
the dynamic attributes, which could include array subscript types and ranges,
among others. Another disadvantage is the loss of some error detection by the
compiler, as discussed in Section 5.4.2.2.

5.5 Scope
One of the important factors in understanding variables is scope. The scope
of a variable is the range of statements in which the variable is visible. A
variable is visible in a statement if it can be referenced or assigned in that
statement.

The scope rules of a language determine how a particular occurrence of a
name is associated with a variable, or in the case of a functional language,
how a name is associated with an expression. In particular, scope rules
determine how references to variables declared outside the currently
executing subprogram or block are associated with their declarations and thus
their attributes (blocks are discussed in Section 5.5.2). A clear understanding
of these rules for a language is therefore essential to the ability to write or
read programs in that language.

A variable is local in a program unit or block if it is declared there. The
nonlocal variables of a program unit or block are those that are visible within
the program unit or block but are not declared there. Global variables are a
special category of nonlocal variables, which are discussed in Section 5.5.4.

Scoping issues of classes, packages, and namespaces are discussed in
Chapter 11.

5.5.1 Static Scope
ALGOL 60 introduced the method of binding names to nonlocal variables
called static scoping,5 which has been copied by many subsequent
imperative languages and many nonimperative languages as well. Static
scoping is so named because the scope of a variable can be statically
determined—that is, prior to execution. This permits a human program reader
(and a compiler) to determine the type of every variable in the program
simply by examining its source code.

5. Static scoping is sometimes called lexical scoping.

There are two categories of static-scoped languages: those in which
subprograms can be nested, which creates nested static scopes, and those in
which subprograms cannot be nested. In the latter category, static scopes are
also created by subprograms but nested scopes are created only by nested
class definitions and blocks.

Ada, JavaScript, Common Lisp, Scheme, Fortran 2003+, F#, and Python
allow nested subprograms, but the C-based languages do not.

Our discussion of static scoping in this section focuses on those languages
that allow nested subprograms. Initially, we assume that all scopes are
associated with program units and that all referenced nonlocal variables are
declared in other program units.6 In this chapter, it is assumed that scoping is
the only method of accessing nonlocal variables in the languages under
discussion. This is not true for all languages. It is not even true for all
languages that use static scoping, but the assumption simplifies the discussion
here.

6. Nonlocal variables not defined in other program units are discussed in
Section 5.5.4.

When the reader of a program finds a reference to a variable, the attributes of
the variable can be determined by finding the statement in which it is
declared (either explicitly or implicitly). In static-scoped languages with
nested subprograms, this process can be thought of in the following way.
Suppose a reference is made to a variable x in subprogram sub1. The correct
declaration is found by first searching the declarations of subprogram sub1. If
no declaration is found for the variable there, the search continues in the
declarations of the subprogram that declared subprogram sub1, which is
called its static parent. If a declaration of x is not found there, the search
continues to the next-larger enclosing unit (the unit that declared sub1’s
parent), and so forth, until a declaration for x is found or the largest unit’s
declarations have been searched without success. In that case, an undeclared
variable error is reported. The static parent of subprogram sub1, and its static
parent, and so forth up to and including the largest enclosing subprogram, are
called the static ancestors of sub1. Actual implementation techniques for

static scoping, which are discussed in Chapter 10, are usually much more
efficient than the process just described.

Consider the following JavaScript function, big, in which the two functions
sub1 and sub2 are nested:

function big() {

 function sub1() {

 var x = 7;

 sub2();

 }

 function sub2() {

 var y = x;

 }

 var x = 3;

 sub1();

}

Under static scoping, the reference to the variable x in sub2 is to the x
declared in the procedure big. This is true because the search for x begins in
the procedure in which the reference occurs, sub2, but no declaration for x is
found there. The search continues in the static parent of sub2, big, where the
declaration of x is found. The x declared in sub1 is ignored, because it is not
in the static ancestry of sub2.

In some languages that use static scoping, regardless of whether nested
subprograms are allowed, some variable declarations can be hidden from
some other code segments. For example, consider again the JavaScript
function big. The variable x is declared in both big and in sub1, which is
nested inside big. Within sub1, every simple reference to x is to the local x.
Therefore, the outer x is hidden from sub1.

5.5.2 Blocks
Many languages allow new static scopes to be defined in the midst of
executable code. This powerful concept, introduced in ALGOL 60, allows a
section of code to have its own local variables whose scope is minimized.
Such variables are typically stack dynamic, so their storage is allocated when
the section is entered and deallocated when the section is exited. Such a

section of code is called a block. Blocks provide the origin of the phrase
block-structured language.

The C-based languages allow any compound statement (a statement sequence
surrounded by matched braces) to have declarations and thereby define a new
scope. Such compound statements are called blocks. For example, if list
were an integer array, one could write the following:

if (list[i] < list[j]) {

 int temp;

 temp = list[i];

 list[i] = list[j];

 list[j] = temp;

}

The scopes created by blocks, which could be nested in larger blocks, are
treated exactly like those created by subprograms. References to variables in
a block that are not declared there are connected to declarations by searching
enclosing scopes (blocks or subprograms) in order of increasing size.

Consider the following skeletal C function:

void sub() {

 int count;

 . . .

 while (. . .) {

 int count;

 count++;

 . . .

 }

 . . .

}

The reference to count in the while loop is to that loop’s local count. In this
case, the count of sub is hidden from the code inside the while loop. In
general, a declaration for a variable effectively hides any declaration of a
variable with the same name in a larger enclosing scope.7 Note that this code
is legal in C and C++ but illegal in Java and C#. The designers of Java and
C# believed that the reuse of names in nested blocks was too error prone to
be allowed.

7. As discussed in Section 5.5.4, in C++, such hidden global variables can be
accessed in the inner scope using the scope operator (::).

Although JavaScript uses static scoping for its nested functions, nonfunction
blocks cannot be defined in the language.

Most functional programming languages include a construct that is related to
the blocks of the imperative languages, usually named let. These constructs
have two parts, the first of which is to bind names to values, usually specified
as expressions. The second part is an expression that uses the names defined
in the first part. Programs in functional languages are comprised of
expressions, rather than statements. Therefore, the final part of a let
construct is an expression, rather than a statement. In Scheme, a let construct
is a call to the function LET with the following form:

(LET (

 (name1 expression1)

 . . .

 (namen expressionn))

 expression

)

The semantics of the call to LET is as follows: The first n expressions are
evaluated and the values are assigned to the associated names. Then, the final
expression is evaluated and the return value of LET is that value. This differs
from a block in an imperative language in that the names are of values; they
are not variables in the imperative sense. Once set, they cannot be changed.
However, they are like local variables in a block in an imperative language in
that their scope is local to the call to LET. Consider the following call to LET:

(LET (

 (top (+ a b))

 (bottom (- c d)))

 (/ top bottom)

)

This call computes and returns the value of the expression (a + b) / (c -
d).

In ML, the form of a let construct is as follows:

let

 val name1 = expression1

 . . .

 val namen = expressionn

in

 expression

end;

Each val statement binds a name to an expression. As with Scheme, the
names in the first part are like the named constants of imperative languages;
once set, they cannot be changed.8 Consider the following let construct:

8. In Chapter 15, we will see that they can be reset, but that the process
actually creates a new name.

let

 val top = a + b

 val bottom = c - d

in

 top / bottom

end;

The general form of a let construct in F# is as follows:

let left_side = expression

The left_side of let can be a name or a tuple pattern (a sequence of names
separated by commas).

The scope of a name defined with let inside a function definition is from the
end of the defining expression to the end of the function. The scope of let
can be limited by indenting the following code, which creates a new local
scope. Although any indentation will work, the convention is that the
indentation is four spaces. Consider the following code:

let n1 =

 let n2 = 7

 let n3 = n2 + 3

 n3;;

let n4 = n3 + n1;;

The scope of n1 extends over all of the code. However, the scope of n2 and
n3 ends when the indentation ends. So, the use of n3 in the last let causes an
error. The last line of the let n1 scope is the value bound to n1; it could be
any expression.

Chapter 15 includes more details of the let constructs in Scheme, ML,
Haskell, and F#.

5.5.3 Declaration Order
In C89, as well as in some other languages, all data declarations in a function
except those in nested blocks must appear at the beginning of the function.
However, some languages—for example, C99, C++, Java, JavaScript, and C#
—allow variable declarations to appear anywhere a statement can appear in a
program unit. Declarations may create scopes that are not associated with
compound statements or subprograms. For example, in C99, C++, and Java,
the scope of all local variables is from their declarations to the ends of the
blocks in which those declarations appear.

In the official documentation for C#, the scope of any variable declared in a
block is said to be the whole block, regardless of the position of the
declaration in the block, as long as it is not in a nested block. The same is true
for methods. However, this is misleading, because the C# language definition
requires that all variables be declared before they are used. Therefore,
although the scope of a variable is said to extend from the declaration to the

top of the block or subprogram in which that declaration appears, the variable
still cannot be used above its declaration.

Recall that C# does not allow the declaration of a variable in a nested block
to have the same name as a variable in a nesting scope. This, together with
the rule that the scope of a declaration is the whole block, makes the
following nested declaration of x illegal:

{

 {int x; // Illegal

 ...

 }

 int x;

}

Note that C# still requires that all be declared before they are used. Therefore,
although the scope of a variable extends from the declaration to the top of the
block or subprogram in which that declaration appears, the variable still
cannot be used above its declaration.

In JavaScript, local variables can be declared anywhere in a function, but the
scope of such a variable is always the entire function. If used before its
declaration in the function, such a variable has the value undefined. The
reference is not illegal.

The for statements of C++, Java, and C# allow variable definitions in their
initialization expressions. In early versions of C++, the scope of such a
variable was from its definition to the end of the smallest enclosing block. In
the standard version, however, the scope is restricted to the for construct, as
is the case with Java and C#. Consider the following skeletal method:

void fun() {

 . . .

 for (int count = 0; count < 10; count++){

 . . .

 }

 . . .

}

In later versions of C++, as well as in Java and C#, the scope of count is
from the for statement to the end of its body (the right brace).

5.5.4 Global Scope
Some languages, including C, C++, PHP, JavaScript, and Python, allow a
program structure that is a sequence of function definitions, in which variable
definitions can appear outside the functions. Definitions outside functions in
a file create global variables, which potentially can be visible to those
functions.

C and C++ have both declarations and definitions of global data. Declarations
specify types and other attributes but do not cause allocation of storage.
Definitions specify attributes and cause storage allocation. For a specific
global name, a C program can have any number of compatible declarations,
but only a single definition.

A declaration of a variable outside function definitions specifies that the
variable is defined in a different file. A global variable in C is implicitly
visible in all subsequent functions in the file, except those that include a
declaration of a local variable with the same name. A global variable that is
defined after a function can be made visible in the function by declaring it to
be external, as in the following:

extern int sum;

In C99, definitions of global variables usually have initial values.
Declarations of global variables never have initial values. If the declaration is
outside function definitions, it need not include the extern qualifier.

This idea of declarations and definitions carries over to the functions of C and
C++, where prototypes declare names and interfaces of functions but do not
provide their code. Function definitions, on the other hand, are complete.

In C++, a global variable that is hidden by a local with the same name can be
accessed using the scope operator (::). For example, if x is a global that is
hidden in a function by a local named x, the global could be referenced as
::x.

PHP statements can be interspersed with function definitions. Variables in

PHP are implicitly declared when they appear in statements. Any variable
that is implicitly declared outside any function is a global variable;
variables implicitly declared in functions are local variables. The scope of
global variables extends from their declarations to the end of the program but
skips over any subsequent function definitions. So, global variables are not
implicitly visible in any function. Global variables can be made visible in
functions in their scope in two ways: (1) If the function includes a local
variable with the same name as a global, that global can be accessed through
the $GLOBALS array, using the name of the global as a string literal subscript,
and (2) if there is no local variable in the function with the same name as the
global, the global can be made visible by including it in a global declaration
statement. Consider the following example:

$day = "Monday";

$month = "January";

function calendar() {

 $day = "Tuesday";

 global $month;

 print "local day is $day ";

 $gday = $GLOBALS['day'];

 print "global day is $gday <br \>";

 print "global month is $month ";

}

calendar();

Interpretation of this code produces the following:

local day is Tuesday

global day is Monday

global month is January

The global variables of JavaScript are very similar to those of PHP, except
that there is no way to access a global variable in a function that has declared
a local variable with the same name.

The visibility rules for global variables in Python are unusual. Variables are
not normally declared, as in PHP. They are implicitly declared when they
appear as the targets of assignment statements. A global variable can be
referenced in a function, but a global variable can be assigned in a function
only if it has been declared to be global in the function. Consider the
following examples:

day = "Monday"

def tester():

print "The global day is:", day

tester()

The output of this script, because globals can be referenced directly in -
functions, is as follows:

The global day is: Monday

The following script attempts to assign a new value to the global day:

day = "Monday"

def tester():

 print "The global day is:", day

 day = "Tuesday"

 print "The new value of day is:", day

tester()

This script creates an UnboundLocalError error message, because the
assignment to day in the second line of the body of the function makes day a
local variable, which makes the reference to day in the first line of the body
of the function an illegal forward reference to the local.

The assignment to day can be to the global variable if day is declared to be
global at the beginning of the function. This prevents the assignment to day
from creating a local variable. This is shown in the following script:

day = "Monday"

def tester():

 global day

 print "The global day is:", day

 day = "Tuesday"

 print "The new value of day is:", day

tester()

The output of this script is as follows:

The global day is: Monday

The new value of day is: Tuesday

Functions can be nested in Python. Variables defined in nesting functions are
accessible in a nested function through static scoping, but such variables must

be declared nonlocal in the nested function.9 An example skeletal program
in Section 5.7 illustrates accesses to nonlocal variables.

9. The nonlocal reserved word was introduced in Python 3.

All names defined outside function definitions in F# are globals. Their scope
extends from their definitions to the end of the file.

Declaration order and global variables are also issues in the class and member
declarations in object-oriented languages. These are discussed in Chapter 12.

5.5.5 Evaluation of Static Scoping
Static scoping provides a method of nonlocal access that works well in many
situations. However, it is not without its problems. First, in most cases it
allows more access to both variables and subprograms than is necessary. It is
simply too crude a tool for concisely specifying such restrictions. Second,
and perhaps more important, is a problem related to program evolution.
Software is highly dynamic—programs that are used regularly continually
change. These changes often result in restructuring, thereby destroying the
initial structure that restricted variable and subprogram access in a static-
scoped language. To avoid the complexity of maintaining these access
restrictions, developers often discard structure when it gets in the way. Thus,
getting around the restrictions of static scoping can lead to program designs
that bear little resemblance to the original, even in areas of the program in
which changes have not been made. Designers are encouraged to use far
more globals than are necessary. All subprograms can end up being nested at
the same level, in the main program, using globals instead of deeper levels of
nesting.10 Moreover, the final design may be awkward and contrived, and it
may not reflect the underlying conceptual design. These and other defects of
static scoping are discussed in detail in Clarke, Wileden, and Wolf (1980).
An alternative to the use of static scoping to control access to variables and
subprograms is an encapsulation construct, which is included in many newer
languages. Encapsulation constructs are discussed in Chapter 11.

10. Sounds like the structure of a C program, doesn’t it?

5.5.6 Dynamic Scope
The scope of variables in APL, SNOBOL4, and the early versions of Lisp is
dynamic. Perl and Common Lisp also allow variables to be declared to have
dynamic scope, although the default scoping mechanism in these languages is
static. Dynamic scoping is based on the calling sequence of subprograms,
not on their spatial relationship to each other. Thus, the scope can be
determined only at run time.

Consider again the function big from Section 5.5.1, which is reproduced
here, minus the function calls:

function big() {

 function sub1() {

 var x = 7;

 }

 function sub2() {

 var y = x;

 var z = 3;

 }

 var x = 3;

}

Assume that dynamic-scoping rules apply to nonlocal references. The
meaning of the identifier x referenced in sub2 is dynamic—it cannot be
determined at compile time. It may reference the variable from either
declaration of x, depending on the calling sequence.

One way the correct meaning of x can be determined during execution is to
begin the search with the local declarations. This is also the way the process
begins with static scoping, but that is where the similarity between the two
techniques ends. When the search of local declarations fails, the declarations
of the dynamic parent, or calling function, are searched. If a declaration for x
is not found there, the search continues in that function’s dynamic parent, and
so forth, until a declaration for x is found. If none is found in any dynamic
ancestor, it is a run-time error.

Consider the two different call sequences for sub2 in the earlier example.
First, big calls sub1, which calls sub2. In this case, the search proceeds from

the local procedure, sub2, to its caller, sub1, where a declaration for x is
found. So, the reference to x in sub2 in this case is to the x declared in sub1.
Next, sub2 is called directly from big. In this case, the dynamic parent of
sub2 is big, and the reference is to the x declared in big.

Note that if static scoping were used, in either calling sequence discussed, the
reference to x in sub2 would be to big’s x.

Perl’s dynamic scoping is unusual—in fact, it is not exactly like that
discussed in this section, although the semantics are often that of traditional
dynamic scoping (see Programming Exercise 1).

5.5.7 Evaluation of Dynamic
Scoping
The effect of dynamic scoping on programming is profound. When dynamic
scoping is used, the correct attributes of nonlocal variables visible to a
program statement cannot be determined statically. Furthermore, a reference
to the name of such a variable is not always to the same variable. A statement
in a subprogram that contains a reference to a nonlocal variable can refer to
different nonlocal variables during different executions of the subprogam.
Several kinds of programming problems follow directly from dynamic
scoping.

First, during the time span beginning when a subprogram begins its execution
and ending when that execution ends, the local variables of the subprogram
are all visible to any other executing subprogram, regardless of its textual
proximity or how execution got to the currently executing subprogram. There
is no way to protect local variables from this accessibility. Subprograms are
always executed in the environment of all previously called subprograms that
have not yet completed their executions. As a result, dynamic scoping results
in less reliable programs than static scoping.

A second problem with dynamic scoping is the inability to type check
references to nonlocals statically. This problem results from the inability to

statically find the declaration for a variable referenced as a nonlocal.

Dynamic scoping also makes programs much more difficult to read, because
the calling sequence of subprograms must be known to determine the
meaning of references to nonlocal variables. This task can be virtually
impossible for a human reader.

Finally, accesses to nonlocal variables in dynamic-scoped languages take far
longer than accesses to nonlocals when static scoping is used. The reason for
this is explained in Chapter 10.

On the other hand, dynamic scoping is not without merit. In many cases, the
parameters passed from one subprogram to another are variables that are
defined in the caller. None of these needs to be passed in a dynamically
scoped language, because they are implicitly visible in the called
subprogram.

It is not difficult to understand why dynamic scoping is not as widely used as
static scoping. Programs in static-scoped languages are easier to read, are
more reliable, and execute faster than equivalent programs in dynamic-
scoped languages. It was precisely for these reasons that dynamic scoping
was replaced by static scoping in most current dialects of
Lisp. Implementation methods for both static and dynamic scoping are
discussed in Chapter 10.

5.6 Scope and Lifetime
Sometimes the scope and lifetime of a variable appear to be related. For
example, consider a variable that is declared in a Java method that contains
no method calls. The scope of such a variable is from its declaration to the
end of the method. The lifetime of that variable is the period of time
beginning when the method is entered and ending when execution of the
method terminates. Although the scope and lifetime of the variable are clearly
not the same, because static scope is a textual, or spatial, concept whereas
lifetime is a temporal concept, they at least appear to be related in this case.

This apparent relationship between scope and lifetime does not hold in other
situations. In C and C++, for example, a variable that is declared in a function
using the specifier static is statically bound to the scope of that function and
is also statically bound to storage. So, its scope is static and local to the
function, but its lifetime extends over the entire execution of the program of
which it is a part.

Scope and lifetime are also unrelated when subprogram calls are involved.
Consider the following C++ functions:

void printheader() {

 . . .

 } /* end of printheader */

void compute() {

 int sum;

 . . .

 printheader();

 } /* end of compute */

The scope of the variable sum is completely contained within the compute
function. It does not extend to the body of the function printheader,
although printheader executes in the midst of the execution of compute.
However, the lifetime of sum extends over the time during which
printheader executes. Whatever storage location sum is bound to before the
call to printheader, that binding will continue during and after the execution
of printheader.

5.7 Referencing Environments
The referencing environment of a statement is the collection of all variables
that are visible in the statement. The referencing environment of a statement
in a static-scoped language is the variables declared in its local scope plus the
collection of all variables of its ancestor scopes that are visible. In such a
language, the referencing environment of a statement is needed while that
statement is being compiled, so code and data structures can be created to
allow references to variables from other scopes during run time. Techniques
for implementing references to nonlocal variables in both static- and
dynamic-scoped languages are discussed in Chapter 10.

In Python, scopes can be created by function definitions. The referencing
environment of a statement includes the local variables, plus all of the
variables declared in the functions in which the statement is nested
(excluding variables in nonlocal scopes that are hidden by declarations in
nearer functions). Each function definition creates a new scope and thus a
new environment. Consider the following Python skeletal program:

g = 3; # A global

def sub1():

 a = 5; # Creates a local

 b = 7; # Creates another local

 . . . <------------------------------ 1

 def sub2():

 global g; # Global g is now assignable here

 c = 9; # Creates a new local

 . . . <------------------------------ 2

 def sub3():

 nonlocal c: # Makes nonlocal c visible here

 g = 11; # Creates a new local

 . . . <------------------------------ 3

The referencing environments of the indicated program points are as follows:

Now consider the variable declarations of this skeletal program. First, note
that, although the scope of sub1 is at a higher level (it is less deeply nested)
than sub3, the scope of sub1 is not a static ancestor of sub3, so sub3 does not
have access to the variables declared in sub1. There is a good reason for this.
The variables declared in sub1 are stack dynamic, so they are not bound to
storage if sub1 is not in execution. Because sub3 can be in execution when
sub1 is not, it cannot be allowed to access variables in sub1, which would not
necessarily be bound to storage during the execution of sub3.

A subprogram is active if its execution has begun but has not yet terminated.
The referencing environment of a statement in a dynamically scoped
language is the locally declared variables, plus the variables of all other -
subprograms that are currently active. Once again, some variables in active
subprograms can be hidden from the referencing environment. Recent
subprogram activations can have declarations for variables that hide variables
with the same names in previous subprogram activations.

Consider the following example program. Assume that the only function calls
are the following: main calls sub2, which calls sub1.

void sub1() {

 int a, b;

 . . . <------------ 1

} /* end of sub1 */

void sub2() {

 int b, c;

 <------------ 2

 sub1();

} /* end of sub2 */

void main() {

 int c, d;

 . . . <------------ 3

 sub2();

} /* end of main */

The referencing environments of the indicated program points are as follows:

5.8 Named Constants
A named constant is a variable that is bound to a value only once. Named
constants are useful as aids to readability and program reliability. Readability
can be improved, for example, using the name pi instead of the constant
3.14159265.

Another important use of named constants is to parameterize a program. For
example, consider a program that processes a fixed number of data values,
say 100. Such a program usually uses the constant 100 in a number of
locations for declaring array subscript ranges and for loop control limits.
Consider the following skeletal Java program segment:

void example() {

 int[] intList = new int[100];

 String[] strList = new String[100];

 . . .

 for (index = 0; index < 100; index++) {

 . . .

 }

 . . .

 for (index = 0; index < 100; index++) {

 . . .

 }

 . . .

 average = sum / 100;

 . . .

}

When this program must be modified to deal with a different number of data
values, all occurrences of 100 must be found and changed. On a large
program, this can be tedious and error prone. An easier and more reliable
method is to use a named constant as a program parameter, as follows:

void example() {

 final int len = 100;

 int[] intList = new int[len];

 String[] strList = new String[len];

 . . .

 for (index = 0; index < len; index++) {

 . . .

 }

 . . .

 for (index = 0; index < len; index++) {

 . . .

 }

 . . .

 average = sum / len;

 . . .

}

Now, when the length must be changed, only one line must be changed (the
variable len), regardless of the number of times it is used in the program.
This is another example of the benefits of abstraction. The name len is an
abstraction for the number of elements in some arrays and the number of
iterations in some loops. This illustrates how named constants can aid
modifiability.

C++ allows dynamic binding of values to named constants. This allows
expressions containing variables to be assigned to constants in the
declarations. For example, the C++ statement

const int result = 2 * width + 1;

declares result to be an integer type named constant whose value is set to
the value of the expression 2 * width + 1, where the value of the variable
width must be visible when result is allocated and bound to its value.

Java also allows dynamic binding of values to named constants. In Java,
named constants are defined with the final reserved word (as in the earlier
example). The initial value can be given in the declaration statement or in a
subsequent assignment statement. The assigned value can be specified with
any expression.

C# has two kinds of named constants: those defined with const and those
defined with readonly. The const named constants, which are implicitly
static, are statically bound to values; that is, they are bound to values at
compile time, which means those values can be specified only with literals or
other const members. The readonly named constants, which are
dynamically bound to values, can be assigned in the declaration or with a

static constructor.11 So, if a program needs a constant-valued object whose
value is the same on every use of the program, a const constant is used.
However, if a program needs a constant-valued object whose value is
determined only when the object is created and can be different for different
executions of the program, then a readonly constant is used.

11. Static constructors in C# run at some indeterminate time before the class
is instantiated.

The discussion of binding values to named constants naturally leads to the
topic of initialization, because binding a value to a named constant is the
same process, except it is permanent.

In many instances, it is convenient for variables to have values before the
code of the program or subprogram in which they are declared begins
executing. The binding of a variable to a value at the time it is bound to
storage is called initialization. If the variable is statically bound to storage,
binding and initialization occur before run time. In these cases, the initial
value must be specified as a literal or an expression whose only nonliteral
operands are named constants that have already been defined. If the storage
binding is dynamic, initialization is also dynamic and the initial values can be
any expression.

In most languages, initialization is specified on the declaration that creates
the variable. For example, in C++, we could have

int sum = 0;

int* ptrSum = ∑

char name[] = "George Washington Carver";

SUMMARY
Case sensitivity and the use of underscores are the design issues for names.

Variables can be characterized by the sextuple of attributes: name, address,
value, type, lifetime, and scope.

Aliases are two or more variables bound to the same storage address. They
are regarded as detrimental to reliability but are difficult to eliminate entirely
from a language.

Binding is the association of attributes with program entities. Knowledge of
the binding times of attributes to entities is essential to understanding the
semantics of programming languages. Binding can be static or dynamic. -
Declarations, either explicit or implicit, provide a means of specifying the
static binding of variables to types. In general, dynamic binding allows
greater flexibility but at the expense of readability, efficiency, and reliability.

Scalar variables can be separated into four categories by considering their
lifetimes: static, stack dynamic, explicit heap dynamic, and implicit heap
dynamic.

Static scoping is a central feature of ALGOL 60 and some of its descendants.
It provides a simple, reliable, and efficient method of allowing visibility of
nonlocal variables in subprograms. Dynamic scoping provides more
flexibility than static scoping but, again, at the expense of readability,
reliability, and efficiency.

Most functional languages allow the user to create local scopes with let
constructs, which limit the scope of their defined names.

The referencing environment of a statement is the collection of all of the
variables that are visible to that statement.

Named constants are simply variables that are bound to values only once.

REVIEW QUESTIONS
1. What are the design issues for names?

2. What is the potential danger of case-sensitive names?

3. What is an alias?

4. Which category of C++ reference variables always produces aliases?

5. What is the l-value of a variable? What is the r-value?

6. Define binding and binding time.

7. After language design and implementation, what are the four times
bindings can take place in a program?

8. Define static binding and dynamic binding.

9. What are the advantages and disadvantages of implicit declarations?

10. What are the advantages and disadvantages of dynamic type binding?

11. Define static, stack-dynamic, explicit heap-dynamic, and implicit heap-
dynamic variables. What are their advantages and disadvantages?

12. Define lifetime, scope, static scope, and dynamic scope.

13. How is a reference to a nonlocal variable in a static-scoped program
connected to its definition?

14. What is the general problem with static scoping?

15. What is the referencing environment of a statement?

16. What is a static ancestor of a subprogram? What is a dynamic ancestor
of a subprogram?

17. What is a block?

18. What is the purpose of the let constructs in functional languages?

19. What is the difference between the names defined in an ML let
construct from the variables declared in a C block?

20. Describe the encapsulation of an F# let inside a function and outside all
functions.

21. What are the advantages and disadvantages of dynamic scoping?

22. What are the advantages of named constants?

PROBLEM SET
1. Which of the following identifier forms is most readable? Support your

decision.

SumOfSales

sum_of_sales

SUMOFSALES

2. Some programming languages are typeless. What are the obvious
advantages and disadvantages of having no types in a language?

3. Write a simple assignment statement with one arithmetic operator in
some language you know. For each component of the statement, list the
various bindings that are required to determine the semantics when the
statement is executed. For each binding, indicate the binding time used
for the language.

4. Dynamic type binding is closely related to implicit heap-dynamic
variables. Explain this relationship.

5. Describe a situation when a history-sensitive variable in a subprogram is
useful.

6. Consider the following JavaScript skeletal program:

// The main program

var x;

function sub1() {

 var x;

 function sub2() {

 . . .

 }

}

function sub3() {

 . . .

}

Assume that the execution of this program is in the following unit order:

main calls sub1

sub1 calls sub2

sub2 calls sub3

1. Assuming static scoping, in the following, which declaration of x is
the correct one for a reference to x?

1. sub1

2. sub2

3. sub3

2. Repeat part a, but assume dynamic scoping.

7. Assume the following JavaScript program was interpreted using static-
scoping rules. What value of x is displayed in function sub1? Under
dynamic-scoping rules, what value of x is displayed in function sub1?

var x;

function sub1() {

 document.write("x = " + x + "");

}

function sub2() {

 var x;

 x = 10;

 sub1();

}

x = 5;

sub2();

8. Consider the following JavaScript program:

var x, y, z;

function sub1() {

 var a, y, z;

 function sub2() {

 var a, b, z;

 . . .

 }

 . . .

}

function sub3() {

 var a, x, w;

 . . .

}

List all the variables, along with the program units where they are
declared, that are visible in the bodies of sub1, sub2, and sub3, assuming
static scoping is used.

9. Consider the following Python program:

x = 1;

y = 3;

z = 5;

def sub1():

 a = 7;

 y = 9;

 z = 11;

 . . .

def sub2():

 global x;

 a = 13;

 x = 15;

 w = 17;

 . . .

 def sub3():

 nonlocal a;

 a = 19;

 b = 21;

 z = 23;

 . . .

. . .

List all the variables, along with the program units where they are
declared, that are visible in the bodies of sub1, sub2, and sub3, assuming
static scoping is used.

10. Consider the following C program:

void fun(void) {

 int a, b, c; /* definition 1 */

 . . .

 while (. . .) {

 int b, c, d; /*definition 2 */

 . . . <------------- 1

 while (. . .) {

 int c, d, e; /* definition 3 */

 . . . <------------- 2

 }

 . . . <-------------- 3

 }

 . . . <---------------- 4

}

For each of the four marked points in this function, list each visible -
variable, along with the number of the definition statement that defines
it.

11. Consider the following skeletal C program:

void fun1(void); /* prototype */

void fun2(void); /* prototype */

void fun3(void); /* prototype */

void main() {

 int a, b, c;

 . . .

 }

void fun1(void) {

 int b, c, d;

 . . .

 }

void fun2(void) {

 int c, d, e;

 . . .

 }

void fun3(void) {

 int d, e, f;

 . . .

 }

Given the following calling sequences and assuming that dynamic
scoping is used, what variables are visible during execution of the last
function called? Include with each visible variable the name of the
function in which it was defined.

1. main calls fun1; fun1 calls fun2; fun2 calls fun3.

2. main calls fun1; fun1 calls fun3.

3. main calls fun2; fun2 calls fun3; fun3 calls fun1.

4. main calls fun3; fun3 calls fun1.

5. main calls fun1; fun1 calls fun3; fun3 calls fun2.

6. main calls fun3; fun3 calls fun2; fun2 calls fun1.

12. Consider the following program, written in JavaScript-like syntax:

// main program

var x, y, z;

function sub1() {

var a, y, z;

. . .

}

function sub2() {

 var a, b, z;

 . . .

}

function sub3() {

 var a, x, w;

 . . .

}

Given the following calling sequences and assuming that dynamic
scoping is used, what variables are visible during execution of the last
subprogram activated? Include with each visible variable the name of
the unit where it is declared.

1. main calls sub1; sub1 calls sub2; sub2 calls sub3.

2. main calls sub1; sub1 calls sub3.

3. main calls sub2; sub2 calls sub3; sub3 calls sub1.

4. main calls sub3; sub3 calls sub1.

5. main calls sub1; sub1 calls sub3; sub3 calls sub2.

6. main calls sub3; sub3 calls sub2; sub2 calls sub1.

PROGRAMMING EXERCISES
1. Perl allows both static and a kind of dynamic scoping. Write a Perl

program that uses both and clearly shows the difference in effect of the
two. Explain clearly the difference between the dynamic scoping
described in this chapter and that implemented in Perl.

2. Write a Common Lisp program that clearly shows the difference
between static and dynamic scoping.

3. Write a JavaScript script that has subprograms nested three deep and in
which each nested subprogram references variables defined in all of its
enclosing subprograms.

4. Repeat Programming Exercise 3 with Python.

5. Write a C99 function that includes the following sequence of statements:

x = 21;

int x;

x = 42;

Run the program and explain the results. Rewrite the same code in C++
and Java and compare the results.

6. Write test programs in C++, Java, and C# to determine the scope of a
variable declared in a for statement. Specifically, the code must
determine whether such a variable is visible after the body of the for
statement.

7. Write three functions in C or C++: one that declares a large array
statically, one that declares the same large array on the stack, and one
that creates the same large array from the heap. Call each of the
subprograms a large number of times (at least 100,000) and output the
time required by each. Explain the results.

6 Data Types
1. 6.1 Introduction

2. 6.2 Primitive Data Types

3. 6.3 Character String Types

4. 6.4 Enumeration Types

5. 6.5 Array Types

6. 6.6 Associative Arrays

7. 6.7 Record Types

8. 6.8 Tuple Types

9. 6.9 List Types

10. 6.10 Union Types

11. 6.11 Pointer and Reference Types

12. 6.12 Optional Types

13. 6.13 Type Checking

14. 6.14 Strong Typing

15. 6.15 Type Equivalence

16. 6.16 Theory and Data Types

This chapter first introduces the concept of a data type and the characteristics
of the common primitive data types. Then, the designs of enumeration and
subrange types are discussed. Next, the details of structured data types—

specifically arrays, associative arrays, records, tuples, lists, and unions—are
investigated. This section is followed by an in-depth look at pointers and
references. The last category of types discussed are the optional types.

For each of the various categories of data types, the design issues are stated
and the design choices made by the designers of some common languages are
described. These designs are then evaluated.

The next three sections provide a thorough investigation of type checking,
strong typing, and type equivalence rules. The last section of the chapter
briefly introduces the fundamentals of the theory of data types.

Implementation methods for data types sometimes have a significant impact
on their design. Therefore, implementation of the various data types is
another important part of this chapter, especially arrays.

6.1 Introduction
A data type defines a collection of data values and a set of predefined
operations on those values. Computer programs produce results by
manipulating data. An important factor in determining the ease with which
they can perform this task is how well the data types available in the
language being used match the objects in the real world of the problem being
addressed. Therefore, it is crucial that a language supports an appropriate
collection of data types and structures.

The contemporary concepts of data typing have evolved over the last 60
years. In the earliest languages, all problem space data structures had to be
modeled with only a few basic language-supported data structures. For
example, in pre-90 Fortrans, linked lists and binary trees were implemented
with arrays.

The data structures of COBOL took the first step away from the Fortran I
model by allowing programmers to specify the accuracy of decimal data
values, and also by providing a structured data type for records of
information. PL/I extended the capability of accuracy specification to integer
and floating-point types. The designers of PL/I included many data types,
with the intent of supporting a large range of applications. A better approach,
introduced in ALGOL 68, is to provide a few basic types and a few flexible
structure-defining operators that allow a programmer to design a data
structure for each need. Clearly, this was one of the most important advances
in the evolution of data type design. User-defined types also provide
improved readability through the use of meaningful names for types. They
allow type checking of the variables of a special category of use, which
would otherwise not be possible. User-defined types also aid modifiability: A
programmer can change the type of a category of variables in a program by
changing a type definition statement only.

Taking the concept of a user-defined type a step further, we arrive at abstract
data types, which are supported by most programming languages designed
since the mid-1980s. The fundamental idea of an abstract data type is that the

interface of a type, which is visible to the user, is separated from the
representation and set of operations on values of that type, which are hidden
from the user. All of the types provided by a high-level programming
language are abstract data types. User-defined abstract data types are
discussed in detail in Chapter 11.

There are a number of uses of the type system of a programming language.
The most practical of these is error detection. The process and value of type
checking, which is directed by the type system of the language, are discussed
in Section 6.12. A second use of a type system is the assistance it provides for
program modularization. This results from the cross-module type checking
that ensures the consistency of the interfaces among modules. Another use of
a type system is documentation. The type declarations in a program
document information about its data, which provides clues about the
program’s behavior.

The type system of a programming language defines how a type is associated
with each expression in the language and includes its rules for type
equivalence and type compatibility. Certainly, one of the most important
parts of understanding the semantics of a programming language is
understanding its type system.

The two most common structured (nonscalar) data types in the imperative
languages are arrays and records, although the popularity of associative
arrays has increased significantly in recent years. Lists have been a central
part of functional programming languages since the first such language
appeared in 1959 (Lisp). Over the last decade, the increasing popularity of
functional programming has led to lists being added to primarily imperative
languages, such as Python and C#.

The structured data types are defined with type operators, or constructors,
which are used to form type expressions. For example, C uses brackets and
asterisks as type operators to specify arrays and pointers.

It is convenient, both logically and concretely, to think of variables in terms
of descriptors. A descriptor is the collection of the attributes of a variable. In
an implementation, a descriptor is an area of memory that stores the attributes
of a variable. If the attributes are all static, descriptors are required only at

compile time. These descriptors are built by the compiler, usually as a part of
the symbol table, and are used during compilation. For dynamic attributes,
however, part or all of the descriptor must be maintained during execution. In
this case, the descriptor is used by the run-time system. In all cases,
descriptors are used for type checking and building the code for the allocation
and deallocation operations.

Care must be taken when using the term variable. One who uses only
traditional imperative languages may think of identifiers as variables, but that
can lead to confusion when considering data types. Identifiers do not have
data types in some programming languages. It is wise to remember that
identifiers are just one of the attributes of a variable.

The word object is often associated with the value of a variable and the space
it occupies. In this book, however, we reserve object exclusively for instances
of user-defined and language-defined abstract data types, rather than for the
values of all program variables of predefined types. Objects are discussed in
detail in Chapters 11 and 12.

In the following sections, many common data types are discussed. For most,
design issues particular to the type are stated. For all, one or more example
designs are described. One design issue is fundamental to all data types:
What operations are provided for variables of the type, and how are they
specified?

6.2 Primitive Data Types
Data types that are not defined in terms of other types are called primitive
data types. Nearly all programming languages provide a set of primitive data
types. Some of the primitive types are merely reflections of the hardware—
for example, most integer types. Others require only a little nonhardware
support for their implementation.

To specify the structured types, the primitive data types of a language are
used, along with one or more type constructors.

6.2.1 Numeric Types
Some early programming languages only had numeric primitive types.
Numeric types still play a central role among the collections of types
supported by contemporary languages.

6.2.1.1 Integer
The most common primitive numeric data type is integer. The hardware of
many computers supports several sizes of integers. These sizes of integers,
and often a few others, are supported by some programming languages. For
example, Java includes four signed integer sizes: byte, short, int, and long.
Some languages, for example, C++ and C#, include unsigned integer types,
which are types for integer values without signs. Unsigned types are often
used for binary data.

A signed integer value is represented in a computer by a string of bits, with
one of the bits (typically the leftmost) representing the sign. Most integer
types are supported directly by the hardware. One example of an integer type
that is not supported directly by the hardware is the long integer type of
Python (F# also provides such integers). Values of this type can have

unlimited length. Long integer values can be specified as literals, as in the
following example:

243725839182756281923L

Integer arithmetic operations in Python that produce values too large to be
represented with int type store them as long integer type values.

A negative integer could be stored in sign-magnitude notation, in which the
sign bit is set to indicate negative and the remainder of the bit string
represents the absolute value of the number. Sign-magnitude notation,
however, does not lend itself to computer arithmetic. Most computers now
use a notation called twos complement to store negative integers, which is
convenient for addition and subtraction. In twos-complement notation, the
representation of a negative integer is formed by taking the logical
complement of the positive version of the number and adding one. Ones-
complement notation is still used by some computers. In ones-complement
notation, the negative of an integer is stored as the logical complement of its
absolute value. Ones-complement notation has the disadvantage that it has
two representations of zero. See any book on assembly language
programming for details of integer representations.

6.2.1.2 Floating-Point
Floating-point data types model real numbers, but the representations are
only approximations for many real values. For example, neither of the
fundamental numbers π or e (the base for the natural logarithms) can be
correctly represented in floating-point notation. Of course, neither of these
numbers can be precisely represented in any finite amount of computer
memory. On most computers, floating-point numbers are stored in binary,
which exacerbates the problem. For example, even the value 0.1 in decimal
cannot be represented by a finite number of binary digits.1 Another problem
with floating-point types is the loss of accuracy through arithmetic
operations. For more information on the problems of floating-point notation,
see any book on numerical analysis.

1. 0.1 in decimal is 0.0001100110011 . . . in binary.

Floating-point values are represented as fractions and exponents, a form that
is borrowed from scientific notation. Older computers used a variety of
different representations for floating-point values. However, most newer
machines use the IEEE Floating-Point Standard 754 format. Language
implementors use whatever representation is supported by the hardware.
Most languages include two floating-point types, often called float and
double. The float type is the standard size, usually stored in four bytes of
memory. The double type is provided for situations where larger fractional
parts and/or a larger range of exponents is needed. Double-precision variables
usually occupy twice as much storage as float variables and provide at least
twice the number of bits of fraction.

The collection of values that can be represented by a floating-point type is
defined in terms of precision and range. Precision is the accuracy of the
fractional part of a value, measured as the number of bits. Range is a
combination of the range of fractions and, more important, the range of
exponents.

Figure 6.1 shows the IEEE Floating-Point Standard 754 format for single-
and double-precision representation (IEEE, 1985). Details of the IEEE
formats can be found in Tanenbaum (2005).

Figure 6.1 IEEE floating-point
formats: (a) single precision,
(b) double precision

Figure 6.1 Full Alternative Text

6.2.1.3 Complex
Some programming languages support a complex data type—for example,
Fortran and Python. Complex values are represented as ordered pairs of
floating-point values. In Python, the imaginary part of a complex literal is
specified by following it with a j or J—for example,

(7 + 3j)

Languages that support a complex type include operations for arithmetic on
complex values.

6.2.1.4 Decimal
Most larger computers that are designed to support business systems
applications have hardware support for decimal data types. Decimal data
types store a fixed number of decimal digits, with the implied decimal point
at a fixed position in the value. These are the primary data types for business
data processing and are therefore essential to COBOL. C# and F# also have
decimal data types.

Decimal types have the advantage of being able to precisely store decimal
values, at least those within a restricted range, which cannot be done with -
floating-point. For example, the number 0.1 (in decimal) can be exactly
represented in a decimal type, but not in a floating-point type, as is noted in

Section 6.2.1.2. The disadvantages of decimal types are that the range of
values is restricted because no exponents are allowed, and their
representation in memory is mildly wasteful, for reasons discussed in the
following paragraph.

Decimal types are stored very much like character strings, using binary codes
for the decimal digits. These representations are called binary coded
decimal (BCD). In some cases, they are stored one digit per byte, but in
others, they are packed two digits per byte. Either way, they take more
storage than binary representations. It takes at least four bits to code a
decimal digit. Therefore, to store a six-digit coded decimal number requires
24 bits of memory. However, it takes only 20 bits to store the same number in
binary.2 The operations on decimal values are done in hardware on machines
that have such capabilities; otherwise, they are simulated in software.

2. Of course, unless a program needs to maintain a large number of large
decimal values, the difference is insignificant.

6.2.2 Boolean Types
Boolean types are perhaps the simplest of all types. Their range of values has
only two elements: one for true and one for false. They were introduced in
ALGOL 60 and have been included in most general-purpose languages
designed since 1960. One popular exception is C89, in which numeric
expressions are used as conditionals. In such expressions, all operands with
nonzero values are considered true, and zero is considered false. Although
C99 and C++ have a Boolean type, they also allow numeric expressions to be
used as if they were Boolean. This is not the case in the subsequent
languages, Java and C#.

Boolean types are often used to represent switches or flags in programs.
Although other types, such as integers, can be used for these purposes, the
use of Boolean types is more readable.

A Boolean value could be represented by a single bit, but because a single bit
of memory cannot be accessed efficiently on many machines, they are often

stored in the smallest efficiently addressable cell of memory, typically a byte.

6.2.3 Character Types
Character data are stored in computers as numeric codings. Traditionally, the
most commonly used coding was the 8-bit code ASCII (American Standard
Code for Information Interchange), which uses the values 0 to 127 to code
128 different characters. ISO 8859-1 is another 8-bit character code, but it
allows 256 different characters.

Because of the globalization of business and the need for computers to
communicate with other computers around the world, the ASCII character set
became inadequate. In response, in 1991, the Unicode Consortium published
the UCS-2 standard, a 16-bit character set. This character code is often called
Unicode. Unicode includes the characters from most of the world’s natural
languages. For example, Unicode includes the Cyrillic alphabet, as used in
Serbia, and the Thai digits. The first 128 characters of Unicode are identical
to those of ASCII. Java was the first widely used language to use the Unicode
character set. Since then, it has found its way into JavaScript, Python, Perl,
C#, F#, and Swift.

After 1991, the Unicode Consortium, in cooperation with the International
Standards Organization (ISO), developed a 4-byte character code named
UCS-4, or UTF-32, which is described in the ISO/IEC 10646 Standard,
published in 2000.

To provide the means of processing codings of single characters, most
programming languages include a primitive type for them. However, Python
supports single characters only as character strings of length 1.

6.3 Character String Types
A character string type is one in which the values consist of sequences of
characters. Character string constants are used to label output, and the input
and output of all kinds of data are often done in terms of strings. Of course,
character strings also are an essential type for all programs that do character
manipulation.

6.3.1 Design Issues
The two most important design issues that are specific to character string
types are the following:

Should strings be a special kind of character array or a primitive type?

Should strings have static or dynamic length?

6.3.2 Strings and Their Operations
The most common string operations are assignment, catenation, substring
reference, comparison, and pattern matching.

A substring reference is a reference to a substring of a given string.
Substring references are discussed in the more general context of arrays,
where the substring references are called slices.

In general, both assignment and comparison operations on character strings
are complicated by the possibility of string operands of different lengths. For
example, what happens when a longer string is assigned to a shorter string, or
vice versa? Usually, simple and sensible choices are made for these
situations, although programmers often have trouble remembering them.

In some languages, pattern matching is supported directly in the language. In
others, it is provided by a function or class library.

If strings are not defined as a primitive type, string data is usually stored in
arrays of single characters and referenced as such in the language. This is the
approach taken by C and C++, which use char arrays to store character
strings. These languages provide a collection of string operations through
standard libraries. Many users of strings and many of the library functions
use the convention that character strings are terminated with a special
character, null, which is represented with zero. This is an alternative to
maintaining the length of string variables. The library operations simply carry
out their operations until the null character appears in the string being
operated on. Library functions that produce strings often supply the null
character. The character string literals that are built by the compiler also have
the null character. For example, consider the following declaration:

char str[] = "apples";

In this example, str represents an array of char elements, specifically
apples0, where 0 is the null character.

Some of the most commonly used library functions for character strings in C
and C++ are strcpy, which moves strings; strcat, which catenates one
given string onto another; strcmp, which lexicographically compares (by the
order of their character codes) two given strings; and strlen, which returns
the number of characters, not counting the null character, in the given string.
The parameters and return values for most of the string manipulation
functions are char pointers that point to arrays of char. Parameters can also
be string literals.

The string manipulation functions of the C standard library, which are also
available in C++, are inherently unsafe and have led to numerous
programming errors. The problem is that the functions in this library that
move string data do not guard against overflowing the destination. For
example, consider the following call to strcpy:

strcpy(dest, src);

If the length of dest is 20 and the length of src is 50, strcpy will write over
the 30 bytes that follow dest. The point is that strcpy does not know the
length of dest, so it cannot ensure that the memory following it will not be
overwritten. The same problem can occur with several of the other functions
in the C string library. In addition to C-style strings, C++ also supports
strings through its standard class library, which is also similar to that of Java.
Because of the insecurities of the C string library, C++ programmers should
use the string class from the standard library, rather than char arrays and the
C string library.

In Java, strings are supported by the String class, whose values are constant
strings, and the StringBuffer class, whose values are changeable and are
more like arrays of single characters. These values are specified with methods
of the StringBuffer class. C# and Ruby include string classes that are
similar to those of Java.

Python includes strings as a primitive type and has operations for substring
reference, catenation, indexing to access individual characters, as well as
methods for searching and replacement. There is also an operation for
character membership in a string. So, even though Python’s strings are
primitive types, for character and substring references, they act very much
like arrays of characters. However, Python strings are immutable, similar to
the String class objects of Java.

In F#, strings are a class. Individual characters, which are represented in
Unicode UTF-16, can be accessed, but not changed. Strings can be catenated
with the + operator. In ML, string is a primitive immutable type. It uses ^ for
its catenation operator and includes functions for substring referencing and
getting the size of a string.

In Swift, the String class supports its character strings. String objects can
be either constants or variables. The binary + operator catenates String
variables. The append method is used to add a Character object to a String
object. The characters method of String is used to examine individual
characters of a String object.

history note
SNOBOL 4 was the first widely known language to support pattern
matching.

Perl, JavaScript, Ruby, and PHP include built-in pattern-matching operations.
In these languages, the pattern-matching expressions are somewhat loosely
based on mathematical regular expressions. In fact, they are often called
regular expressions. They evolved from the early UNIX line editor, ed, to
become part of the UNIX shell languages. Eventually, they grew to their
current complex form. There is at least one complete book on this kind of -
pattern-matching expressions (Friedl, 2006). In this section, we provide a
brief look at the style of these expressions through two relatively simple
examples.

Consider the following pattern expression:

/[A-Za-z][A-Za-z\d]+/

This pattern matches (or describes) the typical name form in programming
languages. The brackets enclose character classes. The first character class
specifies all letters; the second specifies all letters and digits (a digit is
specified with the abbreviation \d). If only the second character class were
included, we could not prevent a name from beginning with a digit. The plus
operator following the second category specifies that there must be one or
more of what is in the category. So, the whole pattern matches strings that
begin with a letter, followed by one or more letters or digits.

Next, consider the following pattern expression:

/\d+\.?\d*|\.\d+/

This pattern matches numeric literals. The \. specifies a literal decimal
point.3 The question mark quantifies what it follows to have zero or one
appearance. The vertical bar (|) separates two alternatives in the whole
pattern. The first alternative matches strings of one or more digits, possibly
followed by a decimal point, followed by zero or more digits; the second

alternative matches strings that begin with a decimal point, followed by one
or more digits.

3. The period must be “escaped” with the backslash because period has
special meaning in a regular expression.

Pattern-matching capabilities using regular expressions are included in the
class libraries of C++, Java, Python, C#, and F#.

6.3.3 String Length Options
There are several design choices regarding the length of string values. First,
the length can be static and set when the string is created. Such a string is
called a static length string. This is the choice for the strings of Python, the
immutable objects of Java’s String class, as well as similar classes in the
C++ standard class library, Ruby’s built-in String class, and the .NET class
library available to C# and F#.

The second option is to allow strings to have varying length up to a declared
and fixed maximum set by the variable’s definition, as exemplified by the
strings in C and the C-style strings of C++. These are called limited dynamic
length strings. Such string variables can store any number of characters
between zero and the maximum. Recall that strings in C use a special
character to indicate the end of the string’s characters, rather than maintaining
the string length.

The third option is to allow strings to have varying length with no maximum,
as in JavaScript, Perl, and the standard C++ library. These are called
dynamic length strings. This option requires the overhead of dynamic
storage allocation and deallocation but provides maximum flexibility.

6.3.4 Evaluation
String types are important to the writability of a language. Dealing with
strings as arrays can be more cumbersome than dealing with a primitive

string type. For example, consider a language that treats strings as arrays of
characters and does not have a predefined function that does what strcpy in
C does. Then, a simple assignment of one string to another would require a
loop. The addition of strings as a primitive type to a language is not costly in
terms of either language or compiler complexity. Therefore, it is difficult to
justify the omission of primitive string types in some contemporary
languages. Of course, providing strings through a standard library is nearly as
convenient as having them as a primitive type.

String operations such as simple pattern matching and catenation are essential
and should be included for string type values. Although dynamic length
strings are obviously the most flexible, the overhead of their implementation
must be weighed against that additional flexibility.

6.3.5 Implementation of Character
String Types
Character string types could be supported directly in hardware; but in most
cases, software is used to implement string storage, retrieval, and
manipulation. When character string types are represented as character
arrays, the language often supplies few operations.

A descriptor for a static character string type, which is required only during
compilation, has three fields. The first field of every descriptor is the name of
the type. In the case of static character strings, the second field is the type’s
length (in characters). The third field is the address of the first character. This
descriptor is shown in Figure 6.2. Limited dynamic strings require a run-time
descriptor to store the fixed maximum length, the current length, and the
address, as shown in Figure 6.3. Dynamic length strings require a simpler
run-time descriptor because only the current length and the address need to
be stored. Although we depict descriptors as independent blocks of storage,
in most cases, they are stored in the symbol table.

Figure 6.2 Compile-time
descriptor for static strings

Figure 6.3 Run-time descriptor

for limited dynamic strings
The limited dynamic strings of C and C++ do not require run-time
descriptors, because the end of a string is marked with the null character.
They do not need the maximum length, because index values in array
references are not range checked in these languages.

Static length and limited dynamic length strings require no special dynamic
storage allocation. In the case of limited dynamic length strings, sufficient
storage for the maximum length is allocated when the string variable is bound
to storage, so only a single allocation process is involved.

Dynamic length strings require more complex storage management. The
length of a string, and therefore the storage to which it is bound, must grow
and shrink dynamically.

There are three approaches to supporting the dynamic allocation and
deallocation that is required for dynamic length strings. First, strings can be
stored in a linked list, so that when a string grows, the newly required cells
can come from anywhere in the heap. The drawbacks to this method are the
extra storage occupied by the links in the list representation and the necessary
complexity of string operations.

The second approach is to store strings as arrays of pointers to individual
characters allocated in the heap. This method still uses extra memory, but
string processing can be faster than with the linked-list approach.

The third alternative is to store complete strings in adjacent storage cells. The
problem with this method arises when a string grows: How can storage that is
adjacent to the existing cells continue to be allocated for the string variable?
Frequently, such storage is not available. Instead, a new area of memory is
found that can store the complete new string, and the old part is moved to this
area. Then, the memory cells used for the old string are deallocated. This
latter approach is the one typically used. The general problem of managing
allocation and deallocation of variable-size segments is discussed in Section
6.11.7.3.

Although the linked-list method requires more storage, the associated
allocation and deallocation processes are simple. However, some string
operations are slowed by the required pointer chasing. On the other hand,
using adjacent memory for complete strings results in faster string operations
and requires significantly less storage, but the allocation and deallocation
processes are slower.

6.4 Enumeration Types
An enumeration type is one in which all of the possible values, which are
named constants, are provided, or enumerated, in the definition. Enumeration
types provide a way of defining and grouping collections of named constants,
which are called enumeration constants. The definition of a typical
enumeration type is shown in the following C# example:

enum days {Mon, Tue, Wed, Thu, Fri, Sat, Sun};

The enumeration constants are typically implicitly assigned the integer
values, 0, 1, . . . but can be explicitly assigned any integer literal in the type’s
definition.

6.4.1 Design Issues
The design issues for enumeration types are as follows:

Is an enumeration constant allowed to appear in more than one type
definition, and if so, how is the type of an occurrence of that constant in
the program checked?

Are enumeration values coerced to integer?

Are any other types coerced to an enumeration type?

All of these design issues are related to type checking. If an enumeration
variable is coerced to a numeric type, then there is little control over its range
of legal operations or its range of values. If an int type value is coerced to an
enumeration type, then an enumeration type variable could be assigned any
integer value, whether it represented an enumeration constant or not.

6.4.2 Designs

In languages that do not have enumeration types, programmers usually
simulate them with integer values. For example, suppose we needed to
represent colors in a C program and C did not have an enumeration type. We
might use 0 to represent blue, 1 to represent red, and so forth. These values
could be defined as follows:

int red = 0, blue = 1;

Now, in the program, we could use red and blue as if they were of a color
type. The problem with this approach is that because we have not defined a
type for our colors, there is no type checking when they are used. For
example, it would be legal to add the two together, although that would rarely
be an intended operation. They could also be combined with any other
numeric type operand using any arithmetic operator, which would also rarely
be useful. Furthermore, because they are just variables, they could be
assigned any integer value, thereby destroying the relationship with the
colors. This latter problem could be prevented by making them named
constants.

C and Pascal were the first widely used languages to include an enumeration
data type. C++ includes C’s enumeration types. In C++, we could have the
following:

enum colors {red, blue, green, yellow, black};

colors myColor = blue, yourColor = red;

The colors type uses the default internal values for the enumeration
constants, 0, 1, . . . , although the constants could have been specifically
assigned any integer literal (or any constant-valued expression) by the
programmer. The enumeration values are coerced to int when they are put in
integer context. This allows their use in any numeric expression. For
example, if the current value of myColor is blue, then the expression

myColor++

would assign the integer code for green to myColor.

C++ also allows enumeration constants to be assigned to variables of any
numeric type, though that would likely be an error. However, no other type

value is coerced to an enumeration type in C++. For example,

myColor = 4;

is illegal in C++. This assignment would be legal if the right side had been
cast to colors type. This prevents some potential errors.

C++ enumeration constants can appear in only one enumeration type in the
same referencing environment.

In 2004, an enumeration type was added to Java in Java 5.0. All enumeration
types in Java are implicitly subclasses of the predefined class Enum. Because
enumeration types are classes, they can have instance data fields,
constructors, and methods. Syntactically, Java enumeration type definitions
appear like those of C++, except that they can include fields, constructors,
and methods. The possible values of an enumeration are the only possible
instances of the class. All enumeration types inherit toString, as well as a
few other methods. An array of the instances of an enumeration type can be
fetched with the static method values. The internal numeric value of an
enumeration variable can be fetched with the ordinal method. No expression
of any other type can be assigned to an enumeration variable. Also, an
enumeration variable is never coerced to any other type.

C# enumeration types are like those of C++, except that they are never
coerced to integer. So, operations on enumeration types are restricted to those
that make sense. Also, the range of values is restricted to that of the particular
enumeration type.

In ML, enumeration types are defined as new types with datatype
declarations. For example, we could have the following:

datatype weekdays = Monday | Tuesday | Wednesday |

Thursday | Friday

The type of the elements of weekdays is integer.

F# has enumeration types that are similar to those of ML, except the reserved
word type is used instead of datatype and the first value is preceded by an
OR operator (|).

Swift has an enumeration type in which the enumeration values are names,
which represent themselves, rather than having internal integer values. An
enumeration type is defined in a structure that is similar to a switch structure,
as in:

enum fruit {

 case orange

 case apple

 case banana

}

Dot notation is used to reference enumeration values, so in our example, the
value of apple is referenced as fruit.apple.

Interestingly, none of the relatively recent scripting languages include
enumeration types. These include Perl, JavaScript, PHP, Python, and Ruby.
Even Java was a decade old before enumeration types were added.

6.4.3 Evaluation
Enumeration types can provide advantages in both readability and reliability.
Readability is enhanced very directly: Named values are easily recognized,
whereas coded values are not.

In the area of reliability, the enumeration types of C#, F#, Java 5.0, and Swift
provide two advantages: (1) No arithmetic operations are legal on
enumeration types; this prevents adding days of the week, for example, and
(2) second, no enumeration variable can be assigned a value outside its
defined range.4 If the colors enumeration type has 10 enumeration constants
and uses 0..9 as its internal values, no number greater than 9 can be assigned
to a colors type variable.

4. In C# and F#, an integer value can be cast to an enumeration type and
assigned to the name of an enumeration variable. Such values must be tested
with Enum.IsDefined method before assigning them to the name of an
enumeration variable.

Because C treats enumeration variables like integer variables, it does not

provide either of these two advantages.

C++ is a little better. Numeric values can be assigned to enumeration type
variables only if they are cast to the type of the assigned variable. Numeric
values assigned to enumeration type variables are checked to determine
whether they are in the range of the internal values of the enumeration type.
Unfortunately, if the user uses a wide range of explicitly assigned values, this
checking is not effective. For example,

enum colors {red = 1, blue = 1000, green = 100000}

In this example, a value assigned to a variable of colors type will only be
checked to determine whether it is in the range of 1..100000.

6.5 Array Types
An array is a homogeneous aggregate of data elements in which an
individual element is identified by its position in the aggregate, relative to the
first element. The individual data elements of an array are of the same type.
References to individual array elements are specified using subscript
expressions. If any of the subscript expressions in a reference include
variables, then the reference will require an additional run-time calculation to
determine the address of the memory location being referenced.

In many languages, such as C, C++, Java, and C#, all of the elements of an
array are required to be of the same type. In these languages, pointers and
references are restricted to point to or reference a single type. So the objects
or data values being pointed to or referenced are also of a single type. In
some other languages, such as JavaScript, Python, and Ruby, variables are
typeless references to objects or data values. In these cases, arrays still consist
of elements of a single type, but the elements can reference objects or data
values of different types. Such arrays are still homogeneous, because the
array elements are of the same type. In Swift, arrays can be typed, that is,
they will contain values only of a single type, or untyped, which means they
can contain values of any type.

C# and Java 5.0 provide generic arrays, that is, arrays whose elements are
references to objects, through their class libraries. These are discussed in
Section 6.5.3.

6.5.1 Design Issues
The primary design issues specific to arrays are the following:

What types are legal for subscripts?

Are subscripting expressions in element references range checked?

When are subscript ranges bound?

When does array allocation take place?

Are ragged or rectangular multidimensioned arrays allowed, or both?

Can arrays be initialized when they have their storage allocated?

What kinds of slices are allowed, if any?

In the following sections, examples of the design choices made for the arrays
of the most common programming languages are discussed.

6.5.2 Arrays and Indices
Specific elements of an array are referenced by means of a two-level
syntactic mechanism, where the first part is the aggregate name, and the
second part is a possibly dynamic selector consisting of one or more items
known as subscripts or indices. If all of the subscripts in a reference are
constants, the selector is static; otherwise, it is dynamic. The selection
operation can be thought of as a mapping from the array name and the set of
subscript values to an element in the aggregate. Indeed, arrays are sometimes
called finite mappings. Symbolically, this mapping can be shown as

history note
The designers of pre-90 Fortrans and PL/I chose parentheses for array
subscripts because no other suitable characters were available at the time.
Card punches did not include bracket characters.

array_name(subscript_value_list)→element

The syntax of array references is fairly universal: The array name is followed
by the list of subscripts, which is surrounded by either parentheses or
brackets. In some languages that provide multidimensioned arrays as arrays

of arrays, each subscript appears in its own brackets. A problem with using
parentheses to enclose subscript expressions is that they often are also used to
enclose the parameters in subprogram calls; this use makes references to
arrays appear exactly like those calls. For example, consider the following
Ada assignment statement:

Sum := Sum + B(I);

Because parentheses are used for both subprogram parameters and array
subscripts in Ada, both program readers and compilers are forced to use other
information to determine whether B(I) in this assignment is a function call or
a reference to an array element. This results in reduced readability.

history note
Fortran I limited the number of array subscripts to three, because at the time
of the design, execution efficiency was a primary concern. Fortran I designers
had developed a very fast method for accessing the elements of arrays of up
to three dimensions, using the three index registers of the IBM 704. Fortran
IV was first implemented on an IBM 7094, which had seven index registers.
This allowed Fortran IV’s designers to allow arrays with up to seven
subscripts. Most other contemporary languages enforce no such limits.

The designers of Ada specifically chose parentheses to enclose subscripts so
there would be uniformity between array references and function calls in
expressions, in spite of potential readability problems. They made this choice
in part because both array element references and function calls are
mappings. Array element references map the subscripts to a particular
element of the array. Function calls map the actual parameters to the function
definition and, eventually, a functional value.

Most languages other than Fortran and Ada use brackets to delimit their array
indices.

Two distinct types are involved in an array type: the element type and the
type of the subscripts. The type of the subscripts is often integer.

Early programming languages did not specify that subscript ranges must be
implicitly checked. Range errors in subscripts are common in programs, so
requiring range checking is an important factor in the reliability of languages.
Many contemporary languages also do not specify range checking of
subscripts, but Java, ML, and C# do.

Subscripting in Perl is a bit unusual in that although the names of all arrays
begin with at signs (@), because array elements are always scalars and the
names of scalars always begin with dollar signs ($), references to array
elements use dollar signs rather than at signs in their names. For example, for
the array @list, the second element is referenced with $list[1].

One can reference an array element in Perl with a negative subscript, in
which case the subscript value is an offset from the end of the array. For
example, if the array @list has five elements with the subscripts 0..4, $list
[−2] references the element with the subscript 3. A reference to a nonexistent
element in Perl yields undef, but no error is reported.

6.5.3 Subscript Bindings and
Array Categories
The binding of the subscript type to an array variable is usually static, but the
subscript value ranges are sometimes dynamically bound.

In some languages, the lower bound of the subscript range is implicit. For
example, in the C-based languages, the lower bound of all subscript ranges is
fixed at 0. In some other languages, the lower bounds of the subscript ranges
must be specified by the programmer.

There are four categories of arrays, based on the binding to subscript ranges,
the binding to storage, and from where the storage is allocated. The category
names indicate the design choices of these three. In the first three of these
categories, once the subscript ranges are bound and the storage is allocated,
they remain fixed for the lifetime of the variable. Of course, when the
subscript ranges are fixed, the array cannot change size.

A static array is one in which the subscript ranges are statically bound and
storage allocation is static (done before run time). The advantage of static
arrays is efficiency: No dynamic allocation or deallocation is required. The
disadvantage is that the storage for the array is fixed for the entire execution
time of the program.

A fixed stack-dynamic array is one in which the subscript ranges are
statically bound, but the allocation is done at declaration elaboration time
during execution. The advantage of fixed stack-dynamic arrays over static
arrays is space efficiency. A large array in one subprogram can use the same
space as a large array in a different subprogram, as long as both subprograms
are not active at the same time. The same is true if the two arrays are in
different blocks that are not active at the same time. The disadvantage is the
required allocation and deallocation time.

A fixed heap-dynamic array is similar to a fixed stack-dynamic array, in
that the subscript ranges and the storage binding are both fixed after storage
is allocated. The differences are that both the subscript ranges and storage
bindings are done when the user program requests them during execution,
and the storage is allocated from the heap, rather than the stack. The
advantage of fixed heap-dynamic arrays is flexibility—the array’s size
always fits the problem. The disadvantage is allocation time from the heap,
which is longer than allocation time from the stack.

A heap-dynamic array is one in which the binding of subscript ranges and
storage allocation is dynamic and can change any number of times during the
array’s lifetime. The advantage of heap-dynamic arrays over the others is
flexibility: Arrays can grow and shrink during program execution as the need
for space changes. The disadvantage is that allocation and deallocation take
longer and may happen many times during execution of the program.
Examples of the four categories are given in the following paragraphs.

Arrays declared in C and C++ functions that include the static modifier are
static.

Arrays that are declared in C and C++ functions without the static specifier
are examples of fixed stack-dynamic arrays.

C and C++ also provide fixed heap-dynamic arrays. The standard C library
functions malloc and free, which are general heap allocation and
deallocation operations, respectively, can be used for C arrays. C++ uses the
operators new and delete to manage heap storage. An array is treated as a
pointer to a collection of storage cells, where the pointer can be indexed, as
discussed in Section 6.11.5.

In Java, all non-generic arrays are fixed heap-dynamic. Once created, these
arrays keep the same subscript ranges and storage. C# also provides fixed
heap-dynamic arrays.

Objects of the C# List class are generic heap-dynamic arrays. These array
objects are created without any elements, as in

List<String> stringList = new List<String>();

Elements are added to this object with the Add method, as in

stringList.Add("Michael");

Access to elements of these arrays is through subscripting.

Java includes a generic class similar to C#’s List, named ArrayList. It is
different from C#’s List in that subscripting is not supported—get and set
methods must be used to access the elements.

A Perl array can be made to grow by using the push (puts one or more new
elements on the end of the array) and unshift (puts one or more new
elements on the beginning of the array), or by assigning a value to the array
specifying a subscript beyond the highest current subscript of the array. An
array can be made to shrink to no elements by assigning it the empty list, ().
The length of an array is defined to be the largest subscript plus one.

Like Perl, JavaScript allows arrays to grow with the push and unshift
methods and shrink by setting them to the empty list. However, negative
subscripts are not supported.

JavaScript arrays can be sparse, meaning the subscript values need not be
contiguous. For example, suppose we have an array named list that has 10

elements with the subscripts 0..9.5 Consider the following assignment
statement:

5. The subscript range could just as easily have been 1000 .. 1009.

list[50] = 42;

Now, list has 11 elements and length 51. The elements with subscripts
11..49 are not defined and therefore do not require storage. A reference to a
nonexistent element in a JavaScript array yields undefined.

Arrays in Python and Ruby can be made to grow only through methods to
add elements or catenate other arrays. Ruby and Perl support negative
subscripts, but Python does not. In Python an element or slice of an array can
be deleted. A reference to a nonexistent element in Python results in a run-
time error, whereas a similar reference in Ruby yields nil and no error is
reported.

Swift dynamic arrays are objects that use integer subscripts, beginning at
zero, and include several useful methods. The append method adds an
element to the end of an array. The insert method inserts a new element at
any position in the array, but results in an error if the insertion is at a
subscript beyond the current length of the array. Elements can be removed
from an array with the removeAtIndex method. There are also reverse and
count methods.

Although the ML definition does not include arrays, its widely used
implementation, SML/NJ, does.

The only predefined collection type that is part of F# is the array (other
collection types are provided through the .NET Framework Library). These
arrays are like those of C#. A foreach statement is included in the language
for array processing.

6.5.4 Array Initialization
Some languages provide the means to initialize arrays at the time their

storage is allocated. C, C++, Java, Swift, and C# allow initialization of their
arrays. Consider the following C declaration:

int list [] = {4, 5, 7, 83};

The array list is created and initialized with the values 4, 5, 7, and 83. The
compiler also sets the length of the array. This is meant to be a convenience
but is not without cost. It effectively removes the possibility that the system
could detect some kinds of programmer errors, such as mistakenly leaving a
value out of the list.

As discussed in Section 6.3.2, character strings in C and C++ are
implemented as arrays of char. These arrays can be initialized to string
constants, as in

char name [] = "freddie";

The array name will have eight elements, because all strings are terminated
with a null character (zero), which is implicitly supplied by the system for
string constants.

Arrays of strings in C and C++ can also be initialized with string literals. For
example,

char *names [] = {"Bob", "Jake", "Darcie"};

This example illustrates the nature of character literals in C and C++. In the
previous example of a string literal being used to initialize the char array
name, the literal is taken to be a char array. But in the latter example (names),
the literals are taken to be pointers to characters, so the array is an array of
pointers to characters. For example, names[0] is a pointer to the letter 'B' in
the literal character array that contains the characters 'B', 'o', 'b', and the
null character.

In Java, similar syntax is used to define and initialize an array of references to
String objects. For example,

String[] names = ["Bob", "Jake", "Darcie"];

6.5.5 Array Operations
An array operation is one that operates on an array as a unit. The most
common array operations are assignment, catenation, comparison for equality
and inequality, and slices, which are discussed separately in Section 6.5.5.

The C-based languages do not provide any array operations, except through
the methods of Java, C++, and C#. Perl supports array assignments but does
not support comparisons.

Python’s arrays are called lists, although they have all the characteristics of
dynamic arrays. Because the objects can be of any types, these arrays are
heterogeneous. Python provides array assignment, although it is only a
reference change. Python also has operations for array catenation (+) and
element membership (in). It includes two different comparison operators:
one that determines whether the two variables reference the same object (is)
and one that compares all corresponding objects in the referenced objects,
regardless of how deeply they are nested, for equality (==).

Like Python, the elements of Ruby’s arrays are references to objects. And
like Python, when a == operator is used between two arrays, the result is true
only if the two arrays have the same length and the corresponding elements
are equal. Ruby’s arrays can be catenated with an Array method.

F# includes many array operators in its Array module. Among these are
Array.append, Array.copy, and Array.length.

Arrays and their operations are the heart of APL; it is the most powerful
array-processing language ever devised. Because of its relative obscurity and
its lack of effect on subsequent languages, however, we present here only a
glimpse into its array operations.

In APL, the four basic arithmetic operations are defined for vectors (single-
dimensioned arrays) and matrices, as well as scalar operands. For example,

A + B

is a valid expression, whether A and B are scalar variables, vectors, or
matrices.

APL includes a collection of unary operators for vectors and matrices, some
of which are as follows (where V is a vector and M is a matrix):

APL also includes several special operators that take other operators as
operands. One of these is the inner product operator, which is specified with a
period (.). It takes two operands, which are binary operators. For example,

+.×

is a new operator that takes two arguments, either vectors or matrices. It first
multiplies the corresponding elements of two arguments, and then it sums the
results. For example, if A and B are vectors,

A × B

is the mathematical inner product of A and B (a vector of the products of the
corresponding elements of A and B). The statement

A +.× B

is the sum of the inner product of A and B. If A and B are matrices, this
expression specifies the matrix multiplication of A and B.

The special operators of APL are actually functional forms, which are
described in Chapter 15.

6.5.6 Rectangular and Jagged

Arrays
A rectangular array is a multidimensioned array in which all of the rows
have the same number of elements and all of the columns have the same
number of elements. Rectangular arrays model rectangular tables exactly.

A jagged array is one in which the lengths of the rows need not be the same.
For example, a jagged matrix may consist of three rows, one with 5 elements,
one with 7 elements, and one with 12 elements. This also applies to the
columns and higher dimensions. So, if there is a third dimension (layers),
each layer can have a different number of elements. Jagged arrays are made
possible when multidimensioned arrays are actually arrays of arrays. For
example, a matrix would appear as an array of single-dimensioned arrays.

C, C++, and Java support jagged arrays but not rectangular arrays. In those
languages, a reference to an element of a multidimensioned array uses a
separate pair of brackets for each dimension. For example,

myArray[3][7]

C# and F# support both rectangular and jagged arrays. For rectangular arrays,
all subscript expressions in references to elements are placed in a single pair
of brackets. For example,

myArray[3, 7]

6.5.7 Slices
A slice of an array is some substructure of that array. For example, if A is a
matrix, then the first row of A is one possible slice, as are the last row and the
first column. It is important to realize that a slice is not a new data type.
Rather, it is a mechanism for referencing part of an array as a unit. If arrays
cannot be manipulated as units in a language, that language has no use for
slices.

Consider the following Python declarations:

vector = [2, 4, 6, 8, 10, 12, 14, 16]

mat = [[1, 2, 3],[4, 5, 6],[7, 8, 9]]

Recall that the default lower bound for Python arrays is 0. The syntax of a
Python slice reference is a pair of numeric expressions separated by a colon.
The first is the first subscript of the slice; the second is the first subscript after
the last subscript in the slice. Therefore, vector[3:6] is a three-element array
with the fourth through sixth elements of vector (those elements with the
subscripts 3, 4, and 5). A row of a matrix is specified by giving just one
subscript. For example, mat[1] refers to the second row of mat; a part of a
row can be specified with the same syntax as a part of a single-dimensioned
array. For example, mat[0][0:2] refers to the first and second element of the
first row of mat, which is [1, 2].

Python also supports more complex slices of arrays. For example,
vector[0:7:2] references every other element of vector, up to but not
including the element with the subscript 7, starting with the subscript 0,
which is [2, 6, 10, 14].

Perl supports slices of two forms, a list of specific subscripts or a range of
subscripts. For example,

@list[1..5] = @list2[3, 5, 7, 9, 13];

Notice that slice references use array names, not scalar names, because slices
are arrays (not scalars).

Ruby supports slices with the slice method of its Array object, which can
take three forms of parameters. A single integer expression parameter is
interpreted as a subscript, in which case slice returns the element with the
given subscript. If slice is given two integer expression parameters, the first
is interpreted as a beginning subscript and the second is interpreted as the
number of elements in the slice. For example, suppose list is defined as
follows:

list = [2, 4, 6, 8, 10]

list.slice(2, 2) returns [6, 8]. The third parameter form for slice is a
range, which has the form of an integer expression, two periods, and a second

integer expression. With a range parameter, slice returns an array of the
element with the given range of subscripts. For example, list.slice (1..3)
returns [4, 6, 8].

6.5.8 Evaluation
Arrays have been included in virtually all programming languages. The
primary advances since their introduction in Fortran I have been slices and
dynamic arrays. As discussed in Section 6.6, the latest advances in arrays
have been in associative arrays.

6.5.9 Implementation of Array
Types
Implementing arrays requires considerably more compile-time effort than
does implementing primitive types. The code to allow accessing of array
elements must be generated at compile time. At run time, this code must be
executed to produce element addresses. There is no way to precompute the
address to be accessed by a reference such as

list[k]

A single-dimensioned array is implemented as a list of adjacent memory
cells. Suppose the array list is defined to have a subscript range lower
bound of 0. The access function for list is often of the form

address (list[k]) = address (list[0]) + k * element_size

where the first operand of the addition is the constant part of the access
function, and the second is the variable part.

If the element type is statically bound and the array is statically bound to
storage, then the value of the constant part can be computed before run time.
However, the addition and multiplication operations must be done at run

time.

The generalization of this access function for an arbitrary lower bound is

address (list[k]) = address (list[lower_bound]) +

          ((k −lower_bound) * element_size)

The compile-time descriptor for single-dimensioned arrays can have the form
shown in Figure 6.4. The descriptor includes information required to
construct the access function. If run-time checking of index ranges is not
done and the attributes are all static, then only the access function is required
during execution; no descriptor is needed. If run-time checking of index
ranges is done, then those index ranges may need to be stored in a run-time
descriptor. If the subscript ranges of a particular array type are static, then the
ranges may be incorporated into the code that does the checking, thus
eliminating the need for the run-time descriptor. If any of the descriptor
entries are dynamically bound, then those parts of the descriptor must be
maintained at run time.

Figure 6.4 Compile-time
descriptor for single-
dimensioned arrays

True multidimensional arrays, that is, those that are not arrays of arrays, are
more complex to implement than single-dimensioned arrays, although the

extension to more dimensions is straightforward. Hardware memory is linear
—just a simple sequence of bytes. So values of data types that have two or
more dimensions must be mapped onto the single-dimensioned memory.
There are two ways in which multidimensional arrays can be mapped to one
dimension: row major order and column major order (not used in any widely
used language). In row major order, the elements of the array that have as
their first subscript the lower bound value of that subscript are stored first,
followed by the elements of the second value of the first subscript, and so
forth. If the array is a matrix, it is stored by rows. For example, if the matrix
had the values

3 4 7

6 2 5

1 3 8

it would be stored in row major order as

3, 4, 7, 6, 2, 5, 1, 3, 8

The access function for a multidimensional array is the mapping of its base
address and a set of index values to the address in memory of the element
specified by the index values. The access function for two-dimensional arrays
stored in row major order can be developed as follows. In general, the
address of an element is the base address of the structure plus the element
size times the number of elements that precede it in the structure. For a
matrix in row major order, the number of elements that precede an element is
the number of rows above the element times the size of a row, plus the
number of elements to the left of the element in its row. This is illustrated in
Figure 6.5, in which we assume that subscript lower bounds are all zero.

Figure 6.5 The location of the
[i,j] element in a matrix

Figure 6.5 Full Alternative Text

To get an actual address value, the number of elements that precede the
desired element must be multiplied by the element size. Now, the access
function can be written as

location(a[i,j]) = address of a[0, 0]

        + ((((number of rows above the ith row) * (size of a
row))

        + (number of elements left of the jth column)) *

         element size)

Because the number of rows above the ith row is i and the number of
elements to the left of the jth column is j, we have

location(a[i, j]) = address of a[0, 0] + (((i * n) + j) *

           element_size)

where n is the number of elements per row. The first term is the constant part
and the last is the variable part.

The generalization to arbitrary lower bounds results in the following access
function:

location(a[i, j]) = address of a[row_lb, col_lb]

          = (((i − row_lb) * n) + (j − col_lb)) * element_size

where row_lb is the lower bound of the rows and col_lb is the lower bound of
the columns. This can be rearranged to the form

location(a[i, j]) = address of a[row_lb, col_lb]

          − (((row_lb * n) + col_lb) * element_size)

             + (((i * n) + j) * element_size)

where the first two terms are the constant part and the last is the variable part.
This can be generalized rather easily to an arbitrary number of dimensions.

For each dimension of an array, one add and one multiply instruction are
required for the access function. Therefore, accesses to elements of arrays
with several subscripts are costly. The compile-time descriptor for a
multidimensional array is shown in Figure 6.6.

Figure 6.6 A compile-time -
descriptor for a -
multidimensional array

6.6 Associative Arrays
An associative array is an unordered collection of data elements that are
indexed by an equal number of values called keys. In the case of non--
associative arrays, the indices never need to be stored (because of their
regularity). In an associative array, however, the user-defined keys must be
stored in the structure. So each element of an associative array is in fact a pair
of entities, a key and a value. We use Perl’s design of associative arrays to
illustrate this data structure. Associative arrays are also supported directly by
Python, Ruby, and Swift and by the standard class libraries of Java, C++, C#,
and F#.

The only design issue that is specific for associative arrays is the form of
references to their elements.

6.6.1 Structure and Operations
In Perl, associative arrays are called hashes, because in the implementation
their elements are stored and retrieved with hash functions. The namespace
for Perl hashes is distinct: Every hash variable name must begin with a
percent sign (%). Each hash element consists of two parts: a key, which is a
string, and a value, which is a scalar (number, string, or reference). Hashes
can be set to literal values with the assignment statement, as in

%salaries = ("Gary" => 75000, "Perry" => 57000,

 "Mary" => 55750, "Cedric" => 47850);

Individual element values are referenced using notation that is similar to that
used for Perl arrays. The key value is placed in braces and the hash name is
replaced by a scalar variable name that is the same except for the first
character. Although hashes are not scalars, the value parts of hash elements
are scalars, so references to hash element values use scalar names. Recall that
scalar variable names begin with dollar signs ($). So, an assignment of 58850
to the element of %salaries with the key "Perry" would appear as follows:

$salaries{"Perry"} = 58850;

A new element is added using the same assignment statement form. An
element can be removed from the hash with the delete operator, as in the
following:

delete $salaries{"Gary"};

The entire hash can be emptied by assigning the empty literal to it, as in the
following:

@salaries = ();

The size of a Perl hash is dynamic: It grows when an element is added and
shrinks when an element is deleted, and also when it is emptied by
assignment of the empty literal. The exists operator returns true or false,
depending on whether its operand key is an element in the hash. For example,

if (exists $salaries{"Shelly"}) . . .

The keys operator, when applied to a hash, returns an array of the keys of the
hash. The values operator does the same for the values of the hash. The each
operator iterates over the element pairs of a hash.

Python’s associative arrays, which are called dictionaries, are similar to
those of Perl, except the values are all references to objects. The associative
arrays supported by Ruby are similar to those of Python, except that the keys
can be any object,6 rather than just strings. There is a progression from Perl’s
hashes, in which the keys must be strings, to PHP’s arrays, in which the keys
can be integers or strings, to Ruby’s hashes, in which any type object can be a
key.

6. Objects that change do not make good keys, because the changes could
change the hash function value. Therefore, arrays and hashes are never used
as keys.

PHP’s arrays are both normal arrays and associative arrays. They can be
treated as either. The language provides functions that allow both indexed
and hashed access to elements. An array can have elements that are created

with simple numeric indices and elements that are created with string hash
keys.

Swift’s associative arrays are called dictionaries. The keys can be of one
specific type, but the values can be of mixed types, in which case they are
objects.

An associative array is much better than an array if searches of the elements
are required, because the implicit hashing operation used to access elements
is very efficient. Furthermore, associative arrays are ideal when the data to be
stored is paired, as with employee names and their salaries. On the other
hand, if every element of a list must be processed, it is more efficient to use
an array.

6.6.2 Implementing Associative
Arrays
The implementation of Perl’s associative arrays is optimized for fast lookups,
but it also provides relatively fast reorganization when array growth requires
it. A 32-bit hash value is computed for each entry and is stored with the entry,
although an associative array initially uses only a small part of the hash
value. When an associative array must be expanded beyond its initial size, the
hash function need not be changed; rather, more bits of the hash value are
used. Only half of the entries must be moved when this happens. So, although
expansion of an associative array is not free, it is not as costly as might be
expected.

The elements in PHP’s arrays are placed in memory through a hash function.
However, all elements are linked together in the order in which they were
created. The links are used to support iterative access to elements through the
current and next functions.

6.7 Record Types
A record is an aggregate of data elements in which the individual elements
are identified by names and accessed through offsets from the beginning of
the structure.

There is frequently a need in programs to model a collection of data in which
the individual elements are not of the same type or size. For example,
information about a college student might include name, student number,
grade point average, and so forth. A data type for such a collection might use
a character string for the name, an integer for the student number, a floating-
point for the grade point average, and so forth. Records are designed for this
kind of need.

It may appear that records and heterogeneous arrays are the same, but that is
not the case. The elements of a heterogeneous array are all references to data
objects that reside in scattered locations, often on the heap. The elements of a
record are of potentially different sizes and reside in adjacent memory
locations.

Records have been part of all of the most popular programming languages,
except pre-90 versions of Fortran, since the early 1960s, when they were
introduced by COBOL. In some languages that support object-oriented
programming, data classes serve as records.

In C, C++, C#, and Swift, records are supported with the struct data type. In
C++, structures are a minor variation on classes. In C#, structs also are
related to classes, but are quite different from them. C# structs are stack--
allocated value types, as opposed to class objects, which are heap-allocated
reference types. Structs in C++ and C# are normally used as encapsulation
structures, rather than data structures. They are further discussed in this
capacity in Chapter 11. Structs are also included in ML and F#.

In Python and Ruby, records can be implemented as hashes, which
themselves can be elements of arrays.

The following sections describe how records are declared or defined, how
references to fields within records are made, and the common record
operations.

The following design issues are specific to records:

What is the syntactic form of references to fields?

Are elliptical references allowed?

6.7.1 Definitions of Records
The fundamental difference between a record and an array is that record
elements, or fields, are not referenced by indices. Instead, the fields are
named with identifiers, and references to the fields are made using these
identifiers. Another difference between arrays and records is that records in
some languages are allowed to include unions, which are discussed in Section
6.10.

The COBOL form of a record declaration, which is part of the data division
of a COBOL program, is illustrated in the following example:

01 EMPLOYEE-RECORD.

 02 EMPLOYEE-NAME.

 05 FIRST PICTURE IS X(20).

 05 Middle PICTURE IS X(10).

 05 LAST PICTURE IS X(20).

 02 HOURLY-RATE PICTURE IS 99V99.

The EMPLOYEE-RECORD record consists of the EMPLOYEE-NAME record and the
HOURLY-RATE field. The numerals 01, 02, and 05 that begin the lines of the
record declaration are level numbers, which indicate by their relative values
the hierarchical structure of the record. Any line that is followed by a line
with a higher-level number is itself a record. The PICTURE clauses show the
formats of the field storage locations, with X(20) specifying 20 alphanumeric
characters and 99V99 specifying four decimal digits with the decimal point in
the middle.

In Java, records can be defined as data classes, with nested records defined as
nested classes. Data members of such classes serve as the record fields.

6.7.2 References to Record Fields
References to the individual fields of records are syntactically specified by
several different methods, two of which name the desired field and its
enclosing records. COBOL field references have the form

field_name OF record_name_1 OF . . . OF record_name_n

where the first record named is the smallest or innermost record that contains
the field. The next record name in the sequence is that of the record that
contains the previous record, and so forth. For example, the Middle field in
the COBOL record example above can be referenced with

Middle OF EMPLOYEE-NAME OF EMPLOYEE-RECORD

Most of the other languages use dot notation for field references, where the
components of the reference are connected with periods. Names in dot
notation have the opposite order of COBOL references: They use the name of
the largest enclosing record first and the field name last. For example, if
Middle is a field in the Employee_Name record which is embedded in the
Employee_Record record, it would be referenced with the following:

Employee_Record.Employee_Name.Middle

A fully qualified reference to a record field is one in which all intermediate
record names, from the largest enclosing record to the specific field, are
named in the reference. In the COBOL example above the field reference is
fully qualified. As an alternative to fully qualified references, COBOL allows
elliptical references to record fields. In an elliptical reference, the field is
named, but any or all of the enclosing record names can be omitted, as long
as the resulting reference is unambiguous in the referencing environment. For
example, FIRST, FIRST OF EMPLOYEE-NAME, and FIRST OF EMPLOYEE-RECORD
are elliptical references to the employee’s first name in the COBOL record
declared above. Although elliptical references are a programmer

convenience, they require a compiler to have elaborate data structures and
procedures in order to correctly identify the referenced field. They are also
somewhat detrimental to readability.

6.7.3 Evaluation
Records are frequently valuable data types in programming languages. The
design of record types is straightforward, and their use is safe.

Records and arrays are closely related structural forms, and therefore it is
interesting to compare them. Arrays are used when all the data values have
the same type and/or are processed in the same way. This processing is easily
done when there is a systematic way of sequencing through the structure.
Such processing is well supported by using dynamic subscripting as the
addressing method.

Records are used when the collection of data values is heterogeneous and the
different fields are not processed in the same way. Also, the fields of a record
often need not be processed in a particular order. Field names are like literal,
or constant, subscripts. Because they are static, they provide very efficient
access to the fields. Dynamic subscripts could be used to access record fields,
but it would disallow type checking and would also be slower.

Records and arrays represent thoughtful and efficient methods of fulfilling
two separate but related applications of data structures.

6.7.4 Implementation of Record
Types
The fields of records are stored in adjacent memory locations. But because
the sizes of the fields are not necessarily the same, the access method used for
arrays is not used for records. Instead, the offset address, relative to the
beginning of the record, is associated with each field. Field accesses are all
handled using these offsets. The compile-time descriptor for a record has the

general form shown in Figure 6.7. Run-time descriptors for records are
unnecessary.

Figure 6.7 A compile-time -
descriptor for a record

Figure 6.7 Full Alternative Text

6.8 Tuple Types
A tuple is a data type that is similar to a record, except that the elements are
not named.

Python includes an immutable tuple type. If a tuple needs to be changed, it
can be converted to an array with the list function. After the change, it can
be converted back to a tuple with the tuple function. One use of tuples is
when an array must be write protected, such as when it is sent as a parameter
to an external function and the user does not want the function to be able to
modify the parameter.

Python’s tuples are closely related to its lists, except that tuples are
immutable. A tuple is created by assigning a tuple literal, as in the following
example:

myTuple = (3, 5.8, 'apple')

Notice that the elements of a tuple need not be of the same type.

The elements of a tuple can be referenced with indexing in brackets, as in the
following:

myTuple[1]

This references the first element of the tuple, because tuple indexing begins at
1.

Tuples can be catenated with the plus (+) operator. They can be deleted with
the del statement. There are also other operators and functions that operate
on tuples.

ML includes a tuple data type. An ML tuple must have at least two elements,
whereas Python’s tuples can be empty or contain one element. As in Python,
an ML tuple can include elements of mixed types. The following statement
creates a tuple:

val myTuple = (3, 5.8, 'apple');

The syntax of a tuple element access is as follows:

#1(myTuple);

This references the first element of the tuple.

A new tuple type can be defined in ML with a type declaration, such as the
following:

type intReal = int * real;

Values of this type consist of an integer and a real. The asterisk can be
misleading. It is used to separate the tuple components, indicating a type
product, and has nothing to do with arithmetic.

F# also has tuples. A tuple is created by assigning a tuple value, which is a
list of expressions separated by commas and delimited by parentheses, to a
name in a let statement. If a tuple has two elements, they can be referenced
with the functions fst and snd, respectively. The elements of a tuple with
more than two elements are often referenced with a tuple pattern on the left
side of a let statement. A tuple pattern is simply a sequence of names, one
for each element of the tuple, with or without the delimiting parentheses.
When a tuple pattern is the left side of a let construct, it is a multiple
assignment. For example, consider the following let constructs:

let tup = (3, 5, 7);;

let a, b, c = tup;;

This assigns 3 to a, 5 to b, and 7 to c.

Tuples are used in Python, ML, and F# to allow functions to return multiple
values. In Swift, tuples are passed by value, so they are sometimes used to
pass data to a function when the function is not to change that data.

6.9 List Types
Lists were first supported in the first functional programming language, Lisp.
They have always been part of the functional languages, but in recent years
they have found their way into some imperative languages.

Lists in Scheme and Common Lisp are delimited by parentheses and the
elements are not separated by any punctuation. For example,

(A B C D)

Nested lists have the same form, so we could have

(A (B C) D)

In this list, (B C) is a list nested inside the outer list.

Data and code have the same syntactic form in Lisp and its descendants. If
the list (A B C) is interpreted as code, it is a call to the function A with
parameters B and C.

The fundamental list operations in Scheme are two functions that take lists
apart and two that build lists. The CAR function returns the first element of its
list parameter. For example, consider the following example:

(CAR '(A B C))

The quote before the parameter list is to prevent the interpreter from
considering the list a call to the A function with the parameters B and C, in
which case it would interpret it. This call to CAR returns A.

The CDR function returns its parameter list minus its first element. For
example, consider the following example:

(CDR '(A B C))

This function call returns the list (B C).

Common Lisp also has the functions FIRST (same as CAR), SECOND, . . . ,
TENTH, which return the element of their list parameters that is specified by
their names.

In Scheme and Common Lisp, new lists are constructed with the CONS and
LIST functions. The function CONS takes two parameters and returns a new list
with its first parameter as the first element and its second parameter as the
remainder of that list. For example, consider the following:

(CONS 'A '(B C))

This call returns the new list (A B C).

The LIST function takes any number of parameters and returns a new list with
the parameters as its elements. For example, consider the following call to
LIST:

(LIST 'A 'B '(C D))

This call returns the new list (A B (C D)).

ML has lists and list operations, although their appearance is not like those of
Scheme. Lists are specified in square brackets, with the elements separated
by commas, as in the following list of integers:

[5, 7, 9]

[] is the empty list, which could also be specified with nil.

The Scheme CONS function is implemented as a binary infix operator in ML,
represented as ::. For example,

3 :: [5, 7, 9]

returns the following new list: [3, 5, 7, 9].

The elements of a list must be of the same type, so the following list would
be illegal:

[5, 7.3, 9]

ML has functions that correspond to Scheme’s CAR and CDR, named hd (head)
and tl (tail). For example,

hd [5, 7, 9] is 5

tl [5, 7, 9] is [7, 9]

Lists and list operations in Scheme and ML are more fully discussed in
Chapter 15.

Lists in F# are related to those of ML with a few notable differences. -
Elements of a list in F# are separated by semicolons, rather than the commas
of ML. The operations hd and tl are the same, but they are called as methods
of the List class, as in List.hd [1; 3; 5; 7], which returns 1. The CONS
operation of F# is specified as two colons, as in ML.

Python includes a list data type, which also serves as Python’s arrays. Unlike
the lists of Scheme, Common Lisp, ML, and F#, the lists of Python are
mutable. They can contain any data value or object. A Python list is created
with an assignment of a list value to a name. A list value is a sequence of
expressions that are separated by commas and delimited with brackets. For
example, consider the following statement:

myList = [3, 5.8, "grape"]

The elements of a list are referenced with subscripts in brackets, as in the
following example:

x = myList[1]

This statement assigns 5.8 to x. The elements of a list are indexed starting at
zero. List elements also can be updated by assignment. A list element can be
deleted with del, as in the following statement:

del myList[1]

This statement removes the second element of myList.

Python includes a powerful mechanism for creating arrays called list
comprehensions. A list comprehension is an idea derived from set notation.
It first appeared in the functional programming language Haskell (see

Chapter 15). The mechanics of a list comprehension is that a function is
applied to each of the elements of a given array and a new array is
constructed from the results. The syntax of a Python list comprehension is as
follows:

[expression for iterate_var in array if condition]

Consider the following example:

[x * x for x in range(12) if x % 3 == 0]

The range function creates the array [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12]. The conditional filters out all numbers in the array that are not
evenly divisible by 3. Then, the expression squares the remaining numbers.
The results of the squaring are collected in an array, which is returned. This
list comprehension returns the following array:

[0, 9, 36, 81]

Slices of lists are also supported in Python.

Haskell’s list comprehensions have the following form:

[body | qualifiers]

For example, consider the following definition of a list:

[n * n | n <- [1..10]]

This defines a list of the squares of the numbers from 1 to 10.

F# includes list comprehensions, which in that language can also be used to
create arrays. For example, consider the following statement:

let myArray = [|for i in 1 .. 5 -> (i * i) |];;

This statement creates the array [1; 4; 9; 16; 25] and names it myArray.

Recall from Section 6.5 that C# and Java support generic heap-dynamic
collection classes, List and ArrayList, respectively. These structures are

actually lists.

6.10 Union Types
A union is a type whose variables may store different type values at different
times during program execution. As an example of the need for a union type,
consider a table of constants for a compiler, which is used to store the
constants found in a program being compiled. One field of each table entry is
for the value of the constant. Suppose that for a particular language being
compiled, the types of constants were integer, floating-point, and Boolean. In
terms of table management, it would be convenient if the same location, a
table field, could store a value of any of these three types. Then all constant
values could be addressed in the same way. The type of such a location is, in
a sense, the union of the three value types it can store.

6.10.1 Design Issues
The problem of type checking union types, which is discussed in Section
6.12, is their major design issue.

6.10.2 Discriminated Versus Free
Unions
C and C++ provide union constructs in which there is no language support for
type checking. In C and C++, the union construct is used to specify union
structures. The unions in these languages are called free unions, because
programmers are allowed complete freedom from type checking in their use.
For example, consider the following C union:

union flexType {

 int intEl;

 float floatEl;

};

union flexType el1;

float x;

. . .

el1.intEl = 27;

x = el1.floatEl;

This last assignment is not type checked, because the system cannot
determine the current type of the current value of el1, so it assigns the bit
string representation of 27 to the float variable x, which, of course, is
nonsense.

Type checking of unions requires that each union construct include a type
indicator. Such an indicator is called a tag, or discriminant, and a union with
a discriminant is called a discriminated union. The first language to provide
discriminated unions was ALGOL 68. They are now supported by ML,
Haskell, and F#.

6.10.3 Unions in F#
A union is declared in F# with a type statement using OR operators (|) to
define the components. For example, we could have the following:

type intReal =

 | IntValue of int

 | RealValue of float;;

In this example, intReal is the union type. IntValue and RealValue are
constructors. Values of type intReal can be created using the constructors as
if they were a function, as in the following examples:7

7. The let statement is used to assign values to names and to create a static
scope; the double semicolons are used to terminate statements when the F#
interactive interpreter is being used.

let ir1 = IntValue 17;;

let ir2 = RealValue 3.4;;

Accessing the value of a union is done with a pattern-matching structure.
Pattern matching in F# is specified with the match reserved word. The
general form of the construct is as follows:

match pattern with

 | expression_list1−>expression1

 | . . .

 | expression_listn−>expressionn

The pattern can be any data type. The expression list can include wild card
characters (_) or be solely a wild card character. For example, consider the
following match construct:

let a = 7;;

let b = "grape";;

let x = match (a, b) with

 | 4, "apple" -> apple

 | _, "grape" -> grape

 | _ -> fruit;;

To display the type of the intReal union, the following function could be
used:

let printType value =

 match value with

 | IntValue value -> printfn "It is an integer"

 | RealValue value -> printfn "It is a float";;

The following lines show calls to this function and the output:

printType ir1;;

It is an integer

printType ir2;;

It is a float

6.10.4 Evaluation
Unions are potentially unsafe constructs in some languages. They are one of
the reasons why C and C++ are not strongly typed: These languages do not
allow type checking of references to their unions. On the other hand, unions
can be safely used, as in their design in ML, Haskell, and F#.

Neither Java nor C# includes unions, which may be reflective of the growing
concern for safety in some programming languages.

6.10.5 Implementation of Union
Types
Unions are implemented by simply using the same address for every possible
variant. Sufficient storage for the largest variant is allocated.

6.11 Pointer and Reference Types
A pointer type is one in which the variables have a range of values that
consists of memory addresses and a special value, nil. The value nil is not a
valid address and is used to indicate that a pointer cannot currently be used to
reference a memory cell.

Pointers are designed for two distinct kinds of uses. First, pointers provide
some of the power of indirect addressing, which is frequently used in
assembly language programming. Second, pointers provide a way to manage
dynamic storage. A pointer can be used to access a location in an area where
storage is dynamically allocated called a heap.

Variables that are dynamically allocated from the heap are called heap--
dynamic variables. They often do not have identifiers associated with them
and thus can be referenced only by pointer or reference type variables. -
Variables without names are called anonymous variables. It is in this latter
application area of pointers that the most important design issues arise.

Pointers, unlike arrays and records, are not structured types, although they are
defined using a type operator (* in C and C++). Furthermore, they are also
different from scalar variables because they are used to reference some other
variable, rather than being used to store data. These two categories of
variables are called reference types and value types, respectively.

Both kinds of uses of pointers add writability to a language. For example,
suppose it is necessary to implement a dynamic structure like a binary tree in
a language that does not have pointers or dynamic storage. This would
require the programmer to provide and maintain a pool of available tree
nodes, which would probably be implemented in parallel arrays. Also, it
would be necessary for the programmer to guess the maximum number of
required nodes. This is clearly an awkward and error-prone way to deal with
binary trees.

Reference variables, which are discussed in Section 6.11.6, are closely related

to pointers.

6.11.1 Design Issues
The primary design issues particular to pointers are the following:

What are the scope and lifetime of a pointer variable?

What is the lifetime of a heap-dynamic variable (the value a pointer
references)?

Are pointers restricted as to the type of value to which they can point?

Are pointers used for dynamic storage management, indirect addressing,
or both?

Should the language support pointer types, reference types, or both?

6.11.2 Pointer Operations
Languages that provide a pointer type usually include two fundamental
pointer operations: assignment and dereferencing. The first operation sets a
pointer variable’s value to some useful address. If pointer variables are used
only to manage dynamic storage, then the allocation mechanism, whether by
operator or built-in subprogram, serves to initialize the pointer variable. If
pointers are used for indirect addressing to variables that are not heap
dynamic, then there must be an explicit operator or built-in subprogram for
fetching the address of a variable, which can then be assigned to the pointer
variable.

An occurrence of a pointer variable in an expression can be interpreted in two
distinct ways. First, it could be interpreted as a reference to the contents of
the memory cell to which it is bound, which in the case of a pointer is an
address. This is exactly how a nonpointer variable in an expression would be
interpreted, although in that case its value likely would not be an address.

However, the pointer also could be interpreted as a reference to the value in
the memory cell pointed to by the memory cell to which the pointer variable
is bound. In this case, the pointer is interpreted as an indirect reference. The
former case is a normal pointer reference; the latter is the result of
dereferencing the pointer. Dereferencing, which takes a reference through
one level of indirection, is the second fundamental pointer operation.

Dereferencing of pointers can be either explicit or implicit. In many
contemporary languages, it occurs only when explicitly specified. In C++, it
is explicitly specified with the asterisk (*) as a prefix unary operator.
Consider the following example of dereferencing: If ptr is a pointer variable
with the value 7080 and the cell whose address is 7080 has the value 206,
then the assignment

j = *ptr

sets j to 206. This process is shown in Figure 6.8.

Figure 6.8 The assignment -

operation j = *ptr
Figure 6.8 Full Alternative Text

When pointers point to records, the syntax of the references to the fields of
these records varies among languages. In C and C++, there are two ways a
pointer to a record can be used to reference a field in that record. If a pointer
variable p points to a record with a field named age, (*p).age can be used to
refer to that field. The operator ->, when used between a pointer to a struct
and a field of that struct, combines dereferencing and field reference. For
example, the expression p -> age is equivalent to (*p).age.

Languages that provide pointers for the management of a heap must include
an explicit allocation operation. Allocation is sometimes specified with a
subprogram, such as malloc in C. In languages that support object-oriented
programming, allocation of heap objects is often specified with the new
operator. C++, which does not provide implicit deallocation, uses delete as
its deallocation operator.

6.11.3 Pointer Problems
The first high-level programming language to include pointer variables was
PL/I, in which pointers could be used to refer to both heap-dynamic variables
and other program variables. The pointers of PL/I were highly flexible, but
their use could lead to several kinds of programming errors. Some of the
problems of PL/I pointers are also present in the pointers of subsequent
languages. Some recent languages, such as Java, have replaced pointers
completely with reference types, which, along with implicit deallocation,
minimize the primary problems with pointers. A reference type is really only
a pointer with restricted operations.

6.11.3.1 Dangling Pointers

A dangling pointer, or dangling reference, is a pointer that contains the
address of a heap-dynamic variable that has been deallocated. Dangling
pointers are dangerous for several reasons. First, the location being pointed to
may have been reallocated to some new heap-dynamic variable. If the new
variable is not the same type as the old one, type checks of uses of the
dangling pointer are invalid. Even if the new dynamic variable is the same
type, its new value will have no relationship to the old pointer’s dereferenced
value. Furthermore, if the dangling pointer is used to change the heap-
dynamic variable, the value of the new heap-dynamic variable will be
destroyed. Finally, it is possible that the location now is being temporarily
used by the storage management system, possibly as a pointer in a chain of
available blocks of storage, thereby allowing a change to the location to cause
the storage manager to fail.

The following sequence of operations creates a dangling pointer in many
languages:

1. A new heap-dynamic variable is created and pointer p1 is set to point to
it.

2. Pointer p2 is assigned p1’s value.

3. The heap-dynamic variable pointed to by p1 is explicitly deallocated
(possibly setting p1 to nil), but p2 is not changed by the operation. p2 is
now a dangling pointer. If the deallocation operation did not change p1,
both p1 and p2 would be dangling. (Of course, this is a problem of
aliasing—p1 and p2 are aliases.)

For example, in C++ we could have the following:

int * arrayPtr1;

int * arrayPtr2 = new int[100];

arrayPtr1 = arrayPtr2;

delete [] arrayPtr2;

// Now, arrayPtr1 is dangling, because the heap storage

// to which it was pointing has been deallocated.

In C++, both arrayPtr1 and arrayPtr2 are now dangling pointers, because
the C++ delete operator has no effect on the value of its operand pointer. In

C++, it is common (and safe) to follow a delete operator with an assignment
of zero, which represents null, to the pointer whose pointed-to value has been
deallocated.

Notice that the explicit deallocation of dynamic variables is the cause of
dangling pointers.

history note
Pascal included an explicit deallocate operator: dispose. Because of the
problem of dangling pointers caused by dispose, some Pascal
implementations simply ignored dispose when it appeared in a program.
Although this effectively prevents dangling pointers, it also disallows the
reuse of heap storage that the program no longer needs. Recall that Pascal
initially was designed as a teaching language, rather than as an industrial tool.

6.11.3.2 Lost Heap-Dynamic
Variables
A lost heap-dynamic variable is an allocated heap-dynamic variable that is
no longer accessible to the user program. Such variables are often called
garbage, because they are not useful for their original purpose, and they also
cannot be reallocated for some new use in the program. Lost heap-dynamic
variables are most often created by the following sequence of operations:

1. Pointer p1 is set to point to a newly created heap-dynamic variable.

2. p1 is later set to point to another newly created heap-dynamic variable.

The first heap-dynamic variable is now inaccessible, or lost. This is
sometimes called memory leakage. Memory leakage is a problem, regardless
of whether the language uses implicit or explicit deallocation. In the
following sections, we investigate how language designers have dealt with
the problems of dangling pointers and lost heap-dynamic variables.

6.11.4 Pointers in C and C++
In C and C++, pointers can be used in the same ways as addresses are used in
assembly languages. This means they are extremely flexible but must be used
with great care. This design offers no solutions to the dangling pointer or lost
heap-dynamic variable problems. However, the fact that pointer arithmetic is
possible in C and C++ makes their pointers more interesting than those of the
other programming languages.

C and C++ pointers can point at any variable, regardless of where it is
allocated. In fact, they can point anywhere in memory, whether there is a
variable there or not, which is one of the dangers of such pointers.

In C and C++, the asterisk (*) denotes the dereferencing operation and the
ampersand (&) denotes the operator for producing the address of a variable.
For example, consider the following code:

int *ptr;

int count, init;

. . .

ptr = &init;

count = *ptr;

The assignment to the variable ptr sets it to the address of init. The
assignment to count dereferences ptr to produce the value at init, which is
then assigned to count. So, the effect of the two assignment statements is to
assign the value of init to count. Notice that the declaration of a pointer
specifies its domain type.

Pointers can be assigned the address value of any variable of the correct
domain type, or they can be assigned the constant zero, which is used for nil.

Pointer arithmetic is also possible in some restricted forms. For example, if
ptr is a pointer variable that is declared to point at some variable of some
data type, then

ptr + index

is a legal expression. The semantics of such an expression is as follows.
Instead of simply adding the value of index to ptr, the value of index is first
scaled by the size of the memory cell (in memory units) to which ptr is
pointing (its base type). For example, if ptr points to a memory cell for a
type that is four memory units in size, then index is multiplied by 4, and the
result is added to ptr. The primary purpose of this sort of address arithmetic
is array manipulation. The following discussion is related to single--
dimensioned arrays only.

In C and C++, all arrays use zero as the lower bound of their subscript ranges,
and array names without subscripts always refer to the address of the first
element. Consider the following declarations:

int list [10];

int *ptr;

Now consider the assignment

ptr = list;

This assigns the address of list[0] to ptr. Given this assignment, the
following are true:

*(ptr + 1) is equivalent to list[1].

*(ptr + index) is equivalent to list[index].

ptr[index] is equivalent to list[index].

It is clear from these statements that the pointer operations include the same
scaling that is used in indexing operations. Furthermore, pointers to arrays
can be indexed as if they were array names.

Pointers in C and C++ can point to functions. This feature is used to pass
functions as parameters to other functions. Pointers are also used for
parameter passing, as discussed in Chapter 9.

C and C++ include pointers of type void *, which can point at values of any
type. In effect they are generic pointers. However, type checking is not a

problem with void * pointers, because these languages disallow
dereferencing them. One common use of void * pointers is as the types of
parameters of functions that operate on memory. For example, suppose we
wanted a function to move a sequence of bytes of data from one place in
memory to another. It would be most general if it could be passed two
pointers of any type. This would be legal if the corresponding formal
parameters in the function were void * type. The function could then convert
them to char * type and do the operation, regardless of what type pointers
were sent as actual parameters.

6.11.5 Reference Types
A reference type variable is similar to a pointer, with one important and
fundamental difference: A pointer refers to an address in memory, while a
reference refers to an object or a value in memory. As a result, although it is
natural to perform arithmetic on addresses, it is not sensible to do arithmetic
on references.

C++ includes a special kind of reference type that is used primarily for the
formal parameters in function definitions. A C++ reference type variable is a
constant pointer that is always implicitly dereferenced. Because a C++
reference type variable is a constant, it must be initialized with the address of
some variable in its definition, and after initialization a reference type
variable can never be set to reference any other variable. The implicit
dereference prevents assignment to the address value of a reference variable.

Reference type variables are specified in definitions by preceding their names
with ampersands (&). For example,

int result = 0;

 int &ref_result = result;

. . .

ref_result = 100;

In this code segment, result and ref_result are aliases.

When used as formal parameters in function definitions, C++ reference types

provide for two-way communication between the caller function and the
called function. This is not possible with nonpointer primitive parameter
types, because C++ parameters are passed by value. Passing a pointer as a
parameter accomplishes the same two-way communication, but pointer
formal parameters require explicit dereferencing, making the code less
readable and less safe. Reference parameters are referenced in the called
function exactly as are other parameters. The calling function need not
specify that a parameter whose corresponding formal parameter is a reference
type is anything unusual. The compiler passes addresses, rather than values,
to reference parameters.

In their quest for increased safety over C++, the designers of Java removed
C++-style pointers altogether. Unlike C++ reference variables, Java reference
variables can be assigned to refer to different class instances; they are not
constants. All Java class instances are referenced by reference variables. That
is, in fact, the only use of reference variables in Java. These issues are
discussed further in Chapter 12.

In the following, String is a standard Java class:

String str1;

. . .

str1 = "This is a Java literal string";

In this code, str1 is defined to be a reference to a String class instance or
object. It is initially set to null. The subsequent assignment sets str1 to
reference the String object, "This is a Java literal string".

Because Java class instances are implicitly deallocated (there is no explicit
deallocation operator), there cannot be dangling references in Java.

C# includes both the references of Java and the pointers of C++. However,
the use of pointers is strongly discouraged. In fact, any subprogram that uses
pointers must include the unsafe modifier. Note that although objects pointed
to by references are implicitly deallocated, that is not true for objects pointed
to by pointers. Pointers were included in C# primarily to allow C# programs
to interoperate with C and C++ code.

All variables in the object-oriented languages Smalltalk, Python, and Ruby

are references. They are always implicitly dereferenced. Furthermore, the
direct values of these variables cannot be accessed.

6.11.6 Evaluation
The problems of dangling pointers and garbage have already been discussed
at length. The problems of heap management are discussed in Section
6.11.7.3.

Pointers have been compared with the goto. The goto statement widens the
range of statements that can be executed next. Pointer variables widen the
range of memory cells that can be referenced by a variable. Perhaps the most
damning statement about pointers was made by Hoare (1973): “Their
introduction into high-level languages has been a step backward from which
we may never recover.”

On the other hand, pointers are essential in some kinds of programming
applications. For example, pointers are necessary to write device drivers, in
which specific absolute addresses must be accessed.

The references of Java and C# provide some of the flexibility and the
capabilities of pointers, without the hazards. It remains to be seen whether
programmers will be willing to trade the full power of C and C++ pointers for
the greater safety of references. The extent to which C# programs use
pointers will be one measure of this.

6.11.7 Implementation of Pointer
and Reference Types
In most languages, pointers are used in heap management. The same is true
for Java and C# references, as well as the variables in Smalltalk and Ruby, so
we cannot treat pointers and references separately. First, we briefly describe
how pointers and references are represented internally. We then discuss two
possible solutions to the dangling pointer problem. Finally, we describe the

major problems with heap-management techniques.

6.11.7.1 Representations of Pointers
and References
In most larger computers, pointers and references are single values stored in
memory cells. However, in early microcomputers based on Intel
microprocessors, addresses have two parts: a segment and an offset. So,
pointers and references are implemented in these systems as pairs of 16-bit
cells, one for each of the two parts of an address.

6.11.7.2 Solutions to the Dangling-
Pointer Problem
There have been several proposed solutions to the dangling-pointer problem.
Among these are tombstones (Lomet, 1975), in which every heap-dynamic
variable includes a special cell, called a tombstone, that is itself a pointer to
the heap-dynamic variable. The actual pointer variable points only at
tombstones and never to heap-dynamic variables. When a heap-dynamic
variable is deallocated, the tombstone remains but is set to nil, indicating that
the heap-dynamic variable no longer exists. This approach prevents a pointer
from ever pointing to a deallocated variable. Any reference to any pointer
that points to a nil tombstone can be detected as an error.

Tombstones are costly in both time and space. Because tombstones are never
deallocated, their storage is never reclaimed. Every access to a heap-dynamic
variable through a tombstone requires one more level of indirection, which
requires an additional machine cycle on most computers. Apparently none of
the designers of the more popular languages have found the additional safety
to be worth this additional cost, because no widely used language uses
tombstones.

An alternative to tombstones is the locks-and-keys approach used in the
implementation of UW-Pascal (Fischer and LeBlanc, 1977, 1980). In this
compiler, pointer values are represented as ordered pairs (key, address),
where the key is an integer value. Heap-dynamic variables are represented as
the storage for the variable plus a header cell that stores an integer lock value.
When a heap-dynamic variable is allocated, a lock value is created and placed
both in the lock cell of the heap-dynamic variable and in the key cell of the
pointer that is specified in the call to new. Every access to the dereferenced
pointer compares the key value of the pointer to the lock value in the heap-
dynamic variable. If they match, the access is legal; otherwise the access is
treated as a run-time error. Any copies of the pointer value to other pointers
must copy the key value. Therefore, any number of pointers can reference a
given heap-dynamic variable. When a heap-dynamic variable is deallocated
with dispose, its lock value is cleared to an illegal lock value. Then, if a
pointer other than the one specified in the dispose is dereferenced, its
address value will still be intact, but its key value will no longer match the
lock, so the access will not be allowed.

Of course, the best solution to the dangling-pointer problem is to take
deallocation of heap-dynamic variables out of the hands of programmers. If
programs cannot explicitly deallocate heap-dynamic variables, there will be
no dangling pointers. To do this, the run-time system must implicitly
deallocate heap-dynamic variables when they are no longer useful. Lisp
systems have always done this. Both Java and C# also use this approach for
their reference variables. Recall that C#’s pointers do not include implicit
deallocation.

6.11.7.3 Heap Management
Heap management can be a very complex run-time process. We examine the
process in two separate situations: one in which all heap storage is allocated
and deallocated in units of a single size, and one in which variable-size
segments are allocated and deallocated. Note that for deallocation, we discuss
only implicit approaches. Our discussion will be brief and far from
comprehensive, since a thorough analysis of these processes and their
associated problems is not so much a language design issue as it is an

implementation issue.

Single-Size Cells 
The simplest situation is when all allocation and deallocation is of single-size
cells. It is further simplified when every cell already contains a pointer. This
is the scenario of many implementations of Lisp, where the problems of
dynamic storage allocation were first encountered on a large scale. All Lisp
programs and most Lisp data consist of cells in linked lists.

In a single-size allocation heap, all available cells are linked together using
the pointers in the cells, forming a list of available space. Allocation is a -
simple matter of taking the required number of cells from this list when they
are needed. Deallocation is a much more complex process. A heap-dynamic -
variable can be pointed to by more than one pointer, making it difficult to
determine when the variable is no longer useful to the program. Simply
because one pointer is disconnected from a cell obviously does not make it
garbage; there could be several other pointers still pointing to the cell.

In Lisp, several of the most frequent operations in programs create collections
of cells that are no longer accessible to the program and therefore should be
deallocated (put back on the list of available space). One of the fundamental
design goals of Lisp was to ensure that reclamation of unused cells would not
be the task of the programmer but rather that of the run-time system. This
goal left Lisp implementors with the fundamental design question: When
should deallocation be performed?

There are several different approaches to garbage collection. The two most
common traditional techniques are in some ways opposite processes. These
are named reference counters, in which reclamation is incremental and is
done when inaccessible cells are created, and mark-sweep, in which
reclamation occurs only when the list of available space becomes empty.
These two methods are sometimes called the eager approach and the lazy
approach, respectively. Many variations of these two approaches have been
developed. In this section, however, we discuss only the basic processes.

The reference counter method of storage reclamation accomplishes its goal
by maintaining in every cell a counter that stores the number of pointers that
are currently pointing at the cell. Embedded in the decrement operation for
the reference counters, which occurs when a pointer is disconnected from the
cell, is a check for a zero value. If the reference counter reaches zero, it
means that no program pointers are pointing at the cell, and it has thus
become garbage and can be returned to the list of available space.

There are three distinct problems with the reference counter method. First, if
storage cells are relatively small, the space required for the counters is
significant. Second, some execution time is obviously required to maintain
the counter values. Every time a pointer value is changed, the cell to which it
was pointing must have its counter decremented, and the cell to which it is
now pointing must have its counter incremented. In a language like Lisp, in
which nearly every action involves changing pointers, that can be a
significant portion of the total execution time of a program. Of course, if
pointer changes are not too frequent, this is not a problem. Some of the
inefficiency of reference counters can be eliminated by an approach named
deferred reference counting, which avoids reference counters for some
pointers. The third problem is that complications arise when a collection of
cells is connected circularly. The problem here is that each cell in the circular
list has a reference counter value of at least 1, which prevents it from being
collected and placed back on the list of available space. A solution to this
problem can be found in Friedman and Wise (1979).

The advantage of the reference counter approach is that it is intrinsically
incremental. Its actions are interleaved with those of the application, so it
never causes significant delays in the execution of the application.

The original mark-sweep process of garbage collection operates as follows:
The run-time system allocates storage cells as requested and disconnects
pointers from cells as necessary, without regard for storage reclamation
(allowing garbage to accumulate), until it has allocated all available cells. At
this point, a mark-sweep process is begun to gather all the garbage left
floating around in the heap. To facilitate the process, every heap cell has an
extra indicator bit or field that is used by the collection algorithm.

The mark-sweep process consists of three distinct phases. First, all cells in

the heap have their indicators set to indicate they are garbage. This is, of
course, a correct assumption for only some of the cells. The second part,
called the marking phase, is the most difficult. Every pointer in the program
is traced into the heap, and all reachable cells are marked as not being
garbage. After this, the third phase, called the sweep phase, is executed: All
cells in the heap that have not been specifically marked as still being used are
returned to the list of available space.

To illustrate the flavor of algorithms used to mark the cells that are currently
in use, we provide the following simple version of a marking algorithm. We
assume that all heap-dynamic variables, or heap cells, consist of an
information part; a part for the mark, named marker; and two pointers named
llink and rlink. These cells are used to build directed graphs with at most
two edges leading from any node. The marking algorithm traverses all
spanning trees of the graphs, marking all cells that are found. Like other
graph traversals, the marking algorithm uses recursion.

for every pointer r do

 mark(r)

void mark(void * ptr) {

 if (ptr != 0)

 if (*ptr.marker is not marked) {

 set *ptr.marker

 mark(*ptr.llink)

 mark(*ptr.rlink)

     }
}

An example of the actions of this procedure on a given graph is shown in
Figure 6.9. This simple marking algorithm requires a great deal of storage
(for stack space to support recursion). A marking process that does not
require additional stack space was developed by Schorr and Waite (1967).
Their method reverses pointers as it traces out linked structures. Then, when
the end of a list is reached, the process can follow the pointers back out of the
structure.

Figure 6.9 An example of the
actions of the marking
algorithm

Figure 6.9 Full Alternative Text

The most serious problem with the original version of mark-sweep was that it
was done too infrequently—only when a program had used all or nearly all of
the heap storage. Mark-sweep in that situation takes a good deal of time,
because most of the cells must be traced and marked as being currently used.
This causes a significant delay in the progress of the application.
Furthermore, the process may yield only a small number of cells that can be
placed on the list of available space. This problem has been addressed in a

variety of improvements. For example, incremental mark-sweep garbage
collection occurs more frequently, long before memory is exhausted, making
the process more effective in terms of the amount of storage that is reclaimed.
Also, the time required for each run of the process is obviously shorter, thus
reducing the delay in application execution. Another alternative is to perform
the mark-sweep process on parts, rather than all of the memory associated
with the application, at different times. This provides the same kinds of
improvements as incremental mark-sweep.

Both the marking algorithms for the mark-sweep method and the processes
required by the reference counter method can be made more efficient by use
of the pointer rotation and slide operations that are described by Suzuki
(1982).

Variable-Size Cells 
Managing a heap from which variable-size cells8 are allocated has all the
difficulties of managing one for single-size cells, but also has additional
problems. Unfortunately, variable-size cells are required by most
programming languages. The additional problems posed by variable-size cell
management depend on the method used. If mark-sweep is used, the
following additional problems occur:

8. The cells have variable sizes because these are abstract cells, which store
the values of variables, regardless of their types. Furthermore, a variable
could be a structured type.

The initial setting of the indicators of all cells in the heap to indicate that
they are garbage is difficult. Because the cells are different sizes,
scanning them is a problem. One solution is to require each cell to have
the cell size as its first field. Then the scanning can be done, although it
takes slightly more space and somewhat more time than its counterpart
for fixed-size cells.

The marking process is nontrivial. How can a chain be followed from a
pointer if there is no predefined location for the pointer in the pointed-to

cell? Cells that do not contain pointers at all are also a problem. Adding
an internal pointer to each cell, which is maintained in the background
by the run-time system, will work. However, this background
maintenance processing adds both space and execution time overhead to
the cost of running the program.

Maintaining the list of available space is another source of overhead.
The list can begin with a single cell consisting of all available space.
Requests for segments simply reduce the size of this block. Reclaimed
cells are added to the list. The problem is that before long, the list
becomes a long list of various-size segments, or blocks. This slows
allocation because requests cause the list to be searched for sufficiently
large blocks. Eventually, the list may consist of a large number of very
small blocks, which are not large enough for most requests. At this
point, adjacent blocks may need to be collapsed into larger blocks.
Alternatives to using the first sufficiently large block on the list can
shorten the search but require the list to be ordered by block size. In
either case, maintaining the list is additional overhead.

If reference counters are used, the first two problems are avoided, but the
available-space list-maintenance problem remains.

For a comprehensive study of memory management problems, see Wilson
(2005).

6.12 Optional Types
There are situations in programming when there is a need to be able to
indicate that a variable does not currently have a value. Some older languages
use zero as a nonvalue for numeric variables. This approach has the
disadvantage of not being able to distinguish between when the variable is
supposed to have the zero value and when the zero indicates that it has no
value. Some newer languages provide types that can have a normal value or a
special value to indicate that their variables have no value. Variables that
have this capability are called optional types. Optional types are now directly
supported in C#, F#, and Swift, among others.

C# has two categories of variables, value and reference types. Reference
types, which are classes, are optional types by their nature. The null value
indicates that a reference type has no value. Value types, which are all struct
types, can be declared to be optional types, which allows them to have the
value null. A variable is declared to be an optional type by following its type
name with a question mark (?), as in

int? x;

To determine whether a variable has a normal value, it can be tested against
null, as in

int? x;

. . .

if(x == null)

 Console.WriteLine("x has no value");

else

 Console.WriteLine("The value of x is: {0}", x);

Swift’s optional types are similar to those of C#, except that the nonvalue is
named nil, instead of null. The Swift version of the above code is:

var Int? x;

. . .

if  x  ==  nil
   print("x has no value")

else

   print("The value of x is: \(x)")

6.13 Type Checking
For our discussion of type checking, the concept of operands and operators is
generalized to include subprograms and assignment statements. Subprograms
will be thought of as operators whose operands are their parameters. The
assignment symbol will be thought of as a binary operator, with its target
variable and its expression being the operands.

Type checking is the activity of ensuring that the operands of an operator are
of compatible types. A compatible type is one that either is legal for the
operator or is allowed under language rules to be implicitly converted by
compiler-generated code (or the interpreter) to a legal type. This automatic
conversion is called a coercion. For example, if an int variable and a float
variable are added in Java, the value of the int variable is coerced to float
and a floating-point add is done.

A type error is the application of an operator to an operand of an
inappropriate type. For example, in the original version of C, if an int value
was passed to a function that expected a float value, a type error would
occur (because compilers for that language did not check the types of
parameters).

If all bindings of variables to types are static in a language, then type
checking can nearly always be done statically. Dynamic type binding requires
type checking at run time, which is called dynamic type checking.

Some languages, such as JavaScript and PHP, because of their dynamic type
binding, allow only dynamic type checking. It is better to detect errors at
compile time than at run time, because the earlier correction is usually less
costly. The penalty for static checking is reduced programmer flexibility.
Fewer shortcuts and tricks are possible. Such techniques, though, are now
generally recognized to be error prone and detrimental to readability.

Type checking is complicated when a language allows a memory cell to store
values of different types at different times during execution. Such memory

cells can be created with C and C++ unions and the discriminated unions of
ML, Haskell, and F#. In these cases, type checking, if done, must be dynamic
and requires the run-time system to maintain the type of the current value of
such memory cells. So, even though all variables are statically bound to types
in languages such as C++, not all type errors can be detected by static type
checking.

6.14 Strong Typing
One of the ideas in language design that became prominent in the so-called
structured-programming revolution of the 1970s was strong typing. Strong
typing is widely acknowledged as being a highly valuable language
characteristic. Unfortunately, it is often loosely defined, and it is sometimes
used in computing literature without being defined at all.

A programming language is strongly typed if type errors are always
detected. This requires that the types of all operands can be determined, either
at compile time or at run time. The importance of strong typing lies in its
ability to detect all misuses of variables that result in type errors. A strongly
typed language also allows the detection, at run time, of uses of the incorrect
type values in variables that can store values of more than one type.

C and C++ are not strongly typed languages because both include union
types, which are not type checked.

ML is strongly typed, even though the types of some function parameters
may not be known at compile time. F# is strongly typed.

Java and C#, although they are based on C++, are nearly strongly typed.
Types can be explicitly cast, which could result in a type error. However,
there are no implicit ways type errors can go undetected.

The coercion rules of a language have an important effect on the value of
type checking. For example, expressions are strongly typed in Java.
However, an arithmetic operator with one floating-point operand and one
integer operand is legal. The value of the integer operand is coerced to
floating-point, and a floating-point operation takes place. This is what is
usually intended by the programmer. However, the coercion also results in a
loss of one of the benefits of strong typing—error detection. For example,
suppose a program had the int variables a and b and the float variable d.
Now, if a programmer meant to type a + b, but mistakenly typed a + d, the
error would not be detected by the compiler. The value of a would simply be

coerced to float. So, the value of strong typing is weakened by coercion.
Languages with a great deal of coercion, like C, and C++, are less reliable
than those with no coercion, such as ML and F#. Java and C# have half as
many assignment type coercions as C++, so their error detection is better than
that of C++, but still not nearly as effective as that of ML and F#. The issue
of coercion is examined in detail in Chapter 7.

6.15 Type Equivalence
The idea of type compatibility was defined when the issue of type checking
was introduced. The compatibility rules dictate the types of operands that are
acceptable for each of the operators and thereby specify the possible type
errors of the language.9 The rules are called compatibility because in some
cases the type of an operand can be implicitly converted by the compiler or
run-time system to make it acceptable for the operator.

9. Type compatibility is also an issue in the relationship between the actual
parameters in a subprogram call and the formal parameters of the subprogram
definition. This issue is discussed in Chapter 9.

The type compatibility rules are simple and rigid for the predefined scalar
types. However, in the cases of structured types, such as arrays and records
and some user-defined types, the rules are more complex. Coercion of these
types is rare, so the issue is not type compatibility, but type equivalence. That
is, two types are equivalent if an operand of one type in an expression can be
substituted for one of the other type, without coercion. Type equivalence is a
strict form of type compatibility—compatibility without coercion. The central
issue here is how type equivalence is defined.

The design of the type equivalence rules of a language is important, because
it influences the design of the data types and the operations provided for
values of those types. With the types discussed here, there are very few
predefined operations. Perhaps the most important result of two variables
being of equivalent types is that either one can have its value assigned to the
other.

There are two approaches to defining type equivalence: name type
equivalence and structure type equivalence. Name type equivalence means
that two variables have equivalent types if they are defined either in the same
declaration or in declarations that use the same type name. Structure type
equivalence means that two variables have equivalent types if their types
have identical structures. There are some variations of these two approaches,

and many languages use combinations of them.

Name type equivalence is easy to implement but is more restrictive. Under a
strict interpretation, a variable whose type is a subrange of the integers would
not be equivalent to an integer type variable. For example, supposing Ada
used strict name type equivalence, consider the following Ada code:

type Indextype is 1..100;

count : Integer;

index : Indextype;

The types of the variables count and index would not be equivalent; count
could not be assigned to index or vice versa.

Another problem with name type equivalence arises when a structured or
user-defined type is passed among subprograms through parameters. Such a
type must be defined only once, globally. A subprogram cannot state the type
of such formal parameters in local terms. This was the case with the original
version of Pascal.

Note that to use name type equivalence, all types must have names. Most
languages allow users to define types that are anonymous—they do not have
names. For a language to use name type equivalence, such types must
implicitly be given internal names by the compiler.

Structure type equivalence is more flexible than name type equivalence, but it
is more difficult to implement. Under name type equivalence, only the two
type names must be compared to determine equivalence. Under structure type
equivalence, however, the entire structures of the two types must be
compared. This comparison is not always simple. (Consider a data structure
that refers to its own type, such as a linked list.) Other questions can also
arise. For example, are two record (or struct) types equivalent if they have
the same structure but different field names? Are two single-dimensioned
array types in a language that allows lower bounds of array subscript ranges
to be set in their declarations equivalent if they have the same element type
but have subscript ranges of 0..10 and 1..11? Are two enumeration types
equivalent if they have the same number of components but spell the literals
differently?

Another difficulty with structure type equivalence is that it disallows
differentiating between types with the same structure. For example, consider
the following Ada-like declarations:

type Celsius = Float;

 Fahrenheit = Float;

The types of variables of these two types are considered equivalent under
structure type equivalence, allowing them to be mixed in expressions, which
is surely undesirable in this case, considering the difference indicated by the
type’s names. In general, types with different names are likely to be
abstractions of different categories of problem values and should not be
considered equivalent.

Ada uses a restrictive form of name type equivalence but provides two type
constructs, subtypes and derived types, that avoid the problems associated
with name type equivalence. A derived type is a new type that is based on
some previously defined type with which it is not equivalent, although it may
have identical structure. Derived types inherit all the properties of their parent
types. Consider the following example:

type Celsius is new Float;

type Fahrenheit is new Float;

The types of variables of these two derived types are not equivalent, although
their structures are identical. Furthermore, variables of neither type is type
equivalent with any other floating-point type. Literals are exempt from the
rule. A literal such as 3.0 has the type universal real and is type equivalent to
any floating-point type. Derived types can also include range constraints on
the parent type, while still inheriting all of the parent’s operations.

An Ada subtype is a possibly range-constrained version of an existing type.
A subtype is type equivalent with its parent type. For example, consider the
following declaration:

subtype Small_type is Integer range 0..99;

The type Small_type is equivalent to the type Integer.

Note that Ada’s derived types are very different from Ada’s subrange types.
For example, consider the following type declarations:

type Derived_Small_Int is new Integer range 1..100;

subtype Subrange_Small_Int is Integer range 1..100;

Variables of both types, Derived_Small_Int and Subrange_Small_Int, have
the same range of legal values and both inherit the operations of Integer.
However, variables of type Derived_Small_Int are not compatible with any
Integer type. On the other hand, variables of type Subrange_Small_Int are
compatible with variables and constants of Integer type and any subtype of
Integer.

For variables of an Ada unconstrained array type, structure type equivalence
is used. For example, consider the following type declaration and two object
declarations:

type Vector is array (Integer range <>) of Integer;

Vector_1: Vector (1..10);

Vector_2: Vector (11..20);

The types of these two objects are equivalent, even though they have
different names and different subscript ranges, because for objects of
unconstrained array types, structure type equivalence rather than name type
equivalence is used. Because both types have 10 elements and the elements
of both are of type Integer, they are type equivalent.

For constrained anonymous types, Ada uses a highly restrictive form of name
type equivalence. Consider the following Ada declarations of constrained
anonymous types:

A : array (1..10) of Integer;

In this case, A has an anonymous but unique type assigned by the compiler
and unavailable to the program. If we also had

B : array (1..10) of Integer;

A and B would be of anonymous but distinct and not equivalent types, though
they are structurally identical. The multiple declaration

C, D : array (1..10) of Integer;

creates two anonymous types, one for C and one for D, which are not
equivalent. This declaration is actually treated as if it were the following two
declarations:

C : array (1..10) of Integer;

D : array (1..10) of Integer;

Note that Ada’s form of name type equivalence is more restrictive than the
name type equivalence that is defined at the beginning of this section. If we
had written instead

type List_10 is array (1..10) of Integer;

C, D : List_10;

then the types of C and D would be equivalent.

Name type equivalence works well for Ada, in part because all types, except
anonymous arrays, are required to have type names (and anonymous types
are given internal names by the compiler).

Type equivalence rules for Ada are more rigid than those for languages that
have many coercions among types. For example, the two operands of an
addition operator in Java can have virtually any combination of numeric
types in the language. One of the operands will simply be coerced to the type
of the other. But in Ada, there are no coercions of the operands of an
arithmetic operator.

C uses both name and structure type equivalence. Every struct, enum, and
union declaration creates a new type that is not equivalent to any other type.
So, name type equivalence is used for structure, enumeration, and union
types. Other nonscalar types use structure type equivalence. Array types are
equivalent if they have the same type components. Also, if an array type has
a constant size, it is equivalent either to other arrays with the same constant
size or to with those without a constant size. Note that typedef in C and C++
does not introduce a new type; it simply defines a new name for an existing
type. So, any type defined with typedef is type equivalent to its parent type.
One exception to C using name type equivalence for structures,

enumerations, and unions is if two structures, enumerations, or unions are
defined in different files, in which case structural type equivalence is used.
This is a loophole in the name type equivalence rule to allow equivalence of
structures, enumerations, and unions that are defined in different files.

C++ is like C except there is no exception for structures and unions defined
in different files.

In languages that do not allow users to define and name types, such as
Fortran and COBOL, name equivalence obviously cannot be used.

Object-oriented languages such as Java and C++ bring another kind of type
compatibility issue with them. The issue is object compatibility and its
relationship to the inheritance hierarchy, which is discussed in Chapter 12.

Type compatibility in expressions is discussed in Chapter 7; type
compatibility for subprogram parameters is discussed in Chapter 9.

6.16 Theory and Data Types
Type theory is a broad area of study in mathematics, logic, computer science,
and philosophy. It began in mathematics in the early 1900s and later became
a standard tool in logic. Any general discussion of type theory is necessarily
complex, lengthy, and highly abstract. Even when restricted to computer
science, type theory includes such diverse and complex subjects as typed
lambda calculus, combinators, the metatheory of bounded quantification,
existential types, and higher-order polymorphism. All these topics are far
beyond the scope of this book.

In computer science there are two branches of type theory: practical and
abstract. The practical branch is concerned with data types in commercial
programming languages; the abstract branch primarily focuses on typed
lambda calculus, an area of extensive research by theoretical computer
scientists over the past half century. This section is restricted to a brief
description of some of the mathematical formalisms that underlie data types
in programming languages.

A data type defines a set of values and a collection of operations on those
values. A type system is a set of types and the rules that govern their use in
programs. Obviously, every typed programming language defines a type
system. The formal model of a type system of a programming language
consists of a set of types and a collection of functions that define the type
rules of the language, which are used to determine the type of any expression.
A formal system that describes the rules of a type system, attribute grammars,
is introduced in Chapter 3.

An alternative model to attribute grammars uses a type map and a collection
of functions, not associated with grammar rules, that specify the type rules. A
type map is similar to the state of a program used in denotational semantics,
consisting of a set of ordered pairs, with the first element of each pair being a
variable’s name and the second element being its type. A type map is
constructed using the type declarations in the program. In a static typed
language, the type map need only be maintained during compilation,

although it changes as the program is analyzed by the compiler. If any type
checking is done dynamically, the type map must be maintained during
execution. The concrete version of a type map in a compilation system is the
symbol table, constructed primarily by the lexical and syntax analyzers.
Dynamic types sometimes are maintained with tags attached to values or
objects.

As stated previously, a data type is a set of values, although in a data type the
elements are often ordered. For example, the elements in all enumeration
types are ordered. However, in a mathematical set the elements are not
ordered. Despite this difference, set operations can be used on data types to
describe new data types. The structured data types of programming languages
are defined by type operators, or constructors that correspond to set
operations. These set operations/type constructors are briefly introduced in
the following paragraphs.

A finite mapping is a function from a finite set of values, the domain set, onto
values in the range set. Finite mappings model two different categories of
types in programming languages, functions and arrays, although in some
languages functions are not types. All languages include arrays, which are
defined in terms of a mapping function that maps indices to elements in the
array. For traditional arrays, the mapping is simple—integer values are
mapped to the addresses of array elements; for associative arrays, the
mapping is defined by a function that describes a hashing operation. The
hashing function maps the keys of the associate arrays, usually character
strings,10 to the addresses of the array elements.

10. In Ruby, the associative array keys need not be character strings—they
can be any type.

A Cartesian, or cross product of n sets, S1, S2, …, Sn, is a set denoted
S1×S2×…×Sn. Each element of the Cartesian product set has one element
from each of the constituent sets. So, S1×S2={(x, y) | x is in S1 and y is
in S2}. For example, if S1={1, 2} and S2={a, b}, S1×S2=
{(1, a), (1, b), (2, a), (2, b)}. A Cartesian product defines tuples in
mathematics, which appear in Python, ML, Swift, and F# as a data type (see
Section 6.5). Cartesian products also model records, or structs, although not
exactly. Cartesian products do not have element names, but records require

them. For example, consider the following C struct:

struct intFloat {

 int myInt;

 float myFloat;

};

This struct defines the Cartesian product type int × float. The names of the
elements are myInt and myFloat.

The union of two sets, S1 and S2, is defined as S1 ∪ S2={x | x is in S1 or x
is in S2}. Set union models the union data types, as described in Section 6.10.

Mathematical subsets are defined by providing a rule that elements must
follow. These sets model the subtypes of Ada, although not exactly, because
subtypes must consist of contiguous elements of their parent sets. Elements
of mathematical sets are unordered, so the model is not perfect.

Notice that pointers, defined with type operators, such as the asterisk in C,
are not defined in terms of a set operation.

This concludes our discussion of formalisms in data types, as well as our
whole discussion of data types.

SUMMARY
The data types of a language are a large part of what determines that
language’s style and usefulness. Along with control structures, they form the
heart of a language.

The primitive data types of most imperative languages include numeric,
character, and Boolean types. The numeric types are often directly supported
by hardware.

The user-defined enumeration and subrange types are convenient and add to
the readability and reliability of programs.

Arrays are part of most programming languages. The relationship between a
reference to an array element and the address of that element is given in an
access function, which is an implementation of a mapping. Arrays can be
either static, as in C++ arrays whose definition includes the static specifier;
fixed stack-dynamic, as in C functions (without the static specifier); fixed
heap-dynamic, as with Java’s objects; or heap dynamic, as in Perl’s arrays.
Most languages allow only a few operations on complete arrays.

Records are now included in most languages. Fields of records are specified
in a variety of ways. In the case of COBOL, they can be referenced without
naming all of the enclosing records, although this is messy to implement and
harmful to readability. In several languages that support object-oriented
programming, records are supported with objects.

Tuples are similar to records, but do not have names for their constituent.
parts. They are part of Python, ML, and F#.

Lists are staples of the functional programming languages, but are now also
included in Python and C#.

Unions are locations that can store different type values at different times.
Discriminated unions include a tag to record the current type value. A free
union is one without the tag. Most languages with unions do not have safe

designs for them, the exceptions being ML, Swift, and F#.

Pointers are used for addressing flexibility and to control dynamic storage
management. Pointers have some inherent dangers: Dangling pointers are
difficult to avoid, and memory leakage can occur.

Reference types, such as those in Java and C#, provide heap management
without the dangers of pointers.

Enumeration and record types are relatively easy to implement. Arrays are
also straightforward, although array element access is an expensive process
when the array has several subscripts. The access function requires one
addition and one multiplication for each subscript.

Pointers are relatively easy to implement, if heap management is not
considered. Heap management is easy if all cells have the same size but is
complicated for variable-size cell allocation and deallocation.

Optional type variables are variables that allow a nonvalue to be stored. This
allows a program to indicate when a variable currently has no value.

Strong typing is the concept of requiring that all type errors be detected. The
value of strong typing is increased reliability.

The type equivalence rules of a language determine what operations are legal
among the structured types of a language. Name type equivalence and
structure type equivalence are the two fundamental approaches to defining
type equivalence.

Type theories have been developed in many areas. In computer science, the
practical branch of type theory defines the types and type rules of
programming languages. Set theory can be used to model most of the
structured data types in programming languages.

BIBLIOGRAPHIC NOTES
A wealth of literature exists that is concerned with data type design, use, and
implementation. Hoare gives one of the earliest systematic definitions of
structured types in Dahl et al. (1972). A general discussion of a wide variety
of data types is given in Cleaveland (1986).

Implementing run-time checks on the possible insecurities of Pascal data
types is discussed in Fischer and LeBlanc (1980). Most compiler design
books, such as Fischer and LeBlanc (1991) and Aho et al. (1986), describe
implementation methods for data types, as do the other programming
language texts, such as Pratt and Zelkowitz (2001) and Scott (2009). A
detailed discussion of the problems of heap management can be found in
Tenenbaum et al. (1990). Garbage-collection methods are developed by
Schorr and Waite (1967) and Deutsch and Bobrow (1976). A comprehensive
discussion of garbage-collection algorithms can be found in Cohen (1981)
and Wilson (2005).

REVIEW QUESTIONS
1. What is a descriptor?

2. What are the advantages and disadvantages of decimal data types?

3. What are the design issues for character string types?

4. Describe the three string length options.

5. Define ordinal, enumeration, and subrange types.

6. What are the advantages of user-defined enumeration types?

7. In what ways are the user-defined enumeration types of C# more reliable
than those of C++?

8. What are the design issues for arrays?

9. Define static, fixed stack-dynamic, fixed heap-dynamic, and heap-
dynamic arrays. What are the advantages of each?

10. What happens when a nonexistent element of an array is referenced in
Perl?

11. How does JavaScript support sparse arrays?

12. What languages support negative subscripts?

13. What languages support array slices with stepsizes?

14. What is an aggregate constant?

15. Define row major order and column major order.

16. What is an access function for an array?

17. What are the required entries in a Java array descriptor, and when must
they be stored (at compile time or run time)?

18. What is the structure of an associative array?

19. What is the purpose of level numbers in COBOL records?

20. Define fully qualified and elliptical references to fields in records.

21. What is the primary difference between a record and a tuple?

22. Are the tuples of Python mutable?

23. What is the purpose of an F# tuple pattern?

24. In what primarily imperative language do lists serve as arrays?

25. What is the action of the Scheme function CAR?

26. What is the action of the F# function tl?

27. In what way does Scheme’s CDR function modify its parameter?

28. On what are Python’s list comprehensions based?

29. Define union, free union, and discriminated union.

30. Are the unions of F# discriminated?

31. What are the design issues for pointer types?

32. What are the two common problems with pointers?

33. Why are the pointers of most languages restricted to pointing at a single
type variable?

34. What is a C++ reference type, and what is its common use?

35. Why are reference variables in C++ better than pointers for formal

parameters?

36. What advantages do Java and C# reference type variables have over the
pointers in other languages?

37. Describe the lazy and eager approaches to reclaiming garbage.

38. Why wouldn’t arithmetic on Java and C# references make sense?

39. What is a compatible type?

40. Define type error.

41. Define strongly typed.

42. Why is Java not strongly typed?

43. What is a nonconverting cast?

44. What languages have no type coercions?

45. Why are C and C++ not strongly typed?

46. What is name type equivalence?

47. What is structure type equivalence?

48. What is the primary advantage of name type equivalence?

49. What is the primary disadvantage to structure type equivalence?

50. For what types does C use structure type equivalence?

51. What set operation models C’s struct data type?

PROBLEM SET
1. What are the arguments for and against representing Boolean values as

single bits in memory?

2. How does a decimal value waste memory space?

3. VAX minicomputers use a format for floating-point numbers that is not
the same as the IEEE standard. What is this format, and why was it
chosen by the designers of the VAX computers? A reference for VAX
floating-point representations is Sebesta (1991).

4. Compare the tombstone and lock-and-key methods of avoiding dangling
pointers, from the points of view of safety and implementation cost.

5. What disadvantages are there in implicit dereferencing of pointers, but
only in certain contexts?

6. Explain all of the differences between Ada’s subtypes and derived types.

7. What significant justification is there for the -> operator in C and C++?

8. What are all of the differences between the enumeration types of C++
and those of Java?

9. Multidimensional arrays can be stored in row major order, as in C++, or
in column major order, as in Fortran. Develop the access functions for
both of these arrangements for three-dimensional arrays.

10. In the Burroughs Extended ALGOL language, matrices are stored as a
single-dimensioned array of pointers to the rows of the matrix, which
are treated as single-dimensioned arrays of values. What are the
advantages and disadvantages of such a scheme?

11. Analyze and write a comparison of C’s malloc and free functions with
C++’s new and delete operators. Use safety as the primary

consideration in the comparison.

12. Analyze and write a comparison of using C++ pointers and Java
reference variables to refer to fixed heap-dynamic variables. Use safety
and convenience as the primary considerations in the comparison.

13. Write a short discussion of what was lost and what was gained in Java’s
designers’ decision to not include the pointers of C++.

14. What are the arguments for and against Java’s implicit heap storage
recovery, when compared with the explicit heap storage recovery
required in C++? Consider real-time systems.

15. What are the arguments for the inclusion of enumeration types in C#,
although they were not in the first few versions of Java?

16. What would you expect to be the level of use of pointers in C#? How
often will they be used when it is not absolutely necessary?

17. Make two lists of applications of matrices, one for those that require
jagged matrices and one for those that require rectangular matrices.
Now, argue whether just jagged, just rectangular, or both should be
included in a programming language.

18. Compare the string manipulation capabilities of the class libraries of
C++, Java, and C#.

19. Look up the definition of strongly typed as given in Gehani (1983) and
compare it with the definition given in this chapter. How do they differ?

20. In what way is static type checking better than dynamic type checking?

21. Explain how coercion rules can weaken the beneficial effect of strong
typing.

PROGRAMMING EXERCISES
1. Design a set of simple test programs to determine the type compatibility

rules of a C compiler to which you have access. Write a report of your
findings.

2. Determine whether some C compiler to which you have access
implements the free function.

3. Write a program that does matrix multiplication in some language that
does subscript range checking and for which you can obtain an assembly
language or machine language version from the compiler. Determine the
number of instructions required for the subscript range checking and
compare it with the total number of instructions for the matrix
multiplication process.

4. If you have access to a compiler in which the user can specify whether
subscript range checking is desired, write a program that does a large
number of matrix accesses and time their execution. Run the program
with subscript range checking and without it, and compare the times.

5. Write a simple program in C++ to investigate the safety of its
enumeration types. Include at least 10 different operations on
enumeration types to determine what incorrect or just silly things are
legal. Now, write a C# program that does the same things and run it to
determine how many of the incorrect or silly things are legal. Compare
your results.

6. Write a program in C++ or C# that includes two different enumeration
types and has a significant number of operations using the enumeration
types. Also write the same program using only integer variables.
Compare the readability and predict the reliability differences between
the two programs.

7. Write a C program that does a large number of references to elements of

two-dimensioned arrays, using only subscripting. Write a second
program that does the same operations but uses pointers and pointer
arithmetic for the storage-mapping function to do the array references.
Compare the time efficiency of the two programs. Which of the two
programs is likely to be more reliable? Why?

8. Write a Perl program that uses a hash and a large number of operations
on the hash. For example, the hash could store people’s names and their
ages. A random-number generator could be used to create three-
character names and ages, which could be added to the hash. When a
duplicate name was generated, it would cause an access to the hash but
not add a new element. Rewrite the same program without using hashes.
Compare the execution efficiency of the two. Compare the ease of
programming and readability of the two.

9. Write a program in the language of your choice that behaves differently
if the language used name equivalence than if it used structural
equivalence.

10. For what types of A and B is the simple assignment statement A=B legal
in C++ but not Java?

7 Expressions and Assignment
Statements

1. 7.1 Introduction

2. 7.2 Arithmetic Expressions

3. 7.3 Overloaded Operators

4. 7.4 Type Conversions

5. 7.5 Relational and Boolean Expressions

6. 7.6 Short-Circuit Evaluation

7. 7.7 Assignment Statements

8. 7.8 Mixed-Mode Assignment

As the title indicates, the topic of this chapter is expressions and assignment
statements. The semantics rules that determine the order of evaluation of
operators in expressions are discussed first. This is followed by an
explanation of a potential problem with operand evaluation order when
functions can have side effects. Overloaded operators, both predefined and
user defined, are then discussed, along with their effects on the expressions in
programs. Next, mixed-mode expressions are described and evaluated. This
leads to the definition and evaluation of widening and narrowing type
conversions, both implicit and explicit. Relational and Boolean expressions
are then discussed, including the process of short-circuit evaluation. Finally,
the assignment statement, from its simplest form to all of its variations, is -
covered, including assignments as expressions and mixed-mode assignments.

Character string pattern-matching expressions were covered as a part of the -
material on character strings in Chapter 6, so they are not mentioned in this
chapter.

7.1 Introduction
Expressions are the fundamental means of specifying computations in a
programming language. It is crucial for a programmer to understand both the
syntax and semantics of expressions of the language he or she uses. A formal
mechanism (BNF) for describing the syntax of expressions was introduced in
Chapter 3. In this chapter, the semantics of expressions are discussed.

To understand expression evaluation, it is necessary to be familiar with the
orders of operator and operand evaluation. The operator evaluation order of
expressions is dictated by the associativity and precedence rules of the
language. Although the value of an expression sometimes depends on it, the
order of operand evaluation in expressions is often unstated by language
designers. This allows implementors to choose the order, which leads to the
possibility of programs producing different results in different
implementations. Other issues in expression semantics are type mismatches,
coercions, and short-circuit evaluation.

The essence of the imperative programming languages is the dominant role of
assignment statements. The purpose of these statements is to cause the side
effect of changing the values of variables, or the state, of the program. So an
integral part of all imperative languages is the concept of variables whose
values change during program execution.

Functional languages use variables of a different sort, such as the parameters
of functions. These languages also have declaration statements that bind
values to names. These declarations are similar to assignment statements, but
do not have side effects.

7.2 Arithmetic Expressions
Automatic evaluation of arithmetic expressions similar to those found in
mathematics, science, and engineering was one of the primary goals of the
first high-level programming languages. Most of the characteristics of
arithmetic expressions in programming languages were inherited from
conventions that had evolved in mathematics. In programming languages,
arithmetic expressions consist of operators, operands, parentheses, and
function calls. An operator can be unary, meaning it has a single operand,
binary, meaning it has two operands, or ternary, meaning it has three
operands.

In most programming languages, binary operators are infix, which means
they appear between their operands. One exception is Perl, which has some
operators that are prefix, which means they precede their operands. In
Scheme and Lisp, all operators are prefix. Most unary operators are prefix,
but the ++ and -- operators of C-based languages can be either prefix or
postfix.

The purpose of an arithmetic expression is to specify an arithmetic
computation. An implementation of such a computation must cause two
actions: fetching the operands, usually from memory, and executing
arithmetic operations on those operands. In the following sections, we
investigate the common design details of arithmetic expressions.

Following are the primary design issues for arithmetic expressions, all of
which are discussed in this section:

What are the operator precedence rules?

What are the operator associativity rules?

What is the order of operand evaluation?

Are there restrictions on operand evaluation side effects?

Does the language allow user-defined operator overloading?

What type mixing is allowed in expressions?

7.2.1 Operator Evaluation Order
The operator precedence and associativity rules of a language dictate the
order of evaluation of its operators.

7.2.1.1 Precedence
The value of an expression depends at least in part on the order of evaluation
of the operators in the expression. Consider the following expression:

a + b * c

Suppose the variables a, b, and c have the values 3, 4, and 5, respectively. If
evaluated left to right (the addition first and then the multiplication), the
result is 35. If evaluated right to left, the result is 23.

Instead of simply evaluating the operators in an expression from left to right
or right to left, mathematicians long ago developed the concept of placing
operators in a hierarchy of evaluation priorities and basing the evaluation
order of expressions partly on this hierarchy. For example, in mathematics,
multiplication is considered to be of higher priority than addition, perhaps
due to its higher level of complexity. If that convention were applied in the
previous example expression, as would be the case in most programming
languages, the multiplication would be done first.

The operator precedence rules for expression evaluation partially define the
order in which the operators of different precedence levels are evaluated. The
operator precedence rules for expressions are based on the hierarchy of
operator priorities, as seen by the language designer. The operator precedence
rules of the common imperative languages are nearly all the same, because
they are based on those of mathematics. In these languages, exponentiation

has the highest precedence (when it is provided by the language), followed by
multiplication and division on the same level, followed by binary addition
and subtraction on the same level.

Many languages also include unary versions of addition and subtraction.
Unary addition is called the identity operator because it usually has no
associated operation and thus has no effect on its operand. Ellis and
Stroustrup (1990, p. 56), speaking about C++, call it a historical accident and
correctly label it useless. Unary minus, of course, changes the sign of its
operand. In Java and C#, unary minus also causes the implicit conversion of
short and byte operands to int type.

In all of the common imperative languages, the unary minus operator can
appear in an expression either at the beginning or anywhere inside the
expression, as long as it is parenthesized to prevent it from being next to
another operator. For example,

a + (- b) * c

is legal, but

a + - b * c

usually is not.

Next, consider the following expressions:

- a / b

- a * b

- a ** b

In the first two cases, the relative precedence of the unary minus operator and
the binary operator is irrelevant—the order of evaluation of the two operators
has no effect on the value of the expression. In the last case, however, it does
matter.

Of the common programming languages, only Fortran, Ruby, Visual Basic,
and Ada have the exponentiation operator. In all four, exponentiation has
higher precedence than unary minus, so

- A ** B

is equivalent to

-(A ** B)

The precedences of the arithmetic operators of Ruby and the C-based
languages are as follows:

The ** operator is exponentiation. The % operator takes two integer operands
and yields the remainder of the first after division by the second.1 The ++ and
-- operators of the C-based languages are described in Section 7.7.4.

1. In versions of C before C99, the % operator was implementation
dependent in some situations, because division was also implementation
dependent.

APL is odd among languages because it has a single level of precedence, as
illustrated in the next section.

Precedence accounts for only some of the rules for the order of operator
evaluation; associativity rules also affect it.

7.2.1.2 Associativity
Consider the following expression:

a - b + c - d

If the addition and subtraction operators have the same level of precedence,

as they do in programming languages, the precedence rules say nothing about
the order of evaluation of the operators in this expression.

When an expression contains two adjacent2 occurrences of operators with the
same level of precedence, the question of which operator is evaluated first is
answered by the associativity rules of the language. An operator can have
either left or right associativity, meaning that when there are two adjacent
operators with the same precedence, the left operator is evaluated first or the
right operator is evaluated first, respectively.

2. We call operators “adjacent” if they are separated by a single operand.

Associativity in common languages is left to right, except that the
exponentiation operator (when provided) sometimes associates right to left.
In the Java expression

a - b + c

the left operator is evaluated first.

Exponentiation in Fortran and Ruby is right associative, so in the expression

A ** B ** C

the right operator is evaluated first.

In Visual Basic, the exponentiation operator, ^, is left associative.

The associativity rules for a few common languages are given here:

As stated in Section 7.2.1.1, in APL, all operators have the same level of
precedence. Thus, the order of evaluation of operators in APL expressions is
determined entirely by the associativity rule, which is right to left for all
operators. For example, in the expression

A × B + C

the addition operator is evaluated first, followed by the multiplication
operator (× is the APL multiplication operator). If A were 3, B were 4, and C
were 5, then the value of this APL expression would be 27.

Many compilers for the common languages make use of the fact that some
arithmetic operators are mathematically associative, meaning that the
associativity rules have no impact on the value of an expression containing
only those operators. For example, addition is mathematically associative, so
in mathematics the value of the expression

A + B + C

does not depend on the order of operator evaluation. If floating-point
operations for mathematically associative operations were also associative,
the compiler could use this fact to perform some simple optimizations.
Specifically, if the compiler is allowed to reorder the evaluation of operators,
it may be able to produce slightly faster code for expression evaluation.
Compilers commonly do these kinds of optimizations.

Unfortunately, in a computer, both floating-point representations and
floating-point arithmetic operations are only approximations of their
mathematical counterparts (because of size limitations). The fact that a
mathematical operator is associative does not necessarily imply that the
corresponding computer floating-point operation is associative. In fact, only
if all the operands and intermediate results can be exactly represented in
floating-point notation will the process be precisely associative. For example,
there are pathological situations in which integer addition on a computer is
not associative. For example, suppose that a program must evaluate the
expression

A + B + C + D

and that A and C are very large positive numbers, and B and D are negative
numbers with very large absolute values. In this situation, adding B to A does
not cause an overflow exception, but adding C to A does. Likewise, adding C
to B does not cause overflow, but adding D to B does. Because of the
limitations of computer arithmetic, addition is catastrophically nonassociative
in this case. Therefore, if the compiler reorders these addition operations, it
affects the value of the expression. This problem, of course, can be avoided
by the programmer, assuming the approximate values of the variables are
known. The programmer can specify the expression in two parts (in two
assignment statements), ensuring that overflow is avoided. However, this
situation can arise in far more subtle ways, in which the programmer is less
likely to notice the order dependence.

7.2.1.3 Parentheses
Programmers can alter the precedence and associativity rules by placing
parentheses in expressions. A parenthesized part of an expression has
precedence over its adjacent unparenthesized parts. For example, although
multiplication has precedence over addition, in the expression

(A + B) * C

the addition will be evaluated first. Mathematically, this is perfectly natural.
In this expression, the first operand of the multiplication operator is not
available until the addition in the parenthesized subexpression is evaluated.
Also, the expression from Section 7.2.1.2 could be specified as

(A + B) + (C + D)

to avoid overflow.

Languages that allow parentheses in arithmetic expressions could dispense
with all precedence rules and simply associate all operators left to right or
right to left. The programmer would specify the desired order of evaluation
with parentheses. This approach would be simple because neither the author
nor the readers of programs would need to remember any precedence or
associativity rules. The disadvantage of this scheme is that it makes writing

expressions more tedious, and it also seriously compromises the readability
of the code. Yet this was the choice made by Ken Iverson, the designer of
APL.

7.2.1.4 Ruby Expressions
Recall that Ruby is a pure object-oriented language, which means, among
other things, that every data value, including literals, is an object. Ruby
supports the collection of arithmetic and logic operations that are included in
the C-based languages. What sets Ruby apart from the C-based languages in
the area of expressions is that all of the arithmetic, relational, and assignment
operators, as well as array indexing, shifts, and bitwise logic operators, are
implemented as methods. For example, the expression a + b is a call to the +
method of the object referenced by a, passing the object referenced by b as a
parameter.

One interesting result of the implementation of operators as methods is that
they can be overridden by application programs. Therefore, these operators
can be redefined. While it is often not useful to redefine operators for
predefined types, it is useful, as we will see in Section 7.3, to define
predefined operators for user-defined types, which can be done with operator
overloading in some languages.

In C++ and Ada, operators are actually implemented as function calls.

7.2.1.5 Expressions in Lisp
As is the case with Ruby, all arithmetic and logic operations in Lisp are
performed by subprograms. But in Lisp, the subprograms must be explicitly
called. For example, to specify the C expression a + b * c in Lisp, one must
write the following expression:3

3. When a list is interpreted as code in Lisp, the first element is the function
name and others are parameters to the function.

(+ a (* b c))

In this expression, + and * are the names of functions.

7.2.1.6 Conditional Expressions
if-then-else statements can be used to perform a conditional expression
assignment. For example, consider

if (count == 0)

 average = 0;

else

 average = sum / count;

In the C-based languages, this code can be specified more conveniently in an
assignment statement using a conditional expression, which has the following
form:

expression_1 ? expression_2 : expression_3

where expression_1 is interpreted as a Boolean expression. If expression_1
evaluates to true, the value of the whole expression is the value of
expression_2; otherwise, it is the value of expression_3. For example, the
effect of the example if-then-else can be achieved with the following
assignment statement, using a conditional expression:

average = (count == 0) ? 0 : sum / count;

In effect, the question mark denotes the beginning of the then clause, and the
colon marks the beginning of the else clause. Both clauses are mandatory.
Note that ? is used in conditional expressions as a ternary operator.

Conditional expressions can be used anywhere in a program (in a C-based
language) where any other expression can be used. In addition to the C-based
languages, conditional expressions are provided in Perl, JavaScript, and
Ruby.

7.2.2 Operand Evaluation Order
A less commonly discussed design characteristic of expressions is the order
of evaluation of operands. Variables in expressions are evaluated by fetching
their values from memory. Constants are sometimes evaluated the same way.
In other cases, a constant may be part of the machine language instruction
and not require a memory fetch. If an operand is a parenthesized expression,
all of the operators it contains must be evaluated before its value can be used
as an operand.

If neither of the operands of an operator has side effects, then operand
evaluation order is irrelevant. Therefore, the only interesting case arises when
the evaluation of an operand does have side effects.

7.2.2.1 Side Effects
A side effect of a function, naturally called a functional side effect, occurs
when the function changes either one of its parameters or a global variable.
(A global variable is declared outside the function but is accessible in the
function.)

Consider the following expression:

a + fun(a)

If fun does not have the side effect of changing a, then the order of
evaluation of the two operands, a and fun(a), has no effect on the value of
the expression. However, if fun changes a, there is an effect. Consider the
following situation: fun returns 10 and changes the value of its parameter to
20. Suppose we have the following:

a = 10;

b = a + fun(a);

Then, if the value of a is fetched first (in the expression evaluation process),
its value is 10 and the value of the expression is 20. But if the second operand

is evaluated first, then the value of the first operand is 20 and the value of the
expression is 30.

The following C program illustrates the same problem when a function
changes a global variable that appears in an expression:

int a = 5;

int fun1() {

 a = 17;

 return 3;

} /* end of fun1 */

 void main() {

 a = a + fun1();

} /* end of main */

The value computed for a in main depends on the order of evaluation of the
operands in the expression a + fun1(). The value of a will be either 8 (if a is
evaluated first) or 20 (if the function call is evaluated first).

Note that functions in mathematics do not have side effects, because there is
no notion of variables in mathematics. The same is true for functional
programming languages. In both mathematics and functional programming
languages, functions are much easier to reason about and understand than
those in imperative languages, because their context is irrelevant to their
meaning.

There are two possible solutions to the problem of operand evaluation order
and side effects. First, the language designer could disallow function
evaluation from affecting the value of expressions by simply disallowing
functional side effects. Second, the language definition could state that
operands in expressions are to be evaluated in a particular order and demand
that implementors guarantee that order.

Disallowing functional side effects in the imperative languages is difficult,
and it eliminates some flexibility for the programmer. Consider the case of C
and C++, which have only functions, meaning that all subprograms return
one value. To eliminate the side effects of two-way parameters and still
provide subprograms that return more than one value, the values would need
to be placed in a struct and the struct returned. Access to globals in functions
would also have to be disallowed. However, when efficiency is important,

using access to global variables to avoid parameter passing is an important
method of increasing execution speed. In compilers, for example, global
access to data such as the symbol table is commonplace.

The problem with having a strict evaluation order is that some code
optimization techniques used by compilers involve reordering operand
evaluations. A guaranteed order disallows those optimization methods when
function calls are involved. There is, therefore, no perfect solution, as is
borne out by actual language designs.

The Java language definition guarantees that operands appear to be evaluated
in left-to-right order, eliminating the problem discussed in this section.

7.2.2.2 Referential Transparency
and Side Effects
The concept of referential transparency is related to and affected by
functional side effects. A program has the property of referential
transparency if any two expressions in the program that have the same value
can be substituted for one another anywhere in the program, without affecting
the action of the program. The value of a referentially transparent function
depends entirely on its parameters.4 The connection of referential
transparency and functional side effects is illustrated by the following
example:

4. Furthermore, the value of the function cannot depend on the order in which
its parameters are evaluated.

result1 = (fun(a) + b) / (fun(a) - c);

temp = fun(a);

result2 = (temp + b) / (temp - c);

If the function fun has no side effects, result1 and result2 will be equal,
because the expressions assigned to them are equivalent. However, suppose
fun has the side effect of adding 1 to either b or c. Then result1 would not
be equal to result2. So, that side effect violates the referential transparency

of the program in which the code appears.

There are several advantages to referentially transparent programs. The most
important of these is that the semantics of such programs is much easier to
understand than the semantics of programs that are not referentially
transparent. Being referentially transparent makes a function equivalent to a
mathematical function, in terms of ease of understanding.

Because they do not have variables, programs written in pure functional
languages are referentially transparent. Functions in a pure functional
language cannot have state, which would be stored in local variables. If such
a function uses a value from outside the function, that value must be a
constant, since there are no variables. Therefore, the value of the function
depends on the values of its parameters.

Referential transparency will be further discussed in Chapter 15.

7.3 Overloaded Operators
Arithmetic operators are often used for more than one purpose. For example,
+ usually is used to specify integer addition and floating-point addition. Some
languages—Java, for example—also use it for string catenation. This
multiple use of an operator is called operator overloading and is generally
thought to be acceptable, as long as neither readability nor reliability suffers.

As an example of the possible dangers of overloading, consider the use of the
ampersand (&) in C++. As a binary operator, it specifies a bitwise logical
AND operation. As a unary operator, however, its meaning is totally
different. As a unary operator with a variable as its operand, the expression
value is the address of that variable. In this case, the ampersand is called the
address-of operator. For example, the execution of

x = &y;

causes the address of y to be placed in x. There are two problems with this
multiple use of the ampersand. First, using the same symbol for two
completely unrelated operations is detrimental to readability. Second, the
simple keying error of leaving out the first operand for a bitwise AND
operation can go undetected by the compiler, because it is interpreted as an
address-of operator. Such an error may be difficult to diagnose.

Virtually all programming languages have a less serious but similar problem,
which is often due to the overloading of the minus operator. The problem is
only that the compiler cannot tell if the operator is meant to be binary or
unary.5 So once again, failure to include the first operand when the operator
is meant to be binary cannot be detected as an error by the compiler.
However, the meanings of the two operations, unary and binary, are at least
closely related, so readability is not adversely affected.

5. ML alleviates this problem by using different symbols for unary and binary
minus operators, tilde (') for unary and dash for binary.

Some languages that support abstract data types (see Chapter 11), for

example, C++, C#, and F#, allow the programmer to further overload
operator symbols. For instance, suppose a user wants to define the * operator
between a scalar integer and an integer array to mean that each element of the
array is to be multiplied by the scalar. Such an operator could be defined by
writing a function subprogram named * that performs this new operation. The
compiler will choose the correct meaning when an overloaded operator is
specified, based on the types of the operands, as with language-defined
overloaded operators. For example, if this new definition for * is defined in a
C# program, a C# compiler will use the new definition for * whenever the *
operator appears with a simple integer as the left operand and an integer array
as the right operand.

When sensibly used, user-defined operator overloading can aid readability.
For example, if + and * are overloaded for a matrix abstract data type and A,
B, C, and D are variables of that type, then

A * B + C * D

can be used instead of

MatrixAdd(MatrixMult(A, B), MatrixMult(C, D))

On the other hand, user-defined overloading can be harmful to readability.
For one thing, nothing prevents a user from defining + to mean
multiplication. Furthermore, seeing an * operator in a program, the reader
must find both the types of the operands and the definition of the operator to
determine its meaning. Any or all of these definitions could be in other files.

Another consideration is the process of building a software system from
modules created by different groups. If the different groups overloaded the
same operators in different ways, these differences would obviously need to
be eliminated before putting the system together.

C++ has a few operators that cannot be overloaded. Among these are the
class or structure member operator (.) and the scope resolution operator (::).
Interestingly, operator overloading was one of the C++ features that was not
copied into Java. However, it did reappear in C#.

The implementation of user-defined operator overloading is discussed in

Chapter 9.

7.4 Type Conversions
Type conversions are either narrowing or widening. A narrowing
conversion converts a value to a type that cannot store even approximations
of all of the values of the original type. For example, converting a double to a
float in Java is a narrowing conversion, because the range of double is
much larger than that of float. A widening conversion converts a value to a
type that can include at least approximations of all of the values of the
original type. For example, converting an int to a float in Java is a
widening conversion. Widening conversions are nearly always safe, meaning
that the approximate magnitude of the converted value is maintained.
Narrowing conversions are not always safe—sometimes the magnitude of the
converted value is changed in the process. For example, if the floating-point
value 1.3E25 is converted to an integer in a Java program, the result will not
be in any way related to the original value.

Although widening conversions are usually safe, they can result in reduced
accuracy. In many language implementations, although integer-to-floating-
point conversions are widening conversions, some precision may be lost. For
example, in many cases, integers are stored in 32 bits, which allows at least 9
decimal digits of precision. But floating-point values are also stored in 32
bits, with only about seven decimal digits of precision (because of the space
used for the exponent). So, integer-to-floating-point widening can result in
the loss of two digits of precision.

Coercions of nonprimitive types are, of course, more complex. In Chapter 5,
the complications of assignment compatibility of array and record types were
discussed. There is also the question of what parameter types and return types
of a method allow it to override a method in a superclass—only when the
types are the same, or also some other situations. That issue, as well as the
concept of subclasses as subtypes, are discussed in Chapter 12.

Type conversions can be either explicit or implicit. The following two
subsections discuss these kinds of type conversions.

7.4.1 Coercion in Expressions
One of the design decisions concerning arithmetic expressions is whether an
operator can have operands of different types. Languages that allow such
expressions, which are called mixed-mode expressions, must define
conventions for implicit operand type conversions because computers do not
have binary operations that take operands of different types. Recall that in
Chapter 5, coercion was defined as an implicit type conversion that is
initiated by the compiler or runtime system. Type conversions explicitly
requested by the programmer are referred to as explicit conversions, or casts,
not coercions.

Although some operator symbols may be overloaded, we assume that a
computer system, either in hardware or in some level of software simulation,
has an operation for each operand type and operator defined in the language.6
For overloaded operators in a language that uses static type binding, the
compiler chooses the correct type of operation on the basis of the types of the
operands. When the two operands of an operator are not of the same type and
that is legal in the language, the compiler must choose one of them to be
coerced and generate the code for that coercion. In the following discussion,
the coercion design choices of several common languages are examined.

6. This assumption is not true for many languages. An example is given later
in this section.

Language designers are not in agreement on the issue of coercions in
arithmetic expressions. Those against a broad range of coercions are
concerned with the reliability problems that can result from such coercions,
because they reduce the benefits of type checking. Those who would rather
include a wide range of coercions are more concerned with the loss in
flexibility that results from restrictions. The issue is whether programmers
should need to be concerned with this category of errors or whether the
compiler should detect them.

As a simple illustration of the problem, consider the following Java code:

int a;

float b, c, d;

. . .

d = b * a;

Assume that the second operand of the multiplication operator was supposed
to be c, but because of a keying error it was typed as a. Because mixed-mode
expressions are legal in Java, the compiler would not detect this as an error. It
would simply insert code to coerce the value of the int operand, a, to float.
If mixed-mode expressions were not legal in Java, this keying error would
have been detected by the compiler as a type error.

Because error detection is reduced when mixed-mode expressions are
allowed, F#, Ada, and ML do not allow them. For example, they do not allow
mixing of integer and floating-point operands in expressions.

In most of the other common languages, there are no restrictions on mixed-
mode arithmetic expressions.

The C-based languages have integer types that are smaller than the int type.
In Java, these are byte and short. Operands of all of these types are coerced
to int whenever virtually any operator is applied to them. So, while data can
be stored in variables of these types, it cannot be manipulated before
conversion to a larger type. For example, consider the following Java code:

history note
As a more extreme example of the dangers and costs of too much coercion,
consider PL/I’s efforts to achieve flexibility in expressions. In PL/I, a
character string variable can be the operand of an arithmetic operator with an
integer as the other operand. At run time, the string is scanned for a numeric
value. If the value happens to contain a decimal point, the value is assumed to
be of floating-point type, the other operand is coerced to floating point, and
the resulting operation is floating-point. This coercion policy is very
expensive, because both the type check and the conversion must be done at
run time. It also eliminates the possibility of detecting programmer errors in
expressions, because a binary operator can combine an operand of any type
with an operand of virtually any other type.

byte a, b, c;

. . .

a = b + c;

The values of b and c are coerced to int and an int addition is performed.
Then, the sum is converted to byte and put in a. Given the large size of the
memories of contemporary computers, there is little incentive to use byte and
short, unless a large number of them must be stored.

7.4.2 Explicit Type Conversion
Most languages provide some capability for doing explicit conversions, both
widening and narrowing. In some cases, warning messages are produced
when an explicit narrowing conversion results in a significant change to the
value of the object being converted.

In the C-based languages, explicit type conversions are called casts. To
specify a cast, the desired type is placed in parentheses just before the
expression to be converted, as in

(int)angle

One of the reasons for the parentheses around the type name in these
conversions is that the first of these languages, C, has several two-word type
names, such as long int.

In ML and F#, the casts have the syntax of function calls. For example, in F#
we could have the following:

float(sum)

7.4.3 Errors in Expressions
A number of errors can occur during expression evaluation. If the language
requires type checking, either static or dynamic, then operand type errors
cannot occur. The errors that can occur because of coercions of operands in

expressions have already been discussed. The other kinds of errors are due to
the limitations of computer arithmetic and the inherent limitations of
arithmetic. The most common error occurs when the result of an operation
cannot be represented in the memory cell where it must be stored. This is
called overflow or underflow, depending on whether the result was too large
or too small. One limitation of arithmetic is that division by zero is
disallowed. Of course, the fact that it is not mathematically allowed does not
prevent a program from attempting to do it.

Floating-point overflow, underflow, and division by zero are examples of
run-time errors, which are sometimes called exceptions. Language facilities
that allow programs to detect and deal with exceptions are discussed in
Chapter 14.

7.5 Relational and Boolean
Expressions
In addition to arithmetic expressions, programming languages support
relational and Boolean expressions.

7.5.1 Relational Expressions
A relational operator is an operator that compares the values of its two
operands. A relational expression has two operands and one relational
operator. The value of a relational expression is Boolean, except when
Boolean is not a type included in the language. The relational operators are
often overloaded for a variety of types. The operation that determines the
truth or falsehood of a relational expression depends on the operand types. It
can be simple, as for integer operands, or complex, as for character string
operands. Typically, the types of the operands that can be used for relational
operators are numeric types, strings, and enumeration types.

history note
The Fortran I designers used English abbreviations for the relational
operators because the symbols > and < were not on the card punches at the
time of Fortran I’s design (mid-1950s).

The syntax of the relational operators for equality and inequality differs
among some programming languages. For example, for inequality, the C-
based languages use !=, Fortran 95+ uses .NE. or <>, and ML and F# use <>.

JavaScript and PHP have two additional relational operators, === and !==.
These are similar to their relatives, == and !=, but prevent their operands from
being coerced. For example, the expression

"7" == 7

is true in JavaScript, because when a string and a number are the operands of
a relational operator, the string is coerced to a number. However,

"7" === 7

is false, because no coercion is done on the operands of this operator.

Ruby uses == for the equality relational operator that uses coercions, and
eql? for equality with no coercions. Ruby uses === only in the when clause of
its case statement, as discussed in Chapter 8.

The relational operators always have lower precedence than the arithmetic
operators, so that in expressions such as

a + 1 > 2 * b

the arithmetic expressions are evaluated first.

7.5.2 Boolean Expressions
Boolean expressions consist of Boolean variables, Boolean constants,
relational expressions, and Boolean operators. The operators usually include
those for the AND, OR, and NOT operations, and sometimes for exclusive
OR and equivalence. Boolean operators usually take only Boolean operands
(Boolean variables, Boolean literals, or relational expressions) and produce
Boolean values.

In the mathematics of Boolean algebras, the OR and AND operators must
have equal precedence. However, the C-based languages assign a higher
precedence to AND than OR. Perhaps this resulted from the baseless
correlation of multiplication with AND and of addition with OR, which
would naturally assign higher precedence to AND.

Because arithmetic expressions can be the operands of relational expressions,
and relational expressions can be the operands of Boolean expressions, the

three categories of operators must be placed in different precedence levels,
relative to each other.

The precedence of the arithmetic, relational, and Boolean operators in the C-
based languages is as follows:

Versions of C prior to C99 are odd among the popular imperative languages
in that they have no Boolean type and thus no Boolean values. Instead,
numeric values are used to represent Boolean values. In place of Boolean
operands, scalar variables (numeric or character) and constants are used, with
zero considered false and all nonzero values considered true. The result of
evaluating such an expression is an integer, with the value 0 if false and 1 if
true. Arithmetic expressions can also be used for Boolean expressions in C99
and C++.

One odd result of C’s design of relational expressions is that the following
expression is legal:

a > b > c

The leftmost relational operator is evaluated first because the relational
operators of C are left associative, producing either 0 or 1. Then, this result is

compared with the variable c. There is never a comparison between b and c
in this expression.

Some languages, including Perl and Ruby, provide two sets of the binary
logic operators, && and and for AND and || and or for OR. One difference
between && and and (and || and or) is that the spelled versions have lower
precedence. Also, and and or have equal precedence, but && has higher
precedence than ||.

When the nonarithmetic operators of the C-based languages are included,
there are more than 40 operators and at least 14 different levels of
precedence. This is clear evidence of the richness of the collections of
operators and the complexity of expressions possible in these languages.

Readability dictates that a language should include a Boolean type, as was
stated in Chapter 6, rather than simply using numeric types in Boolean
expressions. Some error detection is lost in the use of numeric types for
Boolean operands, because any numeric expression, whether intended or not,
is a legal operand to a Boolean operator. In the other imperative languages,
any non-Boolean expression used as an operand of a Boolean operator is
detected as an error.

7.6 Short-Circuit Evaluation
A short-circuit evaluation of an expression is one in which the result is
determined without evaluating all of the operands and/or operators. For
example, the value of the arithmetic expression

(13 * a) * (b / 13 - 1)

is independent of the value of (b / 13 - 1) if a is 0, because 0 * x = 0 for
any x. So, when a is 0, there is no need to evaluate (b / 13 - 1) or perform
the second multiplication. However, in arithmetic expressions, this shortcut is
not easily detected during execution, so it is never taken.

The value of the Boolean expression

(a >= 0) && (b < 10)

is independent of the second relational expression if a < 0, because the
expression (FALSE && (b < 10)) is FALSE for all values of b. So, when a is
less than zero, there is no need to evaluate b, the constant 10, the second
relational expression, or the && operation. Unlike the case of arithmetic
expressions, this shortcut easily can be discovered during execution.

To illustrate a potential problem with non-short-circuit evaluation of Boolean
expressions, suppose Java did not use short-circuit evaluation. A table lookup
loop could be written using the while statement. One simple version of Java
code for such a lookup, assuming that list, which has listlen elements, is
the array to be searched and key is the searched-for value, is

index = 0;

while ((index < listlen) && (list[index] != key))

 index = index + 1;

If evaluation is not short-circuit, both relational expressions in the Boolean
expression of the while statement are evaluated, regardless of the value of the
first. Thus, if key is not in list, the program will terminate with a subscript
out-of-range exception. The same iteration that has index == listlen will

reference list[listlen], which causes the indexing error because list is
declared to have listlen-1 as an upper-bound subscript value.

If a language provides short-circuit evaluation of Boolean expressions and it
is used, this is not a problem. In the preceding example, a short-circuit
evaluation scheme would evaluate the first operand of the AND operator, but
it would skip the second operand if the first operand is false.

A language that provides short-circuit evaluations of Boolean expressions
and also has side effects in expressions allows subtle errors to occur. Suppose
that short-circuit evaluation is used on an expression and part of the
expression that contains a side effect is not evaluated; then the side effect will
occur only in complete evaluations of the whole expression. If program
correctness depends on the side effect, short-circuit evaluation can result in a
serious error. For example, consider the Java expression

(a > b) || ((b++) / 3)

In this expression, b is changed (in the second arithmetic expression) only
when a <= b. If the programmer assumed b would be changed every time
this expression is evaluated during execution (and the program’s correctness
depends on it), the program will fail.

In the C-based languages, the usual AND and OR operators, && and ||,
respectively, are short-circuit. However, these languages also have bitwise
AND and OR operators, & and |, respectively, that can be used on Boolean-
valued operands and are not short-circuit. Of course, the bitwise operators are
only equivalent to the usual Boolean operators if all operands are restricted to
being either 0 (for false) or 1 (for true).

All of the logical operators of Ruby, Perl, ML, F#, and Python are short--
circuit evaluated.

7.7 Assignment Statements
As we have previously stated, the assignment statement is one of the central
constructs in imperative languages. It provides the mechanism by which the
user can dynamically change the bindings of values to variables. In the
following section, the simplest form of assignment is discussed. Subsequent
sections describe a variety of alternatives.

7.7.1 Simple Assignments
Nearly all programming languages currently being used use the equal sign for
the assignment operator. All of these must use something different from an
equal sign for the equality relational operator to avoid confusion with their
assignment operator.

ALGOL 60 pioneered the use of := as the assignment operator, which avoids
the confusion of assignment with equality. Ada also uses this assignment
operator.

The design choices of how assignments are used in a language have varied
widely. In some languages, such as Fortran and Ada, an assignment can
appear only as a stand-alone statement, and the destination is restricted to a
single variable. There are, however, many alternatives.

7.7.2 Conditional Targets
Perl allows conditional targets on assignment statements. For example,
consider

($flag ? $count1 : $count2) = 0;

which is equivalent to

if ($flag) {

 $count1 = 0;

} else {

 $count2 = 0;

}

7.7.3 Compound Assignment
Operators
A compound assignment operator is a shorthand method of specifying a
commonly needed form of assignment. The form of assignment that can be
abbreviated with this technique has the destination variable also appearing as
the first operand in the expression on the right side, as in

a = a + b

Compound assignment operators were introduced by ALGOL 68, were later
adopted in a slightly different form by C, and are part of the other C-based
languages, as well as Perl, JavaScript, Python, and Ruby. The syntax of these
assignment operators is the catenation of the desired binary operator to the =
operator. For example,

sum += value;

is equivalent to

sum = sum + value;

The languages that support compound assignment operators have versions for
most of their binary operators.

7.7.4 Unary Assignment
Operators
The C-based languages, Perl, and JavaScript include two special unary

arithmetic operators that are actually abbreviated assignments. They combine
increment and decrement operations with assignment. The operators ++ for
increment and -- for decrement can be used either in expressions or to form
stand-alone single-operator assignment statements. They can appear either as
prefix operators, meaning that they precede the operands, or as postfix
operators, meaning that they follow the operands. In the assignment
statement

sum = ++ count;

the value of count is incremented by 1 and then assigned to sum. This
operation could also be stated as

count = count + 1;

sum = count;

If the same operator is used as a postfix operator, as in

sum = count ++;

the assignment of the value of count to sum occurs first; then count is
incremented. The effect is the same as that of the two statements

sum = count;

count = count + 1;

An example of the use of the unary increment operator to form a complete
assignment statement is

count ++;

which simply increments count. It does not look like an assignment, but it
certainly is one. It is equivalent to the statement

count = count + 1;

When two unary operators apply to the same operand, the association is right
to left. For example, in

- count ++

count is first incremented and then negated. So, it is equivalent to

- (count ++)

rather than

(- count) ++

7.7.5 Assignment as an Expression
In the C-based languages, Perl, and JavaScript, the assignment statement
produces a result, which is the same as the value assigned to the target. It can
therefore be used as an expression and as an operand in other expressions.
This design treats the assignment operator much like any other binary
operator, except that it has the side effect of changing its left operand. For
example, in C, it is common to write statements such as

while ((ch = getchar()) != EOF) { ... }

In this statement, the next character from the standard input file, usually the
keyboard, is gotten with getchar and assigned to the variable ch. The result,
or value assigned, is then compared with the constant EOF. If ch is not equal
to EOF, the compound statement {...} is executed. Note that the assignment
must be parenthesized—in the languages that support assignment as an
expression, the precedence of the assignment operator is lower than that of
the relational operators. Without the parentheses, the new character would be
compared with EOF first. Then, the result of that comparison, either 0 or 1,
would be assigned to ch.

The disadvantage of allowing assignment statements to be operands in
expressions is that it provides yet another kind of expression side effect. This
type of side effect can lead to expressions that are difficult to read and
understand. An expression with any kind of side effect has this disadvantage.
Such an expression cannot be read as an expression, which in mathematics is
a denotation of a value, but only as a list of instructions with an odd order of
execution. For example, the expression

a = b + (c = d / b) - 1

denotes the instructions

Assign d / b to c

Assign b + c to temp

Assign temp - 1 to a

Note that the treatment of the assignment operator as any other binary
operator allows the effect of multiple-target assignments, such as

sum = count = 0;

in which count is first assigned the zero, and then count’s value is assigned to
sum. This form of multiple-target assignments is also legal in Python.

There is a loss of error detection in the C design of the assignment operation
that frequently leads to program errors. In particular, if we type

if (x = y) ...

instead of

if (x == y) ...

which is an easily made mistake, it is not detectable as an error by the
compiler. Rather than testing a relational expression, the value that is
assigned to x is tested (in this case, it is the value of y that reaches this
statement). This is actually a result of two design decisions: allowing
assignment to behave like an ordinary binary operator and using two very
similar operators, = and ==, to have completely different meanings. This is
another example of the safety deficiencies of C and C++ programs. Note that
Java and C# allow only boolean expressions in their if statements,
disallowing this problem.

7.7.6 Multiple Assignments
Several recent programming languages, including Perl and Ruby provide

multiple-target, multiple-source assignment statements. For example, in Perl
one can write

($first, $second, $third) = (20, 40, 60);

The semantics is that 20 is assigned to $first, 40 is assigned to $second, and
60 is assigned to $third. If the values of two variables must be interchanged,
this can be done with a single assignment, as with

($first, $second) = ($second, $first);

This correctly interchanges the values of $first and $second, without the
use of a temporary variable (at least one created and managed by the
programmer).

history note
The PDP-11 computer, on which C was first implemented, has autoincrement
and autodecrement addressing modes, which are hardware versions of the
increment and decrement operators of C when they are used as array indices.
One might guess from this that the design of these C operators was based on
the design of the PDP-11 architecture. That guess would be wrong, however,
because the C operators were inherited from the B language, which was
designed before the first PDP-11.

The syntax of the simplest form of Ruby’s multiple assignment is similar to
that of Perl, except the left and right sides are not parenthesized. Also, Ruby
includes a few more elaborate versions of multiple assignments, which are
not discussed here.

7.7.7 Assignment in Functional
Programming Languages
All of the identifiers used in pure functional languages and some of them

used in other functional languages are just names of values. As such, their
values never change. For example, in ML, names are bound to values with
the val declaration, whose form is exemplified in the following:

val cost = quantity * price;

If cost appears on the left side of a subsequent val declaration, that
declaration creates a new version of the name cost, which has no relationship
with the previous version, which is then hidden.

F# has a somewhat similar declaration that uses the let reserved word. The
difference between F#’s let and ML’s val is that let creates a new scope,
whereas val does not. In fact, val declarations are often nested in let
constructs in ML. let and val are further discussed in Chapter 15.

7.8 Mixed-Mode Assignment
Mixed-mode expressions were discussed in Section 7.4.1. Frequently,
assignment statements also are mixed mode. The design question is: Does the
type of the expression have to be the same as the type of the variable being
assigned, or can coercion be used in some cases of type mismatch?

C, C++, and Perl use coercion rules for mixed-mode assignment that are
similar to those they use for mixed-mode expressions; that is, many of the
possible type mixes are legal, with coercion freely applied.7

7. Note that in Python and Ruby, types are associated with objects, not
variables, so there is no such thing as mixed-mode assignment in those
languages.

In a clear departure from C++, Java and C# allow mixed-mode assignment
only if the required coercion is widening.8 So, an int value can be assigned
to a float variable, but not vice versa. Disallowing half of the possible
mixed-mode assignments is a simple but effective way to increase the
reliability of Java and C#, relative to C and C++.

8. Not quite true: If an integer literal, which the compiler by default assigns
the type int, is assigned to a char, byte, or short variable and the literal is
in the range of the type of the variable, the int value is coerced to the type of
the variable in a narrowing conversion. This narrowing conversion cannot
result in an error.

Of course, in functional languages, where assignments are just used to name
values, there is no such thing as a mixed-mode assignment.

SUMMARY
Expressions consist of constants, variables, parentheses, function calls, and
operators. Assignment statements include target variables, assignment
operators, and expressions.

The semantics of an expression is determined in large part by the order of
evaluation of operators. The associativity and precedence rules for operators
in the expressions of a language determine the order of operator evaluation in
those expressions. Operand evaluation order is important if functional side
effects are possible. Type conversions can be widening or narrowing. Some
narrowing conversions produce erroneous values. Implicit type conversions,
or coercions, in expressions are common, although they eliminate the error--
detection benefit of type checking, thus lowering reliability.

Assignment statements have appeared in a wide variety of forms, including
conditional targets, assigning operators, and list assignments.

REVIEW QUESTIONS
1. Define operator precedence and operator associativity.

2. What is a ternary operator?

3. What is a prefix operator?

4. What operator usually has right associativity?

5. What is a nonassociative operator?

6. What associativity rules are used by APL?

7. What is the difference between the way operators are implemented in
C++ and Ruby?

8. Define functional side effect.

9. What is a coercion?

10. What is a conditional expression?

11. What is an overloaded operator?

12. Define narrowing and widening conversions.

13. In JavaScript, what is the difference between == and ===?

14. What is a mixed-mode expression?

15. What is referential transparency?

16. What are the advantages of referential transparency?

17. How does operand evaluation order interact with functional side effects?

18. What is short-circuit evaluation?

19. Name a language that always does short-circuit evaluation of Boolean
expressions. Name one that never does it.

20. How does C support relational and Boolean expressions?

21. What is the purpose of a compound assignment operator?

22. What is the associativity of C’s unary arithmetic operators?

23. What is one possible disadvantage of treating the assignment operator as
if it were an arithmetic operator?

24. What two languages include multiple assignments?

25. What mixed-mode assignments are allowed in Java?

26. What mixed-mode assignments are allowed in ML?

27. What is a cast?

PROBLEM SET
1. When might you want the compiler to ignore type differences in an

expression?

2. State your own arguments for and against allowing mixed-mode
arithmetic expressions.

3. Do you think the elimination of overloaded operators in your favorite
language would be beneficial? Why or why not?

4. Would it be a good idea to eliminate all operator precedence rules and
require parentheses to show the desired precedence in expressions? Why
or why not?

5. Should C’s assigning operations (for example, +=) be included in other
languages (that do not already have them)? Why or why not?

6. Should C’s single-operand assignment forms (for example, ++count) be
included in other languages (that do not already have them)? Why or
why not?

7. Describe a situation in which the add operator in a programming
language would not be commutative.

8. Describe a situation in which the add operator in a programming
language would not be associative.

9. Assume the following rules of associativity and precedence for
expressions:

Show the order of evaluation of the following expressions by
parenthesizing all subexpressions and placing a superscript on the right
parenthesis to indicate order. For example, for the expression

a + b * c + d

the order of evaluation would be represented as

((a + (b * c)1)2 + d)3

1. a * b - 1 + c

2. a * (b - 1) / c mod d

3. (a - b) / c & (d * e / a - 3)

4. -a or c = d and e

5. a > b xor c or d <= 17

6. -a + b

10. Show the order of evaluation of the expressions of Problem 9, assuming
that there are no precedence rules and all operators associate right to left.

11. Write a BNF description of the precedence and associativity rules
defined for the expressions in Problem 9. Assume the only operands are
the names a,b,c,d, and e.

12. Using the grammar of Problem 11, draw parse trees for the expressions
of Problem 9.

13. Let the function fun be defined as

int fun(int* k) {

 *k += 4;

 return 3 * (*k) - 1;

 }

Suppose fun is used in a program as follows:

void main() {

 int i = 10, j = 10, sum1, sum2;

 sum1 = (i / 2) + fun(&i);

 sum2 = fun(&j) + (j / 2);

}

What are the values of sum1 and sum2

1. operands in the expressions are evaluated left to right?

2. operands in the expressions are evaluated right to left?

14. What is your primary argument against (or for) the operator precedence
rules of APL?

15. Explain why it is difficult to eliminate functional side effects in C.

16. For some language of your choice, make up a list of operator symbols
that could be used to eliminate all operator overloading.

17. Determine whether the narrowing explicit type conversions in two
languages you know provide error messages when a converted value
loses its usefulness.

18. Should an optimizing compiler for C or C++ be allowed to
change the order of subexpressions in a Boolean expression? Why or
why not?

19. Consider the following C program:

int fun(int *i) {

 *i += 5;

 return 4;

}

void main() {

 int x = 3;

 x = x + fun(&x);

 }

What is the value of x after the assignment statement in main, assuming

1. operands are evaluated left to right.

2. operands are evaluated right to left.

20. Why does Java specify that operands in expressions are all evaluated in
left-to-right order?

21. Explain how the coercion rules of a language affect its error detection.

PROGRAMMING EXERCISES
1. Run the code given in Problem 13 (in the Problem Set) on some system

that supports C to determine the values of sum1 and sum2. Explain the
results.

2. Rewrite the program of Programming Exercise 1 in C++, Java, and C#,
run them, and compare the results.

3. Write a test program in your favorite language that determines and
outputs the precedence and associativity of its arithmetic and Boolean
operators.

4. Write a Java program that exposes Java’s rule for operand evaluation
order when one of the operands is a method call.

5. Repeat Programming Exercise 4 with C++.

6. Repeat Programming Exercise 4 with C#.

7. Write a program in either C++, Java, or C# that illustrates the order of
evaluation of expressions used as actual parameters to a method.

8. Write a C program that has the following statements:

int a, b;

a = 10;

b = a + fun();

printf("With the function call on the right, ");

printf(" b is: %d\n", b);

a = 10;

b = fun() + a;

printf("With the function call on the left, ");

printf(" b is: %d\n", b);

and define fun to add 10 to a. Explain the results.

9. Write a program in either Java, C++, or C# that performs a large number

of floating-point operations and an equal number of integer operations
and compare the time required.

8 Statement-Level Control
Structures

1. 8.1 Introduction

2. 8.2 Selection Statements

3. 8.3 Iterative Statements

4. 8.4 Unconditional Branching

5. 8.5 Guarded Commands

6. 8.6 Conclusions

The flow of control, or execution sequence, in a program can be examined at
several levels. In Chapter 7, the flow of control within expressions, which is -
governed by operator associativity and precedence rules, was discussed. At
the highest level is the flow of control among program units, which is
discussed in Chapters 9 and 13. Between these two extremes is the important
issue of the flow of control among statements, which is the subject of this
chapter.

We begin by giving an overview of the evolution of control statements. This
topic is followed by a thorough examination of selection statements, both
those for two-way and those for multiple selection. Next, we discuss the
variety of looping statements that have been developed and used in
programming languages. Next, we take a brief look at the problems
associated with unconditional branch statements. Finally, we describe the
guarded command control statements.

8.1 Introduction
Computations in imperative-language programs are accomplished by
evaluating expressions and assigning the resulting values to variables.
However, there are few useful programs that consist entirely of assignment
statements. At least two additional linguistic mechanisms are necessary to
make the computations in programs flexible and powerful: some means of
selecting among alternative control flow paths (of statement execution) and
some means of causing the repeated execution of statements or sequences of
statements. Statements that provide these kinds of capabilities are called
control statements.

Computations in functional programming languages are accomplished by
evaluating expressions and applying functions to given parameters.
Furthermore, the flow of execution among the expressions and functions is
controlled by other expressions and functions, although some of them are
similar to the control statements in the imperative languages.

The control statements of the first successful programming language, Fortran,
were, in effect, designed by the architects of the IBM 704. All were directly
related to machine language instructions, so their capabilities were more the
result of instruction design rather than language design. At the time, little was
known about the difficulty of programming, and, as a result, the control
statements of Fortran in the mid-1950s were thought to be entirely adequate.
By today’s standards, however, they are considered seriously lacking.

A great deal of research and discussion was devoted to control statements in
the 10 years between the mid-1960s and the mid-1970s. One of the primary
conclusions of these efforts was that, although a single control statement (a
selectable goto) is minimally sufficient, a language that is designed not to
include a goto needs only a small number of different control statements. In
fact, it was proven that all algorithms that can be expressed by flowcharts can
be coded in a programming language with only two control statements: one
for choosing between two control flow paths and one for logically controlled
iterations (Böhm and Jacopini, 1966). An important result of this is that the

unconditional branch statement is superfluous—potentially useful but
nonessential. This fact, combined with the practical problems of using
unconditional branches, or gotos, led to a great deal of debate about the goto,
as will be discussed in Section 8.4.

Programmers care less about the results of theoretical research on control
statements than they do about writability and readability. All languages that
have been widely used include more control statements than the two that are
minimally required, because writability is enhanced by a larger number and
wider variety of control statements. For example, rather than requiring the
use of a logically controlled loop statement for all loops, it is easier to write
programs when a counter-controlled loop statement can be used to build
loops that are naturally controlled by a counter. The primary factor that
restricts the number of control statements in a language is readability,
because the presence of a large number of statement forms demands that
program readers learn a larger language. Recall that few people learn all of
the statements of a relatively large language; instead, they learn the subset
they choose to use, which is often a different subset from that used by the
programmer who wrote the program they are trying to read. On the other
hand, too few control statements can require the use of lower-level
statements, such as the goto, which also makes programs less readable.

The question as to the best collection of control statements to provide the
required capabilities and the desired writability has been widely debated. It is
essentially a question of how much a language should be expanded to
increase its writability at the expense of its simplicity, size, and readability.

A control structure is a control statement and the collection of statements
whose execution it controls.

There is only one design issue that is relevant to all of the selection and
iteration control statements: Should the control structure have multiple
entries? All selection and iteration constructs control the execution of code
segments, and the question is whether the execution of those code segments
always begins with the first statement in the segment. It is now generally
believed that multiple entries add little to the flexibility of a control
statement, relative to the decrease in readability caused by the increased
complexity. Note that multiple entries are possible only in languages that

include gotos and statement labels.

At this point, the reader might wonder why multiple exits from control
structures are not considered a design issue. The reason is that all
programming languages allow some form of multiple exits from control
structures, the rationale being as follows: If all exits from a control structure
are restricted to transferring control to the first statement following the
structure, where control would flow if the control structure had no explicit
exit, there is no harm to readability and also no danger. However, if an exit
can have an unrestricted target and therefore can result in a transfer of control
to anywhere in the program unit that contains the control structure, the harm
to readability is the same as for a goto statement anywhere else in a program.
Languages that have a goto statement allow it to appear anywhere, including
in a control structure. Therefore, the issue is the inclusion of a goto, not
whether multiple exits from control expressions are allowed.

8.2 Selection Statements
A selection statement provides the means of choosing between two or more
execution paths in a program. Such statements are fundamental and essential
parts of all programming languages, as was proven by Böhm and Jacopini.

Selection statements fall into two general categories: two-way and n-way, or
multiple selection. Two-way selection statements are discussed in
Section 8.2.1; multiple-selection statements are covered in Section 8.2.2.

8.2.1 Two-Way Selection
Statements
Although the two-way selection statements of contemporary imperative
languages are quite similar, there are some variations in their designs. The
general form of a two-way selector is as follows:

if control_expression

   then clause

   else clause

8.2.1.1 Design Issues
The design issues for two-way selectors can be summarized as follows:

What is the form and type of the expression that controls the selection?

How are the then and else clauses specified?

How should the meaning of nested selectors be specified?

8.2.1.2 The Control Expression
Control expressions are specified in parentheses if the then reserved word (or
some other syntactic marker) is not used to introduce the then clause. In those
cases where the then reserved word (or alternative marker) is used, there is
less need for the parentheses, so they are often omitted, as in Ruby.

In C89, which did not have a Boolean data type, arithmetic expressions were
used as control expressions. This can also be done in Python, C99, and C++.
However, in those languages either arithmetic or Boolean expressions can be
used. In other contemporary languages, only Boolean expressions can be
used for control expressions.

8.2.1.3 Clause Form
In many languages, the then and else clauses appear as either single
statements or compound statements. One variation of this is Perl, in which all
then and else clauses must be compound statements, even if they have only
one statement. Many languages use braces to form compound statements,
which serve as the bodies of then and else clauses. In Python and Ruby, the
then and else clauses are statement sequences, rather than compound
statements. The complete selection statement is terminated in these languages
with a reserved word.

Python uses indentation to specify compound statements. For example,

if x > y :

 x = y

 print "case 1"

All statements equally indented are included in the compound statement.1
Notice that rather than then, a colon is used to introduce the then clause in
Python.

1. The statement following the compound statement must have the same
indentation as the if.

The variations in clause form have implications for the specification of the
meaning of nested selectors, as discussed in the next subsection.

8.2.1.4 Nesting Selectors
Recall that in Chapter 3, we discussed the problem of syntactic ambiguity of
a straightforward grammar for a two-way selector statement. That ambiguous
grammar was as follows:

<if_stmt> → if <logic_expr> then <stmt>

           | if <logic_expr> then <stmt> else <stmt>

The issue is that when a selection statement is nested in the then clause of a
selection statement, it is not clear with which if an else clause should be
associated. This problem is reflected in the semantics of selection statements.
Consider the following Java-like code:

if (sum == 0)

 if (count == 0)

 result = 0;

else

 result = 1;

This statement can be interpreted in two different ways, depending on
whether the else clause is matched with the first then clause or the second.
Notice that the indentation seems to indicate that the else clause belongs with
the first then clause. However, with the exceptions of Python and F#,
indentation has no effect on semantics in contemporary languages and is
therefore ignored by their compilers.

The crux of the problem in this example is that the else clause follows two
then clauses with no intervening else clause, and there is no syntactic
indicator to specify a matching of the else clause to one of the then clauses.
In Java, as in many other imperative languages, the static semantics of the
language specify that the else clause is always paired with the nearest
previous unpaired then clause. A static semantics rule, rather than a syntactic
entity, is used to provide the disambiguation. So, in the example, the else

clause would be paired with the second then clause. The disadvantage of
using a rule rather than some syntactic entity is that although the programmer
may have meant the else clause to be the alternative to the first then clause
and the compiler found the structure syntactically correct, its semantics is the
opposite. To force the alternative semantics in Java, the inner if is put in a
compound, as in

if (sum == 0) {

 if (count == 0)

 result = 0;

}

else

 result = 1;

C, C++, and C# have the same problem as Java with selection statement
nesting. Because Perl requires that all then and else clauses be compound, it
does not. In Perl, the previous code would be written as follows:

if (sum == 0) {

 if (count == 0) {

 result = 0;

 }

} else {

 result = 1;

}

If the alternative semantics were needed, it would be

if (sum == 0) {

 if (count == 0) {

 result = 0;

 }

 else {

 result = 1;

 }

}

Another way to avoid the issue of nested selection statements is to use an
alternative means of forming compound statements. Consider the syntactic
structure of the Java if statement. The then clause follows the control
expression and the else clause is introduced by the reserved word else. When
the then clause is a single statement and the else clause is present, although

there is no need to mark the end, the else reserved word in fact marks the
end of the then clause. When the then clause is a compound, it is terminated
by a right brace. However, if the last clause in an if, whether then or else, is
not a compound, there is no syntactic entity to mark the end of the whole
selection statement. The use of a special word for this purpose resolves the
question of the semantics of nested selectors and also adds to the readability
of the statement. This is the design of the selection statement in Ruby. For
example, consider the following Ruby statement:

if a > b then sum = sum + a

 acount = acount + 1

else sum = sum + b

 bcount = bcount + 1

end

The design of this statement is more regular than that of the selection
statements of the C-based languages, because the form is the same regardless
of the number of statements in the then and else clauses. (This is also true for
Perl.) Recall that in Ruby, the then and else clauses consist of statement
sequences rather than compound statements. The first interpretation of the
selector example at the beginning of this section, in which the else clause is
matched to the nested if, can be written in Ruby as follows:

if sum == 0 then

 if count == 0 then

 result = 0

 else

 result = 1

 end

end

Because the end reserved word closes the nested if, it is clear that the else
clause is matched to the inner then clause.

The second interpretation of the selection statement at the beginning of this
section, in which the else clause is matched to the outer if, can be written in
Ruby as follows:

if sum == 0 then

 if count == 0 then

 result = 0

 end

else

 result = 1

 end

The following statement, written in Python, is semantically equivalent to the
last Ruby statement above:

if sum == 0 :

 if count == 0 :

 result = 0

else:

 result = 1

If the line else: were indented to begin in the same column as the nested if,
the else clause would be matched with the inner if.

ML does not have a problem with nested selectors because it does not allow
else-less if statements.

8.2.1.5 Selector Expressions
In the functional languages ML, F#, and LISP, the selector is not a statement;
it is an expression that results in a value. Therefore, it can appear anywhere
any other expression can appear. Consider the following example selector
written in F#:

let y =

 if x > 0 then x

 else 2 * x;;

This creates the name y and sets it to either x or 2 * x, depending on whether
x is greater than zero.

In F#, the type of the value returned by the then clause of an if construct
must be the same as that of the value returned by its else clause. If there is no
else clause, the then clause cannot return a value of a normal type. In this
case, it can only return a unit type, which is a special type that means no
value. A unit type is represented in code as ().

8.2.2 Multiple-Selection
Statements
The multiple-selection statement allows the selection of one of any number
of statements or statement groups. It is, therefore, a generalization of a
selector. In fact, two-way selectors can be built with a multiple selector.

The need to choose from among more than two control paths in programs is
common. Although a multiple selector can be built from two-way selectors
and gotos, the resulting structures are cumbersome, unreliable, and difficult
to write and read. Therefore, the need for a special structure is clear.

8.2.2.1 Design Issues
Some of the design issues for multiple selectors are similar to some of those
for two-way selectors. For example, one issue is the question of the type of
expression on which the selector is based. In this case, the range of
possibilities is larger, in part because the number of possible selections is
larger. A two-way selector needs an expression with only two possible
values. Another issue is whether single statements, compound statements, or
statement sequences may be selected. Next, there is the question of whether
only a single selectable segment can be executed when the statement is
executed. This is not an issue for two-way selectors, because they always
allow only one of the clauses to be on a control path during one execution. As
we shall see, the resolution of this issue for multiple selectors is a trade-off
between reliability and flexibility. Another issue is the form of the case value
specifications. Finally, there is the issue of what should result from the
selector expression evaluating to a value that does not select one of the
segments. (Such a value would be unrepresented among the selectable
segments.) The choice here is between simply disallowing the situation from
arising and having the statement do nothing at all when it does arise.

The following is a summary of these design issues:

What is the form and type of the expression that controls the selection?

How are the selectable segments specified?

Is execution flow through the structure restricted to include just a single
selectable segment?

How are the case values specified?

How should unrepresented selector expression values be handled, if at
all?

8.2.2.2 Examples of Multiple
Selectors
The C multiple-selector statement, switch, which is also part of C++, Java,
and JavaScript, is a relatively primitive design. Its general form is

switch (expression) {

 case constant_ expression1: statement1;

 . . .

 case constantn: statement_n;

 [default: statementn+1]

}

where the control expression and the constant expressions are some discrete
type. This includes integer types, as well as characters and enumeration
types. The selectable statements can be statement sequences, compound
statements, or blocks. The optional default segment is for unrepresented
values of the control expression. If the value of the control expression is not
represented and no default segment is present, then the statement does

nothing.

The switch statement does not provide implicit branches at the end of its
code segments. This allows control to flow through more than one selectable
code segment on a single execution. Consider the following example:

switch (index) {

 case 1:

 case 3: odd += 1;

 sumodd += index;

 case 2:

 case 4: even += 1;

 sumeven += index;

 default: printf("Error in switch, index = %d\n", index);

}

This code prints the error message on every execution. Likewise, the code for
the 2 and 4 constants is executed every time the code at the 1 or 3 constants is
executed. To separate these segments logically, an explicit branch must be
included. The break statement, which is actually a restricted goto, is
normally used for exiting switch statements. break transfers control to the
first statement after the compound statement in which it appears.

The following switch statement uses break to restrict each execution to a
single selectable segment:

switch (index) {

 case 1:

 case 3: odd += 1;

 sumodd += index;

 break;

 case 2:

 case 4: even += 1;

 sumeven += index;

 break;

 default: printf("Error in switch, index = %d\n", index);

}

Occasionally, it is convenient to allow control to flow from one selectable
code segment to another. For example, in the example above, the segments
for the case values 1 and 2 are empty, allowing control to flow to the
segments for 3 and 4, respectively. This is the reason why there are no

implicit branches in the switch statement. The reliability problem with this
design arises when the mistaken absence of a break statement in a segment
allows control to flow to the next segment incorrectly. The designers of C’s
switch traded a decrease in reliability for an increase in flexibility. Studies
have shown, however, that the ability to have control flow from one
selectable segment to another is rarely used. C’s switch is modeled on the
multiple-selection statement in ALGOL 68, which also does not have implicit
branches from selectable segments.

The C switch statement has virtually no restrictions on the placement of the
case expressions, which are treated as if they were normal statement labels.
This laxness can result in highly complex structure within the switch body.
The following example is taken from Harbison and Steele (2002).

switch (x)

 default:

 if (prime(x))

 case 2: case 3: case 5: case 7:

 process_prime(x);

 else

 case 4: case 6: case 8: case 9: case 10:

 process_composite(x);

This code may appear to have diabolically complex form, but it was designed
for a real problem and works correctly and efficiently to solve that problem.2

2. The problem is to call process_prime when x is prime and
process_composite when x is not prime. The design of the switch body
resulted from an attempt to optimize based on the knowledge that x was most
often in the range of 1 to 10.

The Java switch prevents this sort of complexity by disallowing case
expressions from appearing anywhere except the top level of the body of the
switch.

The C# switch statement differs from that of its C-based predecessors in two
ways. First, C# has a static semantics rule that disallows the implicit
execution of more than one segment. The rule is that every selectable
segment must end with an explicit unconditional branch statement: either a
break, which transfers control out of the switch statement, or a goto, which

can transfer control to one of the selectable segments (or virtually anywhere
else). For example,

switch (value) {

 case -1:

 Negatives++;

 break;

 case 0:

 Zeros++;

 goto case 1;

 case 1:

 Positives++;

 default:

 Console.WriteLine("Error in switch \n");

}

Note that Console.WriteLine is the method for displaying strings in C#.

The other way C#’s switch differs from that of its predecessors is that the
control expression and the case statements can be strings in C#.

PHP’s switch uses the syntax of C’s switch but allows more type flexibility.
The case values can be any of the PHP scalar types—string, integer, or
double precision. As with C, if there is no break at the end of the selected
segment, execution continues into the next segment.

Ruby has two forms of multiple-selection constructs, both of which are called
case expressions and both of which yield the value of the last expression
evaluated. The only version of Ruby’s case expressions that is described here
is semantically similar to a list of nested if statements:

case

when Boolean_expression then expression

. . .

when Boolean_expression then expression

[else expression]

end

The semantics of this case expression is that the Boolean expressions are
evaluated one at a time, top to bottom. The value of the case expression is the
value of the first then expression whose Boolean expression is true. The else
represents true in this statement, and the else clause is optional. For

example,3

3. This example is from Thomas et al. (2013).

leap = case

 when year % 400 == 0 then true

 when year % 100 == 0 then false

 else year % 4 == 0

 end

This case expression evaluates to true if year is a leap year.

The other Ruby case expression form is similar to the switch of Java. Perl and
Python do not have multiple-selection statements.

8.2.2.3 Implementing Multiple
Selection Structures
A multiple selection statement is essentially an n-way branch to segments of
code, where n is the number of selectable segments. Implementing such a
statement must be done with multiple conditional branch instructions.
Consider again the general form of the C switch statement, with breaks:

switch (expression) {

 case constant_expression1: statement1;

  break;

 . . .

 case constantn: statementn;

  break;

 [default: statementn+1]

}

One simple translation of this statement follows:

Code to evaluate expression into t

goto branches

label1 : code for statement1

         goto out

 . . .

labeln : code for statementn

         goto out

default: code for statementn+1

         goto out

branches: if t = constant_expression1 goto label1

          . . .

          if t = constant_expressionn goto labeln

          goto default

out:

The code for the selectable segments precedes the branches so that the targets
of the branches are all known when the branches are generated. An
alternative to these coded conditional branches is to put the case values and
labels in a table and use a linear search with a loop to find the correct label.
This requires less space than the coded conditionals.

The use of conditional branches or a linear search on a table of cases and

labels is a simple but inefficient approach that is acceptable when the number
of cases is small, say less than 10. It takes an average of about half as many
tests as there are cases to find the right one. For the default case to be chosen,
all other cases must be tested. In statements with 10 or more cases, the low
efficiency of this form is not justified by its simplicity.

When the number of cases is 10 or greater, the compiler can build a hash
table of the segment labels, which would result in approximately equal (and
short) times to choose any of the selectable segments. If the language allows
ranges of values for case expressions, as in Ruby, the hash method is not
suitable. For these situations, a binary search table of case values and
segment addresses is better.

If the range of the case values is relatively small and more than half of the
whole range of values is represented, an array whose indices are the case
values and whose values are the segment labels can be built. Array elements
whose indices are not among the represented case values are filled with the
default segment’s label. Then finding the correct segment label is found by
array indexing, which is very fast.

Of course, choosing among these approaches is an additional burden on the
compiler. In many compilers, only two different methods are used. As in
other situations, determining and using the most efficient method costs more
compiler time.

8.2.2.4 Multiple Selection Using if
In many situations, a switch or case statement is inadequate for multiple
selection (Ruby’s case is an exception). For example, when selections must
be made on the basis of a Boolean expression rather than some ordinal type,
nested two-way selectors can be used to simulate a multiple selector. To
alleviate the poor readability of deeply nested two-way selectors, some
languages, such as Perl and Python, have been extended specifically for this
use. The extension allows some of the special words to be left out. In
particular, else-if sequences are replaced with a single special word, and the
closing special word on the nested if is dropped. The nested selector is then

called an else-if clause. Consider the following Python selector statement
(note that else-if is spelled elif in Python):

if count < 10 :

 bag1 = True

elif count < 100 :

 bag2 = True

elif count < 1000 :

 bag3 = True

which is equivalent to the following:

if count < 10 :

 bag1 = True

else :

 if count < 100 :

 bag2 = True

 else :

 if count < 1000 :

 bag3 = True

 else :

 bag4 = True

The else-if version (the first) is the more readable of the two. Notice that this
example is not easily simulated with a switch statement, because each
selectable statement is chosen on the basis of a Boolean expression.
Therefore, the else-if statement is not a redundant form of switch. In fact,
none of the multiple selectors in contemporary languages are as general as the
if-then-else-if statement. An operational semantics description of a general
selector statement with else-if clauses, in which the E’s are logic expressions
and the S’s are statements, is given here:

  if E1 goto 1

  if E2 goto 2

  . . .

1: S1

goto out

2: S2

goto out

. . .

out: . . .

From this description, we can see the difference between multiple selection
structures and else-if statements: In a multiple selection statement, all the E’s
would be restricted to comparisons between the value of a single expression
and some other values.

Languages that do not include the else-if statement can use the same control
structure, with only slightly more typing.

The Python example if-then-else-if statement above can be written as the
Ruby case statement:

case

when count < 10 then bag1 = true

when count < 100 then bag2 = true

when count < 1000 then bag3 = true

end

Else-if statements are based on the common mathematics statement, the
conditional expression.

The Scheme multiple selector, which is based on mathematical conditional
expressions, is a special form function named COND. COND is a slightly
generalized version of the mathematical conditional expression; it allows
more than one predicate to be true at the same time. Because different
mathematical conditional expressions have different numbers of parameters,
COND does not require a fixed number of actual parameters. Each parameter to
COND is a pair of expressions in which the first is a predicate (it evaluates to
either #T or #F).

The general form of COND is

 (COND

  (predicate1 expression1)

  (predicate2 expression2)

  . . .

  (predicaten expressionn)

  [(ELSE expressionn+1)]

)

where the ELSE clause is optional.

The semantics of COND is as follows: The predicates of the parameters are
evaluated one at a time, in order from the first, until one evaluates to #T. The
expression that follows the first predicate that is found to be #T is then
evaluated and its value is returned as the value of COND. If none of the
predicates is true and there is an ELSE, its expression is evaluated and the
value is returned. If none of the predicates is true and there is no ELSE, the
value of COND is unspecified. Therefore, all CONDs should include an ELSE.

Consider the following example call to COND:

 (COND

 ((> x y) "x is greater than y")

 ((< x y) "y is greater than x")

 (ELSE "x and y are equal")

)

Note that string literals evaluate to themselves, so that when this call to COND
is evaluated, it produces a string result.

8.3 Iterative Statements
An iterative statement is one that causes a statement or collection of
statements to be executed zero, one, or more times. An iterative statement is
often called a loop. Every programming language from Plankalkül on has
included some method of repeating the execution of segments of code.
Iteration is the very essence of the power of the computer. If some means of
repetitive execution of a statement or collection of statements were not
possible, programmers would be required to state every action in sequence;
useful programs would be huge and inflexible and take unacceptably large
amounts of time to write and mammoth amounts of memory to store.

The first iterative statements in programming languages were directly related
to arrays. This resulted from the fact that in the earliest years of computers,
computing was largely numerical in nature, frequently using loops to process
data in arrays.

Several categories of iteration control statements have been developed. The
primary categories are defined by how designers answered two basic design
questions:

How is the iteration controlled?

Where should the control mechanism appear in the loop statement?

The primary possibilities for iteration control are logical, counting, or a
combination of the two. The main choices for the location of the control
mechanism are the top of the loop or the bottom of the loop. Top and bottom
here are logical, rather than physical, denotations. The issue is not the
physical placement of the control mechanism; rather, it is whether the
mechanism is executed and affects control before or after execution of the
statement’s body. A third option, which allows the user to decide where to
put the control, at the top, at the bottom, or even within the controlled
segment, is discussed in Section 8.3.3.

The body of an iterative statement is the collection of statements whose
execution is controlled by the iteration statement. We use the term pretest to
mean that the test for loop completion occurs before the loop body is
executed and posttest to mean that it occurs after the loop body is executed.
The iteration statement and the associated loop body together form an
iteration statement.

8.3.1 Counter-Controlled Loops
A counting iterative control statement has a variable, called the loop
variable, in which the count value is maintained. It also includes some means
of specifying the initial and terminal values of the loop variable, and the
difference between sequential loop variable values, often called the stepsize.
The initial, terminal, and stepsize specifications of a loop are called the loop
parameters.

Although logically controlled loops are more general than counter-controlled
loops, they are not necessarily more commonly used. Because counter-
controlled loops are more complex, their design is more demanding.

Counter-controlled loops are sometimes supported by machine instructions
designed for that purpose. Unfortunately, machine architecture can outlive
the prevailing approaches to programming at the time of the architecture
design. For example, VAX computers have a very convenient instruction for
the implementation of posttest counter-controlled loops, which Fortran had at
the time of the design of the VAX (mid-1970s). But Fortran no longer had
such a loop by the time VAX computers became widely used (it had been
replaced by a pretest loop). Furthermore, no other widely used language of
the time had a posttest counting loop.

8.3.1.1 Design Issues
There are many design issues for iterative counter-controlled statements. The
nature of the loop variable and the loop parameters provide a number of

design issues. The type of the loop variable and that of the loop parameters
obviously should be the same or at least compatible, but what types should be
allowed? One apparent choice is integer, but what about enumeration,
character, and floating-point types? Another question is whether the loop
variable is a normal variable, in terms of scope, or whether it should have
some special scope. Allowing the user to change the loop variable or the loop
parameters within the loop can lead to code that is very difficult to
understand, so another question is whether the additional flexibility that
might be gained by allowing such changes is worth that additional
complexity. A similar question arises about the number of times and the
specific time when the loop parameters are evaluated: If they are evaluated
just once, loops are simple but less flexible. Finally, what is the value of the
loop variable after loop termination, if its scope extends beyond the loop?

The following is a summary of these design issues:

What are the type and scope of the loop variable?

Should it be legal for the loop variable or loop parameters to be changed
in the loop, and if so, does the change affect loop control?

Should the loop parameters be evaluated only once, or once for every
iteration?

What is the value of the loop variable after loop termination?

The issue of the value of the loop variable after loop termination is solved in
some languages, such as Fortran 90, by making the loop variable undefined
after loop termination. Other languages, such as Ada, make the scope of the
loop variable the loop itself.

8.3.1.2 The for Statement of the C-
Based Languages
The general form of C’s for statement is

for (expression_1; expression_2; expression_3)

 loop body

The loop body can be a single statement, a compound statement, or a null
statement.

Because assignment statements in C produce results and thus can be
considered expressions, the expressions in a for statement are often
assignment statements. The first expression is for initialization and is
evaluated only once, when the for statement execution begins. The second
expression is the loop control and is evaluated before each execution of the
loop body. As is usual in C, a zero value means false and all nonzero values
mean true. Therefore, if the value of the second expression is zero, the for is
terminated; otherwise, the loop body statements are executed. In C99, the
expression also could be a Boolean type. A C99 Boolean type stores only the
values 0 or 1. The last expression in the for is executed after each execution
of the loop body. It is often used to increment the loop counter. An
operational semantics description of the C for statement is shown next.
Because C expressions can be used as statements, expression evaluations are
shown as statements.

    expression_1

loop:

    if expression_2 = 0 goto out

    [loop body]

    expression_3

    goto loop

out: . . .

Following is an example of a skeletal C for statement:

for (count = 1; count <= 10; count++)

 . . .

}

All of the expressions of C’s for are optional. An absent second expression is
considered true, so a for without one is potentially an infinite loop. If the first
and/or third expressions are absent, no assumptions are made. For example, if
the first expression is absent, it simply means that no initialization takes
place.

Note that C’s for need not count. It can easily model counting and logical
loop structures, as demonstrated in the next section.

The C for design choices are the following: There is no explicit loop variable
and no loop parameters. All involved variables can be changed in the loop
body. The expressions are evaluated in the order stated previously. Although
it can create havoc, it is legal to branch into a C for loop body.

C’s for is one of the most flexible, because each of the expressions can
comprise multiple expressions, which in turn allow multiple loop variables
that can be of any type. When multiple expressions are used in a single
expression of a for statement, they are separated by commas. All C
statements have values, and this form of multiple expression is no exception.
The value of such a multiple expression is the value of the last component.

Consider the following for statement:

for (count1 = 0, count2 = 1.0;

 count1 <= 10 && count2 <= 100.0;

 sum = ++count1 + count2, count2 *= 2.5);

The operational semantics description of this is

    count1 = 0

    count2 = 1.0

loop:

    if count1 > 10 goto out

    if count2 > 100.0 goto out

    count1 = count1 + 1

    sum = count1 + count2

    count2 = count2 * 2.5

    goto loop

out: . . .

The example C for statement does not need and thus does not have a loop
body. All the desired actions are part of the for statement itself, rather than in
its body. The first and third expressions are multiple statements. In both of
these cases, the whole expression is evaluated, but the resulting value is not
used in the loop control.

The for statement of C99 and C++ differs from that of earlier versions of C
in two ways. First, in addition to an arithmetic expression, it can use a
Boolean expression for loop control. Second, the first expression can include
variable definitions. For example,

for (int count = 0; count < len; count++) { . . . }

The scope of a variable defined in the for statement is from its definition to
the end of the loop body.

The for statement of Java and C# is like that of C++, except that the loop
control expression is restricted to boolean.

In all of the C-based languages, the last two loop parameters are evaluated
with every iteration. Furthermore, variables that appear in the loop parameter
expression can be changed in the loop body. Therefore, these loops can be
complex and potentially unreliable.

8.3.1.3 The for Statement of Python

The general form of Python’s for is

for loop_variable in object:

 - loop body

[else:

 - else clause]

The loop variable is assigned the value in the object, which is often a range,
one for each execution of the loop body. After loop termination, the loop
variable has the value last assigned to it. The loop variable can be changed in
the loop body, but such a change has no effect on loop operation. The else
clause, when present, is executed if the loop terminates normally.

Consider the following example:

for count in [2, 4, 6]:

 print count

produces

2

4

6

For most simple counting loops in Python, the range function is used. range
takes one, two, or three parameters. The following examples demonstrate the
actions of range:

range(5) returns [0, 1, 2, 3, 4]

range(2, 7) returns [2, 3, 4, 5, 6]

range(0, 8, 2) returns [0, 2, 4, 6]

Note that range never returns the highest value in a given parameter range.

8.3.1.4 Counter-Controlled Loops in

Functional Languages
Counter-controlled loops in imperative languages use a counter variable, but
such variables do not exist in pure functional languages. Rather than iteration
to control repetition, functional languages use recursion. Rather than a
statement, functional languages use a recursive function. Counting loops can
be simulated in functional languages as follows: The counter can be a
parameter for a function that repeatedly executes the loop body, which can be
specified in a second function sent to the loop function as a parameter. So,
such a loop function takes the body function and the number of repetitions as
parameters.

The general form of an F# function for simulating counting loops, named
forLoop in this case, is as follows:

let rec forLoop loopBody reps =

 if reps <= 0 then

 ()

 else

 loopBody()

 forLoop loopBody, (reps - 1);;

In this function, the parameter loopBody is the function with the body of the
loop and the parameter reps is the number of repetitions. The reserved word
rec appears before the name of the function to indicate that it is recursive.
The empty parentheses do nothing; they are there because in F# an empty
statement is illegal and every if must have an else clause.

8.3.2 Logically Controlled Loops
In many cases, collections of statements must be repeatedly executed, but the
repetition control is based on a Boolean expression rather than a counter. For
these situations, a logically controlled loop is convenient. Actually, logically
controlled loops are more general than counter-controlled loops. Every
counting loop can be built with a logical loop, but the reverse is not true.
Also, recall that only selection and logical loops are essential to express the

control structure of any flowchart.

8.3.2.1 Design Issues
Because they are much simpler than counter-controlled loops, logically
controlled loops have fewer design issues.

Should the control be pretest or posttest?

Should the logically controlled loop be a special form of a counting loop
or a separate statement?

8.3.2.2 Examples
The C-based programming languages include both pretest and posttest
logically controlled loops that are not special forms of their counter-
controlled iterative statements. The pretest and posttest logical loops have the
following forms:

while (control_expression)

 loop body

and

do

 loop body

while (control_expression);

These two statement forms are exemplified by the following C# code
segments:

sum = 0;

indat = Int32.Parse(Console.ReadLine());

while (indat >= 0) {

 sum += indat;

 indat = Int32.Parse(Console.ReadLine());

}

value = Int32.Parse(Console.ReadLine());

do {

 value /= 10;

 digits ++;

} while (value > 0);

Note that all variables in these examples are integer type. The ReadLine
method of the Console object gets a line of text from the keyboard.
Int32.Parse finds the number in its string parameter, converts it to int type,
and returns it.

In the pretest version of a logical loop (while), the statement or statement
segment is executed as long as the expression evaluates to true. In the posttest
version (do), the loop body is executed until the expression evaluates to false.
In both cases, the statement can be compound. The operational semantics
descriptions of those two statements follow:

while

loop:

 if control_expression is false goto out

 [loop body]

  goto loop

out: . . .

do-while

loop:

  [loop body]

  if control_expression is true goto loop

It is legal in both C and C++ to branch into both while and do loop bodies.
The C89 version uses an arithmetic expression for control; in C99 and C++, it
may be either arithmetic or Boolean.

Java’s while and do statements are similar to those of C and C++, except the
control expression must be boolean type, and because Java does not have a
goto, the loop bodies cannot be entered anywhere except at their beginnings.

Posttest loops are infrequently useful and also can be somewhat dangerous, in
the sense that programmers sometimes forget that the loop body will always
be executed at least once. The syntactic design of placing a posttest control
physically after the loop body, where it has its semantic effect, helps avoid
such problems by making the logic clear.

A pretest logical loop can be simulated in a purely functional form with a
recursive function that is similar to the one used to simulate a counting loop
statement in Section 8.3.1.5. In both cases, the loop body is written as a
function. Following is the general form of a simulated logical pretest loop,
written in F#:

let rec whileLoop test body =

 if test() then

 body()

 whileLoop test body

 else

 ();;

8.3.3 User-Located Loop Control
Mechanisms
In some situations, it is convenient for a programmer to choose a location for
loop control other than the top or bottom of the loop body. As a result, some
languages provide this capability. A syntactic mechanism for user-located
loop control can be relatively simple, so its design is not difficult. Such loops
have the structure of infinite loops but include one or more user-located loop
exits. Perhaps the most interesting question is whether a single loop or

several nested loops can be exited. The design issues for such a mechanism
are the following:

Should the conditional mechanism be an integral part of the exit?

Should only one loop body be exited, or can enclosing loops also be
exited?

C, C++, Python, Ruby, and C# have unconditional unlabeled exits (break).
Java and Perl have unconditional labeled exits (break in Java, last in Perl).

Following is an example of nested loops in Java, in which there is a break out
of the outer loop from the nested loop:

outerLoop:

 for (row = 0; row < numRows; row++)

 for (col = 0; col < numCols; col++) {

 sum += mat[row][col];

 if (sum > 1000.0)

 break outerLoop;

 }

C, C++, and Python include an unlabeled control statement, continue, that
transfers control to the control mechanism of the smallest enclosing loop.
This is not an exit but rather a way to skip the rest of the loop statements on
the current iteration without terminating the loop construct. For example,
consider the following:

while (sum < 1000) {

 getnext(value);

 if (value < 0) continue;

 sum += value;

}

A negative value causes the assignment statement to be skipped, and control
is transferred instead to the conditional at the top of the loop. On the other
hand, in

while (sum < 1000) {

 getnext(value);

 if (value < 0) break;

 sum += value;

}

a negative value terminates the loop.

Both last and break provide for multiple exits from loops, which may seem
to be somewhat of a hindrance to readability. However, unusual conditions
that require loop termination are so common that such a statement is justified.
Furthermore, readability is not seriously harmed, because the target of all
such loop exits is the first statement after the loop (or an enclosing loop)
rather than just anywhere in the program. Finally, the alternative of using
multiple breaks to leave more than one level of loops is even more
detrimental to readability.

The motivation for user-located loop exits is simple: They fulfill a common
need for goto statements using a highly restricted branch statement. The
target of a goto can be many places in the program, both above and below the
goto itself. However, the targets of user-located loop exits must be below the
exit and can only follow immediately at the end of a compound statement.

8.3.4 Iteration Based on Data
Structures
A general data-based iteration statement uses a user-defined data structure
and a user-defined function (the iterator) to go through the structure’s
elements. The iterator is called at the beginning of each iteration, and each
time it is called, the iterator returns an element from a particular data
structure in some specific order. For example, suppose a program has a user-
defined binary tree of data nodes, and the data in each node must be
processed in some particular order. A user-defined iteration statement for the
tree would successively set the loop variable to point to the nodes in the tree,
one for each iteration. The initial execution of the user-defined iteration
statement needs to issue a special call to the iterator to get the first tree
element. The iterator must always remember which node it presented last so
that it visits all nodes without visiting any node more than once. So an
iterator must be history sensitive. A user-defined iteration statement

terminates when the iterator fails to find more elements.

The for statement of the C-based languages, because of its great flexibility,
can be used to simulate a user-defined iteration statement. Once again,
suppose the nodes of a binary tree are to be processed. If the tree root is
pointed to by a variable named root, and if traverse is a function that sets
its parameter to point to the next element of a tree in the desired order, the
following could be used:

for (ptr = root; ptr == null; ptr = traverse(ptr)) {

 . . .

}

In this statement, traverse is the iterator.

User-defined iteration statements are more important in object-oriented
programming than they were in earlier software development paradigms,
because users of object-oriented programming routinely use abstract data
types for data structures, especially collections. In such cases, a user-defined
iteration statement and its iterator must be provided by the author of the data
abstraction because the representation of the objects of the type is not known
to the user.

An enhanced version of the for statement was added to Java in Java 5.0. This
statement simplifies iterating through the values in an array or objects in a
collection that implements the Iterable interface. (All of the predefined
generic collections in Java implement Iterable.) For example, if we had an
ArrayList4 collection named myList of strings, the following statement
would iterate through all of its elements, setting each to myElement:

4. An ArrayList is a predefined generic collection that is actually a dynamic-
length array of whatever type it is declared to store.

for (String myElement : myList) { . . . }

This new statement is referred to as “foreach,” although its reserved word is
for.

C# and F# (and the other .NET languages) also have generic library classes

for collections. For example, there are generic collection classes for lists,
which are dynamic length arrays, stacks, queues, and dictionaries (hash
table). All of these predefined generic collections have built-in iterators that
are used implicitly with the foreach statement. Furthermore, users can define
their own collections and write their own iterators, which can implement the
IEnumerator interface, which enables the use of foreach on these
collections.

For example, consider the following C# code:

List<String> names = new List<String>();

names.Add("Bob");

names.Add("Carol");

names.Add("Alice");

. . .

foreach (String name in names)

 Console.WriteLine(name);

In Ruby, a block is a sequence of code, delimited by either braces or the do
and end reserved words. Blocks can be used with specially written methods
to create many useful constructs, including iterators for data structures. This
construct consists of a method call followed by a block. A block is actually
an anonymous method that is sent to the method (whose call precedes it) as a
parameter. The called method can then call the block, which can produce
output or objects.

Ruby predefines several iterator methods, such as times and upto for
counter-controlled loops, and each for simple iterations of arrays and hashes.
For example, consider the following example of using times:

>> 4.times {puts "Hey!"}

Hey!

Hey!

Hey!

Hey!

=> 4

Note that >> is the prompt of the interactive Ruby interpreter and => is used
to indicate the return value of the expression. The Ruby puts statement
displays its parameter. In this example, the times method is sent to the object
4, with the block sent along as a parameter. The times method calls the block

four times, producing the four lines of output. The destination object, 4, is the
return value from times.

The most common Ruby iterator is each, which is often used to go through
arrays and apply a block to each element.5 For this purpose, it is convenient
to allow blocks to have parameters, which, if present, appear at the beginning
of the block, delimited by vertical bars (|). The following example, which
uses a block parameter, illustrates the use of each:

5. This is similar to the map functions discussed in Chapter 15.

>> list = [2, 4, 6, 8]

=> [2, 4, 6, 8]

>> list.each {|value| puts value}

2

4

6

8

=> [2, 4, 6, 8]

In this example, the block is called for each element of the array to which the
each method is sent. The block produces the output, which is a list of the
array’s elements. The return value of each is the array to which it is sent.

Instead of a counting loop, Ruby has the upto method. For example, we
could have the following:

1.upto(5) {|x| print x, " "}

This produces the following output:

1 2 3 4 5

Syntax that resembles a for loop in other languages could also be used, as in
the following:

for x in 1..5

 print x, " "

end

Ruby actually has no for statement—constructs like the above are converted

by Ruby into upto method calls.

Now we consider how blocks work. The yield statement is similar to a
method call, except that there is no receiver object and the call is a request to
execute the block attached to the method call, rather than a call to a method.
yield is only called in a method that has been called with a block. If the
block has parameters, they are specified in parentheses in the yield
statement. The value returned by a block is that of the last expression
evaluated in the block. It is this process that is used to implement the built-in
iterators, such as times.

Python provides strong support for iteration. Suppose one needs to process
the nodes in some user-defined data structure. Further suppose that the
structure has a traversal method that goes through the nodes of the structure
in the desired order. The following skeletal class definition includes such a
traversal method that produces the nodes of an instance of this class, one at a
time.

class MyStructure:

 # Other method definitions, including a constructor

 def traverse(self):

 # if there is another node:

 # set nod to next node

 # else:

 # return

 yield nod

The traverse method appears to be a regular Python method, but it contains
a yield statement, which dramatically changes the semantics of the method.
In effect, the method is run in a separate thread of control. The yield
statement acts like a return. On the first call to traverse, yield returns the
initial node of the structure. However, on the second call, it returns the
second node. On all but the first call to traverse, it begins its execution
where it left off on the previous execution. Instead of restarting at its
beginning, it is resumed. Any local storage in such a method is maintained
across its calls. In the case of traverse, subsequent calls begin their
execution at the beginning of its code, but in the state that it was in its
previous execution. In Python, any method that contains a yield statement is
called a generator, because it generates data one element at a time.

Of course, one could also produce all of the nodes of the structure, store them
in an array, and process them from the array. However, the number of nodes
could be large, requiring a large array to store them. The approach using the
iterator is more elegant and is not affected by the size of the data structure.

8.4 Unconditional Branching
An unconditional branch statement transfers execution control to a
specified location in the program. The most heated debate in language design
in the late 1960s was over the issue of whether unconditional branching
should be part of any high-level language, and if so, whether its use should be
restricted. The unconditional branch, or goto, is the most powerful statement
for controlling the flow of execution of a program’s statements. However,
careless use of the goto can lead to serious problems. The goto has stunning
power and great flexibility (all other control structures can be built with goto
and a selector), but it is this power that makes its use dangerous. Without
usage restrictions, imposed by either language design or programming
standards, goto statements can make programs very difficult to read, and as a
result, highly unreliable and costly to maintain.

history note
Although several thoughtful people had pointed out the potential problems of
gotos earlier, it was Edsger Dijkstra who gave the computing world the first
widely read exposé on the dangers of the goto. In his letter he noted, “The
goto statement as it stands is just too primitive; it is too much an invitation to
make a mess of one’s program” (Dijkstra, 1968a). During the first few years
after publication of Dijkstra’s views on the goto, a large number of people
argued publicly for either outright banishment or at least restrictions on the
use of the goto. Among those who did not favor complete elimination was
Donald Knuth (1974), who argued that there were occasions when the
efficiency of the goto outweighed its harm to readability.

These problems follow directly from a goto’s ability to force any program
statement to follow any other in execution sequence, regardless of whether
that statement precedes or follows the previously executed statement in
textual order. Readability is best when the execution order of statements in a
program is nearly the same as the order in which they appear—in our case,

this would mean top to bottom, which is the order to which we are
accustomed. Thus, restricting gotos so they can transfer control only
downward in a program partially alleviates the problem. It allows gotos to
transfer control around code sections in response to errors or unusual
conditions but disallows their use to build any sort of loop.

A few languages have been designed without a goto—for example, Java,
Python, and Ruby. However, most currently popular languages include a goto
statement. Kernighan and Ritchie (1978) call the goto infinitely abusable, but
it is nevertheless included in Ritchie’s language, C. The languages that have
eliminated the goto have provided additional control statements, usually in
the form of loop exits, to code one of the justifiable applications of the goto.

The relatively new language, C#, includes a goto, even though one of the
languages on which it is based, Java, does not. One legitimate use of C#’s
goto is in the switch statement, as discussed in Section 8.2.2.2.

All of the loop exit statements discussed in Section 8.3.3 are actually
camouflaged goto statements. They are, however, severely restricted gotos
and are not harmful to readability. In fact, it can be argued that they improve
readability, because to avoid their use results in convoluted and unnatural
code that would be much more difficult to understand.

8.5 Guarded Commands
Quite different forms of selection and loop structures were suggested by
Dijkstra (1975). His primary motivation was to provide control statements
that would support a program design methodology that ensured correctness
during development rather than when verifying or testing completed
programs. This methodology is described in Dijkstra (1976). Another
motivation is the increased clarity in reasoning that is possible with guarded
commands. Simply put, a selectable segment of a selection statement in a
guarded-command statement can be considered independently of any other
part of the statement, which is not true for the selection statements of the
common programming languages.

Guarded commands are covered in this chapter because they are the basis for
the linguistic mechanism developed later for concurrent programming in CSP
(Hoare, 1978). Guarded commands are also used to define functions in
Haskell, as discussed in Chapter 15.

Dijkstra’s selection statement has the form

if <Boolean expression> -> <statement>

[] <Boolean expression> -> <statement>

[] . . .

[] <Boolean expression> -> <statement>

fi

The closing reserved word, fi, is the opening reserved word spelled
backward. This form of closing reserved word is taken from ALGOL 68. The
small blocks, called fatbars, are used to separate the guarded clauses and
allow the clauses to be statement sequences. Each line in the selection
statement, consisting of a Boolean expression (a guard) and a statement or
statement sequence, is called a guarded command.

This selection statement has the appearance of a multiple selection, but its
semantics is different. All of the Boolean expressions are evaluated each time
the statement is reached during execution. If more than one expression is
true, one of the corresponding statements can be nondeterministically chosen
for execution. An implementation might always choose the statement
associated with the first Boolean expression that evaluates to be true. But it
may choose any statement associated with a true Boolean expression. So, the
correctness of the program cannot depend on which statement is chosen
(among those associated with true Boolean expressions). If none of the
Boolean expressions are true, a run-time error occurs that causes program
termination. This forces the programmer to consider and list all possibilities.
Consider the following example:

if i = 0 -> sum := sum + i

[] i > j -> sum := sum + j

[] j > i -> sum := sum + k

fi

If i = 0 and j > i, this statement chooses nondeterministically between the
first and third assignment statements. If i is equal to j and is not zero, a run-
time error occurs because none of the conditions are true.

This statement can be an elegant way of allowing the programmer to state
that the order of execution, in some cases, is irrelevant. For example, to find
the largest of two numbers, we can use

if x >= y -> max := x

[] y >= x -> max := y

fi

This computes the desired result without overspecifying the solution. In
particular, if x and y are equal, it does not matter which we assign to max.
This is a form of abstraction provided by the nondeterministic semantics of
the statement.

Now, consider this same process coded in a traditional programming
language selector:

if (x >= y)

 max = x;

else

 max = y;

This could also be coded as follows:

if (x > y)

 max = x;

else

 max = y;

There is no practical difference between these two statements. The first
assigns x to max when x and y are equal; the second assigns y to max in the
same circumstance. This choice between the two statements complicates the
formal analysis of the code and the correctness proof of it. This is one of the
reasons why guarded commands were developed by Dijkstra.

The loop structure proposed by Dijkstra has the form

do <Boolean expression> -> <statement>

[] <Boolean expression> -> <statement>

[] . . .

[] <Boolean expression> -> <statement>

od

The semantics of this statement is that all Boolean expressions are evaluated
on each iteration. If more than one is true, one of the associated statements is
nondeterministically (perhaps randomly) chosen for execution, after which
the expressions are again evaluated. When all expressions are simultaneously
false, the loop terminates.

Consider the following problem: Given four integer variables, q1, q2, q3, and
q4, rearrange the values of the four so that q1 <= q2 <= q3 <= q4. Without
guarded commands, one straightforward solution is to put the four values into
an array, sort the array, and then assign the values from the array back into
the scalar variables q1, q2, q3, and q4. While this solution is not difficult, it
requires a good deal of code, especially if the sort process must be included.

Now, consider the following code, which uses guarded commands to solve
the same problem but in a more concise and elegant way.6

6. This code appears in a slightly different form in Dijkstra (1975).

do q1 > q2 -> temp := q1; q1 := q2; q2 := temp;

[] q2 > q3 -> temp := q2; q2 := q3; q3 := temp;

[] q3 > q4 -> temp := q3; q3 := q4; q4 := temp;

od

Dijkstra’s guarded command control statements are interesting, in part
because they illustrate how the syntax and semantics of statements can have
an impact on program verification and vice versa. Program verification is
virtually impossible when goto statements are used. Verification is greatly
simplified if (1) only logical loops and selections are used or (2) only guarded
commands are used. The axiomatic semantics of guarded commands are
conveniently specified (Gries, 1981). It should be obvious, however, that
there is considerably increased complexity in the implementation of the
guarded commands over their conventional deterministic counterparts.

8.6 Conclusions
We have described and discussed a variety of statement-level control
structures. A brief evaluation now seems to be in order.

First, we have the theoretical result that only sequence, selection, and pretest
logical loops are absolutely required to express computations (Böhm and
Jacopini, 1966). This result has been used by those who wish to ban
unconditional branching altogether. Of course, there are already sufficient
practical problems with the goto to condemn it without also using a
theoretical reason. One of the main legitimate needs for gotos—premature
exits from loops—can be met with restricted branch statements, such as
break.

One obvious misuse of the Böhm and Jacopini result is to argue against the
inclusion of any control structures beyond selection and pretest logical loops.
No widely used language has yet taken that step; furthermore, we doubt that
any ever will, because of the negative effect on writability and readability.
Programs written with only selection and pretest logical loops are generally
less natural in structure, more complex, and therefore harder to write and
more difficult to read. For example, the C# multiple selection structure is a
great boost to C# writability, with no obvious negatives. Another example is
the counting loop structure of many languages, especially when the statement
is simple.

It is not so clear that the utility of many of the other control structures that
have been proposed is worth their inclusion in languages (Ledgard and
Marcotty, 1975). This question rests to a large degree on the fundamental
question of whether the size of languages must be minimized. Both Wirth
(1975) and Hoare (1973) strongly endorse simplicity in language design. In
the case of control structures, simplicity means that only a few control
statements should be in a language, and they should be simple.

The rich variety of statement-level control structures that have been invented
shows the diversity of opinion among language designers. After all the

invention, discussion, and evaluation, there is still no unanimity of opinion on
the precise set of control statements that should be in a language. Most
contemporary languages do, of course, have similar control statements, but
there is still some variation in the details of their syntax and semantics.
Furthermore, there is still disagreement on whether a language should include
a goto; C++ and C# do, but Java and Ruby do not.

SUMMARY
Control statements occur in several categories: selection, multiple selection,
iterative, and unconditional branching.

The switch statement of the C-based languages is representative of multiple-
selection statements. The C# version eliminates the reliability problem of its
predecessors by disallowing the implicit continuation from a selected
segment to the following selectable segment.

A large number of different loop statements have been invented for high-
level languages. C’s for statement is the most flexible iteration statement,
although its flexibility leads to some reliability problems.

Most languages have exit statements for their loops; these statements take the
place of one of the most common uses of goto statements.

Data-based iterators are loop statements for processing data structures, such
as linked lists, hashes, and trees. The for statement of the C-based languages
allows the user to create iterators for user-defined data. The foreach
statement of Perl and C# is a predefined iterator for standard data structures.
In the contemporary object-oriented languages, iterators for collections are
specified with standard interfaces, which are implemented by the designers of
the collections.

Ruby includes iterators that are a special form of methods that are sent to
various objects. The language predefines iterators for common uses, but also
allows user-defined iterators.

The unconditional branch, or goto, has been part of most imperative
languages. Its problems have been widely discussed and debated. The current
consensus is that it should remain in most languages but that its dangers
should be minimized through programming discipline.

Dijkstra’s guarded commands are alternative control statements with positive
theoretical characteristics. Although they have not been adopted as the

control statements of a language, part of the semantics appear in the
concurrency mechanisms of CSP and the function definitions of Haskell.

REVIEW QUESTIONS
1. What is the definition of control structure?

2. What did Böhm and Jocopini prove about flowcharts?

3. What is the definition of block?

4. What is/are the design issue(s) for all selection and iteration control
statements?

5. What are the design issues for selection structures?

6. What is unusual about Python’s design of compound statements?

7. Under what circumstances must an F# selector have an else clause?

8. What are the common solutions to the nesting problem for two-way
selectors?

9. What are the design issues for multiple-selection statements?

10. Between what two language characteristics is a trade-off made when
deciding whether more than one selectable segment is executed in one
execution of a multiple selection statement?

11. What is unusual about C’s multiple-selection statement?

12. On what previous language was C’s switch statement based?

13. Explain how C#’s switch statement is safer than that of C.

14. What are the design issues for all iterative control statements?

15. What are the design issues for counter-controlled loop statements?

16. What is a pretest loop statement? What is a posttest loop statement?

17. What is the difference between the for statement of C++ and that
of Java?

18. In what way is C’s for statement more flexible than that of many other
languages?

19. What does the range function in Python do?

20. What contemporary languages do not include a goto?

21. What are the design issues for logically controlled loop statements?

22. What is the main reason user-located loop control statements were
invented?

23. What are the design issues for user-located loop control mechanisms?

24. What advantage does Java’s break statement have over C’s break
statement?

25. What are the differences between the break statement of C++ and that
of Java?

26. What is a user-defined iteration control?

27. What Scheme function implements a multiple selection statement?

28. How does a functional language implement repetition?

29. How are iterators implemented in Ruby?

30. What language predefines iterators that can be explicitly called to iterate
over its predefined data structures?

31. What common programming language borrows part of its design from
Dijkstra’s guarded commands?

PROBLEM SET
1. Describe three situations where a combined counting and logical looping

statement is needed.

2. Study the iterator feature of CLU in Liskov et al. (1981) and determine
its advantages and disadvantages.

3. Compare the set of Ada control statements with those of C# and decide
which are better and why.

4. What are the pros and cons of using unique closing reserved words on
compound statements?

5. What are the arguments, pros and cons, for Python’s use of indentation
to specify compound statements in control statements?

6. Analyze the potential readability problems with using closure reserved
words for control statements that are the reverse of the corresponding
initial reserved words, such as the case-esac reserved words of ALGOL
68. For example, consider common typing errors such as transposing
characters.

7. Use the Science Citation Index to find an article that refers to Knuth
(1974). Read the article and Knuth’s paper and write a paper that
summarizes both sides of the goto issue.

8. In his paper on the goto issue, Knuth (1974) suggests a loop control
statement that allows multiple exits. Read the paper and write an
operational semantics description of the statement.

9. What are the arguments both for and against the exclusive use of
Boolean expressions in the control statements in Java (as opposed to
also allowing arithmetic expressions, as in C++)?

10. Describe a programming situation in which the else clause in Python’s

for statement would be convenient.

11. Describe three specific programming situations that require a posttest
loop.

12. Speculate as to the reason control can be transferred into a C loop
statement.

PROGRAMMING EXERCISES
1. Rewrite the following pseudocode segment using a loop structure in the

specified languages:

 k = (j + 13) / 27

loop:

 if k > 10 then goto out

 k = k + 1

 i = 3 * k - 1

 goto loop

out: . . .

1. C, C++, Java, or C#

2. Python

3. Ruby

Assume all variables are integer type. Discuss which language, for this
code, has the best writability, the best readability, and the best
combination of the two.

2. Redo Programming Exercise 1, except this time make all the variables
and constants floating-point type, and change the statement

k = k + 1

to

k = k + 1.2

3. Rewrite the following code segment using a multiple-selection statement
in the following languages:

if ((k == 1) || (k == 2)) j = 2 * k - 1

if ((k == 3) || (k == 5)) j = 3 * k + 1

if (k == 4) j = 4 * k - 1

if ((k == 6) || (k == 7) || (k == 8)) j = k - 2

1. C, C++, Java, or C#

2. Python

3. Ruby

Assume all variables are integer type. Discuss the relative merits of the
use of these languages for this particular code.

4. Consider the following C program segment. Rewrite it using no gotos or
breaks.

j = -3;

for (i = 0; i < 3; i++) {

 switch (j + 2) {

 case 3:

 case 2: j--; break;

 case 0: j += 2; break;

 default: j = 0;

 }

 if (j > 0) break;

 j = 3 - i

}

5. In a letter to the editor of CACM, Rubin (1987) uses the following code
segment as evidence that the readability of some code with gotos is
better than the equivalent code without gotos. This code finds the first
row of an n by n integer matrix named x that has nothing but zero
values.

for (i = 1; i <= n; i++) {

 for (j = 1; j <= n; j++)

 if (x[i][j] != 0)

 goto reject;

 println ('First all-zero row is:', i);

 break;

reject:

 }

Rewrite this code without gotos in one of the following languages: C,
C++, Java, or C#. Compare the readability of your code to that of the
example code.

6. Consider the following programming problem: The values of three
integer variables—first, second, and third—must be placed in the
three variables max, mid, and min, with the obvious meanings, without
using arrays or user-defined or predefined subprograms. Write two
solutions to this problem, one that uses nested selections and one that
does not. Compare the complexity and expected reliability of the two.

7. Rewrite the C program segment of Programming Exercise 4 using if
and goto statements in C.

8. Rewrite the C program segment of Programming Exercise 4 in Java
without using a switch statement.

9. Translate the following call to Scheme’s COND to C and set the resulting
value to y.

 (COND

 ((> x 10) x)

 ((< x 5) (* 2 x))

 ((= x 7) (+ x 10))

)

9 Subprograms
1. 9.1 Introduction

2. 9.2 Fundamentals of Subprograms

3. 9.3 Design Issues for Subprograms

4. 9.4 Local Referencing Environments

5. 9.5 Parameter-Passing Methods

6. 9.6 Parameters That Are Subprograms

7. 9.7 Calling Subprograms Indirectly

8. 9.8 Design Issues for Functions

9. 9.9 Overloaded Subprograms

10. 9.10 Generic Subprograms

11. 9.11 User-Defined Overloaded Operators

12. 9.12 Closures

13. 9.13 Coroutines

Subprograms are the fundamental building blocks of programs and are
therefore among the most important concepts in programming language
design. We now explore the design of subprograms, including parameter-
passing methods, local referencing environments, overloaded subprograms,
generic subprograms, and the aliasing and problematic side effects that are
associated with subprograms. We also include discussions of indirectly called
subprograms, closures, and coroutines.

Implementation methods for subprograms are discussed in Chapter 10.

9.1 Introduction
Two fundamental abstraction facilities can be included in a programming
language: process abstraction and data abstraction. In the early history of
high-level programming languages, only process abstraction was included.
Process abstraction, in the form of subprograms, has been a central concept in
all programming languages. In the 1980s, however, many people began to
believe that data abstraction was equally important. Data abstraction is
discussed in detail in Chapter 11.

The first programmable computer, Babbage’s Analytical Engine, built in the
1840s, had the capability of reusing collections of instruction cards at several
different places in a program. In a modern programming language, such a
collection of statements is written as a subprogram. This reuse results in
savings in memory space and coding time. Such reuse is also an abstraction,
for the details of the subprogram’s computation are replaced in a program by
a statement that calls the subprogram. Instead of describing how some
computation is to be done in a program, that description (the collection of
statements in the subprogram) is enacted by a call statement, effectively
abstracting away the details. This increases the readability of a program by
emphasizing its logical structure while hiding its low-level details.

The methods of object-oriented languages are closely related to the
subprograms discussed in this chapter. The primary way methods differ from
subprograms is the way they are called and their associations with classes and
objects. Although these special characteristics of methods are discussed in
Chapter 12, the features they share with subprograms, such as parameters and
local variables, are discussed in this chapter.

9.2 Fundamentals of Subprograms

9.2.1 General Subprogram
Characteristics
All subprograms discussed in this chapter, except the coroutines described in
Section 9.13, have the following characteristics:

Each subprogram has a single entry point.

The calling program unit is suspended during the execution of the called
subprogram, which implies that there is only one subprogram in
execution at any given time.

Control always returns to the caller when the subprogram execution
terminates.

Alternatives to these result in coroutines and concurrent units (Chapter 13).

Most subprograms have names, although some are anonymous. Section 9.12
has examples of anonymous subprograms in C#.

9.2.2 Basic Definitions
A subprogram definition describes the interface to and the actions of the
subprogram abstraction. A subprogram call is the explicit request that a
specific subprogram be executed. A subprogram is said to be active if, after
having been called, it has begun execution but has not yet completed that
execution. The two fundamental kinds of subprograms, procedures and
functions, are defined and discussed in Section 9.2.4.

A subprogram header, which is the first part of the definition, serves

several purposes. First, it specifies that the following syntactic unit is a
subprogram definition of some particular kind.1 In languages that have more
than one kind of subprogram, the kind of the subprogram is usually specified
with a special word. Second, if the subprogram is not anonymous, the header
provides a name for the subprogram. Third, it may specify a list of
parameters.

1. Some programming languages include both kinds of subprograms,
procedures and functions.

Consider the following header examples:

def adder parameters):

This is the header of a Python subprogram named adder. Ruby subprogram
headers also begin with def. The header of a JavaScript subprogram begins
with function.

In C, the header of a function named adder might be as follows:

void adder (parameters)

The reserved word void in this header indicates that the subprogram does not
return a value.

The body of subprograms defines its actions. In the C-based languages (and
some others—for example, JavaScript) the body of a subprogram is delimited
by braces. In Ruby, an end statement terminates the body of a subprogram.
As with compound statements, the statements in the body of a Python
function must be indented and the end of the body is indicated by the first
statement that is not indented.

One characteristic of Python functions that sets them apart from the functions
of other common programming languages is that function def statements are
executable. When a def statement is executed, it assigns the given name to
the given function body. Until a function’s def has been executed, the
function cannot be called. Consider the following skeletal example:

if . . .

 def fun(. . .):

 . . .

else

 def fun(. . .):

 . . .

If the then clause of this selection construct is executed, that version of the
function fun can be called, but not the version in the else clause. Likewise, if
the else clause is chosen, its version of the function can be called but the one
in the then clause cannot.

Ruby methods differ from the subprograms of other programming languages
in several interesting ways. Ruby methods are often defined in class
definitions but can also be defined outside class definitions, in which case
they are considered methods of the root object, Object. Such methods can be
called without an object receiver, as if they were functions in C or C++. If a
Ruby method is called without a receiver, self is assumed. If there is no
method by that name in the class, enclosing classes are searched, up to
Object, if necessary.

The parameter profile of a subprogram contains the number, order, and
types of its formal parameters. The protocol of a subprogram is its parameter
profile plus, if it is a function, its return type. In languages in which
subprograms have types, those types are defined by the subprogram’s
protocol.

Subprograms can have declarations as well as definitions. This form parallels
the variable declarations and definitions in C, in which declarations are used
to provide type information but not to define variables. Subprogram
declarations provide the subprogram’s protocol but do not include their
bodies. They are necessary in languages that do not allow forward references
to subprograms. In both the cases of variables and subprograms, declarations
are needed for static type checking. In the case of subprograms, it is the type
of the parameters that must be checked. Function declarations are common in
C and C++ programs, where they are called prototypes. Such declarations
are often placed in header files.

In most other languages (other than C and C++), subprograms do not need
declarations, because there is no requirement that subprograms be defined

before they are called.

9.2.3 Parameters
Subprograms typically describe computations. There are two ways that a
nonmethod subprogram can gain access to the data that it is to process:
through direct access to nonlocal variables (declared elsewhere but visible in
the subprogram) or through parameter passing. Data passed through
parameters are accessed using names that are local to the subprogram.
Parameter passing is more flexible than direct access to nonlocal variables. In
essence, a subprogram with parameter access to the data that it is to process is
a parameterized computation. It can perform its computation on whatever
data it receives through its parameters (presuming the types of the parameters
are as expected by the subprogram). If data access is through nonlocal
variables, the only way the computation can proceed on different data is to
assign new values to those nonlocal variables between calls to the
subprogram. Extensive access to nonlocals can reduce reliability. Variables
that are visible to the subprogram where access is desired often end up also
being visible where access to them is not needed. This problem was discussed
in Chapter 5.

Although methods also access external data through nonlocal references and
parameters, the primary data to be processed by a method is the object
through which the method is called. However, when a method does access
nonlocal data, the reliability problems are the same as with nonmethod
subprograms. Also, in an object-oriented language, method access to class
variables (those associated with the class, rather than an object) is related to
the concept of nonlocal data and should be avoided whenever possible. In this
case, as well as the case of a C function accessing nonlocal data, the method
can have the side effect of changing something other than its parameters or
local data. Such changes complicate the semantics of the method and make it
less reliable.

Pure functional programming languages, such as Haskell, do not have
mutable data, so functions written in them are unable to change memory in
any way—they simply perform calculations and return a resulting value (or

function, since functions are values in a pure functional language).

In some situations, it is convenient to be able to transmit computations, rather
than data, as parameters to subprograms. In these cases, the name of the
subprogram that implements that computation may be used as a parameter.
This form of parameter is discussed in Section 9.6. Data parameters are
discussed in Section 9.5.

The parameters in the subprogram header are called formal parameters.
They are sometimes thought of as dummy variables because they are not
variables in the usual sense: In most cases, they are bound to storage only
when the subprogram is called, and that binding is often through some other
program variables.

Subprogram call statements must include the name of the subprogram and a
list of parameters to be bound to the formal parameters of the subprogram.
These parameters are called actual parameters.2 They must be distinguished
from formal parameters, because the two usually have different restrictions
on their forms, and of course, their uses are quite different.

2. Some authors call actual parameters arguments and formal parameters just
parameters.

In most programming languages, the correspondence between actual and
formal parameters—or the binding of actual parameters to formal parameters
—is done by position: The first actual parameter is bound to the first formal
parameter and so forth. Such parameters are called positional parameters.
This is an effective and safe method of relating actual parameters to their
corresponding formal parameters, as long as the parameter lists are relatively
short.

When parameter lists are long, however, it is easy for a programmer to make
mistakes in the order of actual parameters in the list. One solution to this
problem is to provide keyword parameters, in which the name of the formal
parameter to which an actual parameter is to be bound is specified with the
actual parameter in a call. The advantage of keyword parameters is that they
can appear in any order in the actual parameter list. Python functions can be
called using this technique, as in

sumer(length = my_length,

 list = my_array,

 sum = my_sum)

where the definition of sumer has the formal parameters length, list, and
sum.

The disadvantage to keyword parameters is that the user of the subprogram
must know the names of formal parameters.

In addition to keyword parameters, some languages, for example Python,
allow positional parameters. Keyword and positional parameters can be
mixed in a call, as in

sumer(my_length,

 sum = my_sum,

 list = my_array)

The only restriction with this approach is that after a keyword parameter
appears in the list, all remaining parameters must be keyworded. This
restriction is necessary because a position may no longer be well defined after
a keyword parameter has appeared.

In Python, Ruby, C++, and PHP, formal parameters can have default values.
A default value is used if no actual parameter is passed to the formal
parameter in the subprogram header. Consider the following Python function
header:

def compute_pay(income, exemptions = 1, tax_rate)

The exemptions formal parameter can be absent in a call to compute_pay;
when it is, the value 1 is used. No comma is included for an absent actual
parameter in a Python call, because the only value of such a comma would be
to indicate the position of the next parameter, which in this case is not
necessary because all actual parameters after an absent actual parameter must
be keyworded. For example, consider the following call:

pay = compute_pay(20000.0, tax_rate = 0.15)

In C++, which does not support keyword parameters, the rules for default

parameters are necessarily different. The default parameters must appear last,
because parameters are positionally associated. Once a default parameter is
omitted in a call, all remaining formal parameters must have default values. A
C++ function header for the compute_pay function can be written as follows:

float compute_pay(float income, float tax_rate,

 int exemptions = 1)

Notice that the parameters are rearranged so that the one with the default
value is last. An example call to the C++ compute_pay function is

pay = compute_pay(20000.0, 0.15);

In most languages that do not have default values for formal parameters, the
number of actual parameters in a call must match the number of formal
parameters in the subprogram definition header. However, in C, C++, Perl,
and JavaScript, this is not required. When there are fewer actual parameters
in a call than formal parameters in a function definition, it is the
programmer’s responsibility to ensure that the parameter correspondence,
which is always positional, and the subprogram execution are sensible.

Although this design, which allows a variable number of parameters, is
clearly prone to error, it is also sometimes convenient. For example, the
printf function of C can print any number of items (data values and/or
literals).

C# allows methods to accept a variable number of parameters, as long as they
are of the same type. The method specifies its formal parameter with the
params modifier. The call can send either an array or a list of expressions,
whose values are placed in an array by the compiler and provided to the
called method. For example, consider the following method:

public void DisplayList(params int[] list) {

 foreach (int next in list) {

 Console.WriteLine("Next value {0}", next);

 }

}

If DisplayList is defined for the class MyClass and we have the following
declarations,

Myclass myObject = new Myclass;

int[] myList = new int[6] {2, 4, 6, 8, 10, 12};

DisplayList could be called with either of the following:

myObject.DisplayList(myList);

myObject.DisplayList(2, 4, 3 * x - 1, 17);

Ruby supports a complicated but highly flexible actual parameter
configuration. The initial parameters are expressions, whose value objects are
passed to the corresponding formal parameters. The initial parameters can be
followed by a list of key => value pairs, which are placed in an anonymous
hash and a reference to that hash is passed to the next formal parameter.
These are used as a substitute for keyword parameters, which Ruby does not
support. The hash item can be followed by a single parameter preceded by an
asterisk. This parameter is called the array formal parameter. When the
method is called, the array formal parameter is set to reference a new Array
object. All remaining actual parameters are assigned to the elements of the
new Array object. If the actual parameter that corresponds to the array formal
parameter is an array, it must also be preceded by an asterisk, and it must be
the last actual parameter.3 So, Ruby allows a variable number of parameters
in a way similar to that of C#. Because Ruby arrays can store different types,
there is no requirement that the actual parameters passed to the array have the
same type.

3. Not quite true, because the array formal parameter can be followed by a
method or function reference, which is preceded by an ampersand (&).

The following example skeletal function definition and call illustrate the
parameter structure of Ruby:

list = [2, 4, 6, 8]

def tester(p1, p2, p3, *p4)

 . . .

end . . .

tester('first', mon => 72, tue => 68, wed => 59, *list)

Inside tester, the values of its formal parameters are as follows:

p1 is 'first'

p2 is {mon => 72, tue => 68, wed => 59}

p3 is 2

p4 is [4, 6, 8]

Python supports parameters that are similar to those of Ruby.

9.2.4 Procedures and Functions
There are two distinct categories of subprograms—procedures and functions
—both of which can be viewed as approaches to extending the language.
Subprograms are collections of statements that define parameterized
computations. Functions return values and procedures do not. In most
languages that do not include procedures as a separate form of subprogram,
functions can be defined not to return values and they can be used as
procedures. The computations of a procedure are enacted by single call
statements. In effect, procedures define new statements. For example, if a
particular language does not have a sort statement, a user can build a
procedure to sort arrays of data and use a call to that procedure in place of the
unavailable sort statement. Only some older languages, such as Fortran and
Ada, support procedures.

Procedures can produce results in the calling program unit by two methods:
(1) If there are variables that are not formal parameters but are still visible in
both the procedure and the calling program unit, the procedure can change
them; and (2) if the procedure has formal parameters that allow the transfer of
data to the caller, those parameters can be changed.

Functions structurally resemble procedures but are semantically modeled on
mathematical functions. If a function is a faithful model, it produces no side
effects; that is, it modifies neither its parameters nor any variables defined
outside the function. Such a function returns a value—that is its only desired
effect. The functions in most programming languages have side effects.

Functions are called by appearances of their names in expressions, along with
the required actual parameters. The value produced by a function’s execution
is returned to the calling code, effectively replacing the call itself. For
example, the value of the expression f(x) is whatever value f produces when
called with the parameter x. For a function that does not produce side effects,

the returned value is its only effect.

Functions define new user-defined operators. For example, if a language does
not have an exponentiation operator, a function can be written that returns the
value of one of its parameters raised to the power of another parameter. Its
header in C++ could be

float power(float base, float exp)

which could be called with

result = 3.4 * power(10.0, x)

The standard C++ library includes a similar function named pow. Compare
this with the same operation in Perl, in which exponentiation is a built-in
operation:

result = 3.4 * 10.0 ** x

In some programming languages, users are permitted to overload operators
by defining new functions for operators. User-defined overloaded operators
are discussed in Section 9.11.

9.3 Design Issues for Subprograms
Subprograms are complex structures, and it follows from this that a lengthy
list of issues is involved in their design. One obvious issue is the choice of
one or more parameter-passing methods that will be used. The wide variety
of approaches that have been used in various languages is a reflection of the
diversity of opinion on the subject. A closely related issue is whether the
types of actual parameters will be type checked against the types of the
corresponding formal parameters.

The nature of the local environment of a subprogram dictates to some degree
the nature of the subprogram. The most important question here is whether
local variables are statically or dynamically allocated.

Next, there is the question of whether subprogram definitions can be nested.
Another issue is whether subprogram names can be passed as parameters. If
subprogram names can be passed as parameters and the language allows
subprograms to be nested, there is the question of the correct referencing
environment of a subprogram that has been passed as a parameter.

As seen in Chapter 5, side effects of functions can cause problems. So,
restrictions on side effects are a design issue for functions. The types and
number of values that can be returned from functions are other design issues.

Finally, there are the questions of whether subprograms can be overloaded or
generic. An overloaded subprogram is one that has the same name as
another subprogram in the same referencing environment. A generic
subprogram is one whose computation can be done on data of different
types in different calls. A closure is a nested subprogram and its referencing
environment, which together allow the subprogram to be called from
anywhere in a program.

The following is a summary of these design issues for subprograms in
general. Additional issues that are specifically associated with functions are
discussed in Section 9.10.

Are local variables statically or dynamically allocated?

Can subprogram definitions appear in other subprogram definitions?

What parameter-passing method or methods are used?

Are the types of the actual parameters checked against the types of the
formal parameters?

If subprograms can be passed as parameters and subprograms can be
nested, what is the referencing environment of a passed subprogram?

Are functional side effects allowed?

What types of values can be returned from functions?

How many values can be returned from functions?

Can subprograms be overloaded?

Can subprograms be generic?

If the language allows nested subprograms, are closures supported?

These issues and example designs are discussed in the following sections.

9.4 Local Referencing
Environments
This section discusses the issues related to variables that are defined within
subprograms. The issue of nested subprogram definitions is also briefly
covered.

9.4.1 Local Variables
Subprograms can define their own variables, thereby defining local
referencing environments. Variables that are defined inside subprograms are
called local variables, because their scope is usually the body of the
subprogram in which they are defined.

In the terminology of Chapter 5, local variables can be either static or stack
dynamic. If local variables are stack dynamic, they are bound to storage when
the subprogram begins execution and are unbound from storage when that
execution terminates. There are several advantages of stack-dynamic local
variables, the primary one being flexibility. It is essential that recursive
subprograms have stack-dynamic local variables. Another advantage of
stack-dynamic locals is that the storage for local variables in an active
subprogram can be shared with the local variables in all inactive
subprograms. This is not as important an advantage as it was when computers
had smaller memories.

The main disadvantages of stack-dynamic local variables are the following:
First, there is the cost of the time required to allocate, initialize (when
necessary), and deallocate such variables for each call to the subprogram.
Second, accesses to stack-dynamic local variables must be indirect, whereas
accesses to static variables can be direct.4 This indirectness is required
because the place in the stack where a particular local variable will reside can
be determined only during execution (see Chapter 10). Finally, when all local

variables are stack dynamic, subprograms cannot be history sensitive; that is,
they cannot retain data values of local variables between calls. It is
sometimes convenient to be able to write history-sensitive subprograms. A
common example of a need for a history-sensitive subprogram is one whose
task is to generate pseudorandom numbers. Each call to such a subprogram
computes one pseudorandom number, using the last one it computed. It must,
therefore, store the last one in a static local variable. Coroutines and the
subprograms used in iterator loop constructs (discussed in Chapter 8) are
other examples of subprograms that need to be history sensitive.

4. In some implementations, static variables are also accessed indirectly,
thereby eliminating this disadvantage.

The primary advantage of static local variables over stack-dynamic local
variables is that they are slightly more efficient—they require no run-time
overhead for allocation and deallocation. Also, if accessed directly, these
accesses are obviously more efficient. And, of course, they allow
subprograms to be history sensitive. The greatest disadvantage of static local
variables is their inability to support recursion. Also, their storage cannot be
shared with the local variables of other inactive subprograms.

In most contemporary languages, local variables in a subprogram are by
default stack dynamic. In C and C++ functions, locals are stack dynamic
unless specifically declared to be static. For example, in the following C (or
C++) function, the variable sum is static and count is stack dynamic.

int adder(int list[], int listlen) {

 static int sum = 0;

 int count;

 for (count = 0; count < listlen; count ++)

 sum += list [count];

 return sum;

}

The methods of C++, Java, and C# have only stack-dynamic local variables.

In Python, the only declarations used in method definitions are for globals.
Any variable declared to be global in a method must be a variable defined
outside the method. A variable defined outside the method can be referenced

in the method without declaring it to be global, but such a variable cannot be
assigned in the method. If the name of a global variable is assigned in a
method, it is implicitly declared to be a local and the assignment does not
disturb the global. All local variables in Python methods are stack dynamic.

9.4.2 Nested Subprograms
The idea of nesting subprograms originated with ALGOL 60. The motivation
was to be able to create a hierarchy of both logic and scopes. If a subprogram
is needed only within another subprogram, why not place it there and hide it
from the rest of the program? Because static scoping is usually used in
languages that allow subprograms to be nested, this also provides a highly
structured way to grant access to nonlocal variables in enclosing
subprograms. Recall that in Chapter 5, the problems introduced by this were
discussed. For a long time, the only languages that allowed nested
subprograms were those directly descending from ALGOL 60, which were
ALGOL 68, Pascal, and Ada. Many other languages, including all of the
direct descendants of C, do not allow subprogram nesting. Recently, some
new languages again allow it. Among these are JavaScript, Python, and
Ruby. Also, most functional programming languages allow subprograms to
be nested.

9.5 Parameter-Passing Methods
Parameter-passing methods are the ways in which parameters are transmitted
to and/or from called subprograms. First, we focus on the different semantics
models of parameter-passing methods. Then, we discuss the various
implementation models invented by language designers for these semantics
models. Next, we survey the design choices of several languages and discuss
the actual methods used to implement the implementation models. Finally,
we consider the design considerations that face a language designer in
choosing among the methods.

9.5.1 Semantics Models of
Parameter Passing
Formal parameters are characterized by one of three distinct semantics
models: (1) They can receive data from the corresponding actual parameter;
(2) they can transmit data to the actual parameter; or (3) they can do both.
These models are called in mode, out mode, and inout mode, respectively.
For example, consider a subprogram that takes two arrays of int values as
parameters—list1 and list2. The subprogram must add list1 to list2 and
return the result as a revised version of list2. Furthermore, the subprogram
must create a new array from the two given arrays and return it. For this
subprogram, list1 should be in mode, because it is not to be changed by the
subprogram. list2 must be inout mode, because the subprogram needs the
given value of the array and must return its new value. The third array should
be out mode, because there is no initial value for this array and its computed
value must be returned to the caller.

There are two conceptual models of how data transfers take place in
parameter transmission: Either an actual value is copied (to the caller, to the
called, or both ways) or an access path is transmitted. Most commonly, the
access path is a simple pointer or reference. Figure 9.1 illustrates the three

semantics models of parameter passing when values are copied.

Figure 9.1 The three semantics
models of parameter passing
when physical moves are used

Figure 9.1 Full Alternative Text

9.5.2 Implementation Models of
Parameter Passing
A variety of models have been developed by language designers to guide the
implementation of the three basic parameter transmission modes. In the
following sections, we discuss several of these, along with their relative

strengths and weaknesses.

9.5.2.1 Pass-by-Value
When a parameter is passed by value, the value of the actual parameter is
used to initialize the corresponding formal parameter, which then acts as a
local variable in the subprogram, thus implementing in-mode semantics.

Pass-by-value is normally implemented by copy, because accesses often are
more efficient with this approach. It could be implemented by transmitting an
access path to the value of the actual parameter in the caller, but that would
require that the value be in a write-protected cell (one that can only be read).
Enforcing the write protection is not always a simple matter. For example,
suppose the subprogram to which the parameter was passed passes it in turn
to another subprogram. This is another reason to use copy transfer. As we
will see in Section 9.5.4, C++ provides a convenient and effective method for
specifying write protection on pass-by-value parameters that are transmitted
by access path.

The advantage of pass-by-value is that for scalars it is fast, in both linkage
cost and access time.

The main disadvantage of the pass-by-value method if copies are used is that
additional storage is required for the formal parameter, either in the called
subprogram or in some area outside both the caller and the called
subprogram. In addition, the actual parameter must be copied to the storage
area for the corresponding formal parameter. The storage and the copy
operations can be costly if the parameter is large, such as an array with many
elements.

9.5.2.2 Pass-by-Result
Pass-by-result is an implementation model for out-mode parameters. When a
parameter is passed by result, no value is transmitted to the subprogram. The
corresponding formal parameter acts as a local variable, but just before

control is transferred back to the caller, its value is transmitted back to the
caller’s actual parameter, which obviously must be a variable. (How would
the caller reference the computed result if it were a literal or an expression?)

The pass-by-result method has the advantages and disadvantages of pass-by-
value, plus some additional disadvantages. If values are returned by copy (as
opposed to access paths), as they typically are, pass-by-result also requires
the extra storage and the copy operations that are required by pass-by-value.
As with pass-by-value, the difficulty of implementing pass-by-result by
transmitting an access path usually results in it being implemented by copy.
In this case, the problem is in ensuring that the initial value of the actual
parameter is not used in the called subprogram.

One additional problem with the pass-by-result model is that there can be an
actual parameter collision, such as the one created with the call

sub(p1, p1)

In sub, assuming the two formal parameters have different names, the two
can obviously be assigned different values. Then, whichever of the two is
copied to their corresponding actual parameter last becomes the value of p1
in the caller. Thus, the order in which the actual parameters are copied
determines their value. For example, consider the following C# method,
which specifies the pass-by-result method with the out specifier on its formal
parameter.5

5. The out specifier must also be specified on the corresponding actual
parameter.

void Fixer(out int x, out int y) {

 x = 17;

 y = 35;

}

. . .

f.Fixer(out a, out a);

If, at the end of the execution of Fixer, the formal parameter x is assigned to
its corresponding actual parameter first, then the value of the actual parameter
a in the caller will be 35. If y is assigned first, then the value of the actual
parameter a in the caller will be 17.

Because the order can be implementation dependent for some languages,
different implementations can produce different results.

Calling a subprogram with two identical actual parameters can also lead to
different kinds of problems when other parameter-passing methods are used,
as discussed in Section 9.5.2.4.

Another problem that can occur with pass-by-result is that the implementor
may be able to choose between two different times to evaluate the addresses
of the actual parameters: at the time of the call or at the time of the return. For
example, consider the following C# method and following code:

void DoIt(out int x, int index){

 x = 17;

 index = 42;

}

. . .

sub = 21;

f.DoIt(list[sub], sub);

The address of list[sub] changes between the beginning and end of the
method. The implementor must choose the time to bind this parameter to an
address—at the time of the call or at the time of the return. If the address is
computed on entry to the method, the value 17 will be returned to list[21];
if computed just before return, 17 will be returned to list[42]. This makes
programs unportable between an implementation that chooses to evaluate the
addresses for out-mode parameters at the beginning of a subprogram and one
that chooses to do that evaluation at the end. An obvious way to avoid this
problem is for the language designer to specify when the address to be used
to return the parameter value must be computed.

9.5.2.3 Pass-by-Value-Result
Pass-by-value-result is an implementation model for inout-mode parameters
in which actual values are copied. It is in effect a combination of pass-by-
value and pass-by-result. The value of the actual parameter is used to
initialize the corresponding formal parameter, which then acts as a local

variable. In fact, pass-by-value-result formal parameters must have local
storage associated with the called subprogram. At subprogram termination,
the value of the formal parameter is transmitted back to the actual parameter.

Pass-by-value-result is sometimes called pass-by-copy, because the actual
parameter is copied to the formal parameter at subprogram entry and then
copied back at subprogram termination.

Pass-by-value-result shares with pass-by-value and pass-by-result the -
disadvantages of requiring multiple storage for parameters and time for
copying values. It shares with pass-by-result the problems associated with the
order in which actual parameters are assigned.

The advantages of pass-by-value-result are relative to pass-by-reference, so
they are discussed in Section 9.5.2.4.

9.5.2.4 Pass-by-Reference
Pass-by-reference is a second implementation model for inout-mode
parameters. Rather than copying data values back and forth, however, as in
pass-by-value-result, the pass-by-reference method transmits an access path,
usually just an address, to the called subprogram. This provides the access
path to the cell storing the actual parameter. Thus, the called subprogram is
allowed to access the actual parameter in the calling program unit. In effect,
the actual parameter is shared with the called subprogram.

The advantage of pass-by-reference is that the passing process itself is
efficient, in terms of both time and space. Duplicate space is not required and
no copying is required.

There are, however, several disadvantages to the pass-by-reference method.
First, access to the formal parameters will be slower than pass-by-value
parameters, because of the additional level of indirect addressing that is
required.6 Second, if only one-way communication to the called subprogram
is required, inadvertent and erroneous changes may be made to the actual
parameter. This issue is addressed below.

6. This is further explained in Section 9.5.3.

Another problem of pass-by-reference is that aliases can be created. This
problem should be expected, because pass-by-reference makes access paths
available to the called subprograms, thereby providing access to nonlocal
variables. The problem with these kinds of aliasing is the same as in other
circumstances: It is harmful to readability and thus to reliability. It also
makes program verification more difficult. Another issue with pass by
reference is whether the called subprogram is allowed to change a passed
pointer. In C, this is possible, but in some other languages, such as Pascal and
C++, formal parameters that are addresses are implicitly dereferenced in the
called subprogram, which prevents such changes.

There are several ways pass-by-reference parameters can create aliases. First,
collisions can occur between actual parameters. Consider a C++ function that
has two parameters that are to be passed by reference, as in

void fun(int &first, int &second)

If the call to fun happens to pass the same variable twice, as in

fun(total, total)

then first and second in fun will be aliases.

Second, collisions between array elements can also cause aliases. For
example, suppose the function fun is called with two array elements that are -
specified with variable subscripts, as in

fun(list[i], list[j])

If these two parameters are passed by reference and i happens to be equal to
j, then first and second are again aliases.

Third, if two of the formal parameters of a subprogram are an element of an
array and the whole array, and both are passed by reference, then a call such
as

fun1(list[i], list)

could result in aliasing in fun1, because fun1 can access all elements of list
through the second parameter and access a single element through its first
parameter.

Still another way to get aliasing with pass-by-reference parameters is through
collisions between formal parameters and nonlocal variables that are visible.
For example, consider the following C code:

int * global;

void main() {

 . . .

 sub(global);

 . . .

}

 void sub(int * param) {

 . . .

}

Inside sub, param and global are aliases.

All these possible aliasing situations are eliminated if pass-by-value-result is
used instead of pass-by-reference. However, in place of aliasing, other
problems sometimes arise, as discussed in Section 9.5.2.3.

9.5.2.5 Pass-by-Name
Pass-by-name is an inout-mode parameter transmission method that does not
correspond to a single implementation model. When parameters are passed
by name, the actual parameter is, in effect, textually substituted for the
corresponding formal parameter in all its occurrences in the subprogram. This
method is quite different from those discussed thus far; in which case, formal
parameters are bound to actual values or addresses at the time of the
subprogram call. A pass-by-name formal parameter is bound to an access
method at the time of the subprogram call, but the actual binding to a value or
an address is delayed until the formal parameter is assigned or referenced.
Implementing a pass-by-name parameter requires a subprogram to be passed
to the called subprogram to evaluate the address or value of the formal
parameter. The referencing environment of the passed subprogram must also

be passed. This subprogram/referencing environment is a closure (see Section
9.12).7 Pass-by-name parameters are both complex to implement and
inefficient. They also add significant complexity to the program, thereby
lowering its readability and reliability.

7. These closures were originally (in ALGOL 60) called thunks.

Because pass-by-name is not part of any widely used language, it is not
discussed further here. However, it is used at compile time by the macros in
assembly languages and for the generic parameters of the generic
subprograms in C++, Java 5.0, and C# 2005, as discussed in Section 9.9.

9.5.3 Implementing Parameter-
Passing Methods
We now address the question of how the various implementation models of
parameter passing are actually implemented.

In most contemporary languages, parameter communication takes place
through the run-time stack. The run-time stack is initialized and maintained
by the run-time system, which manages the execution of programs. The run-
time stack is used extensively for subprogram control linkage and parameter
passing, as discussed in Chapter 10. In the following discussion, we assume
that the stack is used for all parameter transmission.

Pass-by-value parameters have their values copied into stack locations. The
stack locations then serve as storage for the corresponding formal parameters.
Pass-by-result parameters are implemented as the opposite of pass-by-value.
The values assigned to the pass-by-result actual parameters are placed in the
stack, where they can be retrieved by the calling program unit upon
termination of the called subprogram. Pass-by-value-result parameters can be
implemented directly from their semantics as a combination of pass-by-value
and pass-by-result. The stack location for such a parameter is initialized by
the call and is then used like a local variable in the called subprogram.

Pass-by-reference parameters are perhaps the simplest to implement. Most
languages only allow variables to be passed by reference. However, Fortran
passes all forms of parameters by reference. In Fortran, regardless of the type
of the actual parameter, only its address must be placed in the stack. In the
case of literals, the address of the literal is put in the stack. In the case of an
expression, the compiler must build code to evaluate the expression, which
must be executed just before the transfer of control to the called subprogram.
The address of the memory cell in which the code places the result of its
evaluation is then put in the stack. The Fortran compiler must prevent the
called subprogram from changing parameters that are literals or expressions.

Access to the formal parameters in the called subprogram is by indirect
addressing from the stack location of the address. The implementation of
pass-by-value, -result, -value-result, and -reference, where the run-time stack
is used, is shown in Figure 9.2. Subprogram sub is called from main with the
call sub(w, x, y, z), where w is passed by value, x is passed by result, y is
passed by value-result, and z is passed by reference.

Figure 9.2 One possible stack

implementation of the common
parameter-passing methods

Figure 9.2 Full Alternative Text

Function header: void sub (int a, int b, int c, int d)

Function call in main: sub (w,x,y,z)

(pass w by value, x by result, y by value-result, z by reference)

9.5.4 Parameter-Passing Methods
of Some Common Languages
C uses pass-by-value. Pass-by-reference (inout mode) semantics is achieved
by using pointers as parameters. The value of the pointer is made available to
the called function and nothing is copied back. However, because what was
passed is an access path to the data of the caller, the called function can
change the caller’s data. But all references to pointer formal parameter must
be explicitly dereferenced in the function. C copied this use of the pass-by-
value method from ALGOL 68. In both C and C++, formal parameters can be
typed as pointers to constants. The corresponding actual parameters need not
be constants, for in such cases they are coerced to constants. This allows
pointer parameters to provide the efficiency of pass-by-reference with the
one-way semantics of pass-by-value. Write protection of those parameters in
the called function is implicitly specified.

C++ includes a special pointer type, called a reference type, as discussed in
Chapter 6, which is often used for parameters. Reference parameters are
implicitly dereferenced in the function or method, and their semantics is pass-
by-reference. C++ also allows reference parameters to be defined to be
constants. For example, we could have

void fun(const int &p1, int p2, int &p3) { . . . }

where p1 is pass-by-reference but cannot be changed in the function fun, p2
is pass-by-value, and p3 is pass-by-reference. Neither p1 nor p3 need be
explicitly dereferenced in fun.

history note
ALGOL 60 introduced the pass-by-name method. It also allowed pass-by-
value as an option. Primarily because of the difficulty in implementing them,
pass-by-name parameters were not carried from ALGOL 60 to any
subsequent languages that became popular (other than SIMULA 67).

Constant parameters and in-mode parameters are not exactly alike. Constant
parameters clearly implement in mode. However, in all of the common
imperative languages except Ada, in-mode parameters can be assigned in the
subprogram even though those changes are never reflected in the values of
the corresponding actual parameters. In Ada, such an assignment is illegal.
Constant parameters can never be assigned.

As with C and C++, all Java parameters are passed by value. However,
because objects can be accessed only through reference variables, object
parameters are in effect passed by reference. Although an object reference
passed as a parameter cannot itself be changed in the called subprogram, the
referenced object can be changed if a method is available to cause the change.
Because reference variables cannot point to scalar variables directly and Java
does not have pointers, scalars cannot be passed by reference in Java
(although a reference to an object that contains a scalar can). Therefore, if a
scalar is passed to a Java method, it cannot be changed by that method.

history note
ALGOL W (Wirth and Hoare, 1966) introduced the pass-by-value-result
method of parameter passing as an alternative to the inefficiency of pass-by-
name and the problems of pass-by-reference.

The default parameter-passing method of C# is pass-by-value. Pass-by-
reference can be specified by preceding both a formal parameter and its
corresponding actual parameter with ref. For example, consider the
following C# skeletal method and call:

void sumer(ref int oldSum, int newOne) { . . . }

. . .

sumer(ref sum, newValue);

The first parameter to sumer is passed by reference; the second is passed by
value. All ref parameters must be assigned a value before they are passed to
an actual parameter.

C# also supports out-mode parameters, which are pass-by-reference
parameters that do not need initial values. Such parameters are specified in
the formal parameter list with the out modifier.

PHP’s parameter passing is similar to that of C#, except that either the actual
parameter or the formal parameter can specify pass-by-reference. Pass-by-
reference is specified by preceding one or both of the parameters with an
ampersand.

In Swift, the default parameter passing method is pass by value, and formal
parameters passed this way cannot be changed in the called subprogram.
Pass-by-reference semantics can be specified by preceding the formal
parameter with the reserved word inout.

Perl employs a primitive means of passing parameters. All actual parameters
are implicitly placed in a predefined array named @_ (of all things!). The
subprogram retrieves the actual parameter values (or addresses) from this
array. The most peculiar thing about this array is its magical nature, exposed
by the fact that its elements are in effect aliases for the actual parameters.
Therefore, if an element of @_ is changed in the called subprogram, that
change is reflected in the corresponding actual parameter in the call,
assuming there is a corresponding actual parameter (the number of actual
parameters need not be the same as the number of formal parameters) and it
is a variable.

The parameter-passing method of Python and Ruby is called pass-by--

assignment or pass-by-sharing. Because all data values are objects, every
variable is a reference to an object. In pass-by-assignment, the actual
parameter value is assigned to the formal parameter. Therefore, pass-by-
assignment is in effect pass-by-reference, because the value of all actual
parameters are references. However, only in certain cases does this result in
pass-by-reference semantics. For example, many objects are essentially
immutable. In a pure object-oriented language, the process of changing the
value of a variable with an assignment statement, as in

x = x + 1

does not change the object referenced by x. Rather, it takes the object
referenced by x, increments it by 1, thereby creating a new object (with the
value x + 1), and then changes x to reference the new object. So, when a
reference to a scalar object is passed to a subprogram, the object being
referenced cannot be changed in place. Because the reference is passed by
value, even though the formal parameter is changed in the subprogram, that
change has no effect on the actual parameter in the caller.

Now, suppose a reference to an array is passed as a parameter. If the
corresponding formal parameter is assigned a new array object, there is no
effect on the caller. However, if the formal parameter is used to assign a
value to an element of the array, as in

list[3] = 47

the actual parameter is affected. So, changing the reference of the formal
parameter has no effect on the caller, but changing an element of the array
that is passed as a parameter does.

9.5.5 Type Checking Parameters
It is now widely accepted that software reliability demands that the types of
actual parameters be checked for consistency with the types of the
corresponding formal parameters. Without such type checking, small
typographical errors can lead to program errors that may be difficult to
diagnose because they are not detected by the compiler or the run-time

system. For example, in the function call

result = sub1(1)

the actual parameter is an integer constant. If the formal parameter of sub1 is
a floating-point type, no error will be detected without parameter type
checking. Although an integer 1 and a floating-point 1 have the same value,
the representations of these two are very different. sub1 cannot produce a
correct result given an integer actual parameter value if it expects a floating-
point value.

Early programming languages, such as Fortran 77 and the original version of
C, did not require parameter type checking; most later languages require it.
However, the relatively recent languages Perl, JavaScript, and PHP do not.

C and C++ require some special discussion in the matter of parameter type
checking. In the original C, neither the number of parameters nor their types
were checked. In C89, the formal parameters of functions can be defined in
two ways. They can be defined as in the original C; that is, the names of the
parameters are listed in parentheses and the type declarations for them follow,
as in the following function:

double sin(x)

 double x;

 { . . . }

Using this form avoids type checking, thereby allowing calls such as

double value;

int count;

. . .

value = sin(count);

to be legal, although they are never correct.

The alternative to the original C definition approach is called the prototype
method, in which the formal parameter types are included in the list, as in

double sin(double x)

 { . . . }

If this version of sin is called with the same call, that is, with the following,
it is also legal:

value = sin(count);

The type of the actual parameter (int) is checked against that of the formal
parameter (double). Although they do not match, int is coercible to double
(it is a widening coercion), so the conversion is done. If the conversion is not
possible (for example, if the actual parameter had been an array) or if the
number of parameters is wrong, then a semantics error is detected. So in C89,
the user chooses whether parameters are to be type checked.

In C99 and C++, all functions must have their formal parameters in prototype
form. However, type checking can be avoided for some of the parameters by
replacing the last part of the parameter list with an ellipsis, as in

int printf(const char* format_string, . . .);

A call to printf must include at least one parameter, a pointer to a literal
character string. Beyond that, anything (including nothing) is legal. The way
printf determines whether there are additional parameters is by the presence
of format codes in the string parameter. For example, the format code for
integer output is %d. This appears as part of the string, as in the following:

printf("The sum is %d\n", sum);

The % tells the printf function that there is one more parameter.

There is one more interesting issue with actual to formal parameter coercions
when primitives can be passed by reference, as in C#. Suppose a call to a
method passes a float value to a double formal parameter. If this parameter
is passed by value, the float value is coerced to double and there is no
problem. This particular coercion is very useful, for it allows a library to
provide double versions of subprograms that can be used for both float and
double values. However, suppose the parameter is passed by reference.
When the value of the double formal parameter is returned to the float
actual parameter in the caller, the value will overflow its location. To avoid
this problem, C# requires the type of a ref actual parameter to match exactly
the type of its corresponding formal parameter (no coercion is allowed).

In Python and Ruby, there is no type checking of parameters, because typing
in these languages is a different concept. Objects have types, but variables do
not, so formal parameters are typeless. This disallows the very idea of type
checking parameters.

9.5.6 Multidimensional Arrays as
Parameters
The storage-mapping functions that are used to map the index values of
references to elements of multidimensional arrays to addresses in memory
were discussed at length in Chapter 6. In some languages, such as C and C++,
when a multidimensional array is passed as a parameter to a subprogram, the
compiler must be able to build the mapping function for that array while
seeing only the text of the subprogram (not the calling subprogram). This is
true because the subprograms can be compiled separately from the programs
that call them. Consider the problem of passing a matrix to a function in C.
Multidimensional arrays in C are really arrays of arrays, and they are stored
in row major order. Following is a storage-mapping function for row major
order for matrices when the lower bound of all indices is 0 and the element
size is 1:

address (mat[i, j]) = address(mat[0,0]) + i *

           number_of_columns + j

Notice that this mapping function needs the number of columns but not the
number of rows. Therefore, in C and C++, when a matrix is passed as a
parameter, the formal parameter must include the number of columns in the
second pair of brackets. This is illustrated in the following skeletal C
program:

void fun(int matrix[][10]) {

 . . . }

void main() {

 int mat[5][10];

 . . .

 fun(mat);

 . . .

}

The problem with this method of passing matrices as parameters is that it
does not allow a programmer to write a function that can accept matrices with
different numbers of columns; a new function must be written for every
matrix with a different number of columns. This, in effect, disallows writing
flexible functions that may be effectively reusable if the functions deal with
multidimensional arrays. In C and C++, there is a way around the problem
because of their inclusion of pointer arithmetic. The matrix can be passed as a
pointer, and the actual dimensions of the matrix also can be passed as
parameters. Then, the function can evaluate the user-written storage-mapping
function using pointer arithmetic each time an element of the matrix must be
referenced. For example, consider the following function prototype:

void fun(float *mat_ptr,

 int num_rows,

 int num_cols);

The following statement can be used to move the value of the variable x to
the [row][col] element of the parameter matrix in fun:

*(mat_ptr + (row * num_cols) + col) = x;

Although this works, it is obviously difficult to read, and because of its
complexity, it is error prone. The difficulty with reading this can be alleviated
by using a macro to define the storage-mapping function, such as

#define mat_ptr(r,c) (*mat_ptr + ((r) *

 (num_cols) + (c)))

With this, the assignment can be written as

mat_ptr(row,col) = x;

Other languages use different approaches to dealing with the problem of
passing multidimensional arrays.

In Java and C#, arrays are objects. They are all single dimensioned, but the
elements can be arrays. Each array inherits a named constant (length in Java

and Length in C#) that is set to the length of the array when the array object
is created. The formal parameter for a matrix appears with two sets of empty
brackets, as in the following Java method:

float sumer(float mat[][]) {

 float sum = 0.0f;

 for (int row = 0; row < mat.length; row++) {

 for (int col = 0; col < mat[row].length; col++) {

 sum += mat[row][col];

 } //** for (int row . . .

 } //** for (int col . . .

 return sum;

}

Because each array has its own length value, in a matrix the rows can have
different lengths.

9.5.7 Design Considerations
Two important considerations are involved in choosing parameter-passing
methods: efficiency and whether one-way or two-way data transfer is needed.

Contemporary software-engineering principles dictate that access by
subprogram code to data outside the subprogram should be minimized. With
this goal in mind, in-mode parameters should be used whenever no data are
to be returned through parameters to the caller. Out-mode parameters should
be used when no data are transferred to the called subprogram but the
subprogram must transmit data back to the caller. Finally, inout-mode
parameters should be used only when data must move in both directions
between the caller and the called subprogram.

There is a practical consideration that is in conflict with this principle.
Sometimes it is justifiable to pass access paths for one-way parameter
transmission. For example, when a large array is to be passed to a
subprogram that does not modify it, a one-way method may be preferred.
However, pass-by-value would require that the entire array be moved to a
local storage area of the subprogram. This would be costly in both time and
space. Because of this, large arrays are often passed by reference. This is

precisely the reason why the Ada 83 definition allowed implementors to
choose between the two methods for structured parameters. C++ constant
reference parameters offer another solution. Another alternative approach
would be to allow the user to choose between the methods.

The choice of a parameter-passing method for functions is related to another
design issue: functional side effects. This issue is discussed in Section 9.10.

9.5.8 Examples of Parameter
Passing
Consider the following C function:

void swap1(int a, int b) {

 int temp = a;

 a = b;

 b = temp;

}

Suppose this function is called with

swap1(c, d);

Recall that C uses pass-by-value. The actions of swap1 can be described by
the following pseudocode:

a = c - Move first parameter value in

b = d - Move second parameter value in

temp = a

a = b

b = temp

Although a ends up with d’s value and b ends up with c’s value, the values of
c and d are unchanged because nothing is transmitted back to the caller.

We can modify the C swap function to deal with pointer parameters to
achieve the effect of pass-by-reference:

void swap2(int *a, int *b) {

 int temp = *a;

 *a = *b;

 *b = temp;

}

swap2 can be called with

swap2(&c, &d);

The actions of swap2 can be described with the following:

a = &c - Move first parameter address in

b = &d - Move second parameter address in

temp = *a

*a = *b

*b = temp

In this case, the swap operation is successful: The values of c and d are in fact
interchanged. swap2 can be written in C++ using reference parameters as
follows:

void swap2(int &a, int &b) {

 int temp = a;

 a = b;

 b = temp;

}

This simple swap operation is not possible in Java, because it has neither
pointers nor C++’s kind of references. In Java, a reference variable can point
to only an object, not a scalar value.

The semantics of pass-by-value-result is identical to those of pass-by--
reference, except when aliasing is involved. Ada uses pass-by-value-result for
inout-mode scalar parameters. To explore pass-by-value-result, consider the
following function, swap3, which we assume uses pass-by-value-result
parameters. It is written in a syntax similar to that of Ada.

procedure swap3(a : in out Integer, b : in out Integer) is

 temp : Integer;

 begin

 temp := a;

 a := b;

 b := temp;

 end swap3

Suppose swap3 is called with

swap3(c, d);

The actions of swap3 with this call are

addr_c = &c - Move first parameter address in

addr_d = &d - Move second parameter address in

a = *addr_c - Move first parameter value in

b = *addr_d - Move second parameter value in

temp = a

a = b

b = temp

*addr_c = a - Move first parameter value out

*addr_d = b - Move second parameter value out

So once again, this swap subprogram operates correctly. Next, consider the
call

swap3(i, list[i]);

In this case, the actions are

addr_i = &i - Move first parameter address in

addr_listi= &list[i] - Move second parameter address in

a = *addr_i - Move first parameter value in

b = *addr_listi - Move second parameter value in

temp = a

a = b

b = temp

*addr_i = a - Move first parameter value out

*addr_listi = b - Move second parameter value out

Again, the subprogram operates correctly, in this case because the addresses
to which to return the values of the parameters are computed at the time of
the call rather than at the time of the return. If the addresses of the actual
parameters were computed at the time of the return, the results would be
wrong.

Finally, we must explore what happens when aliasing is involved with pass-

by-value-result and pass-by-reference. Consider the following skeletal
program written in C-like syntax:

int i = 3; /* i is a global variable */

void fun(int a, int b) {

 i = b;

}

void main() {

 int list[10];

 list[i] = 5;

 fun(i, list[i]);

}

In fun, if pass-by-reference is used, i and a are aliases. If pass-by-value-
result is used, i and a are not aliases. The actions of fun, assuming pass-by-
value-result, are as follows:

addr_i = &i - Move first parameter address in

addr_listi = &list[i] - Move second parameter address in

a = *addr_i - Move first parameter value in

b = *addr_listi - Move second parameter value in

i = b - Sets i to 5

*addr_i = a - Move first parameter value out

*addr_listi = b - Move second parameter value out

In this case, the assignment to the global i in fun changes its value from 3 to
5, but the copy back of the first formal parameter (the second to last line in
the example) sets it back to 3. The important observation here is that if pass-
by-reference is used, the result is that the copy back is not part of the
semantics, and i remains 5. Also note that because the address of the second
parameter is computed at the beginning of fun, any change to the global i has
no effect on the address used at the end to return the value of list[i].

9.6 Parameters That Are
Subprograms
In programming, a number of situations occur that are most conveniently
handled if subprogram names can be sent as parameters to other
subprograms. One common example of these occurs when a subprogram
must sample some mathematical function. For example, a subprogram that
does numerical integration estimates the area under the graph of a function by
sampling the function at a number of different points. When such a
subprogram is written, it should be usable for any given function; it should
not need to be rewritten for every function that must be integrated. It is
therefore natural that the name of a program function that evaluates the
mathematical function to be integrated be sent to the integrating subprogram
as a parameter.

Although the idea is natural and seemingly simple, the details of how it
works can be confusing. If only the transmission of the subprogram code was
necessary, it could be done by passing a single pointer. However, two
complications arise.

First, there is the matter of type checking the parameters of the activations of
the subprogram that was passed as a parameter. In C and C++, functions
cannot be passed as parameters, but pointers to functions can. The type of a
pointer to a function includes the function’s protocol. Because the protocol
includes all parameter types, such parameters can be completely type
checked.

The second complication with parameters that are subprograms appears only
with languages that allow nested subprograms. The issue is what referencing
environment for executing the passed subprogram should be used. There are
three choices:

The environment of the call statement that enacts the passed subprogram
(shallow binding)

The environment of the definition of the passed subprogram (deep
binding)

The environment of the call statement that passed the subprogram as an
actual parameter (ad hoc binding)

The following example program, written with the syntax of JavaScript,
illustrates these choices:

function sub1() {

 var x;

 function sub2() {

 alert(x); // Creates a dialog box with the value of x

 };

 function sub3() {

 var x;

 x = 3;

 sub4(sub2);

 };

 function sub4(subx) {

 var x;

 x = 4;

 subx();

 };

 x = 1;

 sub3();

 };

Consider the execution of sub2 when it is called in sub4. For shallow
binding, the referencing environment of that execution is that of sub4, so the
reference to x in sub2 is bound to the local x in sub4, and the output of the
program is 4. For deep binding, the referencing environment of sub2’s
execution is that of sub1, so the reference to x in sub2 is bound to the local x
in sub1, and the output is 1. For ad hoc binding, the binding is to the local x
in sub3, and the output is 3.

In some cases, the subprogram that declares a subprogram also passes that
subprogram as a parameter. In those cases, deep binding and ad hoc binding
are the same. Ad hoc binding has never been used because, one might
surmise, the environment in which the procedure appears as a parameter has
no natural connection to the passed subprogram.

history note
The original definition of Pascal (Jensen and Wirth, 1974) allowed
subprograms to be passed as parameters without including their parameter
type information. If independent compilation is possible (it was not possible
in the original Pascal), the compiler is not even allowed to check for the
correct number of parameters. In the absence of independent compilation,
checking for parameter consistency is possible but is a very complex task,
and it usually is not done.

Shallow binding is not appropriate for static-scoped languages with nested
subprograms. For example, suppose the procedure Sender passes the
procedure Sent as a parameter to the procedure Receiver. The problem is
that Receiver may not be in the static environment of Sent, thereby making
it highly unnatural for Sent to have access to Receiver’s variables. On the
other hand, it is perfectly normal in such a language for any subprogram,
including one sent as a parameter, to have its referencing environment
determined by the lexical position of its definition. It is therefore more logical
for these languages to use deep binding. Some dynamic-scoped languages use
shallow binding.

9.7 Calling Subprograms Indirectly
There are situations in which subprograms must be called indirectly. These
most often occur when the specific subprogram to be called is not known
until run time. The call to the subprogram is made through a pointer or
reference to the subprogram, which has been set during execution before the
call is made. The two most common applications of indirect subprogram calls
are for event handling in graphical user interfaces, which are now part of
nearly all Web applications, as well as many non-Web applications, and for
callbacks, in which a subprogram is called and instructed to notify the caller
when the called subprogram has completed its work. As always, our interest
is not in these specific kinds of programming, but rather in programming
language support for them.

The concept of calling subprograms indirectly is not a recently developed
concept. C and C++ allow a program to define a pointer to a function,
through which the function can be called. In C++, pointers to functions are
typed according to the return type and parameter types of the function, so that
such a pointer can point only at functions with one particular protocol. For
example, the following declaration defines a pointer (pfun) that can point to
any function that takes a float and an int as parameters and returns a float:

float (*pfun)(float, int);

Any function with the same protocol as this pointer can be used as the initial
value of this pointer or be assigned to the pointer in a program. In C and C++,
a function name without following parentheses, like an array name without
following brackets, is the address of the function (or array). So, both of the
following are legal ways of giving an initial value or assigning a value to a
pointer to a function:

int myfun2 (int, int); // A function declaration

int (*pfun2)(int, int) = myfun2; // Create a pointer and

 // initialize

 // it to point to myfun2

pfun2 = myfun2; // Assigning a function's address to a

 // pointer

The function myfun2 can now be called with either of the following
statements:

(*pfun2)(first, second); pfun2(first, second);

The first of these explicitly dereferences the pointer pfun2, which is legal, but
unnecessary.

The function pointers of C and C++ can be sent as parameters and returned
from functions, although functions cannot be used directly in either of those
roles.

In C#, the power and flexibility of method pointers is increased by making
them objects. These are called delegates, because instead of calling a method,
a program delegates that action to a delegate.

To use a delegate, first the delegate class must be defined with a specific
method protocol. An instantiation of a delegate holds the name of a method
with the delegate’s protocol that it is able to call. The syntax of a declaration
of a delegate is the same as that of a method declaration, except that the
reserved word delegate is inserted just before the return type. For example,
we could have the following:

public delegate int Change(int x);

This delegate can be instantiated with any method that takes an int as a
parameter and returns an int. For example, consider the following method
declaration:

static int fun1(int x);

The delegate Change can be instantiated by sending the name of this method
to the delegate’s constructor, as in the following:

Change chgfun1 = new Change(fun1);

This can be shortened to the following:

Change chgfun1 = fun1;

Following is an example call to fun1 through the delegate chgfun1:

chgfun1(12);

Objects of a delegate class can store more than one method. A second method
can be added using the operator +=, as in the following:

Change chgfun1 += fun2;

This places fun2 in the chgfun1 delegate, even if chgfun1 previously had the
value null. All of the methods stored in a delegate instance are called in the
order in which they were placed in the instance. This is called a multicast
delegate. Regardless of what is returned by the methods, only the value or
object returned by the last one called is returned. Of course, this means that in
most cases, void is returned by the methods called through a multicast
delegate.

In our example, a static method is placed in the delegate Change. Instance
methods can also be called through a delegate, in which case the delegate
must store a reference to the method. Delegates can also be generic.

Delegates are used for event handling by .NET applications. They are also
used to implement closures (see Section 9.12).

As is the case with C and C++, the name of a function in Python without the
following parentheses is a pointer to that function. Ada 95 has pointers to
subprograms, but Java does not. In Python and Ruby, as well as most
functional languages, subprograms are treated like data, so they can be
assigned to variables. Therefore, in these languages, there is little need for
pointers to subprograms.

9.8 Design Issues for Functions
The following design issues are specific to functions:

Are side effects allowed?

What types of values can be returned?

How many values can be returned?

9.8.1 Functional Side Effects
Because of the problems of side effects of functions that are called in
expressions, as described in Chapter 5, parameters to functions should always
be in-mode. In fact, some languages require this; for example, Ada functions
can have only in-mode formal parameters. This requirement effectively
prevents a function from causing side effects through its parameters or
through aliasing of parameters and globals. In most other imperative
languages, however, functions can have either pass-by-value or pass-by-
reference parameters, thus allowing functions that cause side effects and
aliasing.

Pure functional languages, such as Haskell and Ruby, do not have variables,
so their functions cannot have side effects.

9.8.2 Types of Returned Values
Most imperative programming languages restrict the types that can be
returned by their functions. C allows any type to be returned by its functions
except arrays and functions. Both of these can be handled by pointer type
return values. C++ is like C but also allows user-defined types, or classes, to
be returned from its functions. Ada, Python, and Ruby are the only languages

among current imperative languages whose functions (and/or methods) can
return values of any type. In the case of Ada, however, because functions are
not types in Ada, they cannot be returned from functions. Of course, pointers
to functions can be returned by functions.

In some programming languages, subprograms are first-class objects, which
means that they can be passed as parameters, returned from functions, and
assigned to variables. Methods are first-class objects in some imperative
languages, for example, Python and Ruby. The same is true for the functions
in most functional languages.

Neither Java nor C# can have functions, although their methods are similar to
functions. In both, any type or class can be returned by methods. Because
methods are not types, they cannot be returned.

9.8.3 Number of Returned Values
In most languages, only a single value can be returned from a function.
However, that is not always the case. Ruby allows the return of more than
one value from a method. If a return statement in a Ruby method is not
followed by an expression, nil is returned. If followed by one expression, the
value of the expression is returned. If followed by more than one expression,
an array of the values of all of the expressions is returned.

In ML, F#, and Python, and some other languages that include tuples,
multiple values can be returned by placing them in a tuple.

9.9 Overloaded Subprograms
An overloaded operator is one that has multiple meanings. The meaning of a
particular instance of an overloaded operator is determined by the types of its
operands. For example, if the * operator has two floating-point operands in a
Java program, it specifies floating-point multiplication. But if the same
operator has two integer operands, it specifies integer multiplication.

An overloaded subprogram is a subprogram that has the same name as
another subprogram in the same referencing environment. Every version of
an overloaded subprogram must have a unique protocol; that is, it must be
different from the others in the number, order, or types of its parameters, and
possibly in its return type. The meaning of a call to an overloaded
subprogram is determined by the actual parameter list and/or possibly the
type of the returned value. Although it is not necessary, overloaded
subprograms usually implement the same process.

C++, Java, and C# include predefined overloaded subprograms. For example,
many classes in C++, Java, and C# have overloaded constructors. Because
each version of an overloaded subprogram has a unique parameter profile, the
compiler can disambiguate occurrences of calls to them by the different type
parameters. Unfortunately, it is not that simple. Parameter coercions, when
allowed, complicate the disambiguation process enormously. Simply stated,
the issue is that if no method’s parameter profile matches the number and
types of the actual parameters in a method call, but two or more methods
have parameter profiles that can be matched through coercions, which
method should be called? For a language designer to answer this question, he
or she must decide how to rank all of the different coercions, so that the
compiler can choose the method that “best” matches the call. This can be a
complicated task. To understand the level of complexity of this process, we
suggest the reader refer to the rules for disambiguation of method calls used
in C++ (Stroustrup, 1997).

Because C++, Java, and C# allow mixed-mode expressions, the return type is
irrelevant to disambiguation of overloaded functions (or methods). The

context of the call does not allow the determination of the return type. For
example, if a C++ program has two functions named fun and both take an
int parameter but one returns an int and one returns a float, the program
would not compile, because the compiler could not determine which version
of fun should be used.

Users are also allowed to write multiple versions of subprograms with the
same name in Java, C++, C#, and F#. Once again, in C++, Java, and C# the
most common user-defined overloaded methods are constructors.

Overloaded subprograms that have default parameters can lead to ambiguous
subprogram calls. For example, consider the following C++ code:

void fun(float b = 0.0);

void fun();

 . . .

 fun();

The call is ambiguous and will cause a compilation error.

9.10 Generic Subprograms
Software reuse can be an important contributor to software productivity. One
way to increase the reusability of software is to lessen the need to create
different subprograms that implement the same algorithm on different types
of data. For example, a programmer should not need to write four different
sort subprograms to sort four arrays that differ only in element type.

A polymorphic subprogram takes parameters of different types on different
activations. Overloaded subprograms provide a particular kind of
polymorphism called ad hoc polymorphism. Overloaded subprograms need
not behave similarly.

Languages that support object-oriented programming usually support subtype
polymorphism. Subtype polymorphism means that a variable of type T can
access any object of type T or any type derived from T.

A more general kind of polymorphism is provided by the methods of Python
and Ruby. Recall that variables in these languages do not have types, so
formal parameters do not have types. Therefore, a method will work for any
type of actual parameter, as long as the operators used on the formal
parameters in the method are defined.

Parametric polymorphism is provided by a subprogram that takes generic
parameters that are used in type expressions that describe the types of the
parameters of the subprogram. Different instantiations of such subprograms
can be given different generic parameters, producing subprograms that take
different types of parameters. Parametric definitions of subprograms all
behave the same. Parametrically polymorphic subprograms are often called
generic subprograms. C++, Java 5.0+, C# 2005+, and F# provide a kind of
compile-time parametric polymorphism.

9.10.1 Generic Functions in C++

Generic functions in C++ have the descriptive name of template functions.
The definition of a template function has the general form

template <template parameters>

—a function definition that may include the template parameters

A template parameter (there must be at least one) has one of the forms

class identifier

typename identifier

The class form is used for type names. The typename form is used for passing
a value to the template function. For example, it is sometimes convenient to
pass an integer value for the size of an array in the template function.

A template can take another template, in practice often a template class that
defines a user-defined generic type, as a parameter, but we do not consider
that option here.8

8. Template classes are discussed in Chapter 11.

As an example of a template function, consider the following:

template <class Type>

Type max(Type first, Type second) {

 return first > second ? first : second;

}

where Type is the parameter that specifies the type of data on which the
function will operate. This template function can be instantiated for any type
for which the operator > is defined. For example, if it were instantiated with
int as the parameter, it would be

int max(int first, int second) {

 return first > second ? first : second;

}

Although this process could be defined as a macro, a macro would have the

disadvantage of not operating correctly if the parameters were expressions
with side effects. For example, suppose the macro were defined as

#define max(a, b) ((a) > (b)) ? (a) : (b)

This definition is generic in the sense that it works for any numeric type.
However, it does not always work correctly if called with a parameter that
has a side effect, such as

max(x++, y)

which produces

((x++) > (y) ? (x++) : (y))

Whenever the value of x is greater than that of y, x will be incremented twice.

C++ template functions are instantiated implicitly either when the function is
named in a call or when its address is taken with the & operator. For example,
the example template function max would be instantiated twice by the
following code segment—once for int type parameters and once for char
type parameters:

int a, b, c;

char d, e, f;

. . .

c = max(a, b);

f = max(d, e);

The following is a C++ generic sort subprogram:

template <class Type>

void generic_sort(Type list[], int len) {

 int top, bottom;

 Type temp;

 for (top = 0; top < len - 2; top++)

 for (bottom = top + 1; bottom < len - 1; bottom++)

 if (list[top] > list[bottom]) {

 temp = list[top];

 list[top] = list[bottom];

 list[bottom] = temp;

 } //** end of if (list[top] . . .

} //** end of generic_sort

The following is an example instantiation of this template function:

float flt_list[100];

. . .

generic_sort(flt_list, 100);

The templated functions of C++ are a kind of poor cousin to a subprogram in
which the types of the formal parameters are dynamically bound to the types
of the actual parameters in a call. In this case, only a single copy of the code
is needed, whereas with the C++ approach, a copy must be created at compile
time for each different type that is required and the binding of subprogram
calls to subprograms is static.

9.10.2 Generic Methods in Java
5.0
Support for generic types and methods was added to Java in Java 5.0. The
name of a generic class in Java 5.0 is specified by a name followed by one or
more type variables delimited by pointed brackets. For example,

generic_class<T>

where T is the type variable. Generic types are discussed in more detail in
Chapter 11.

Java’s generic methods differ from the generic subprograms of C++ in
several important ways. First, generic parameters must be classes—they
cannot be primitive types. This requirement disallows a generic method that
mimics our example in C++, in which the component types of arrays are
generic and can be primitives. In Java, the components of arrays (as opposed
to containers) cannot be generic. Second, although Java generic methods can
be instantiated any number of times, only one copy of the code is built. The
internal version of a generic method, which is called a raw method, operates
on Object class objects. At the point where the generic value of a generic
method is returned, the compiler inserts a cast to the proper type. Third, in
Java, restrictions can be specified on the range of classes that can be passed

to the generic method as generic parameters. Such restrictions are called
bounds.

As an example of a generic Java 5.0 method, consider the following skeletal
method definition:

public static <T> T doIt(T[] list) {

 . . .

}

This defines a method named doIt that takes an array of elements of a
generic type. The name of the generic type is T and it must be an array.
Following is an example call to doIt:

doIt<string>(myList);

Now, consider the following version of doIt, which has a bound on its
generic parameter:

public static <T extends Comparable> T doIt(T[] list) {

 . . .

}

This defines a method that takes a generic array parameter whose elements
are of a class that implements the Comparable interface. That is the
restriction, or bound, on the generic parameter. The reserved word extends
seems to imply that the generic class subclasses the following class. In this
context, however, extends has a different meaning. The expression <T
extends BoundingType> specifies that T should be a “subtype” of the
bounding type. So, in this context, extends means the generic class (or
interface) either extends the bounding class (the bound if it is a class) or
implements the bounding interface (if the bound is an interface). The bound
ensures that the elements of any instantiation of the generic can be compared
with the Comparable method, compareTo.

If a generic method has two or more restrictions on its generic type, they are
added to the extends clause, separated by ampersands (&). Also, generic
methods can have more than one generic parameter.

Java 5.0 supports wildcard types. For example, Collection<?> is a wildcard

type for collection classes. This type can be used for any collection type of
any class components. For example, consider the following generic method:

void printCollection(Collection<?> c) {

 for (Object e: c) {

 System.out.println(e);

 }

}

This method prints the elements of any Collection class, regardless of the
class of its components. Some care must be taken with objects of the
wildcard type. For example, because the components of a particular object of
this type have a type, other type objects cannot be added to the collection. For
example, consider

Collection<?> c = new ArrayList<String>();

It would be illegal to use the add method to put something into this collection
unless its type were String.

Wildcard types can be restricted, as is the case with nonwildcard types. Such
types are called bounded wildcard types. For example, consider the following
method header:

public void drawAll(ArrayList<? extends Shape> things)

The generic type here is a wildcard type that is a subclass of the Shape class.
This method could be written to draw any object whose type is a subclass of
Shape.

9.10.3 Generic Methods in C#
2005
The generic methods of C# 2005 are similar in capability to those of Java 5.0,
except there is no support for wildcard types. One unique feature of C# 2005
generic methods is that the actual type parameters in a call can be omitted if
the compiler can infer the unspecified type. For example, consider the

following skeletal class definition:

class MyClass {

 public static T DoIt<T>(T p1) {

 . . .

 }

}

The method DoIt can be called without specifying the generic parameter if
the compiler can infer the generic type from the actual parameter in the call.
For example, both of the following calls are legal:

int myInt = MyClass.DoIt(17); // Calls DoIt<int>

string myStr = MyClass.DoIt('apples');

 // Calls DoIt<string>

9.10.4 Generic Functions in F#
The type inferencing system of F# is not always able to determine the type of
parameters or the return type of a function. When this is the case, for some
functions F# infers a generic type for the parameters and the return value.
This is called automatic generalization. For example, consider the following
function definition:

let getLast (a, b, c) = c;;

Because no type information was included, the types of the parameters and
the return value are all inferred to be generic. Because this function does not
include any computations, this is a simple generic function.

Functions can be defined to have generic parameters, as in the following
example:

let printPair (x: 'a) (y: 'a) =

 printfn "%A %A" x y;;

The %A format specification is for any type. The apostrophe in front of the
type named a specifies it to be a generic type.9 This function definition works
(with generic parameters) because no type-constrained operation is included.

Arithmetic operators are examples of type-constrained operations. For
example, consider the following function definition:

9. There is nothing special about a—it could be any legal identifier. By
convention, lowercase letters at the beginning of the alphabet are used.

let adder x y = x + y;;

Type inferencing sets the type of x and y and the return value to int. Because
there is no type coercion in F#, the following call is illegal:

adder 2.5 3.6;;

Even if the type of the parameters were set to be generic, the + operator
would cause the types of x and y to be int.

The generic type could also be specified explicitly in angle brackets, as in the
following:

let printPair2<'T> x y =

 printfn "%A %A" x y;;

This function must be called with a type,10 as in the following:

10. Convention explicitly states that generic types are named with uppercase
letters starting at T.

printPair2<float> 3.5 2.4;;

Because of type inferencing and the lack of type coercions, F# generic
functions are far less useful, especially for numeric computations, than those
of C+ +, Java 5.0+, and C# 2005+.

9.11 User-Defined Overloaded
Operators
Operators can be overloaded by the user in Ada, C++, Python, and Ruby.
Suppose that a Python class is developed to support complex numbers and
arithmetic operations on them. A complex number can be represented with
two floating-point values. The Complex class would have members for these
two named real and imag. In Python, binary arithmetic operations are
implemented as method calls sent to the first operand, sending the second
operand as a parameter. For addition, the method is named __add__. For
example, the expression x + y is implemented as x.__add__(y). To overload
+ for the addition of objects of the new Complex class, we only need to
provide Complex with a method named __add__ that performs the operation.
Following is such a method:

def __add__ (self, second):

 return Complex(self.real + second.real, self.imag +

 second.imag)

In most languages that support object-oriented programming, a reference to
the current object is implicitly sent with each method call. In Python, this
reference must be sent explicitly; that is the reason why self is the first
parameter to our method, __add__.

The example add method could be written for a complex class in C++ as
follows11 :

11. Both C++ and Python have predefined classes for complex numbers, so
our example methods are unnecessary, except as illustrations.

Complex operator +(Complex &second) {

 return Complex(real + second.real, imag + second.imag);

}

9.12 Closures
Defining a closure is a simple matter; a closure is a subprogram and the
referencing environment where it was defined. The referencing environment
is needed if the subprogram can be called from any arbitrary place in the
program. Explaining a closure is not so simple.

If a static-scoped programming language does not allow nested subprograms,
closures are not useful, so such languages do not support them. All of the
variables in the referencing environment of a subprogram in such a language
(its local variables and the global variables) are accessible, regardless of the
place in the program where the subprogram is called.

When subprograms can be nested, in addition to locals and globals, the
referencing environment of a subprogram can include variables defined in all
enclosing subprograms. However, this is not an issue if the subprogram can
be called only in places where all of the enclosing scopes are active and
visible. It becomes an issue if a subprogram can be called elsewhere. This can
happen if the subprogram can be passed as a parameter or assigned to a
variable, thereby allowing it to be called from virtually anywhere in the
program. There is an associated problem: The subprogram could be called
after one or more of its nesting subprograms has terminated, which normally
means that the variables defined in such nesting subprograms have been
deallocated—they no longer exist. For the subprogram to be callable from
anywhere in the program, its referencing environment must be available
wherever it might be called. Therefore, the variables defined in nesting
subprograms may need lifetimes that are of the entire program, rather than
just the time during which the subprogram in which they were defined is
active. A variable whose lifetime is that of the whole program is said to have
unlimited extent. This usually means they must be heap dynamic, rather than
stack dynamic.

Nearly all functional programming languages, most scripting languages, and
at least one primarily imperative language, C#, support closures. These
languages are static-scoped, allow nested subprograms,12 and allow

subprograms to be passed as parameters. Following is an example of a
closure written in JavaScript:

12. In C#, the only methods that can be nested are anonymous delegates and
lambda expressions.

function makeAdder(x) {

 return function(y) {return x + y;}

}

. . .

var add10 = makeAdder(10);

var add5 = makeAdder(5);

document.write("Add 10 to 20: " + add10(20) +

"
");

document.write("Add 5 to 20: " + add5(20) +

"
");

The output of this code, assuming it was embedded in an HTML document
and displayed with a browser, is as follows:

Add 10 to 20: 30

Add 5 to 20: 25

In this example, the closure is the anonymous function defined inside the
makeAdder function, which makeAdder returns. The variable x referenced in
the closure function is bound to the parameter that was sent to makeAdder.
The makeAdder function is called twice, once with a parameter of 10 and once
with 5. Each of these calls returns a different version of the closure because
they are bound to different values of x. The first call to makeAdder creates a
function that adds 10 to its parameter; the second creates a function that adds
5 to its parameter. The two versions of the function are bound to different
activations of makeAdder. Obviously, the lifetime of the version of x created
when makeAdder is called must extend over the lifetime of the program.

This same closure function can be written in C# using a nested anonymous
delegate. The type of the nesting method is specified to be a function that
takes an int as a parameter and returns an anonymous delegate. The return
type is specified with the special notation for such delegates, Func<int,
int>. The first type in the angle brackets is the parameter type. Such a
delegate can encapsulate methods that have only one parameter. The second

type is the return type of the method encapsulated by the delegate.

static Func<int, int> makeAdder(int x) {

 return delegate(int y) { return x + y;};

}

. . .

Func<int, int> Add10 = makeAdder(10);

Func<int, int> Add5 = makeAdder(5);

Console.WriteLine("Add 10 to 20: {0}", Add10(20));

Console.WriteLine("Add 5 to 20: {0}", Add5(20));

The output of this code is exactly the same as for the previous JavaScript
closure example.

The anonymous delegate could have been written as a lambda expression.
The following is a replacement for the body of the makeAdder method, using
a lambda expression instead of the delegate:

return y => x + y

Ruby’s blocks are implemented so that they can reference variables visible in
the position in which they were defined, even if they are called at a place in
which those variables would have disappeared. This makes such blocks
closures.

9.13 Coroutines
A coroutine is a special kind of subprogram. Rather than the master-slave
relationship between a caller and a called subprogram that exists with
conventional subprograms, caller and called coroutines are more equitable. In
fact, the coroutine control mechanism is often called the symmetric unit
control model.

Coroutines can have multiple entry points, which are controlled by the
coroutines themselves. They also have the means to maintain their status
between activations. This means that coroutines must be history sensitive and
thus have static local variables. Secondary executions of a coroutine often
begin at points other than its beginning. Because of this, the invocation of a
coroutine is called a resume rather than a call.

For example, consider the following skeletal coroutine:

sub co1(){

 . . .

 resume co2();

 . . .

 resume co3();

 . . .

}

The first time co1 is resumed, its execution begins at the first statement and
executes down to and including the resume of co2, which transfers control to
co2. The next time co1 is resumed, its execution begins at the first statement
after its call to co2. When co1 is resumed the third time, its execution begins
at the first statement after the resume of co3.

One of the usual characteristics of subprograms is maintained in coroutines:
Only one coroutine is actually in execution at a given time.

As seen in the example above, rather than executing to its end, a coroutine
often partially executes and then transfers control to some other coroutine,
and when restarted, a coroutine resumes execution just after the statement it

used to transfer control elsewhere. This sort of interleaved execution
sequence is related to the way multiprogramming operating systems work.
Although there may be only one processor, all of the executing programs in
such a system appear to run concurrently while sharing the processor. In the
case of coroutines, this is sometimes called quasi-concurrency.

Typically, coroutines are created in an application by a program unit called
the master unit, which is not a coroutine. When created, coroutines execute
their initialization code and then return control to that master unit. When the
entire family of coroutines is constructed, the master program resumes one of
the coroutines, and the members of the family of coroutines then resume each
other in some order until their work is completed, if in fact it can be
completed. If the execution of a coroutine reaches the end of its code section,
control is transferred to the master unit that created it. This is the mechanism
for ending execution of the collection of coroutines, when that is desirable. In
some programs, the coroutines run whenever the computer is running.

One example of a problem that can be solved with this sort of collection of
coroutines is a card game simulation. Suppose the game has four players who
all use the same strategy. Such a game can be simulated by having a master
program unit create a family of four coroutines, each with a collection, or
hand, of cards. The master program could then start the simulation by
resuming one of the player coroutines, which, after it had played its turn,
could resume the next player coroutine, and so forth until the game ended.

Suppose program units A and B are coroutines. Figure 9.3 shows two ways an
execution sequence involving A and B might proceed.

Figure 9.3 Two possible
execution control sequences for

two coroutines without loops
Figure 9.3 Full Alternative Text

In Figure 9.3a, the execution of coroutine A is started by the master unit.
After some execution, A starts B. When coroutine B in Figure 9.3a first causes
control to return to coroutine A, the semantics is that A continues from where
it ended its last execution. In particular, its local variables have the values left
them by the previous activation. Figure 9.3b shows an alternative execution
sequence of coroutines A and B. In this case, B is started by the master unit.

Rather than have the patterns shown in Figure 9.3, a coroutine often has a
loop containing a resume. Figure 9.4 shows the execution sequence of this
scenario. In this case, A is started by the master unit. Inside its main loop, A
resumes B, which in turn resumes A in its main loop.

Figure 9.4 Coroutine execution
sequence with loops

Figure 9.4 Full Alternative Text

The generators of Python are a form of coroutines.13

13. However, the generators of Python are a form of coroutines.

SUMMARY
Process abstractions are represented in programming languages by
subprograms. A subprogram definition describes the actions represented by
the subprogram. A subprogram call enacts those actions. A subprogram
header identifies a subprogram definition and provides its interface, which is
called its protocol.

Formal parameters are the names that subprograms use to refer to the actual
parameters given in subprogram calls. In Python and Ruby, array and hash
formal parameters are used to support variable numbers of parameters.
JavaScript also supports variable numbers of parameters. Actual parameters
can be associated with formal parameters by position or by keyword.
Parameters can have default values.

Subprograms can be either functions, which model mathematical functions
and are used to define new operations, or procedures, which define new
statements.

Local variables in subprograms can be stack dynamic, providing support for
recursion, or static, providing efficiency and history-sensitive local variables.

JavaScript, Python, Ruby, and Swift allow subprogram definitions to be
nested.

There are three fundamental semantics models of parameter passing—in
mode, out mode, and inout mode—and a number of approaches to implement
them. These are pass-by-value, pass-by-result, pass-by-value-result, pass-by-
reference, and pass-by-name. In most languages, parameters are passed in the
run-time stack.

Aliasing can occur when pass-by-reference parameters are used, both among
two or more parameters and between a parameter and an accessible nonlocal
variable.

Parameters that are multidimensioned arrays pose some issues for the

language designer, because the called subprogram needs to know how to
compute the storage mapping function for them. This requires more than just
the name of the array.

Parameters that are subprogram names provide a necessary service but can be
difficult to understand. The opacity lies in the referencing environment that is
available when a subprogram that has been passed as a parameter is executed.

C and C++ support pointers to functions. C# has delegates, which are objects
that can store references to methods. Delegates can support multicast calls by
storing more than one method reference.

Ada, C++, C#, Ruby, and Python allow both subprogram and operator
overloading. Subprograms can be overloaded as long as the various versions
can be disambiguated by the types of their parameters or returned values.
Function definitions can be used to build additional meanings for operators.

Subprograms in C++, Java 5.0, and C# 2005 can be generic, using parametric
polymorphism, so the desired types of their data objects can be passed to the
compiler, which then can construct units for the requested types.

The designer of a function facility in a language must decide what restrictions
will be placed on the returned values, as well as the number of return values.

A closure is a subprogram and its referencing environment. Closures are
useful in languages that allow nested subprograms, are static-scoped, and
allow subprograms to be returned from functions and assigned to variables.

A coroutine is a special subprogram that has multiple entries. It can be used
to provide interleaved execution of subprograms.

REVIEW QUESTIONS
1. What are the three general characteristics of subprograms?

2. What does it mean for a subprogram to be active?

3. What is given in the header of a subprogram?

4. What characteristic of Python subprograms sets them apart from those
of other languages?

5. What languages allow a variable number of parameters?

6. What is a Ruby array formal parameter?

7. What is a parameter profile? What is a subprogram protocol?

8. What are formal parameters? What are actual parameters?

9. What are the advantages and disadvantages of keyword parameters?

10. What are the differences between a function and a procedure?

11. What are the design issues for subprograms?

12. What are the advantages and disadvantages of dynamic local variables?

13. What are the advantages and disadvantages of static local variables?

14. What languages allow subprogram definitions to be nested?

15. What are the three semantics models of parameter passing?

16. What are the modes, the conceptual models of transfer, the advantages,
and the disadvantages of pass-by-value, pass-by-result, pass-by-value-
result, and pass-by-reference parameter-passing methods?

17. Describe the ways that aliases can occur with pass-by-reference
parameters.

18. What is the difference between the way original C and C89 deal with an
actual parameter whose type is not identical to that of the corresponding
formal parameter?

19. What are two fundamental design considerations for parameter-passing
methods?

20. Describe the problem of passing multidimensioned arrays as parameters.

21. What is the name of the parameter-passing method used in Ruby?

22. What are the two issues that arise when subprogram names are
parameters?

23. Define shallow and deep binding for referencing environments of
subprograms that have been passed as parameters.

24. What is an overloaded subprogram?

25. What is parametric polymorphism?

26. What causes a C++ template function to be instantiated?

27. In what fundamental ways do the generic parameters to a Java 5.0
generic method differ from those of C++ methods?

28. If a Java 5.0 method returns a generic type, what type of object is
actually returned?

29. If a Java 5.0 generic method is called with three different generic
parameters, how many versions of the method will be generated by the
compiler?

30. What are the design issues for functions?

31. Name two languages that allow multiple values to be returned from a

function.

32. What exactly is a delegate?

33. What is the main drawback of generic functions in F#?

34. What is a closure?

35. What are the language characteristics that make closures useful?

36. What languages allow the user to overload operators?

37. In what ways are coroutines different from conventional subprograms?

PROBLEM SET
1. What are arguments for and against a user program building additional

definitions for existing operators, as can be done in Python and C++? Do
you think such user-defined operator overloading is good or bad?
Support your answer.

2. In most Fortran IV implementations, all parameters were passed by
reference, using access path transmission only. State both the advantages
and disadvantages of this design choice.

3. Argue in support of the Ada 83 designers’ decision to allow the
implementor to choose between implementing inout-mode parameters
by copy or by reference.

4. Suppose you want to write a method that prints a heading on a new
output page, along with a page number that is 1 in the first activation
and that increases by 1 with each subsequent activation. Can this be
done without parameters and without reference to nonlocal variables in
Java? Can it be done in C#?

5. Consider the following program written in C syntax:

void swap(int a, int b) {

 int temp;

 temp = a;

 a = b;

 b = temp;

}

void main() {

 int value = 2, list[5] = {1, 3, 5, 7, 9};

 swap(value, list[0]);

 swap(list[0], list[1]);

 swap(value, list[value]);

}

For each of the following parameter-passing methods, what are all of the
values of the variables value and list after each of the three calls to

swap?

1. Passed by value

2. Passed by reference

3. Passed by value-result

6. Present one argument against providing both static and dynamic local
variables in subprograms.

7. Consider the following program written in C syntax:

void fun (int first, int second) {

 first += first;

 second += second;

}

void main() {

 int list[2] = {1, 3};

 fun(list[0], list[1]);

}

For each of the following parameter-passing methods, what are the
values of the list array after execution?

1. Passed by value

2. Passed by reference

3. Passed by value-result

8. Argue against the C design of providing only function subprograms.

9. From a textbook on Fortran, learn the syntax and semantics of statement
functions. Justify their existence in Fortran.

10. Study the methods of user-defined operator overloading in C++ and
Ada, and write a report comparing the two using our criteria for
evaluating languages.

11. C# supports out-mode parameters, but neither Java nor C++ does.

Explain the difference.

12. Research Jensen’s Device, which was a use of pass-by-name parameters,
and write a short description of what it is and how it can be used.

13. Study the iterator mechanisms of Ruby and CLU and list their
similarities and differences.

14. Speculate on the issue of allowing nested subprograms in programming
languages—why are they not allowed in many contemporary languages?

15. What are at least two arguments against the use of pass-by-name
parameters?

16. Write a detailed comparison of the generic subprograms of Java 5.0 and
C# 2005.

PROGRAMMING EXERCISES
1. Write a program in a language that you know to determine the ratio of

the time required to pass a large array by reference and the time required
to pass the same array by value. Make the array as large as possible on
the machine and implementation you use. Pass the array as many times
as necessary to get reasonably accurate timings of the passing
operations.

2. Write a C# or Ada program that determines when the address of an out-
mode parameter is computed (at the time of the call or at the time the
execution of the subprogram finishes).

3. Write a Perl program that passes by reference a literal to a subprogram,
which attempts to change the parameter. Given the overall design
philosophy of Perl, explain the results.

4. Repeat Programming Exercise 3 in C#.

5. Write a program in some language that has both static and stack-
dynamic local variables in subprograms. Create six large (at least
100×100) matrices in the subprogram—three static and three stack
dynamic. Fill two of the static matrices and two of the stack-dynamic
matrices with random numbers in the range of 1 to 100. The code in the
subprogram must perform a large number of matrix multiplication
operations on the static matrices and time the process. Then it must
repeat this with the stack-dynamic matrices. Compare and explain the
results.

6. Write a C# program that includes two methods that are called a large
number of times. Both methods are passed a large array, one by value
and one by reference. Compare the times required to call these two
methods and explain the difference. Be sure to call them a sufficient
number of times to illustrate a difference in the required time.

7. Write a program, using the syntax of whatever language you like, that
produces different behavior depending on whether pass-by-reference or
pass-by-value-result is used in its parameter passing.

8. Write a generic C++ function that takes an array of generic elements and
a scalar of the same type as the array elements. The type of the array
elements and the scalar is the generic parameter. The function must
search the given array for the given scalar and return the subscript of the
scalar in the array. If the scalar is not in the array, the function must
return -1. Test the function for int and float types.

9. Devise a subprogram and calling code in which pass-by-reference and
pass-by-value-result of one or more parameters produces different
results.

10 Implementing Subprograms
1. 10.1 The General Semantics of Calls and Returns

2. 10.2 Implementing “Simple” Subprograms

3. 10.3 Implementing Subprograms with Stack-Dynamic Local Variables

4. 10.4 Nested Subprograms

5. 10.5 Blocks

6. 10.6 Implementing Dynamic Scoping

The purpose of this chapter is to explore the implementation of subprograms.
The discussion will provide the reader with some knowledge of how
subprogram linkage works, and also why ALGOL 60 was a challenge to the
unsuspecting compiler writers of the early 1960s. We begin with the simplest
situation, nonnestable subprograms with static local variables, advance to
more complicated subprograms with stack-dynamic local variables, and
conclude with nested subprograms with stack-dynamic local variables and
static scoping. The increased difficulty of implementing subprograms in
languages with nested subprograms is caused by the need to include
mechanisms to access nonlocal variables.

The static chain method of accessing nonlocals in static-scoped languages is
discussed in detail. Then, techniques for implementing blocks are described.
Finally, several methods of implementing nonlocal variable access in a
dynamic-scoped language are discussed.

10.1 The General Semantics of Calls
and Returns
The subprogram call and return operations are together called subprogram
linkage. The implementation of subprograms must be based on the semantics
of the subprogram linkage of the language being implemented.

A subprogram call in a typical language has numerous actions associated
with it. The call process must include the implementation of whatever -
parameter-passing method is used. If local variables are not static, the call
process must allocate storage for the locals declared in the called subprogram
and bind those variables to that storage. It must save the execution status of
the calling program unit. The execution status is everything needed to resume
execution of the calling program unit. This includes register values, CPU
status bits, and the environment pointer (EP). The EP, which is discussed
further in Section 10.3, is used to access parameters and local variables
during the execution of a subprogram. The calling process also must arrange
to transfer control to the code of the subprogram and ensure that control can
return to the proper place when the subprogram execution is completed.
Finally, if the language supports nested subprograms, the call process must
create some mechanism to provide access to nonlocal variables that are
visible to the called subprogram.

The required actions of a subprogram return are less complicated than those
of a call. If the subprogram has parameters that are out mode or inout mode
and are implemented by copy, the first action of the return process is to move
the local values of the associated formal parameters to the actual parameters.
Next, it must deallocate the storage used for local variables and restore the
execution status of the calling program unit. Finally, control must be returned
to the calling program unit.

10.2 Implementing “Simple”
Subprograms
We begin with the task of implementing simple subprograms. By “simple”
we mean that subprograms cannot be nested and all local variables are static.
Early versions of Fortran were examples of languages that had this kind of
subprograms.

The semantics of a call to a “simple” subprogram requires the following
actions:

1. Save the execution status of the current program unit.

2. Compute and pass the parameters.

3. Pass the return address to the called.

4. Transfer control to the called.

The semantics of a return from a simple subprogram requires the following
actions:

1. If there are pass-by-value-result or out-mode parameters, the current
values of those parameters are moved to or made available to the
corresponding actual parameters.

2. If the subprogram is a function, the functional value is moved to a place
accessible to the caller.

3. The execution status of the caller is restored.

4. Control is transferred back to the caller.

The call and return actions require storage for the following:

Status information about the caller

Parameters

Return address

Return value for functions

Temporaries used by the code of the subprograms

These, along with the local variables and the subprogram code, form the
complete collection of information a subprogram needs to execute and then
return control to the caller.

The question now is the distribution of the call and return actions to the caller
and the called. For simple subprograms, the answer is obvious for most of the
parts of the process. The last three actions of a call clearly must be done by
the caller. Saving the execution status of the caller could be done by either. In
the case of the return, the first, third, and fourth actions must be done by the
called. Once again, the restoration of the execution status of the caller could
be done by either the caller or the called. In general, the linkage actions of the
called can occur at two different times, either at the beginning of its execution
or at the end. These are sometimes called the prologue and epilogue of the
subprogram linkage. In the case of a simple subprogram, all of the linkage
actions of the callee occur at the end of its execution, so there is no need for a
prologue.

A simple subprogram consists of two separate parts: the actual code of the
subprogram, which is constant, and the local variables and data listed
previously, which can change when the subprogram is executed. In the case
of simple subprograms, both of these parts have fixed sizes.

The format, or layout, of the noncode part of a subprogram is called an
activation record, because the data it describes are relevant only during the
activation or execution of the subprogram. The form of an activation record is
static. An activation record instance is a concrete example of an activation
record, a collection of data in the form of an activation record.

Because languages with simple subprograms do not support recursion, there
can be only one active version of a given subprogram at a time. Therefore,
there can be only a single instance of the activation record for a subprogram.
One possible layout for activation records is shown in Figure 10.1. The saved
execution status of the caller is omitted here and in the remainder of this -
chapter because it is simple and not relevant to the discussion.

Figure 10.1 An activation
record for simple subprogram

Because an activation record instance for a “simple” subprogram has fixed
size, it can be statically allocated. In fact, it could be attached to the code part
of the subprogram.

Figure 10.2 shows a program consisting of a main program and three
subprograms: A, B, and C. Although the figure shows all the code segments
separated from all the activation record instances, in some cases, the
activation record instances are attached to their associated code segments.

Figure 10.2 The code and -
activation records of a program
with simple subprograms

Figure 10.2 Full Alternative Text

The construction of the complete program shown in Figure 10.2 is not done
entirely by the compiler. In fact, if the language allows independent
compilation, the four program units—MAIN, A, B, and C—may have been
compiled on different days, or even in different years. At the time each unit is
compiled, the machine code for it, along with a list of references to external
subprograms, is written to a file. The executable program shown in Figure
10.2 is put together by the linker, which is part of the operating system.
(Sometimes linkers are called loaders, linker/loaders, or link editors.) When
the linker is called for a main program, its first task is to find the files that
contain the translated subprograms referenced in that program and load them
into memory. Then, the linker must set the target addresses of all calls to
those subprograms in the main program to the entry addresses of those
subprograms. The same must be done for all calls to subprograms in the
loaded subprograms and all calls to library subprograms. In the previous
example, the linker was called for MAIN. The linker had to find the machine
code programs for A, B, and C, along with their activation record instances,
and load them into memory with the code for MAIN. Then, it had to patch in
the target addresses for all calls to A, B, C, and any library subprograms called
in A, B, C, and MAIN.

10.3 Implementing Subprograms
with Stack-Dynamic Local
Variables
We now examine the implementation of the subprogram linkage in languages
in which locals are stack dynamic, again focusing on the call and return
operations.

One of the most important advantages of stack-dynamic local variables is
support for recursion. Therefore, languages that use stack-dynamic local
variables also support recursion.

A discussion of the additional complexity required when subprograms can be
nested is postponed until Section 10.4.

10.3.1 More Complex Activation
Records
Subprogram linkage in languages that use stack-dynamic local variables are
more complex than the linkage of simple subprograms for the following
reasons:

The compiler must generate code to cause the implicit allocation and
deallocation of local variables.

Recursion adds the possibility of multiple simultaneous activations of a
subprogram, which means that there can be more than one instance
(incomplete execution) of a subprogram at a given time, with at least
one call from outside the subprogram and one or more recursive calls.
The number of activations is limited only by the memory size of the

machine. Each activation requires its own activation record instance.

The format of an activation record for a given subprogram in most languages
is known at compile time. In many cases, the size is also known for activation
records because all local data are of a fixed size. That is not the case in some
other languages, such as Ada, in which the size of a local array can depend on
the value of an actual parameter. In those cases, the format is static, but the
size can be dynamic. In languages with stack-dynamic local variables,
activation record instances must be created dynamically. The typical
activation record for such a language is shown in Figure 10.3.

Figure 10.3 A typical activation
record for a language with
stack-dynamic local variables

Because the return address, dynamic link, and parameters are placed in the
activation record instance by the caller, these entries must appear first.

The return address usually consists of a pointer to the instruction following
the call in the code segment of the calling program unit. The dynamic link is
a pointer to the base of the activation record instance of the caller. In static-
scoped languages, this link is used to provide traceback information when a
run-time error occurs. In dynamic-scoped languages, the dynamic link is used
to access nonlocal variables. The actual parameters in the activation record

are the values or addresses provided by the caller.

Local scalar variables are bound to storage within an activation record
instance. Local variables that are structures are sometimes allocated
elsewhere, and only their descriptors and a pointer to that storage are part of
the activation record. Local variables are allocated and possibly initialized in
the called subprogram, so they appear last.

Consider the following skeletal C function:

void sub(float total, int part) {

 int list[5];

 float sum;

 . . .

}

The activation record for sub is shown in Figure 10.4.

Figure 10.4 The activation
record for function sub

Figure 10.4 Full Alternative Text

Activating a subprogram requires the dynamic creation of an instance of the
activation record for the subprogram. As stated earlier, the format of the
activation record is fixed at compile time, although its size may depend on
the call in some languages. Because the call and return semantics specify that
the subprogram last called is the first to complete, it is reasonable to create
instances of these activation records on a stack. This stack is part of the run-
time system and therefore is called the run-time stack, although we will
usually just refer to it as the stack. Every subprogram activation, whether
recursive or nonrecursive, creates a new instance of an activation record on
the stack. This provides the required separate copies of the parameters, local
variables, and return address.

One more thing is required to control the execution of a subprogram—the EP.
Initially, the EP points at the base, or first address of the activation record
instance of the main program. The run-time system must ensure that it always
points at the base of the activation record instance of the currently executing
program unit. When a subprogram is called, the current EP is saved in the
new activation record instance as the dynamic link. The EP is then set to
point at the base of the new activation record instance. Upon return from the
subprogram, the stack top is set to the value of the current EP minus one and
the EP is set to the dynamic link from the activation record instance of the
subprogram that has completed its execution. Resetting the stack top
effectively removes the top activation record instance.

The EP is used as the base of the offset addressing of the data contents of the
activation record instance—parameters and local variables.

Note that the EP currently being used is not stored in the run-time stack. Only
saved versions are stored in the activation record instances as the dynamic
links.

We have now discussed several new actions in the linkage process. The lists
given in Section 10.2 must be revised to take these into account. Using the
activation record form given in this section, the new actions are as follows:

The caller actions are as follows:

1. Create an activation record instance.

2. Save the execution status of the current program unit.

3. Compute and pass the parameters.

4. Pass the return address to the called.

5. Transfer control to the called.

The prologue actions of the called are as follows:

1. Save the old EP in the stack as the dynamic link and create the new
value.

2. Allocate local variables.

The epilogue actions of the called are as follows:

1. If there are pass-by-value-result or out-mode parameters, the current
values of those parameters are moved to the corresponding actual
parameters.

2. If the subprogram is a function, the functional value is moved to a place
accessible to the caller.

3. Restore the stack pointer by setting it to the value of the current EP
minus one and set the EP to the old dynamic link.

4. Restore the execution status of the caller.

5. Transfer control back to the caller.

Recall from Chapter 9, that a subprogram is active from the time it is called
until the time that execution is completed. At the time it becomes inactive, its
local scope ceases to exist and its referencing environment is no longer
meaningful. Therefore, at that time, its activation record instance can be
destroyed.

Parameters are not always transferred in the stack. In many compilers for
RISC machines, parameters are passed in registers. This is because RISC
machines normally have many more registers than CISC machines. In the
remainder of this chapter, however, we assume that parameters are passed in
the stack. It is straightforward to modify this approach for parameters being
passed in registers.

10.3.2 An Example without
Recursion
Consider the following skeletal C program:

void fun1(float r) {

 int s, t;

 . . . <---------- 1

 fun2(s);

 . . .

}

void fun2(int x) {

 int y;

 . . . <---------- 2

 fun3(y);

 . .

}

void fun3(int q) {

 . . . <---------- 3

}

void main() {

 float p;

 . . .

 fun1(p);

 . . .

}

The sequence of function calls in this program is

main calls fun1

fun1 calls fun2

fun2 calls fun3

The stack contents for the points labeled 1, 2, and 3 are shown in Figure 10.5.

Figure 10.5 Stack contents for
three points in a program

Figure 10.5 Full Alternative Text

At point 1, only the activation record instances for function main and function
fun1 are on the stack. When fun1 calls fun2, an instance of fun2’s activation
record is created on the stack. When fun2 calls fun3, an instance of fun3’s
activation record is created on the stack. When fun3’s execution ends, the
instance of its activation record is removed from the stack, and the EP is used
to reset the stack top pointer. Similar processes take place when functions
fun2 and fun1 terminate. After the return from the call to fun1 from main, the
stack has only the instance of the activation record of main. Note that some
implementations do not actually use an activation record instance on the stack
for main functions, such as the one shown in the figure. However, it can be
done this way, and it simplifies both the implementation and our discussion.

In this example and in all others in this chapter, we assume that the stack
grows from lower addresses to higher addresses, although in a particular
implementation, the stack may grow in the opposite direction.

The collection of dynamic links present in the stack at a given time is called
the dynamic chain, or call chain. It represents the dynamic history of how
execution got to its current position, which is always in the subprogram code
whose activation record instance is on top of the stack. References to local
variables can be represented in the code as offsets from the beginning of the
activation record of the local scope, whose address is stored in the EP. Such
an offset is called a local_offset.

The local_offset of a variable in an activation record can be determined at
compile time, using the order, types, and sizes of variables declared in the
subprogram associated with the activation record. To simplify the discussion,
we assume that all variables take one position in the activation record. The
first local variable declared in a subprogram would be allocated in the
activation record two positions plus the number of parameters from the
bottom (the first two positions are for the return address and the dynamic
link). The second local variable declared would be one position nearer the
stack top and so forth. For example, consider the preceding example
program. In fun1, the local_offset of s is 3; for t it is 4. Likewise, in fun2,
the local_offset of y is 3. To get the address of any local variable, the
local_offset of the variable is added to the EP.

10.3.3 Recursion
Consider the following example C program, which uses recursion to compute
the factorial function:

int factorial(int n) {

 <---------- 1

 if (n <= 1)

 return 1;

 else return (n * factorial(n - 1));

 <---------- 2

 }

void main() {

 int value;

 value = factorial(3);

 <---------- 3

 }

The activation record format for the function factorial is shown in Figure
10.6. Notice that it has an additional entry for the return value of the function.

Figure 10.6 The activation
record for factorial

Figure 10.7 shows the contents of the stack for the three times execution
reaches position 1 in the function factorial. Each shows one more
activation of the function, with its functional value undefined. The first
activation record instance has the return address to the calling function, main.
The others have a return address to the function itself; these are for the
recursive calls.

Figure 10.7 Stack contents at
position 1 in factorial

Figure 10.7 Full Alternative Text

Figure 10.8 shows the stack contents for the three times that execution
reaches position 2 in the function factorial. Position 2 is meant to be the
time after the return is executed but before the activation record has been
removed from the stack. Recall that the code for the function multiplies the
current value of the parameter n by the value returned by the recursive call to
the function. The first return from factorial returns the value 1. The
activation record instance for that activation has a value of 1 for its version of

the parameter n. The result from that multiplication, 1, is returned to the
second activation of factorial to be multiplied by its parameter value for n,
which is 2. This step returns the value 2 to the first activation of factorial to
be multiplied by its parameter value for n, which is 3, yielding the final
functional value of 6, which is then returned to the first call to factorial in
main.

Figure 10.8 Stack contents
during execution of main and
factorial

Figure 10.8 Full Alternative Text

10.4 Nested Subprograms
Some of the non–C-based static-scoped programming languages use stack--
dynamic local variables and allow subprograms to be nested. Among these
are Fortran 95+, Ada, Python, JavaScript, Ruby, and Swift, as well as the
functional languages. In this section, we examine the most commonly used
approach to implementing subprograms that may be nested. Until the very
end of this section, we ignore closures.

10.4.1 The Basics
A reference to a nonlocal variable in a static-scoped language with nested
subprograms requires a two-step access process. All nonstatic variables that
can be nonlocally accessed are in existing activation record instances and
therefore are somewhere in the stack. The first step of the access process is to
find the instance of the activation record in the stack in which the variable
was allocated. The second part is to use the local_offset of the variable
(within the activation record instance) to access it.

Finding the correct activation record instance is the more interesting and
more difficult of the two steps. First, note that in a given subprogram, only
variables that are declared in static ancestor scopes are visible and can be
accessed. Also, activation record instances of all of the static ancestors are
always on the stack when variables in them are referenced by a nested
subprogram. This is guaranteed by the static semantic rules of the static-
scoped languages: A subprogram is callable only when all of its static
ancestor subprograms are active.1 If a particular static ancestor were not
active, its local variables would not be bound to storage, so it would be
nonsense to allow access to them.

1. Closures, of course, violate this rule.

The semantics of nonlocal references dictates that the correct declaration is
the first one found when looking through the enclosing scopes, most closely

nested first. So, to support nonlocal references, it must be possible to find all
of the instances of activation records in the stack that correspond to those
static ancestors. This observation leads to the implementation approach
described in the following subsection.

We do not address the issue of blocks until Section 10.5, so in the remainder
of this section, all scopes are assumed to be defined by subprograms. Because
functions cannot be nested in the C-based languages (the only static scope in
those languages are those created with blocks), the discussions of this section
do not apply to those languages directly.

10.4.2 Static Chains
The most common way to implement static scoping in languages that allow
nested subprograms is static chaining. In this approach, a new pointer, called
a static link, is added to the activation record. The static link, which is
sometimes called a static scope pointer, points to the bottom of the activation
record instance of an activation of the static parent. It is used for accesses to
nonlocal variables. Typically, the static link appears in the activation record
below the parameters. The addition of the static link to the activation record
requires that local offsets differ from when the static link is not included.
Instead of having two activation record elements before the parameters, there
are now three: the return address, the static link, and the dynamic link.

A static chain is a chain of static links that connect certain activation record
instances in the stack. During the execution of a subprogram P, the static link
of its activation record instance points to an activation record instance of P’s
static parent program unit. That instance’s static link points in turn to P’s
static grandparent program unit’s activation record instance, if there is one.
So, the static chain connects all the static ancestors of an executing
subprogram, in order of static parent first. This chain can obviously be used
to implement the accesses to nonlocal variables in static-scoped languages.

Finding the correct activation record instance of a nonlocal variable using
static links is relatively straightforward. When a reference is made to a
nonlocal variable, the activation record instance containing the variable can

be found by searching the static chain until a static ancestor activation record
instance is found that contains the variable. However, it can be much easier
than that. Because the nesting of scopes is known at compile time, the
compiler can determine not only that a reference is nonlocal but also the
length of the static chain that must be followed to reach the activation record
instance that contains the nonlocal object.

Let static_depth be an integer associated with a static scope that indicates
how deeply it is nested in the outermost scope. A program unit that is not
nested inside any other unit has a static_depth of 0. If subprogram A is
defined in a nonnested program unit, its static_depth is 1. If subprogram A
contains the definition of a nested subprogram B, then B’s static_depth is 2.

The length of the static chain needed to reach the correct activation record
instance for a nonlocal reference to a variable X is exactly the difference
between the static_depth of the subprogram containing the reference to X and
the static_depth of the subprogram containing the declaration for X. This
difference is called the nesting_depth, or chain_offset, of the reference. The
actual reference can be represented by an ordered pair of integers
(chain_offset, local_offset), where chain_offset is the number of links to the
correct activation record instance (local_offset is described in Section 10.3.2).
For example, consider the following skeletal Python program:

Global scope

. . .

def f1():

 def f2():

 def f3():

 . . .

 # end of f3

 . . .

 # end of f2

 . .

end of f1

The static_depths of the global scope, f1, f2, and f3 are 0, 1, 2, and 3,
respectively. If procedure f3 references a variable declared in f1, the
chain_offset of that reference would be 2 (static_depth of f3 minus the
static_depth of f1). If procedure f3 references a variable declared in f2, the
chain_offset of that reference would be 1. References to locals can be

handled using the same mechanism, with a chain_offset of 0, but instead of
using the static pointer to the activation record instance of the subprogram
where the variable was declared as the base address, the EP is used.

To illustrate the complete process of nonlocal accesses, consider the -
following skeletal JavaScript program:

function main(){

 var x;

 function bigsub() {

 var a, b, c;

 function sub1 {

 var a, d;

 ...

 a = b + c; <---------------------------------1

 ...

 } // end of sub1

 function sub2(x) {

 var b, e;

 function sub3() {

 var c, e;

 ...

 sub1();

 ...

 e = b + a; <--------------------------------2

 } // end of sub3

 ...

 sub3();

 ...

 a = d + e; <----------------------------------3

 } // end of sub2

 ...

 sub2(7);

 ...

 } // end of bigsub

 ...

 bigsub();

 ...

} // end of main

The sequence of procedure calls is

main calls bigsub

bigsub calls sub2

sub2 calls sub3

sub3 calls sub1

The stack situation when execution first arrives at point 1 in this program is
shown in Figure 10.9.

Figure 10.9 Stack contents at -
position 1 in the program main

Figure 10.9 Full Alternative Text

At position 1 in procedure sub1, the reference is to the local variable, a, not
to the nonlocal variable a from bigsub. This reference to a has the
chain_offset/local_offset pair (0, 3). The reference to b is to the nonlocal b
from bigsub. It can be represented by the pair (1, 4). The local_offset is 4,
because a 3 offset would be the first local variable (bigsub has no
parameters). Notice that if the dynamic link were used to do a simple search
for an activation record instance with a declaration for the variable b, it would
find the variable b declared in sub2, which would be incorrect. If the (1, 4)
pair were used with the dynamic chain, the variable e from sub3 would be
used. The static link, however, points to the activation record for bigsub,
which has the correct version of b. The variable b in sub2 is not in the
referencing environment at this point and is (correctly) not accessible. The
reference to c at point 1 is to the c defined in bigsub, which is represented by
the pair (1, 5).

After sub1 completes its execution, the activation record instance for sub1 is
removed from the stack, and control returns to sub3. The reference to the
variable e at position 2 in sub3 is local and uses the pair (0, 4) for access. The
reference to the variable b is to the one declared in sub2, because that is
the nearest static ancestor that contains such a declaration. It is accessed with
the pair (1, 4). The local_offset is 4 because b is the first variable declared in
sub1, and sub2 has one parameter. The reference to the variable a is to the a
declared in bigsub, because neither sub3 nor its static parent sub2 has a
declaration for a variable named a. It is referenced with the pair (2, 3).

After sub3 completes its execution, the activation record instance for sub3 is
removed from the stack, leaving only the activation record instances for main,
bigsub, and sub2. At position 3 in sub2, the reference to the variable a is to
the a in bigsub, which has the only declaration of a among the active

routines. This access is made with the pair (1, 3). At this position, there is no
visible scope containing a declaration for the variable d, so this reference to d
is a static semantics error. The error would be detected when the compiler
attempted to compute the chain_offset/local_offset pair. The reference to e is
to the local e in sub2, which can be accessed with the pair (0, 5).

In summary, the references to the variable a at points 1, 2, and 3 would be
represented by the following points:

(0, 3) (local)

(2, 3) (two levels away)

(1, 3) (one level away)

It is reasonable at this point to ask how the static chain is maintained during
program execution. If its maintenance is too complex, the fact that it is simple
and effective would be unimportant. We assume here that parameters that are
subprograms are not implemented.

The static chain must be modified for each subprogram call and return. The
return part is trivial: When the subprogram terminates, its activation record
instance is removed from the stack. After this removal, the new top activation
record instance is that of the unit that called the subprogram whose execution
just terminated. Because the static chain from this activation record instance
was never changed, it works correctly just as it did before the call to the other
subprogram. Therefore, no other action is required.

The action required at a subprogram call is more complex. Although the
correct parent scope is easily determined at compile time, the most recent
activation record instance of the parent scope must be found at the time of the
call. This can be done by looking at activation record instances on the
dynamic chain until the first one of the parent scope is found. However, this
search can be avoided by treating subprogram declarations and references
exactly like variable declarations and references. When the compiler
encounters a subprogram call, among other things, it determines the
subprogram that declared the called subprogram, which must be a static
ancestor of the calling routine. It then computes the nesting_depth, or number

of enclosing scopes between the caller and the subprogram that declared the
called subprogram. This information is stored and can be accessed by the
subprogram call during execution. At the time of the call, the static link of the
called subprogram’s activation record instance is found by moving down the
static chain of the caller. The number of links in this move is equal to the
nesting_depth, which was computed at compile time.

Consider again the program main and the stack situation shown in
Figure 10.9. At the call to sub1 in sub3, the compiler determines the
nesting_depth of sub3 (the caller) to be two levels inside the procedure that
declared the called procedure sub1, which is bigsub. When the call to sub1 in
sub3 is executed, this information is used to set the static link of the
activation record instance for sub1. This static link is set to point to the
activation record instance that is pointed to by the second static link in the
static chain from the caller’s activation record instance. In this case, the caller
is sub3, whose static link points to its parent’s activation record instance (that
of sub2). The static link of the activation record instance for sub2 points to
the activation record instance for bigsub. So, the static link for the new
activation record instance for sub1 is set to point to the activation record
instance for bigsub.

This method works for all subprogram linkage, except when parameters that
are subprograms are involved.

One criticism of using the static chain approach to access nonlocal variables
is that references to variables in scopes beyond the static parent cost more
than references to locals. The static chain must be followed, one link per
enclosing scope from the reference to the declaration. Fortunately, in
practice, references to distant nonlocal variables are rare, so this is not a
serious problem. Another criticism of the static-chain approach is that it is
difficult for a programmer working on a time-critical program to estimate the
costs of nonlocal references, because the cost of each reference depends on
the depth of nesting between the reference and the scope of declaration.
Further complicating this problem is that subsequent code modifications may
change nesting depths, thereby changing the timing of some references, both
in the changed code and possibly in code far from the changes.

Some alternatives to static chains have been developed, most notably an

approach that uses an auxiliary data structure called a display. However,
none of the alternatives has been found to be superior to the static-chain
method, which is still the most widely used approach. Therefore, none of the
alternatives are discussed here.

The processes and data structures described in this section correctly
implement closures in languages that do not permit functions to return
functions and do not allow functions to be assigned to variables. However,
they are inadequate for languages that do allow one or both of those
operations. Several new mechanisms are needed to implement access to
nonlocals in such languages. First, if a subprogram accesses a variable from a
nesting but not global scope, that variable cannot be stored only in the
activation record of its home scope. That activation record could be
deallocated before the subprogram that needs it is activated. Such variables
could also be stored in the heap and given unlimited extend (their lifetimes
are the lifetime of the whole program). Second, subprograms must have
mechanisms to access the nonlocals that are stored in the heap. Third, the
heap-allocated variables that are nonlocally accessed must be updated every
time their stack versions are updated. Clearly, these are nontrivial extensions
to the implementation static scoping using static chains.

10.5 Blocks
Recall from Chapter 5, that a number of languages, including the C-based
languages, provide for user-specified local scopes for variables called blocks.
As an example of a block, consider the following code segment:

{ int temp;

 temp = list[upper];

 list[upper] = list[lower];

 list[lower] = temp;

}

A block is specified in the C-based languages as a compound statement that
begins with one or more data definitions. The lifetime of the variable temp in
the preceding block begins when control enters the block and ends when
control exits the block. The advantage of using such a local is that it cannot
interfere with any other variable with the same name that is declared
elsewhere in the program, or more specifically, in the referencing
environment of the block.

Blocks can be implemented by using the static-chain process described in
Section 10.4 for implementing nested subprograms. Blocks are treated as
parameterless subprograms that are always called from the same place in the
program. Therefore, every block has an activation record. An instance of its
activation record is created every time the block is executed.

Blocks can also be implemented in a different and somewhat simpler and
more efficient way. The maximum amount of storage required for block
variables at any time during the execution of a program can be statically
determined, because blocks are entered and exited in strictly textual order.
This amount of space can be allocated after the local variables in the
activation record. Offsets for all block variables can be statically computed,
so block variables can be addressed exactly as if they were local variables.

For example, consider the following skeletal program:

void main() {

 int x, y, z;

 while (. .) {

 int a, b, c;

 .

 while (. . .) {

 int d, e;

 .

 }

 }

 while (. . .) {

 int f, g;

 . . .

 }

 . .

}

For this program, the static-memory layout shown in Figure 10.10 could be
used. Note that f and g occupy the same memory locations as a and b,
because a and b are popped off the stack when their block is exited (before f
and g are allocated).

Figure 10.10 Block variable -
storage when blocks are not
treated as parameterless
procedures

Figure 10.10 Full Alternative Text

10.6 Implementing Dynamic
Scoping
There are at least two distinct ways in which local variables and nonlocal
references to them can be implemented in a dynamic-scoped language: deep
access and shallow access. Note that deep access and shallow access are not
concepts related to deep and shallow binding. An important difference
between binding and access is that deep and shallow bindings result in
different semantics; deep and shallow accesses do not.

10.6.1 Deep Access
If local variables are stack dynamic and are part of the activation records in a
dynamic-scoped language, references to nonlocal variables can be resolved
by searching through the activation record instances of the other subprograms
that are currently active, beginning with the one most recently activated. This
concept is similar to that of accessing nonlocal variables in a static-scoped
language with nested subprograms, except that the dynamic—rather than the
static—chain is followed. The dynamic chain links together all subprogram
activation record instances in the reverse of the order in which they were
activated. Therefore, the dynamic chain is exactly what is needed to reference
nonlocal variables in a dynamic-scoped language. This method is called deep
access, because access may require searches deep into the stack.

Consider the following example skeletal program:

void sub3() {

 int x, z;

 x = u + v;

 . . .

}

void sub2() {

 int w, x;

 . . .

}

void sub1() {

 int v, w;

 . . .

}

void main() {

 int v, u;

 . . .

}

This program is written in a syntax that gives it the appearance of a program
in a C-based language, but it is not meant to be in any particular language.
Suppose the following sequence of function calls occurs:

main calls sub1

sub1 calls sub1

sub1 calls sub2

sub2 calls sub3

Figure 10.11 shows the stack during the execution of function sub3 after this
calling sequence. Notice that the activation record instances do not have static
links, which would serve no purpose in a dynamic-scoped language.

Figure 10.11 Stack contents for
a dynamic-scoped program

Figure 10.11 Full Alternative Text

Consider the references to the variables x, u, and v in function sub3. The
reference to x is found in the activation record instance for sub3. The
reference to u is found by searching all of the activation record instances on
the stack, because the only existing variable with that name is in main. This
search involves following four dynamic links and examining 10 variable
names. The reference to v is found in the most recent (nearest on the dynamic
chain) activation record instance for the subprogram sub1.

There are two important differences between the deep-access method for
nonlocal access in a dynamic-scoped language and the static-chain method
for static-scoped languages. First, in a dynamic-scoped language, there is no
way to determine at compile time the length of the chain that must be
searched. Every activation record instance in the chain must be searched until
the first instance of the variable is found. This is one reason why dynamic-
scoped languages typically have slower execution speeds than static-scoped
languages. Second, activation records must store the names of variables for
the search process, whereas in static-scoped language implementations only
the values are required. (Names are not required for static scoping, because
all variables are represented by the chain_offset/local_offset pairs.)

10.6.2 Shallow Access
Shallow access is an alternative implementation method, not an alternative
semantics. As stated previously, the semantics of deep access and shallow
access are identical. In the shallow-access method, variables declared in
subprograms are not stored in the activation records of those subprograms.
Because with dynamic scoping there is at most one visible version of a

variable of any specific name at a given time, a very different approach can
be taken. One variation of shallow access is to have a separate stack for each
variable name in a complete program. Every time a new variable with a
particular name is created by a declaration at the beginning of a subprogram
that has been called, the variable is given a cell at the top of the stack for its
name. Every reference to the name is to the variable on top of the stack
associated with that name, because the top one is the most recently created.
When a subprogram terminates, the lifetimes of its local variables end, and
the stacks for those variable names are popped. This method allows fast
references to variables, but maintaining the stacks at the entrances and exits
of subprograms is costly.

Figure 10.12 shows the variable stacks for the earlier example program in the
same situation as shown with the stack in Figure 10.11.

Figure 10.12 One method of
using shallow access to -
implement dynamic scoping

Figure 10.12 Full Alternative Text

Another option for implementing shallow access is to use a central table that
has a location for each different variable name in a program. Along with each
entry, a bit called active is maintained that indicates whether the name has a
current binding or variable association. Any access to any variable can then
be to an offset into the central table. The offset is static, so the access can be
fast. SNOBOL implementations use the central table implementation
technique.

Maintenance of a central table is straightforward. A subprogram call requires
that all of its local variables be logically placed in the central table. If the
position of the new variable in the central table is already active—that is, if it
contains a variable whose lifetime has not yet ended (which is indicated by
the active bit)—that value must be saved somewhere during the lifetime of
the new variable. Whenever a variable begins its lifetime, the active bit in its
central table position must be set.

There have been several variations in the design of the central table and in the
way values are stored when they are temporarily replaced. One variation is to
have a “hidden” stack on which all saved objects are stored. Because
subprogram calls and returns, and thus the lifetimes of local variables, are
nested, this works well.

The second variation is perhaps the cleanest and least expensive to
implement. A central table of single cells is used, storing only the current
version of each variable with a unique name. Replaced variables are stored in
the activation record of the subprogram that created the replacement variable.
This is a stack mechanism, but it uses the stack that already exists, so the new
overhead is minimal.

The choice between shallow and deep access to nonlocal variables depends
on the relative frequencies of subprogram calls and nonlocal references. The
deep-access method provides fast subprogram linkage, but references to
nonlocals, especially references to distant nonlocals (in terms of the call
chain), are costly. The shallow-access method provides much faster
references to nonlocals, especially distant nonlocals, but is more costly in
terms of subprogram linkage.

SUMMARY
Subprogram linkage semantics requires many actions by the implementation.
In the case of “simple” subprograms, these actions are relatively
uncomplicated. At the call, the status of execution must be saved, parameters
and the return address must be passed to the called subprogram, and control
must be transferred. At the return, the values of pass-by-result and pass-by-
value-result parameters must be transferred back, as well as the return value
if it is a function, execution status must be restored, and control transferred
back to the caller. In languages with stack-dynamic local variables and nested
subprograms, subprogram linkage is more complex. There may be more than
one activation record instance, those instances must be stored on the run-time
stack, and static and dynamic links must be maintained in the activation
record instances. The static link is to allow references to nonlocal variables in
static-scoped languages.

Subprograms in languages with stack-dynamic local variables and nested
subprograms have two components: the actual code, which is static, and the
activation record, which is stack dynamic. Activation record instances
contain the formal parameters and local variables, among other things.
Access to nonlocal variables is implemented with a chain of static parent
pointers.

Access to nonlocal variables in a dynamic-scoped language can be
implemented by use of the dynamic chain or through some central variable
table method. Dynamic chains provide slow accesses but fast calls and
returns. The central table methods provide fast accesses but slow calls and
returns.

REVIEW QUESTIONS
1. What is the definition used in this chapter for “simple” subprograms?

2. Which of the caller or callee saves execution status information?

3. What must be stored for the linkage to a subprogram?

4. What is the task of a linker?

5. What are the two reasons why implementing subprograms with stack-
dynamic local variables is more difficult than implementing simple
subprograms?

6. What is the difference between an activation record and an activation
record instance?

7. Why are the return address, dynamic link, and parameters placed in the
bottom of the activation record?

8. What kind of machines often use registers to pass parameters?

9. What are the two steps in locating a nonlocal variable in a static-
scoped language with stack-dynamic local variables and nested
subprograms?

10. Define static chain, static_depth, nesting_depth, and chain_offset.

11. What is an EP, and what is its purpose?

12. How are references to variables represented in the static-chain method?

13. Name three widely used programming languages that do not allow
nested subprograms.

14. What are the two potential problems with the static-chain method?

15. Explain the two methods of implementing blocks.

16. Describe the deep-access method of implementing dynamic scoping.

17. Describe the shallow-access method of implementing dynamic scoping.

18. What are the two differences between the deep-access method for
nonlocal access in dynamic-scoped languages and the static-chain
method for static-scoped languages?

19. Compare the efficiency of the deep-access method to that of the
shallow-access method, in terms of both calls and nonlocal accesses.

PROBLEM SET
1. Show the stack with all activation record instances, including static and

dynamic chains, when execution reaches position 1 in the following
skeletal program. Assume bigsub is at level 1.

function bigsub() {

 function a() {

 function b() {

 ... <----------------------------1

 } // end of b

 function c() {

 ...

 b();

 ...

 } // end of c

 ...

 c();

 ...

 } // end of a

 ...

 a();

 ...

} // end of bigsub

2. Show the stack with all activation record instances, including static and
dynamic chains, when execution reaches position 1 in the following
skeletal program. Assume bigsub is at level 1.

 function bigsub() {

 var mysum;

 function a() {

 var x;

 function b(sum) {

 var y, z;

 ...

 c(z);

 ...

 } // end of b

 ...

 b(x);

 ...

 } // end of a

 function c(plums) {

 ... <-----------------------------1

 } // end of c

 var l;

 ...

 a();

 ...

} // end of bigsub

3. Show the stack with all activation record instances, including static and
dynamic chains, when execution reaches position 1 in the following
skeletal program. Assume bigsub is at level 1.

function bigsub() {

function a(flag) {

 function b() {

 ...

 a(false);

 ...

 } // end of b

 ...

 if (flag)

 b();

 else c();

 ...

} // end of a

 function c() {

 function d() {

 ... <------------------------1

 } // end of d

 ...

 d();

 ...

 } // end of c

 ...

 a(true);

 ...

} // end of bigsub

The calling sequence for this program for execution to reach d is

bigsub calls a

a calls b

b calls a

a calls c

c calls d

4. Show the stack with all activation record instances, including static and
dynamic chains, when execution reaches position 1 in the following
skeletal program. This program uses the deep-access method to
implement dynamic scoping.

void fun1() {

 float a;

 . . .

}

void fun2() {

 int b, c;

 . . .

}

void fun3() {

 float d;

 . . . <--------- 1

}

void main() {

 char e, f, g;

 . . .

}

The calling sequence for this program for execution to reach fun3 is

main calls fun2

fun2 calls fun1

fun1 calls fun1

fun1 calls fun3

5. Assume that the program of Problem 4 is implemented using the
shallow-access method using a stack for each variable name. Show the
stacks for the time of the execution of fun3, assuming execution found
its way to that point through the sequence of calls shown in Problem 4.

6. Although local variables in Java methods are dynamically allocated at
the beginning of each activation, under what circumstances could the
value of a local variable in a particular activation retain the value of the
previous activation?

7. It is stated in this chapter that when nonlocal variables are accessed in a
dynamic-scoped language using the dynamic chain, variable names must
be stored in the activation records with the values. If this were actually
done, every nonlocal access would require a sequence of costly string
comparisons on names. Design an alternative to these string
comparisons that would be faster.

8. Pascal allows gotos with nonlocal targets. How could such statements be
handled if static chains were used for nonlocal variable access? Hint:
Consider the way the correct activation record instance of the static
parent of a newly enacted procedure is found (see Section 10.4.2).

9. The static-chain method could be expanded slightly by using two static
links in each activation record instance where the second points to the
static grandparent activation record instance. How would this approach
affect the time required for subprogram linkage and nonlocal references?

10. Design a skeletal program and a calling sequence that results in an
activation record instance in which the static and dynamic links point to
different activation-recorded instances in the run-time stack.

11. If a compiler uses the static chain approach to implementing blocks,
which of the entries in the activation records for subprograms are needed
in the activation records for blocks?

12. Examine the subprogram call instructions of three different
architectures, including at least one CISC machine and one RISC
machine, and write a short comparison of their capabilities. (The design
of these instructions usually determines at least part of the compiler
writer’s design of subprogram linkage.)

PROGRAMMING EXERCISES
1. Write a program that includes two subprograms, one that takes a single

parameter and performs some simple operation on that parameter and
one that takes 20 parameters and uses all of the parameters, but only for
one simple operation. The main program must call these two
subprograms a large number of times. Include in the program timing
code to output the run time of the calls to each of the two subprograms.
Run the program on a RISC machine and on a CISC machine and
compare the ratios of the time required by the two subprograms. Based
on the results, what can you say about the speed of parameter passing on
the two machines?

11 Abstract Data Types and
Encapsulation Constructs

1. 11.1 The Concept of Abstraction

2. 11.2 Introduction to Data Abstraction

3. 11.3 Design Issues for Abstract Data Types

4. 11.4 Language Examples

5. 11.5 Parameterized Abstract Data Types

6. 11.6 Encapsulation Constructs

7. 11.7 Naming Encapsulations

In this chapter, we explore programming language constructs that support
data abstraction. Among the new ideas of the last 50 years in programming
methodologies and programming language design, data abstraction is one of
the most profound.

We begin by discussing the general concept of abstraction in programming
and programming languages. Data abstraction is then defined and illustrated
with an example. This topic is followed by descriptions of the support for
data abstraction in C++, Java, C#, and Ruby. To illuminate the similarities
and differences in the design of the language facilities that support data
abstraction, implementations of the same example data abstraction are given
in C++, Java, and Ruby. Next, the capabilities of C++, Java 5.0, and C# 2005
to build parameterized abstract data types are discussed.

All the languages used in this chapter to illustrate the concepts and constructs
of abstract data types support object-oriented programming, because virtually
all contemporary languages support object-oriented programming and nearly
all of those that do not, and yet support abstract data types, have faded into

obscurity.

Constructs that support abstract data types are encapsulations of the data and
operations on objects of the type. Encapsulations that contain multiple types
are required for the construction of larger programs. These encapsulations
and the associated namespace issues are also discussed in this chapter.

Some programming languages support logical, as opposed to physical,
encapsulations, which are actually used to encapsulate names. These are
discussed in Section 11.7.

11.1 The Concept of Abstraction
An abstraction is a view or representation of an entity that includes only the
most significant attributes. In a general sense, abstraction allows one to
collect instances of entities into groups in which their common attributes
need not be considered. For example, suppose we define birds to be creatures
with the following attributes: two wings, two legs, a tail, and feathers. Then,
if we say a crow is a bird, a description of a crow need not include those
attributes. The same is true for robins, sparrows, and yellow-bellied
sapsuckers. The common attributes in the descriptions of specific species of
birds can be abstracted away, because all species have them. Within a
particular species, only the attributes that distinguish that species need be
considered. For example, crows have the attributes of being black, being of a
particular size, and being noisy. A description of a crow needs to provide
those attributes, but not the others that are common to all birds. This results
in significant simplification of the descriptions of members of the species. A
less abstract view of a species, that of a bird, may be considered when it is
necessary to see a higher level of detail, rather than just the special attributes.

In the world of programming languages, abstraction is a weapon against the
complexity of programming; its purpose is to simplify the programming
process. It is an effective weapon because it allows programmers to focus on
essential attributes, while ignoring subordinate attributes.

The two fundamental kinds of abstraction in contemporary programming
languages are process abstraction and data abstraction.

The concept of process abstraction is among the oldest in programming
language design (Plankalkül supported process abstraction in the 1940s). All
subprograms are process abstractions because they provide a way for a
program to specify a process, without providing the details of how it
performs its task (at least in the calling program). For example, when a
program needs to sort an array of numeric data of some type, it usually uses a
subprogram for the sorting process. At the point where the sorting process is
required, a statement such as

sortInt(list, listLen)

is placed in the program. This call is an abstraction of the actual sorting
process, whose algorithm is not specified. The call is independent of the
algorithm implemented in the called subprogram.

In the case of the subprogram sortInt, the only essential attributes are the
name of the array to be sorted, the type of its elements, the array’s length, and
the fact that the call to sortInt will result in the array being sorted. The
particular algorithm that sortInt implements is an attribute that is not
essential to the user. The user needs to see only the name and protocol of the
sorting subprogram to be able to use it.

The widespread use of data abstraction necessarily followed that of process
abstraction because an integral and essential part of every data abstraction is
its operations, which are defined as process abstractions.

11.2 Introduction to Data
Abstraction
The evolution of data abstraction began in 1960 with the first version of
COBOL, which included the record data structure.1 The C-based languages
have structs, which are also records. An abstract data type is a data structure,
in the form of a record, but which includes subprograms that manipulate its
data.

1. Recall from Chapter 2 that a record is a data structure that stores fields,
which have names and can be of different types.

Syntactically, an abstract data type is an enclosure that includes only the data
representation of one specific data type and the subprograms that provide the
operations for that type. Through access controls, unnecessary details of the
type can be hidden from units outside the enclosure that use the type.
Program units that use an abstract data type can declare variables of that type,
even though the actual representation is hidden from them. An instance of an
abstract data type is called an object.

One of the motivations for data abstraction is similar to that of process
abstraction. It is a weapon against complexity; a means of making large
and/or complicated programs more manageable. Other motivations for and
advantages of abstract data types are discussed later in this section.

Object-oriented programming, which is described in Chapter 12, is an
outgrowth of the use of data abstraction in software development, and data
abstraction is one of its fundamental components.

11.2.1 Floating-Point as an
Abstract Data Type

The concept of an abstract data type, at least in terms of built-in types, is not
a recent development. All built-in data types, even those of Fortran I, are
abstract data types, although they are rarely called that. For example, consider
a floating-point data type. Most programming languages include at least one
of these. A floating-point type provides the means to create variables to store
floating-point data and also provides a set of arithmetic operations for
manipulating objects of the type.

Floating-point types in high-level languages employ a key concept in data
abstraction: information hiding. The actual format of the floating-point data
value in a memory cell is hidden from the user, and the only operations
available are those provided by the language. The user is not allowed to
create new operations on data of the type, except those that can be
constructed using the built-in operations. The user cannot directly manipulate
the parts of the actual representation of values because that representation is
hidden. It is this feature that allows program portability between
implementations of a particular language, even though the implementations
may use different representations for particular data types. For example,
before the IEEE 754 standard floating-point representations appeared in the
mid-1980s, there were several different representations being used by
different computer architectures. However, this variation did not prevent
programs that used floating-point types from being portable among the
various architectures.

11.2.2 User-Defined Abstract Data
Types
A user-defined abstract data type should provide the same characteristics as
those of language-defined types, such as a floating-point type: (1) a type
definition that allows program units to declare variables of the type but hides
the representation of objects of the type; and (2) a set of operations for
manipulating objects of the type.

We now formally define an abstract data type in the context of user-defined
types. An abstract data type is a data type that satisfies the following

conditions:

The representation of objects of the type is hidden from the program
units that use the type, so the only direct operations possible on those
objects are those provided in the type’s definition.

The declarations of the type and the protocols of the operations on
objects of the type, which provide the type’s interface, are contained in a
single syntactic unit. The type’s interface does not depend on the
representation of the objects or the implementation of the operations.
Also, other program units are allowed to create variables of the defined
type.

There are several benefits of information hiding. One of these is increased
reliability. Program units that use a specific abstract data type are called
clients of that type. Clients cannot manipulate the underlying representations
of objects directly, either intentionally or by accident, thus increasing the
integrity of such objects. Objects can be changed only through the provided
operations.

Another benefit of information hiding is it reduces the range of code and
number of variables of which a programmer must be aware when writing or
reading a part of the program. The value of a particular variable can be
changed only by code in a restricted range, making the code easier to
understand and making it less challenging to find sources of incorrect
changes.

Information hiding also makes name conflicts less likely, because the scopes
of variables is smaller.

Finally, consider the following advantage of information hiding: Suppose that
the original implementation of the stack abstraction uses a linked list
representation. At a later time, because of memory management problems
with that representation, the stack abstraction is changed to use a contiguous
representation (one that implements a stack in an array). Because data
abstraction was used, this change can be made in the code that defines the
stack type, but no changes will be required in any of the clients of the stack
abstraction. Of course, a change in protocol of any of the operations would

require changes in the clients.

Although the definition of an abstract data type specifies that data members
of objects must be hidden from clients, many situations arise in which clients
need to access these data members. The common solution is to provide
accessor methods, sometimes called getters and setters, that allow clients
indirect access to the so-called hidden data—a better solution than simply
making the data public, which would provide direct access. There are three
reasons why accessors are better:

1. Read-only access can be provided by having a getter method but no
corresponding setter method.

2. Constraints can be included in setters. For example, if the data value
should be restricted to a particular range, the setter can enforce that.

3. The actual implementation of the data member can be changed without
affecting the clients if getters and setters are the only access.

Both specifying data in an abstract data type to be public and providing
accessor methods for that data are violations of the principles of abstract data
types. Some believe these are simply loopholes that make an imperfect
design usable. As we will see in Section 11.4.4.2, Ruby disallows making
instance data public. However, Ruby also makes it very easy to create
accessor functions. It is a challenge for developers to design abstract data
types in which all of the data is actually hidden.

The primary advantage of packaging the declarations of the type and its
operations in a single syntactic unit is that it provides a method of organizing
a program into logical units that can be compiled separately. In some cases,
the implementation is included with the type declaration; in other cases, it is
in a separate syntactic unit. The advantage of having the implementation of
the type and its operations in different syntactic units is that it increases the
program’s modularity and it is a clear separation of design and
implementation. If both the declarations and the definitions of types and
operations are in the same syntactic unit, there must be some means of hiding
from client program units the parts of the unit that specify the definitions.

11.2.3 An Example
A stack is a widely applicable data structure that stores some number of data
elements and only allows access to the data element at one of its ends, the
top. Suppose an abstract data type is to be constructed for a stack that has the
following abstract operations:

Note that some implementations of abstract data types do not require the
create and destroy operations. For example, simply defining a variable to be
of an abstract data type may implicitly create the underlying data structure
and initialize it. The storage for such a variable may be implicitly deallocated
at the end of the variable’s scope.

A client of the stack type could have a code sequence such as the following:

. . .

create(stk1);

push(stk1, color1);

push(stk1, color2);

temp = top(stk1);

. . .

11.3 Design Issues for Abstract Data
Types
A facility for defining abstract data types in a language must provide a
syntactic unit that encloses the declaration of the type and the prototypes of
the subprograms that implement the operations on objects of the type. It must
be possible to make these visible to clients of the abstraction. This allows
clients to declare variables of the abstract type and manipulate their values.
Although the type name must have external visibility, the type representation
must be hidden. The type representation and the definitions of the
subprograms that implement the operations may appear inside or outside this
syntactic unit.

Few, if any, general built-in operations should be provided for objects of
abstract data types, other than those provided with the type definition. There
simply are not many operations that apply to a broad range of abstract data
types. Among these are assignment and comparisons for equality and
inequality. If the language does not allow users to overload assignment, the
assignment operation must be included in the abstraction. Comparisons for
equality and inequality should be predefined in the abstraction in some cases
but not in others. For example, if the type is implemented as a pointer,
equality may mean pointer equality, but the designer may want it to mean
equality of the structures referenced by the pointers.

Some operations are required by many abstract data types, but because they
are not universal, they often must be provided by the designer of the type.
Among these are iterators, accessors, constructors, and destructors. Iterators
were discussed in Chapter 8. Accessors provide a form of access to data that
is hidden from direct access by clients. Constructors are used to initialize
parts of newly created objects. Destructors are often used to reclaim heap
storage that may be used by parts of abstract data type objects in languages
that do not do implicit storage reclamation.

As stated earlier, the enclosure for an abstract data type defines a single data

type and its operations. Many contemporary languages, including C++, Java,
and C#, directly support abstract data types.

The first design issue is whether abstract data types can be parameterized. For
example, if the language supports parameterized abstract data types, one
could design an abstract data type for some structure that could store
elements of any type. Parameterized abstract data types are discussed in
Section 11.5. The second design issue is what access controls are provided
and how such controls are specified. Finally, the language designer must
decide whether the specification of the type is physically separate from its
implementation (or whether that is a developer choice).

11.4 Language Examples
The concept of data abstraction had its origins in SIMULA 67, although that
language did not provide complete support for abstract data types, because it
did not include a way to hide implementation details. In this section, we
describe the support for data abstraction provided by C++, Java, C#, and
Ruby.

11.4.1 Abstract Data Types in C++
C++, which was first released in 1985, was created by adding features to C.
The first important additions were those to support object-oriented
programming. Because one of the primary components of object-oriented
programming is abstract data types, C++ obviously is required to support
them.

C++ provides two constructs that are very similar to each other, the class and
the struct, which directly support abstract data types. Because structs are most
commonly used when only data is included, we do not discuss them further
here.

interview
C++: Its Birth, Its Ubiquitousness, and Common Criticisms

BJARNE STROUSTRUP

Bjarne Stroustrup is the designer and original implementer of C++ and the
author of A Tour of C++, Programming—Principles and Practice using C++,
The C++ Programming Language, The Design and Evolution of C++, and
many other publications. His research interests include distributed systems,
design, programming techniques, software development tools, and
programming languages. He is actively involved in the ANSI/ISO
standardization of C++. Dr. Stroustrup is a Managing Director in the
technology division of Morgan Stanley in New York City, a Visiting
Professor in Computer Science at Columbia University, and a Distinguished
Research Professor in Computer Science at Texas A&M University. He is a
member of the National Academy of Engineering, an ACM Fellow, and an
IEEE fellow. In 1993, Stroustrup received the ACM Grace Murray Hopper
Award “for his early work laying the foundations for the C++ programming
language. Based on the foundations and Dr. Stroustrup’s continuing efforts,
C++ has become one of the most influential programming languages in the
history of computing.”

(year of interview: 2002)

A BRIEF HISTORY OF YOU AND
COMPUTING
What were you working on, and where, before you joined Bell Labs in
the early 1980s? At Bell Labs, I was doing research in the general area of
distributed systems. I joined in 1979. Before that, I was finishing my Ph.D. in
that field in Cambridge University.

Did you immediately start on “C with Classes” (which would later
become C ++)?  I worked on a few projects related to distributed computing
before starting on C with Classes and during the development of that and of
C++. For example, I was trying to find a way to distribute the UNIX kernel
across several computers and helped a lot of projects build simulators.

Was it an interest in mathematics that got you into this profession? I
signed up for a degree in “mathematics with computer science” and my
master’s degree is officially a math degree. I—wrongly—thought that
computing was some kind of applied math. I did a couple of years of math
and rate myself a poor mathematician, but that’s still much better than not
knowing math. At the time I signed up, I had never even seen a computer.
What I love about computing is the programming rather than the more
mathematical fields.

DISSECTING A SUCCESSFUL
LANGUAGE
I’d like to work backward, listing some items I think make C++
ubiquitous, and get your reaction. It’s “open source,” nonproprietary,
and standardized by ANSI/ISO. The ISO C++ standard is important. There
are many independently developed and evolving C++ implementations.
Without a standard for them to adhere to and a standards process to help
coordinate the evolution of C++, a chaos of dialects would erupt.

It is also important that there are both open-source and commercial
implementations available. In addition, for many users, it is crucial that the
standard provides a measure of protection from manipulation by
implementation providers.

The ISO standards process is open and democratic. The C++ committee
rarely meets with fewer than 50 people present and typically more than eight
nations are represented at each meeting. It is not just a vendors’ forum.

It’s ideal for systems programming (which, at the time C++ was born, was
the largest sector of the market developing code).

Yes, C++ is a strong contender for any systems-programming project. It is
also effective for embedded systems programming, which is currently the
fastest-growing sector. Yet another growth area for C++ is high-performance
numeric/engineering/scientific programming.

Its object-oriented nature and inclusion of classes/libraries make
programming more efficient and transparent. C++ is a multiparadigm
programming language. That is, it supports several fundamental styles of
programming (including object-oriented programming) and combinations of
those styles. When used well, this leads to cleaner, more flexible, and more
efficient libraries than can be provided using just one paradigm. The C++
standard library containers and algorithms, which is basically a generic
programming framework, is an example. When used together with (object-
oriented) class hierarchies, the result is an unsurpassed combination of type
safety, efficiency, and flexibility.

Its incubation in the AT&T development environment AT&T Bell Labs
provided an environment that was crucial for C++’s development. The labs
were an exceptionally rich source of challenging problems and a uniquely
supportive environment for practical research. C++ emerged from the same
research lab as C did and benefited from the same intellectual tradition,
experience, and exceptional people. Throughout, AT&T supported the
standardization of C++. However, C++ was not the beneficiary of a massive
marketing campaign, like many modern languages. That’s simply not the way
the labs work.

Did I miss anything on your top list? Undoubtedly.

Now, let me paraphrase from the C++ critiques and get your reactions:
It’s huge/unwieldy. The “hello world” problem is 10 times larger in C++
than in C. C++ is certainly not a small language, but then few modern
languages are. If a language is small, you tend to need huge libraries to get
work done and often have to rely on conventions and extensions. I prefer to
have key parts of the inevitable complexity in the language where it can be
seen, taught, and effectively standardized rather than hidden elsewhere in a
system. For most purposes, I don’t consider C++ unwieldy. The C++ “hello
world” program isn’t larger than its C equivalent on my machine, and it
shouldn’t be on yours.

In fact, the object code for the C++ version of the “hello world” program is
smaller than the C version on my machine. There is no language reason why
the one version should be larger than the other. It is all an issue of how the
implementor organized the libraries. If one version is significantly larger than
the other, report the problem to the implementor of the larger version.

It’s tougher to program in C++ (compared with C). (Something the
critics say.) Even you once admitted it, saying something about shooting
yourself in the foot with C versus C ++. Yes, I did say something along the
lines of “C makes it easy to shoot yourself in the foot; C++ makes it harder,
but when you do, C++ blows your whole leg off.” What people tend to miss
is that what I said about C++ is to a varying extent true for all powerful
languages. As you protect people from simple dangers, they get themselves
into new and less obvious problems. Someone who avoids the simple
problems may simply be heading for a not-so-simple one. One problem with
very supporting and protective environments is that the hard problems may
be discovered too late or be too hard to remedy once discovered. Also, a rare
problem is harder to find than a frequent one because you don’t suspect it.

It’s appropriate for embedded systems of today but not for the Internet
software of today. C++ is suitable for embedded systems today. It is also
suitable—and widely used—for “Internet software” today. For example, have
a look at my “C++ applications” Web page. You’ll notice that some of the
major Web service providers, such as Amazon, Adobe, Google, Quicken, and
Microsoft, critically rely on C++. Gaming is a related area in which you find

heavy C++ use.

Did I miss another one that you get a lot? Sure.

C++ classes are types. A C++ program unit that declares an instance of a
class can also access any of the public entities in that class, but only through
an instance of the class.

11.4.1.1 Encapsulation
The data defined in a C++ class are called data members; the functions
(methods) defined in a class are called member functions. Data members
and member functions appear in two categories: class and instance. Class
members are associated with the class; instance members are associated with
the instances of the class. In this chapter, only the instance members of a
class are discussed. All of the instances of a class share a single set of
member functions, but each instance has its own set of the class’s data
members. Class instances can be static, stack dynamic, or heap dynamic. If
static or stack dynamic, they are referenced directly with value variables. If
heap dynamic, they are referenced through pointers. Stack dynamic instances
of classes are always created by the elaboration of an object declaration.
Furthermore, the lifetime of such a class instance ends when the end of the
scope of its declaration is reached. Heap dynamic class instances are created
with the new operator and destroyed with the delete operator. Both stack-
and heap-dynamic classes can have pointer data members that reference heap
dynamic data, so that even though a class instance is stack dynamic, it can
include data members that reference heap dynamic data.

A member function of a class can be defined in two distinct ways: The
complete definition can appear in the class, or only in its header. When both
the header and the body of a member function appear in the class definition,
the member function is implicitly inlined. Recall that this means that its code
is placed in the caller’s code, rather than requiring the usual call and return
linkage. If only the header of a member function appears in the class
definition, its complete definition appears outside the class and is separately
compiled. The rationale for allowing member functions to be inlined was to

save function call overhead in real-time applications, in which run-time
efficiency is of utmost importance. The downside of inlining member
functions is that it clutters the class definition interface, resulting in a
reduction in readability.

Placing member function definitions outside the class definition separates
specification from implementation, a common goal of modern programming.

11.4.1.2 Information Hiding
A C++ class can contain both hidden and visible entities (meaning they are
either hidden from or visible to clients of the class). Entities that are to be
hidden are placed in a private clause, and visible, or public, entities appear
in a public clause. The public clause therefore describes the interface to
class instances. There is also a third category of visibility, protected, which
makes a member visible to subclasses, but not to clients.

11.4.1.3 Constructors and
Destructors
C++ allows the user to include constructor functions in class definitions,
which are used to initialize the data members of newly created objects. A
constructor may also allocate the heap-dynamic data that are referenced by
the pointer members of the new object. Constructors are implicitly called
when an object of the class type is created. A constructor has the same name
as the class whose objects it initializes. Constructors can be overloaded, but
of course each constructor of a class must have a unique parameter profile.

A C++ class can also include a function called a destructor, which is
implicitly called when the lifetime of an instance of the class ends. As stated
earlier, stack-dynamic class instances can contain pointer members that
reference heap-dynamic data. The destructor function for such an instance
can include a delete operator on the pointer members to deallocate the heap

space they reference. Destructors are often used as a debugging aid, in which
case they display or print the values of some or all of the object’s data
members before those members are deallocated. The name of a destructor is
the class’s name, preceded by a tilde (~).

Neither constructors nor destructors have return types, and neither use return
statements. Both constructors and destructors can be explicitly called.

11.4.1.4 An Example
Our example of a C++ abstract data type is a stack:

#include <iostream.h>

class Stack {

 private: //** These members are visible only to other

 //** members and friends (see Section 11.6.4)

 int *stackPtr;

 int maxLen;

 int topSub;

 public: //** These members are visible to clients

 Stack() { //** A constructor

 stackPtr = new int [100];

 maxLen = 99;

 topSub = -1;

 }

 ~Stack() {delete [] stackPtr;}; //** A destructor

 void push(int number) {

 if (topSub == maxLen)

 cerr << "Error in push--stack is full\n";

 else stackPtr[++topSub] = number;

 }

 void pop() {

 if (empty())

 cerr << "Error in pop--stack is empty\n";

 else topSub--;

 }

 int top() {

 if (empty())

 cerr << "Error in top--stack is empty\n";

 else

 return (stackPtr[topSub]);

 }

 int empty() {return (topSub == -1);}

}

We discuss only a few aspects of this class definition, because it is not
necessary to understand all of the details of the code. Objects of the Stack
class are stack dynamic but include a pointer that references heap-dynamic
data. The Stack class has three data members—stackPtr, maxLen, and
topSub—all of which are private. stackPtr is used to reference the heap-
dynamic data, which is the array that implements the stack. The class also has
four public member functions—push, pop, top, and empty—as well as a
constructor and a destructor. All of the member function definitions are
included in this class, although they could have been externally defined.
Because the bodies of the member functions are included, they are all
implicitly inlined. The constructor uses the new operator to allocate an array
of 100 int elements from the heap. It also initializes maxLen and topSub.

The following is an example program that uses the Stack abstract data type:

void main() {

 int topOne;

 Stack stk; //** Create an instance of the Stack class

 stk.push(42);

 stk.push(17);

 topOne = stk.top();

 stk.pop();

 . . .

}

Following is a definition of the Stack class with only prototypes of the
member functions. This code is stored in a header file with the .h file name
extension. The definitions of the member functions follow the class
definition. These use the scope resolution operator, ::, to indicate the class to
which they belong. These definitions are stored in a code file with the file
name extension .cpp.

// Stack.h - the header file for the Stack class

#include <iostream.h>

class Stack {

 private: //** These members are visible only to other

 //** members and friends (see Section 11.6.3)

 int *stackPtr;

 int maxLen;

 int topSub;

 public: //** These members are visible to clients

 Stack(); //** A constructor

 ~Stack(); //** A destructor

 void push(int);

 void pop();

 int top();

 int empty();

}

// Stack.cpp - the implementation file for the Stack class

#include <iostream.h>

#include "Stack.h"

using std::cout;

Stack::Stack() { //** A constructor

 stackPtr = new int [100];

 maxLen = 99;

 topSub = -1;

}

Stack::~Stack() {delete [] stackPtr;}; //** A destructor

void Stack::push(int number) {

 if (topSub == maxLen)

 cerr << "Error in push--stack is full\n";

 else stackPtr[++topSub] = number;

}

void Stack::pop() {

 if (topSub == -1)

 cerr << "Error in pop--stack is empty\n";

 else topSub--;

}

int top() {

 if (topSub == -1)

 cerr << "Error in top--stack is empty\n";

 else

 return (stackPtr[topSub]);

 }

int Stack::empty() {return (topSub == -1);}

11.4.2 Abstract Data Types in
Java
Java support for abstract data types is similar to that of C++. There are,
however, a few important differences. All objects are allocated from the heap
and accessed through reference variables. Methods in Java must be defined

completely in a class. A method body must appear with its corresponding
method header.2 Therefore, a Java abstract data type is both declared and
defined in a single syntactic unit. A Java compiler can inline any method that
is not overridden. Definitions are hidden from clients by declaring them to be
private.

2. Java interfaces are an exception to this—an interface has method headers
but cannot include their bodies.

One important advantage of Java’s classes over the classes of C++ is that it
uses implicit garbage collection of all objects. This allows the programmer to
ignore the issue of deallocation of objects and the clutter of deallocation code
in the implementations of abstract data types.

Rather than having private and public clauses in its class definitions, in Java
access modifiers can be attached to method and variable definitions. If an
instance variable or method does not have an access modifier, it has package
access, which is discussed in Section 11.7.2.

11.4.2.1 An Example
The following is a Java class definition for our stack example:

class StackClass {

 private int [] stackRef;

 private int maxLen,

 topIndex;

 public StackClass() { // A constructor

 stackRef = new int [100];

 maxLen = 99;

 topIndex = -1;

 }

 public void push(int number) {

 if (topIndex == maxLen)

 System.out.println("Error in push–stack is full");

 else stackRef[++topIndex] = number;

 }

 public void pop() {

 if (empty())

 System.out.println("Error in pop–stack is empty");

 else --topIndex;

 }

 public int top() {

 if (empty()) {

 System.out.println("Error in top–stack is empty");

 return 9999;

 }

 else

 return (stackRef[topIndex]);

 }

 public boolean empty() {return (topIndex == -1);}

}

An example class that uses StackClass follows:

public class TstStack {

 public static void main(String[] args) {

 StackClass myStack = new StackClass();

 myStack.push(42);

 myStack.push(29);

 System.out.println("29 is: " + myStack.top());

 myStack.pop();

 System.out.println("42 is: " + myStack.top());

 myStack.pop();

 myStack.pop(); // Produces an error message

 }

}

One obvious difference between the Java and the C++ implementations of the
stack is the lack of a destructor in the Java version, obviated by Java’s
implicit garbage collection.3

3. In Java, the finalize method serves as a kind of destructor.

11.4.2.2 Evaluation
Although different in some primarily cosmetic ways, Java’s support for
abstract data types is similar to that of C++. Java clearly provides for what is
necessary to design abstract data types.

11.4.3 Abstract Data Types in C#
Recall that C# is based on both C++ and Java and that it also includes some
new constructs. Like Java, all C# class instances are heap dynamic. Default
constructors, which provide initial values for instance data, are predefined for
all classes. These constructors provide typical initial values, such as 0 for int
types and false for boolean types. A user can furnish one or more
constructors for any class he or she defines. Such constructors can assign
initial values to some or all of the instance data of the class. Any instance
variable that is not initialized in a user-defined constructor is assigned a value
by the default constructor.

Although C# allows destructors to be defined, because it uses garbage
collection for most of its heap objects, destructors are rarely used.

11.4.3.1 Encapsulation
C++ includes both classes and structs, which are nearly identical constructs.
The only difference is that the default access modifier for class is private,
whereas for structs it is public. C# also has structs, but they are very
different from those of C++. In C#, structs are, in a sense, lightweight classes.
They can have constructors, properties, methods, and data fields and can
implement interfaces but do not support inheritance. One other important
difference between structs and classes in C# is that structs are value types, as
opposed to reference types. They are allocated on the run-time stack, rather
than the heap. If they are passed as parameters, like other value types, by
default they are passed by value. All C# value types, including all of its
primitive types, are actually structs. Structs can be created by declaring them,
like other predefined value types, such as int or float. They can also be
created with the new operator, which calls a constructor to initialize them.

Structs are used in C# primarily to implement relatively small simple types
that need never be base types for inheritance. They are also used when it is
convenient for the objects of the type to be stack as opposed to heap
allocated.

11.4.3.2 Information Hiding
C# uses the private and protected access modifiers exactly as they are used
in Java.

C# provides properties, which it inherited from Delphi, as a way of
implementing getters and setters without requiring explicit method calls by
the client. Properties provide implicit access to specific private instance data.
For example, consider the following simple class and client code:

public class Weather {

 public int DegreeDays { //** DegreeDays is a property

 get {

 return degreeDays;

 }

 set {

 if(value < 0 || value > 30)

 Console.WriteLine(

 "Value is out of range: {0}", value);

 else

 degreeDays = value;

 }

 }

 private int degreeDays;

 . . .

 }

. . .

Weather w = new Weather();

int degreeDaysToday, oldDegreeDays;

. . .

w.DegreeDays = degreeDaysToday;

. . .

oldDegreeDays = w.DegreeDays;

In the class Weather, the property DegreeDays is defined. This property
provides a getter method and a setter method for access to the private data
member, degreeDays. In the client code following the class definition,
degreeDays is treated as if it were a public-member variable, although access
to it is available through the property only. Notice the use of the implicit
variable value in the setter method. This is the mechanism by which the new
value of the property is referenced.

The stack example is not shown here in C#. The only difference between the
Java version in Section 11.4.2.1 and the C# version is the output method calls
and the use of bool instead of boolean for the return type of the empty
method.

11.4.4 Abstract Data Types in
Ruby
Ruby provides support for abstract data types through its classes. In terms of
capabilities, Ruby classes are similar to those in C++ and Java.

11.4.4.1 Encapsulation
In Ruby, a class is defined in a compound statement opened with the class
reserved word and closed with end. The names of instance variables have a
special syntactic form, they must begin with at signs (@). Instance methods
have the same syntax as functions in Ruby: They begin with the def reserved
word and end with end. Class methods are distinguished from instance
methods by having the class name appended to the beginning of their names
with a period separator. For example, in a class named Stack, a class
method’s name would begin with Stack. Constructors in Ruby are named
initialize. Because the constructor cannot be overloaded, there only can be
one per class.

Classes in Ruby are dynamic in the sense that members can be added at any
time. This is done by simply including additional class definitions that
specify the new members. Moreover, even predefined classes of the
language, such as String, can be extended. For example, consider the
following class definition:

class myClass

 def meth1

 . . .

 end

end

This class could be extended by adding a second method, meth2, with a
second class definition:

class myClass

 def meth2

 . . .

 end

end

Methods can also be removed from a class. This is done by providing another
class definition in which the method to be removed is sent to the method
remove_method as a parameter. The dynamic classes of Ruby is another
example of a language designer trading readability (and as a consequence,
reliability) for flexibility. Allowing dynamic changes to classes clearly adds
flexibility to the language, while harming readability. To determine the
behavior of a class at a particular point in a program, one must find all of its
definitions in the program and consider all of them.

11.4.4.2 Information Hiding
Access control for methods in Ruby is dynamic, so access violations are
detected only during execution. The default method access is public, but it
can also be protected or private. There are two ways to specify the access
control, both of which use functions with the same names as the access
levels, private and public. One way is to call the appropriate function
without parameters. This resets the default access for subsequently defined
methods in the class. For example,

class MyClass

 def meth1

 . . .

 end

 . . .

private

 def meth7

 . . .

 end

 . . .

end # of class MyClass

The alternative is to call the access control functions with the names of the
specific methods as parameters. For example, the following is semantically
equivalent to the previous class definition:

class MyClass

 def meth1

 . . .

 end

 . . .

 def meth7

 . . .

 end

 private :meth7, . . .

 end # of class MyClass

In Ruby, all data members of a class are private, and that cannot be changed.
So, data members can be accessed only by the methods of the class, some of
which may be accessor methods. In Ruby, instance data that are accessible
through accessor methods are called attributes.

For an instance variable named @sum, the getter and setter methods would be
as follows:

def sum

 @sum

end

def sum=(new_sum)

 @sum = new_sum

end

Notice that getters are given the name of the instance variable minus the @.
The names of setter methods are the same as those of the corresponding
getters, except they have an equal sign (=) attached.

Getters and setters can be implicitly generated by the Ruby system by
including calls to attr_reader and attr_writer, respectively, in the class
definition. The parameters to these are the symbols of the attribute’s names,
as is illustrated in the following:

attr_reader :sum, :total

attr_writer :sum

11.4.4.3 An Example
Following is the stack example written in Ruby:

Stack.rb - defines and tests a stack of maximum length

100, implemented in an array

class StackClass

Constructor

 def initialize

 @stackRef = Array.new(100)

 @maxLen = 100

 @topIndex = -1

 end

push method

 def push(number)

 if @topIndex == @maxLen

 puts "Error in push - stack is full"

 else

 @topIndex = @topIndex + 1

 @stackRef[@topIndex] = number

 end

 end

pop method

 def pop

 if empty

 puts "Error in pop - stack is empty"

 else

 @topIndex = @topIndex - 1

 end

 end

top method

 def top

 if empty

 puts "Error in top - stack is empty"

 else

 @stackRef[@topIndex]

 end

 end

empty method

 def empty

 @topIndex == -1

 end

end # of Stack class

Test code for StackClass

myStack = StackClass.new

myStack.push(42)

myStack.push(29)

puts "Top element is (should be 29): #{myStack.top}"

myStack.pop

puts "Top element is (should be 42): #{myStack.top}"

myStack.pop

The following pop should produce an

error message - stack is empty

myStack.pop

Recall that the notation #{variable} converts the value of the variable to a
string, which is then inserted into the string in which it appears. This class
defines a stack structure that can store objects of any type.

11.4.4.4 Evaluation
Recall that in Ruby, everything is an object and arrays are actually arrays of
references to objects. That clearly makes this stack more flexible than the
similar examples in C++ and Java. Furthermore, simply by passing the
desired maximum length to the constructor, objects of this class could have
any given maximum length. Of course, because arrays in Ruby have dynamic
length, the class could be modified to implement stack objects that are not
restricted to any length, except that imposed by the machine’s memory
capacity. Because the names of class and instance variables have different
forms, Ruby has a slight readability advantage over the other languages
discussed in this section.

11.5 Parameterized Abstract Data
Types
It is often convenient to be able to parameterize abstract data types. For
example, we should be able to design a stack abstract data type that can store
any scalar type elements rather than be required to write a separate stack
abstraction for every different scalar type. Note that this is only an issue for
static typed languages. In a dynamic typed language like Ruby, any stack
implicitly can store any type elements. In fact, different elements of the stack
could be of different types. In the following three subsections, the capabilities
of C++, Java 5.0, and C# 2005 to construct parameterized abstract data types
are discussed.

11.5.1 C++
To make the example C++ stack class of Section 11.4.1 generic in the stack
size, only the constructor function needs to be changed, as in the following:

Stack(int size) {

 stackPtr = new int [size];

 maxLen = size - 1;

 topSub = -1;

}

The declaration for a stack object now may appear as follows:

Stack stk(150);

The class definition for Stack can include both constructors, so users can use
the default-size stack or specify some other size.

The element type of the stack can be made generic by making the class a
templated class. Then, the element type can be a template parameter. The
definition of the templated class for a stack type is as follows:

#include <iostream.h>

template <typename Type> // Type is the template parameter

class Stack {

 private:

 Type *stackPtr;

 int maxLen;

 int topSub;

 public:

// A constructor for 100 element stacks

 Stack() {

 stackPtr = new Type [100];

 maxLen = 99;

 topSub = -1;

 }

// A constructor for a given number of elements

 Stack(int size) {

 stackPtr = new Type [size];

 maxLen = size - 1;

 topSub = -1;

 }

 ~Stack() {delete stackPtr;}; // A destructor

 void push(Type number) {

 if (topSub == maxLen)

 cout << "Error in push–stack is full\n";

 else stackPtr[++ topSub] = number;

 }

 void pop() {

 if (empty())

 cout << "Error in pop–stack is empty\n";

 else topSub --;

 }

 Type top() {

 if (empty())

 cerr << "Error in top--stack is empty\n";

 else

 return (stackPtr[topSub]);

 }

 int empty() {return (topSub == -1);}

}

C++ templated classes are instantiated to become typed classes at compile
time. For example, an instance of the templated Stack class, as well as an
instance of the typed class, can be created with the following declaration:

Stack<int> myIntStack;

However, if an instance of the templated Stack class has already been created
for the int type, the typed class need not be created.

11.5.2 Java 5.0
Java 5.0 supports a form of parameterized abstract data types in which the
generic parameters must be classes. Recall that these were briefly discussed
in Chapter 9.

The most common generic types are collection types, such as LinkedList
and ArrayList, which were in the Java class library before support for
generics was added. The original collection types stored Object class
instances, so they could store any objects (but not primitive types). Therefore,
the collection types have always been able to store multiple types (as long as
they are classes). There were three issues with this: First, every time an object
was removed from the collection, it had to be cast to the appropriate type.
Second, there was no error checking when elements were added to the
collection. This meant that once the collection was created, objects of any
class could be added to the collection, even if the collection was meant to
store only Integer objects. Third, the collection types could not store
primitive types. So, to store int values in an ArrayList, the value first had to
be put in an Integer class instance. For example, consider the following
code:

//* Create an ArrayList object

ArrayList myArray = new ArrayList();

//* Create an element

myArray.add(0, new Integer(47));

//* Get first object

Integer myInt = (Integer)myArray.get(0);

In Java 5.0, the collection classes, the most commonly used of which is
ArrayList, became a generic class. Such classes are instantiated by calling
new on the class constructor and passing it the generic parameter in pointed -
brackets. For example, the ArrayList class can be instantiated to store
Integer objects with the following statement:

ArrayList <Integer> myArray = new ArrayList <Integer>();

This new class overcomes two of the problems with pre-Java 5.0 collections.
Only Integer objects can be put into the myArray collection. Furthermore,
there is no need to cast an object being removed from the collection.

Java 5.0 also includes generic collections for linked-lists, queues, and sets.
Users also can define generic classes in Java 5.0. For example, we could have
the following:

public class MyClass<T> {

 . . .

}

This class could be instantiated with the following:

MyClass<String> myString;

There are some drawbacks to these user-defined generic classes. For one
thing, they cannot store primitives. Second, the elements cannot be indexed.
Elements must be added to user-defined generic collections with the add
method. Next, we implement the generic stack example using an ArrayList.
Note that the last element of an ArrayList is found using the size method,
which returns the number of elements in the structure. Elements are deleted
from the structure with the remove method. Following is the generic class:

import java.util.*;

public class Stack2<T> {

 private ArrayList<T> stackRef;

 private int maxLen;

 public Stack2() { // A constructor

 stackRef = new ArrayList<T> ();

 maxLen = 99;

 }

 public void push(T newValue) {

 if (stackRef.size() == maxLen)

 System.out.println("Error in push–stack is full");

 else

 stackRef.add(newValue);

 }

 public void pop() {

 if (empty())

 System.out.println("Error in pop–stack is empty");

 else

 stackRef.remove(stackRef.size() - 1);

 }

 public T top() {

 if empty()) {

 System.out.println("Error in top–stack is empty");

 return null; }

 else

 return (stackRef.get(stackRef.size() - 1));

 }

 public boolean empty() {return (stackRef.isEmpty());}

This class could be instantiated for the String type with the following:

Stack2<String> myStack = new Stack2<String>();

Recall from Chapter 9, that Java 5.0 supports wildcard classes. For example,
Collection<?> is a wildcard class for all collection classes. This allows a
method to be written that can accept any collection type as a parameter.
Because a collection can itself be generic, the Collection<?> class is in a
sense a generic of a generic class.

Some care must be taken with objects of the wildcard type. For example,
because the components of a particular object of this type have a type, other
type objects cannot be added to the collection. For example, consider

Collection<?> c = new ArrayList<String>();

It would be illegal to use the add method to put something into this collection
unless its type were String.

A generic class can easily be defined in Java 5.0 that will work only for a
restricted set of types. For example, a class can declare a variable of the
generic type and call a method such as compareTo through that variable. If the
class is instantiated for a type that does not include a compareTo method, the
class cannot be used. To prevent a generic class from being instantiated for a
type that does not support compareTo, it could be defined with the following
generic parameter:

<T extends Comparable>

Comparable is the interface in which compareTo is declared. If this generic
type is used on a class definition, the class cannot be instantiated for any type

that does not implement Comparable. The choice of the reserved word
extends seems odd here, but its use is related to the concept of a subtype.
Apparently, the designers of Java did not want to add another more
connotative reserved word to the language.

11.5.3 C# 2005
As was the case with Java, the first version of C# defined collection classes
that stored objects of any class. These were ArrayList, Stack, and Queue.
These classes had the same problems as the collection classes of pre-Java 5.0.

Generic classes were added to C# in its 2005 version. The five predefined
generic collections are Array, List, Stack, Queue, and Dictionary (the
Dictionary class implements hashes). Exactly as in Java 5.0, these classes
eliminate the problems of allowing mixed types in collections and requiring
casts when objects are removed from the collections.

As with Java 5.0, users can define generic classes in C# 2005. One capability
of the user-defined C# generic collections is that any of them can be defined
to allow its elements to be indexed (accessed through subscripting). Although
the indexes are usually integers, an alternative is to use strings as indexes.

One capability that Java 5.0 provides that C# 2005 does not is wildcard
classes.

11.6 Encapsulation Constructs
The first five sections of this chapter discussed abstract data types, which are
minimal encapsulations. This section describes the multiple-type
encapsulations that are needed for larger programs.

11.6.1 Introduction
When the size of a program reaches beyond a few thousand lines, two
practical problems become evident. From the programmer’s point of view,
having such a program appear as a single collection of subprograms or
abstract data type definitions does not impose an adequate level of
organization on the program to keep it intellectually manageable. The second
practical problem for larger programs is recompilation. For relatively small
programs, recompiling the whole program after each modification is not
costly. But for large programs, the cost of recompilation is significant. So,
there is an obvious need to find ways to avoid recompilation of the parts of a
program that are not affected by a change. The obvious solution to both of
these problems is to organize programs into collections of logically related
code and data, each of which can be compiled without recompilation of the
rest of the program. An encapsulation is such a collection.

Encapsulations are often placed in libraries and made available for reuse in
programs other than those for which they were written. People have been
writing programs with more than a few thousand lines for at least the last 50
years, so techniques for providing encapsulations have been evolving for
some time.

In languages that allow nested subprograms, programs can be organized by
nesting subprogram definitions inside the logically larger subprograms that
use them. This can be done in Python and Ruby. As discussed in Chapter 5,
however, this method of organizing programs, which uses static scoping, is
far from ideal. Therefore, even in languages that allow nested subprograms,

they are not used as a primary organizing encapsulation construct.

11.6.2 Encapsulation in C
C does not provide complete support for abstract data types, although both
abstract data types and multiple-type encapsulations can be simulated.

In C, a collection of related functions and data definitions can be placed in a
file, which can be independently compiled. Such a file, which acts as a
library, has an implementation of its entities. The interface to such a file,
including data, type, and function declarations, is placed in a separate file
called a header file. Type representations can be hidden by declaring them in
the header file as pointers to struct types. The complete definitions of such
struct types need only appear in the implementation file.

The header file, in source form, and the compiled version of the
implementation file are furnished to clients. When such a library is used, the
header file is included in the client code, using an #include preprocessor
specification, so that references to functions and data in the client code can be
type checked. The #include specification also documents the fact that the
client program depends on the library implementation file. This approach
effectively separates the specification and implementation of an
encapsulation.

Although these encapsulations work, they create some insecurities. For
example, a user could simply cut and paste the definitions from the header
file into the client program, rather than using #include. This would work,
because #include simply copies the contents of its operand file into the file
in which the #include appears. However, there are two problems with this
approach. First, the documentation of the dependence of the client program
on the library (and its header file) is lost. Second, suppose a user copies the
header file into his or her program. Then the author of the library changes
both the header and the implementation files. Following this, the user uses
the new implementation file with the old header. For example, a variable x
could have been defined to be int type in the old header file, which the client
code still uses, although the implementation code has been recompiled with

the new header file, which defines x to be float. So, the implementation
code was compiled with x as an int but the client code was compiled with x
as a float. The linker does not detect this error.

Thus, it is the user’s responsibility to ensure that both the header and
implementation files are up-to-date. This is often done with a make utility.

One other drawback of this approach is the inherent problems of pointers and
the potential confusion with assignment and comparisons of pointers.

11.6.3 Encapsulation in C++
C++ provides two different kinds of encapsulation: header and
implementation files can be defined as in C, or class headers and definitions
can be defined. Because of the complex interplay of C++ templates and
separate compilation, the header files of C++ template libraries often include
complete definitions of resources, rather than just data declarations and
subprogram protocols; this is due in part to the use of the C linker for C++
programs.

When nontemplated classes are used for encapsulations, the class header file
has only the prototypes of the member functions, with the function -
definitions provided outside the class in a code file, as in the last example in
Section 11.4.1.4. This clearly separates interface from implementation.

One language design problem that results from having classes but no
generalized encapsulation construct is that sometimes when operations are
defined that use two different classes of objects, the operation does not
naturally belong in either class. For example, suppose we have an abstract
data type for matrices and one for vectors and need a multiplication operation
between a vector and a matrix. The multiplication code must have access to
the data members of both the vector and the matrix classes, but neither of
those classes is the natural home for the code. Furthermore, regardless of
which is chosen, access to the members of the other is a problem. In C++,
these kinds of situations can be handled by allowing nonmember functions to
be “friends” of a class. Friend functions have access to the private entities of

the class where they are declared to be friends. For the matrix/vector
multiplication operation, one C++ solution is to define the operation outside
both the matrix and the vector classes but define it to be a friend of both. The
following skeletal code illustrates this scenario:

class Matrix; //** A class declaration

class Vector {

 friend Vector multiply(const Matrix&, const Vector&);

 . . .

};

class Matrix { //** The class definition

 friend Vector multiply(const Matrix&, const Vector&);

 . . .

};

//** The function that uses both Matrix and Vector objects

Vector multiply(const Matrix& m1, const Vector& v1) {

 . . .

}

In addition to functions, whole classes can be defined to be friends of a class;
then all the private members of the class are visible to all of the members of
the friend class.

11.6.4 C# Assemblies
C# includes a larger encapsulation construct than a class. The construct is the
one used by all of the .NET programming languages: the assembly.
Assemblies are built by .NET compilers. A .NET application consists of one
or more assemblies. An assembly is a file4 that appears to application
programs to be a single dynamic link library (.dll)5 or an executable (.exe).
An assembly defines a module, which can be separately developed. An
assembly includes several different components. One of the primary
components of an assembly is its programming code, which is in an
intermediate language, having been compiled from its source language. In
.NET, the intermediate language is named Common Intermediate Language
(CIL). It is used by all .NET languages. Because its code is in CIL, an
assembly can be used on any architecture, device, or operating system. When
executed, the CIL is just-in-time compiled to native code for the architecture
on which it is resident.

4. An assembly can consist of any number of files.

5. A dynamic link library (DLL) is a collection of classes and methods that
are individually linked to an executing program when needed during
execution. Therefore, although a program has access to all of the resources in
a particular DLL, only the parts that are actually used are ever loaded and
linked to the program. DLLs have been part of the Windows programming
environment since Windows first appeared. However, the DLLs of .NET are
quite different from those of previous Windows systems.

In addition to the CIL code, a .NET assembly includes metadata that
describes every class it defines, as well as all external classes it uses. An
assembly also includes a list of all assemblies referenced in the assembly and
an assembly version number.

In the .NET world, the assembly is the basic unit of deployment of software.
Assemblies can be private, in which case they are available to just one
application, or public, which means any application can use them.

As mentioned previously, C# has an access modifier, internal. An
internal member of a class is visible to all classes in the assembly in which
it appears.

Java has a file structure that is similar to an assembly called a Java Archive
(JAR). It is also used for deployment of Java software systems. JARs are
built with the Java utility jar, rather than a compiler.

11.7 Naming Encapsulations
We have considered encapsulations to be syntactic containers for logically
related software resources—in particular, abstract data types. The purpose of
these encapsulations is to provide a way to organize programs into logical
units for compilation. This allows parts of programs to be recompiled after
isolated changes. There is another kind of encapsulation that is necessary for
constructing large programs: a naming encapsulation.

A large program is usually written by many developers, working somewhat
independently, perhaps even in different geographic locations. This requires
the logical units of the program to be independent, while still able to work
together. It also creates a naming problem: How can independently working
developers create names for their variables, methods, and classes without
accidentally using names already in use by some other programmer
developing a different part of the same software system?

Libraries are the origin of the same kind of naming problems. Over the past
two decades, large software systems have become progressively more
dependent on libraries of supporting software. Nearly all software written in
contemporary programming languages requires the use of large and complex
standard libraries, in addition to application-specific libraries. This
widespread use of multiple libraries has necessitated new mechanisms for
managing names. For example, when a developer adds new names to an
existing library or creates a new library, he or she must not use a new name
that conflicts with a name already defined in a client’s application program or
in some other library the program uses. Without some language processor
assistance, this is virtually impossible, because there is no convenient way for
the library author to know what names a client’s program uses or what names
are defined by the other libraries the client program might use.

Naming encapsulations define name scopes that assist in avoiding these name
conflicts. Each library can create its own naming encapsulation to prevent its
names from conflicting with the names defined in other libraries or in client
code. Each logical part of a software system can create a naming

encapsulation with the same purpose.

Naming encapsulations are logical encapsulations, in the sense that they need
not be physically contiguous. Several different collections of code can be
placed in the same namespace, even though they are stored in different
places. In the following sections, we briefly describe the uses of naming
encapsulations in C++, Java, and Ruby.

11.7.1 C++ Namespaces
C++ includes a specification, namespace, that helps programs manage the
problem of global namespaces. One can place each library in its own
namespace and qualify the names in the program with the name of the
namespace when the names are used outside that namespace. For example,
suppose there is an abstract data type header file that implements stacks. If
there is concern that some other library file may define a name that is used in
the stack abstract data type, the file that defines the stack could be placed in
its own namespace. This is done by placing all of the declarations for the
stack in a namespace block, as in the following:

namespace myStackSpace {

 // Stack declarations

}

The implementation file for the stack abstract data type could reference the
names declared in the header file with the scope resolution operator, ::, as in

myStackSpace::topSub

The implementation file could also appear in a namespace block specification
identical to the one used on the header file, which would make all of the
names declared in the header file directly visible. This is definitely simpler,
but slightly less readable, because it is less obvious where a specific name in
the implementation file is declared.

Client code can gain access to the names in the namespace of the header file
of a library in three different ways. One way is to qualify the names from the

library with the name of the namespace. For example, a reference to the
variable topSub could appear as follows:

myStackSpace::topSub

This is exactly the way the implementation code could reference it if the
implementation file was not in the same namespace.

The other two approaches use the using directive. This directive can be used
to qualify individual names from a namespace, as with

using myStackSpace::topSub;

which makes topSub visible, but not any other names from the myStackSpace
namespace.

The using directive also can be used to qualify all of the names from a
namespace, as in the following:

using namespace myStackSpace;

Code that includes this directive can directly access the names defined in the
namespace, as in

p = topSub;

Be aware that namespaces are a complicated feature of C++, and we have
introduced only the simplest part of the story here.

C# includes namespaces that are much like those of C++.

11.7.2 Java Packages
Java includes a naming encapsulation construct: the package. Packages can
contain more than one type6 definition, and the types in a package are partial
friends of one another. Partial here means that the entities defined in a type
in a package that either are public or protected (see Chapter 12) or have no
access specifier are visible to all other types in the package.

6. By type here we mean either a class or an interface.

Entities without access modifiers are said to have package scope, because
they are visible throughout the package. Java therefore has less need for
explicit friend declarations and does not include the friend functions or friend
classes of C++.

The resources defined in a file are specified to be in a particular package with
a package declaration, as in

package stkpkg;

The package declaration must appear as the first line of the file. The
resources of every file that does not include a package declaration are
implicitly placed in the same unnamed package.

The clients of a package can reference the types defined in the package using
fully qualified names. For example, if the package stkpkg has a class named
myStack, that class can be referenced in a client of stkpkg as
stkpkg.myStack. Likewise, a variable in the myStack object named topSub
could be referenced as stkpkg.myStack.topSub. Because this approach can
quickly become cumbersome when packages are nested, Java provides the
import declaration, which allows shorter references to type names defined in
a package. For example, suppose the client includes the following:

import stkpkg.myStack;

Now, the class myStack can be referenced by just its name. To be able to
access all of the type names in the package, an asterisk can be used on the
import statement in place of the type name. For example, if we wanted to
import all of the types in stkpkg, we could use the following:

import stkpkg.*;

Note that Java’s import is only an abbreviation mechanism. No otherwise
hidden external resources are made available with import. In fact, in Java
nothing is implicitly hidden if it can be found by the compiler or class loader
(using the package name and the CLASSPATH environment variable).

Java’s import documents the dependencies of the package in which it
appears on the packages named in the import. These dependencies are less
obvious when import is not used.

11.7.3 Ruby Modules
Ruby classes serve as namespace encapsulations, as do the classes of other
languages that support object-oriented programming. Ruby has an additional
naming encapsulation, called a module. Modules typically define collections
of methods and constants. So, modules are convenient for encapsulating
libraries of related methods and constants, whose names are in a separate
namespace so there are no name conflicts with other names in a program that
uses the module. Modules are unlike classes in that they cannot be
instantiated or subclassed and do not define variables. Methods that are
defined in a module include the module’s name in their names. For example,
consider the following skeletal module definition:

module MyStuff

 PI = 3.14159265

 def MyStuff.mymethod1(p1)

 . . .

 end

 def MyStuff.mymethod2(p2)

 . . .

 end

end

Assuming the MyStuff module is stored in its own file, a program that wants
to use the constant and methods of MyStuff must first gain access to the
module. This is done with the require method, which takes the file name in
the form of a string literal as a parameter. Then, the constants and methods of
the module can be accessed through the module’s name. Consider the
following code that uses our example module, MyStuff, which is stored in the
file named myStuffMod:

 require 'myStuffMod'

 . . .

 MyStuff.mymethod1(x)

 . . .

Modules are further discussed in Chapter 12.

SUMMARY
The concept of abstract data types, and their use in program design, was a
milestone in the development of programming as an engineering discipline.
Although the concept is relatively simple, its use did not become convenient
and safe until languages were designed to support it.

The two primary features of abstract data types are the packaging of data
objects with their associated operations and information hiding. A language
may support abstract data types directly or simulate them with more general
encapsulations.

C++ data abstraction is provided by classes. Classes are types, and instances
can be either stack or heap dynamic. A member function (method) can have
its complete definition appear in the class or have only the protocol given in
the class and the definition placed in another file, which can be separately
compiled. C++ classes can have two clauses, each prefixed with an access
modifier: private or public. Both constructors and destructors can be given in
class definitions. Heap-allocated objects must be explicitly deallocated with
delete.

Java data abstractions are similar to those of C++, except all Java objects are
allocated from the heap and are accessed through reference variables. Also,
all objects are garbage collected. Rather than having access modifiers
attached to clauses, in Java the modifiers appear on individual declarations
(or definitions).

C# supports abstract data types with both classes and structs. Its structs are
value types and do not support inheritance. C# classes are similar to those of
Java.

Ruby supports abstract data types with its classes. Ruby’s classes differ from
those of most other languages in that they are dynamic—members can be
added, deleted, or changed during execution.

C++, Java 5.0, and C# 2005 allow their abstract data types to be -
parameterized—Ada through its generic packages, C++ through its templated
classes, and Java 5.0 and C# through their collection classes and interfaces
and user-defined generic classes.

To support the construction of large programs, some contemporary languages
include multiple-type encapsulation constructs, which can contain a
collection of logically related types. An encapsulation may also provide
access control to its entities. Encapsulations provide the programmer with a
method of organizing programs that also facilitates recompilation.

C++, C#, Java, and Ruby provide naming encapsulations. For Ada and Java,
they are named packages; for C++ and C#, they are namespaces; for Ruby,
they are modules. Partially because of the availability of packages, Java does
not have friend functions or friend classes.

REVIEW QUESTIONS
1. What are the two kinds of abstractions in programming languages?

2. Define abstract data type.

3. What are the advantages of the two parts of the definition of abstract
data type?

4. What are the language design requirements for a language that supports
abstract data types?

5. What are the language design issues for abstract data types?

6. From where are C++ objects allocated?

7. In what different places can the definition of a C++ member function
appear?

8. What is the purpose of a C++ constructor?

9. What are the legal return types of a constructor?

10. Where are all Java methods defined?

11. How are C++ class instances created?

12. From where are Java class instances allocated?

13. Why does Java not have destructors?

14. Where are all Java methods defined?

15. Where are Java classes allocated?

16. Why are destructors not as frequently needed in Java as they are in C++?

17. What is a friend function? What is a friend class?

18. What is one reason Java does not have friend functions or friend
classes?

19. Describe the fundamental differences between C# structs and its classes.

20. How is a struct object in C# created?

21. Explain the three reasons accessors to private types are better than
making the types public.

22. What are the differences between a C++ struct and a C# struct?

23. What is the name of all Ruby constructors?

24. What is the fundamental difference between the classes of Ruby and
those of C++ and Java?

25. How are instances of C++ template classes created?

26. Describe the two problems that appear in the construction of large
programs that led to the development of encapsulation constructs.

27. What problems can occur using C to define abstract data types?

28. What is a C++ namespace, and what is its purpose?

29. What is a Java package, and what is its purpose?

30. Describe a .NET assembly.

31. What elements can appear in a Ruby module?

PROBLEM SET
1. Some software engineers believe that all imported entities should be

qualified by the name of the exporting program unit. Do you agree?
Support your answer.

2. Suppose someone designed a stack abstract data type in which the
function top returned an access path (or pointer) rather than returning a
copy of the top element. This is not a true data abstraction. Why? Give
an example that illustrates the problem.

3. Write an analysis of the similarities of and differences between Java
packages and C++ namespaces.

4. Discuss the advantages of C# properties, relative to writing accessor
methods in C++ or Java.

5. Explain the dangers of C’s approach to encapsulation.

6. Why didn’t C++ eliminate the problems discussed in Problem 5?

7. Why are destructors rarely used in Java but essential in C++?

8. What are the arguments for and against the C++ policy on inlining of
methods?

9. Describe a situation where a C# struct is preferable to a C# class.

10. Explain why naming encapsulations are important for developing large
programs.

11. Describe the three ways a client can reference a name from a namespace
in C++.

12. The namespace of the C# standard library, System, is not implicitly
available to C# programs. Do you think this is a good idea? Defend your

answer.

13. What are the advantages and disadvantages of the ability to change
objects in Ruby?

14. Compare Java’s packages with Ruby’s modules.

PROGRAMMING EXERCISES
1. Design an abstract data type for a matrix with integer elements in a

language that you know, including operations for addition, subtraction,
and matrix multiplication.

2. Design a queue abstract data type for float elements in a language that
you know, including operations for enqueue, dequeue, and empty. The
dequeue operation removes the element and returns its value.

3. Modify the C++ class for the abstract stack type shown in Section 11.4.1
to use a linked list representation and test it with the same code that
appears in this chapter.

4. Modify the Java class for the abstract stack type shown in Section 11.4.2
to use a linked list representation and test it with the same code that
appears in this chapter.

5. Write an abstract data type for complex numbers, including operations
for addition, subtraction, multiplication, division, extraction of each of
the parts of a complex number, and construction of a complex number
from two floating-point constants, variables, or expressions. Use C++,
Java, C#, or Ruby.

6. Write an abstract data type for queues whose elements store 10-character
names. The queue elements must be dynamically allocated from the
heap. Queue operations are enqueue, dequeue, and empty. Use either
C++, Java, C#, or Ruby.

7. Write an abstract data type for a queue whose elements can be any
primitive type. Use Java 5.0, C# 2005, or C++.

8. Write an abstract data type for a queue whose elements include both a
20-character string and an integer priority. This queue must have the
following methods: enqueue, which takes a string and an integer as
parameters; dequeue, which returns the string from the queue that has

the highest priority; and empty. The queue is not to be maintained in
priority order of its elements, so the dequeue operation must always
search the whole queue.

9. A deque is a double-ended queue, with operations adding and removing
elements from either end. Modify the solution to Programming
Exercise 7 to implement a deque.

10. Write an abstract data type for rational numbers (a numerator and a
denominator). Include a constructor and methods for getting the
numerator, getting the denominator, addition, subtraction,
multiplication, division, equality testing, and display. Use Java, C#,
C++, or Ruby.

12 Support for Object-Oriented
Programming

1. 12.1 Introduction

2. 12.2 Object-Oriented Programming

3. 12.3 Design Issues for Object-Oriented Languages

4. 12.4 Support for Object-Oriented Programming in Specific Languages

5. 12.5 Implementation of Object-Oriented Constructs

6. 12.6 Reflection

This chapter begins with a brief introduction to object-oriented programming,
followed by an extended discussion of the primary design issues for
inheritance and dynamic binding. Next, the support for object-oriented
programming in Smalltalk, C++, Java, C#, and Ruby is discussed. Following
this is a short overview of the implementation of dynamic bindings of method
calls to methods in object-oriented languages. The last section discusses
reflection.

12.1 Introduction
Languages that support object-oriented programming now are firmly
entrenched in the mainstream. From COBOL to LISP, including virtually
every language in between, dialects that support object-oriented
programming have appeared. C++ supports procedural and data-oriented
programming, in addition to object-oriented programming. CLOS, an object-
oriented version of LISP (Paepeke, 1993), also supports functional
programming. Some of the newer languages that were designed to support
object-oriented programming do not support other programming paradigms
but still employ some of the basic imperative structures and have the
appearance of the older imperative languages. Among these are Java and C#.
Ruby is challenging to categorize: It is a pure object-oriented language in the
sense that all data are objects, but it is a hybrid language in that one can use it
for procedural programming. Finally, there is the pure object-oriented but
somewhat unconventional language: Smalltalk. Smalltalk was the first
language to offer complete support for object-oriented programming. The
details of support for object-oriented programming vary widely among
languages, and that is the primary topic of this chapter.

This chapter relies heavily on Chapter 11. It is in fact a continuation of that
chapter. This relationship reflects the reality that object-oriented
programming is, in essence, an application of the principle of abstraction to
abstract data types. Specifically, in object-oriented programming, the
commonality of a collection of similar abstract data types is factored out and
put in a new type. The members of the collection inherit these common parts
from that new type. This feature is inheritance, which is at the center of
object-oriented programming and the languages that support it.

The other characterizing feature of object-oriented programming, dynamic
binding of method calls to methods, is also extensively discussed in this
chapter.

Although object-oriented programming is supported by some of the
functional languages, for example, CLOS, OCaml, and F#, those languages

are not discussed in this chapter.

12.2 Object-Oriented Programming

12.2.1 Introduction
The concept of object-oriented programming had its roots in SIMULA 67
but was not fully developed1 until the evolution of Smalltalk resulted in
Smalltalk 80 (in 1980, of course). Indeed, some consider Smalltalk to be the
base model for a purely object-oriented programming language. A language
that is object oriented must provide support for three key language features:
abstract data types, inheritance, and dynamic binding of method calls to
methods. Abstract data types were discussed in detail in Chapter 11, so this
chapter focuses on inheritance and dynamic binding.

1. Although SIMULA 67 had classes, the members defined inside them were
not hidden from outside code.

12.2.2 Inheritance
There has long been pressure on software developers to increase their
productivity. This pressure has been intensified by the continuing reduction
in the cost of computer hardware. By the middle to late 1980s, it became
apparent to many software developers that one of the most promising
opportunities for increased productivity in their profession was in software
reuse. Abstract data types, with their encapsulation and access controls, are
obvious candidates for reuse. The problem with the reuse of abstract data
types is that, in nearly all cases, the features and capabilities of the existing
type are not quite right for the new use. The old type requires at least some
minor modifications. Such modifications can be difficult, because they
require the person doing the modification to understand part, if not all, of the
existing code. In many cases, the person doing the modification is not the
program’s original author. Furthermore, the modifications often require
changes to all client programs.

A second problem with programming with abstract data types is that the type
definitions are all independent and are at the same level.2 This design often
makes it impossible to organize a program to match the problem space being
addressed by the program. In many cases, the underlying problem has
categories of objects that are related, both as siblings (being similar to each
other) and as parents and children (having a descendant relationship).

2. This is similar to the functions in a C program, which are also independent
and at a single level.

Inheritance offers a solution to both the modification problem posed by
abstract data type reuse and the program organization problem. If a new
abstract data type can inherit the data and functionality of some existing type,
and is also allowed to modify some of those entities and add new entities,
reuse is greatly facilitated without requiring changes to the reused abstract
data type. Programmers can begin with an existing abstract data type and
design a modified descendant of it to fit a new problem requirement.
Furthermore, inheritance provides a framework for the definition of
hierarchies of related classes that can reflect the descendant relationships in
the problem space.

The abstract data types in object-oriented languages, following the lead of
SIMULA 67, are usually called classes. As with instances of abstract data
types, class instances are called objects. A class that is defined through
inheritance from another class is a derived class, a subclass, or a child class.
A class from which the new class is derived is its base class, superclass, or
parent class. The subprograms that define the operations on objects of a
class are called methods. The calls to methods are sometimes called
messages. The entire collection of methods of a class is called the message
protocol, or message interface, of the class. Computations in an object-
oriented program are specified by messages sent from objects to other
objects, or in some cases, to classes.

Methods are similar to subprograms. Both are collections of code that
perform some computation. Both can take parameters and return results.

Passing a message is different from calling a subprogram. A subprogram
typically processes data that is either passed to it by its caller as a parameter

or is accessed nonlocally or globally. A message that is sent to an object is a
request to execute one of its methods. At least some of the data on which the
method is to operate is part of the object itself. Objects have methods that
define processes the object can perform on itself. Because the objects are of
abstract data types, these should be the only ways to manipulate data of the
object. A subprogram defines a process that it can perform on any data sent to
it (or made available nonlocally or globally).

As a simple example of inheritance, consider the following: Suppose we have
a class named Vehicles, which has variables for year, color, and make. A
natural specialization, or subclass, of this would be Truck, which could
inherit the variables from Vehicle, but would add variables for hauling
capacity and number of wheels. Figure 12.1 shows a simple diagram to
indicate the relationship between the Vehicle class and the Truck class, in
which the arrow points to the parent class.

Figure 12.1 A simple example
of inheritance

There are several ways a derived class can differ from its parent.3 Following
are the most common differences between a parent class and its subclasses:

3. If a subclass does not differ from its parent, it obviously serves no purpose.

1. The subclass can add variables and/or methods to those inherited from
the parent class.

2. The subclass can modify the behavior of one or more of its inherited
methods. A modified method has the same name, and often the same
protocol, as the one of which it is a modification.

3. The parent class can define some of its variables or methods to have
private access, which means they will not be visible in the subclass.

The new method is said to override the inherited method, which is then
called an overridden method. The purpose of an overriding method is to
provide an operation in the subclass that is similar to one in the parent class,
but is customized for objects of the subclass. For example, a parent class,
Bird, might have a draw method that draws a generic bird. A subclass of Bird
named Waterfowl could override the draw method inherited from Bird to
draw a generic waterfowl, perhaps a duck.

Classes can have two kinds of methods and two kinds of variables. The most
commonly used methods and variables are called instance methods and
instance variables. Every object of a class has its own set of instance
variables, which store the object’s state. The only difference between two
objects of the same class is the state of their instance variables.4 For example,
a class for cars might have instance variables for color, make, model, and
year. Instance methods operate only on the objects of the class. Class
variables belong to the class, rather than their objects, so there is only one
copy for the class. For example, if we wanted to count the number of
instances of a class, the counter could not be an instance variable—it would
need to be a class variable. Class methods can perform operations on the
class, and possibly also on the objects of the class. They can be called by
prefixing their names with either the class name or a variable that references
one of their instances. If a class defines a class method, that method can be
called even if there are no instances of the class. A class method could be
used to create an instance of the class.

4. This is not true in Ruby, which allows different objects of the same class to
differ in other ways.

If a new class is a subclass of a single parent class, then the derivation
process is called single inheritance. If a class has more than one parent class,
the process is called multiple inheritance. When a number of classes are

related through single inheritance, their relationships to each other can be
shown in a derivation tree. The class relationships in a multiple inheritance
can be shown in a derivation graph. This is shown in Figure 12.5 in Section
12.4.2.2.

One disadvantage of inheritance as a means of increasing the possibility of
reuse is that it creates dependencies among the classes in an inheritance
hierarchy. This result works against one of the advantages of abstract data
types, which is that they are independent of each other. Of course, not all
abstract data types must be completely independent. But in general, the
independence of abstract data types is one of their strongest positive
characteristics. However, it may be difficult, if not impossible, to increase the
reusability of abstract data types without creating dependencies among some
of them. Furthermore, in many cases, the dependencies naturally mirror
dependencies in the underlying problem space.

In Chapter 11 the access controls for variables and methods, together often
called members, in a class are discussed. Private members are visible inside
the class, while public members also are visible to clients of the class.
Inheritance brings a new category of possible visibility, subclasses. Private
members of a base class are not visible to subclasses, but public members are.
The third level of accessibility, protected, allows members of a base class to
be visible to subclasses, but not clients.

12.2.3 Dynamic Binding
The third essential characteristic (after abstract data types and inheritance) of
object-oriented programming languages is a kind of polymorphism5 provided
by the dynamic binding of messages to method definitions. This is sometimes
called dynamic dispatch. Consider the following situation: There is a base
class, A, that defines a method draw that draws some figure associated with
the base class. A second class, B, is defined as a subclass of A. Objects of this
new class also need a draw method that is like that provided by A but a bit
different because the subclass objects are slightly different. So, the subclass
overrides the inherited draw method. If a client of A and B has a variable that
is a reference to class A’s objects, that reference also could point at class B’s

objects, making it a polymorphic reference. If the method draw, which is
defined in both classes, is called through the polymorphic reference, the run-
time system must determine, during execution, which method should be
called, A’s or B’s (by determining which type object is currently referenced by
the reference).6 Figure 12.2 shows this situation.

6. Dynamic binding of method calls to methods is sometimes called dynamic
polymorphism.

5. Polymorphism is defined in Chapter 9.

Figure 12.2 Dynamic binding
Figure 12.2 Full Alternative Text

Polymorphism is a natural part of any object-oriented language that is
statically typed. In a sense, polymorphism makes a statically typed language
a little bit dynamically typed, where the little bit is in some bindings of
method calls to methods. The type of a polymorphic variable is indeed
dynamic.

One purpose of dynamic binding is to allow software systems to be more
easily extended during both development and maintenance. Suppose we have
a catalog of used cars that is implemented as a Car class and a subclass for

each car in the catalog. The subclasses contain an image of the car and
specific information about the car. Users can browse the cars with a program
that displays the images and information about each car as the user browses
to it. The display of each car (and its information) includes a button that the
user can click if he or she is interested in that particular car. After the user
gets through the catalog, the system will print the images and information
about the cars of interest to the user. One way to implement this system is to
place a reference to each car (subclass of Car) of interest in a list that can
store references to the base class, Car. When the user is ready, information
about all of the cars of interest could be printed for the user to study and
compare the cars in the list. The catalog of cars will of course change
frequently. This will necessitate corresponding changes in the subclasses of
Car. However, changes to the collection of subclasses will not require any
other changes to the system.

In some cases, the design of an inheritance hierarchy results in one or more
classes that are so high in the hierarchy that an instantiation of them would
not make sense. For example, suppose a program defined a Building class
and a collection of subclasses for specific types of buildings, for instance,
French_Gothic_Cathedrals. It probably would not make sense to have an
implemented draw method in Building. But because all of its descendant
classes should have such methods, the protocol (but not the body) of that
method is included in Building. Such a method is often called an abstract
method (pure virtual method in C++). A class that includes at least one
abstract method is called an abstract class (abstract base class in C++). Such
a class usually cannot be instantiated, because some of its methods are
declared but are not defined (they do not have bodies). Any subclass of an
abstract class that is to be instantiated must provide implementations
(definitions) of all of the inherited abstract methods.

12.3 Design Issues for Object-
Oriented Languages
A number of issues must be considered when designing the programming
language features to support inheritance and dynamic binding. Those that we
consider most important are discussed in this section.

12.3.1 The Exclusivity of Objects
A language designer who is totally committed to the object model of
computation designs an object system that subsumes all other concepts of
type. Everything, from a simple scalar integer to a complete software system,
is an object in this mind-set. The advantage of this choice is the elegance and
pure uniformity of the language and its use. The primary disadvantage is that
simple operations must be done through the message-passing process, which
often makes them slower than similar operations in an imperative model,
where single machine instructions may implement such simple operations. In
this purest model of object-oriented computation, all types are classes. There
is no distinction between predefined and user-defined classes. In fact, all
classes are treated the same way and all computation is accomplished through
message passing.

One alternative to the exclusive use of objects that is common in imperative
languages to which support for object-oriented programming has been added
is the following: Retain the complete collection of types from the base
imperative language and add the object typing model. This approach results
in a larger language whose type structure can be confusing to new users of
the language.

Another alternative to the exclusive use of objects is to have an imperative-
style type structure for the primitive scalar types, but implement all structured
types as objects. This choice provides the speed of operations on primitive

values that is comparable to those expected in the imperative model.

12.3.2 Are Subclasses Subtypes?
If a language allows programs in which a variable of a class can be
substituted for a variable of one of its ancestor classes in any situation,
without causing type errors and without changing the behavior of the
program, that language supports the principle of substitution. In such a
language, if class B is derived from class A, then B has everything A has and
the behavior of an object of class B, when used in place of an object of class
A, is identical to that of an object of class A.7 When this is true, B is a subtype
of A. Although a subclass that is a subtype of its parent class must expose all
of the members that are exposed by its parent class, the subclass can have
members that are not in the parent class and still be a subtype.

7. There is a fundamental theoretical problem with this last requirement: In
general, it is not possible to determine if the behaviors of two programs are
identical.

The subtypes of Ada are examples of predefined subtypes. For example,

subtype Small_Int is Integer range -100..100;

Variables of Small_Int type have all of the operations of Integer variables
but can store only a subset of the values possible in Integer. Furthermore,
every Small_Int variable can be used anywhere an Integer variable can be
used. That is, every Small_Int variable is, in a sense, an Integer variable.

The definition of subtype clearly disallows having public entities in the
parent class that are not public in the subclass. So, the derivation process for
subtypes must require that public entities of the parent class are inherited as
public entities in the subclass.

Not all subclasses are subtypes and not all subtypes are subclasses. For
example, a subclass cannot be a subtype if it changes the behavior of one of
its overriding methods. Also, a class that is not a subclass of another class can
be a subtype of that class by defining the same members, in terms of both

types and behavior. A subtype inherits interfaces and behavior, while a
subclass inherits implementation, primarily to promote code reuse.

Most static-typed languages that support object-oriented programming are
designed so that subclasses are subtypes, unless the programmer specifically
designs a subclass that has behavior that differs from that of its parent class.

One obvious question is: Is the issue of whether subclasses are subtypes a
theoretical or practical one? It is probably unusual to define a subclass whose
overriding methods preserve the type protocols of their corresponding
overridden methods but not their effects. So it is not a frequent practical
issue. However, requiring all subclasses to be subtypes, if there were a
reasonably simple way to enforce that, would place inheritance on a sounder
theoretical base.

12.3.3 Single and Multiple
Inheritance
Another simple design issue for object-oriented languages is: Does the
language allow multiple inheritance (in addition to single inheritance)?
Maybe it’s not so simple. The purpose of multiple inheritance is to allow a
new class to inherit from two or more classes.

Because multiple inheritance is sometimes highly useful, why would a
language designer not include it? The reasons lie in two categories:
complexity and efficiency. The additional complexity is illustrated by several
problems. First, note that if a class has two unrelated parent classes and
neither defines a name that is defined in the other, there is no problem.
However, suppose a subclass named C inherits from both class A and class B
and both A and B define an inheritable method named display. If C needs to
reference both versions of display, how can that be done? This ambiguity
problem is further complicated when the two parent classes both define
identically named methods and one or both of them must be overridden in the
subclass.

Another issue arises if both A and B are derived from a common parent, Z, and
C has both A and B as parent classes. This situation is called diamond or
shared inheritance. In this case, both A and B should include Z’s inheritable
variables. Suppose Z includes an inheritable variable named sum. The
question is whether C should inherit both versions of sum or just one, and if
just one, which one? There may be programming situations in which just one
of the two should be inherited, and others in which both should be inherited.
A similar problem occurs when both A and B inherit a method from Z and
both override that method. If a client of C, which inherits both overriding
methods, calls the method, which method is called, or are both supposed to
be called. Diamond inheritance is shown in Figure 12.3.

Figure 12.3 An example of
diamond inheritance

The question of efficiency may be more perceived than real. In C++, for
example, supporting multiple inheritance requires just one additional array
access and one extra addition operation for each dynamically bound method
call, at least with some machine architectures (Stroustrup, 1994, p. 270).
Although this operation is required even if the program does not use multiple
inheritance, it is a small additional cost.

The use of multiple inheritance can easily lead to complex program
organizations. Many who have attempted to use multiple inheritance have
found that designing the classes to be used as multiple parents is difficult.
And the difficulties are not restricted to those created by the initial developer.
A class might be used by another developer at some later date as one of the
parents of a new class. Maintenance of systems that use multiple inheritance
can be a more serious problem, for multiple inheritance leads to more
complex dependencies among classes. It is not clear to some that the benefits
of multiple inheritance are worth the added effort to design and maintain a
system that uses it.

An interface is somewhat similar to an abstract class; its methods are declared
but not defined. Interfaces cannot be instantiated. They are used as an
alternative to multiple inheritance.8 Interfaces provide some of the benefits of
multiple inheritance but have fewer disadvantages. For example, the
problems of diamond inheritance are avoided when interfaces, rather than
multiple inheritance, are used.

8. Interfaces initially appeared in Java, whose designers recognized the
difficulties that are raised by the use of multiple inheritance.

12.3.4 Allocation and Deallocation
of Objects
There are two design questions concerning the allocation and deallocation of
objects. The first of these is the place from which objects are allocated. If
they behave like the abstract data types, then they can be allocated from
anywhere. This means they could be allocated from the run-time stack or
explicitly created on the heap with an operator or function, such as new. If
they are all heap dynamic, there is the advantage of having a uniform method
of creation and access through pointer or reference variables. This design
simplifies the assignment operation for objects, making it in all cases only a
pointer or reference value change. It also allows references to objects to be
implicitly dereferenced, simplifying the access syntax.

If objects are stack dynamic, there is a potential problem with regard to
subtypes. If class B is a child of class A and B is a subtype of A, then an object
of B type can be assigned to a variable of A type. For example, if b1 is a
variable of B type and a1 is a variable of A type, then

a1 = b1;

is a legal statement. If a1 and b1 are references to heap-dynamic objects,
there is no problem—the assignment is a simple pointer assignment.
However, if a1 and b1 are stack dynamic, then they are value variables and, if
assigned the value of the object, must be copied to the space of the target
object. If B adds a data field to what it inherited from A, then a1 will not have
sufficient space on the stack for all of b1. The excess will simply be
truncated, which could be confusing to programmers who write or use the
code. This truncation is called object slicing. The following example and
Figure 12.4 illustrate the problem.

Figure 12.4 An example of
object slicing

Figure 12.4 Full Alternative Text

class A {

 int x;

 . . .

};

class B : A {

 int y;

 . . .

}

The second question here is concerned with those cases where objects are
allocated from the heap. The question is whether deallocation is implicit,
explicit, or both. If deallocation is implicit, some implicit method of storage
reclamation is required. If deallocation can be explicit, that raises the issue of
whether dangling pointers or references can be created.

12.3.5 Dynamic and Static Binding
As discussed in Section 12.2.3, dynamic binding of messages to methods is
an essential part of object-oriented programming. The question here is
whether all bindings of messages to methods are dynamic. The alternative is
to allow the user to specify whether a specific binding is to be dynamic or
static. The advantage of this is that static bindings are faster. So, if a binding
need not be dynamic, why pay the price?

12.3.6 Nested Classes
One of the primary motivations for nesting class definitions is information
hiding. If a new class is needed by only one class, there is no reason to define
it so it can be seen by other classes. In this situation, the new class can be

nested inside the class that uses it. In some cases, the new class is nested
inside a subprogram, rather than directly in another class.

The class in which the new class is nested is called the nesting class. The
most obvious design issues associated with class nesting are related to
visibility. Specifically, one issue is: Which of the members of the nesting
class are visible in the nested class? The other important issue is the opposite:
Which of the members of the nested class are visible in the nesting class?

12.3.7 Initialization of Objects
The initialization issue is whether and how objects are initialized to values
when they are created. This is more complicated than may be first thought.
One question is whether objects must be initialized manually or through some
implicit mechanism. When an object of a subclass is created, is the associated
initialization of the inherited parent class member implicit or must the
programmer explicitly deal with it?

12.4 Support for Object-Oriented
Programming in Specific Languages

12.4.1 Smalltalk
Many think of Smalltalk as the definitive object-oriented programming
language. It was the first language to include complete support for that
paradigm. Therefore, it is natural to begin a survey of language support for
object-oriented programming with Smalltalk.

12.4.1.1 General Characteristics
In Smalltalk, the concept of an object is truly universal. Virtually everything,
from things as simple as the integer constant 2 to a complex file-handling
system, is an object. As objects, they are treated uniformly. They all have
local memory, inherent processing ability, the capability to communicate
with other objects, and the possibility of inheriting methods and instance
variables from ancestors. Classes cannot be nested in Smalltalk.

All computation is through messages, even a simple arithmetic operation. For
example, the expression x + 7 is implemented as sending the + message to x
(to enact the + method), sending 7 as the parameter. This operation returns a
new numeric object with the result of the addition.

Replies to messages have the form of objects and are used to return requested
or computed information or only to confirm that the requested service has
been completed.

All Smalltalk objects are allocated from the heap and are referenced through
reference variables, which are implicitly dereferenced. There is no explicit
deallocation statement or operation. So, all deallocation is implicit, using a

garbage collection process for storage reclamation.

In Smalltalk, constructors must be explicitly called when an object is created.
A class can have multiple constructors, but each must have a unique name.

Smalltalk classes cannot be nested in other classes.

Unlike a hybrid language such as C++, Smalltalk was designed for just one
software development paradigm—object oriented. Furthermore, it adopts
none of the appearance of the imperative languages. Its purity of purpose is
reflected in its simple elegance and uniformity of design.

There is an example Smalltalk program in Chapter 2.

12.4.1.2 Inheritance
A Smalltalk subclass inherits all of the members of its superclass. The
subclass can also have its own instance variables, which must have names
that are distinct from the variable names in its ancestor classes. Finally, the
subclass can define new methods and redefine methods that already exist in
an ancestor class. When a subclass has a method whose name and protocol
are the same as an ancestor class, the subclass method hides that of the
ancestor class. Access to such a hidden method is provided by prefixing the
message with the pseudovariable super. The prefix causes the method search
to begin in the superclass rather than locally.

Because members in a parent class cannot be hidden from subclasses,
subclasses can be and usually are subtypes.

Smalltalk does not support multiple inheritance.

12.4.1.3 Dynamic Binding
The dynamic binding of messages to methods in Smalltalk operates as
follows: A message to an object causes a search of the class to which the

object belongs for a corresponding method. If the search fails, it is continued
in the superclass of that class, and so forth, up to the system class, Object,
which has no superclass. Object is the root of the class derivation tree on
which every class is a node. If no method is found anywhere in that chain, an
error occurs. It is important to remember that this method search is dynamic
—it takes place when the message is sent. Smalltalk does not, under any
circumstances, bind messages to methods statically.

The only type checking in Smalltalk is dynamic, and the only type error
occurs when a message is sent to an object that has no matching method,
either locally or through inheritance. This is a different concept of type
checking than that of most other languages. Smalltalk type checking has the
simple goal of ensuring that a message matches some method.

Smalltalk variables are not typed; any name can be bound to any object. As a
direct result, Smalltalk supports dynamic polymorphism. All Smalltalk code
is generic in the sense that the types of the variables are irrelevant, as long as
they are consistent. The meaning of an operation (method or operator) on a
variable is determined by the class of the object to which the variable is
currently bound.

The point of this discussion is that as long as the objects referenced in an
expression have methods for the messages of the expression, the types of the
objects are irrelevant. This means that no code is tied to a particular type.

12.4.1.4 Evaluation of Smalltalk
Smalltalk is a small language, although the Smalltalk system is large. The
syntax of the language is simple and highly regular. It is a good example of
the power that can be provided by a small language if that language is built
around a simple but powerful concept. In the case of Smalltalk, that concept
is that all programming can be done employing only a class hierarchy built
using inheritance, objects, and message passing.

In comparison with conventional compiled imperative-language programs,
equivalent Smalltalk programs are significantly slower. Although it is

theoretically interesting that array indexing and loops can be provided within
the message-passing model, efficiency is an important factor in the evaluation
of programming languages. Therefore, efficiency will clearly be an issue in
most discussions of the practical applicability of Smalltalk.

Smalltalk’s dynamic binding allows type errors to go undetected until run
time. A program can be written that includes messages to nonexistent
methods and it will not be detected until the messages are sent, which causes
a great deal more error repair later in the development than would occur in a
static-typed language. However, in practice type errors are not a serious
problem with Smalltalk programs.

Overall, the design of Smalltalk consistently came down on the side of
language elegance and strict adherence to the principles of object-oriented
programming support, often without regard for practical matters, in particular
execution efficiency. This is most obvious in the exclusive use of objects and
the typeless variables.

The Smalltalk user interface has had an important impact on computing: The
integrated use of windows, mouse-pointing devices, and pop-up and pull-
down menus, all of which first appeared in Smalltalk, dominate
contemporary software systems.

Perhaps the greatest impact of Smalltalk is the advancement of object--
oriented programming, now the most widely used design and coding
methodology.

12.4.2 C++
Chapter 2 describes how C++ evolved from C and SIMULA 67, with the
design goal of support for object-oriented programming while retaining
nearly complete backward compatibility with C. C++ classes, as they are
used to support abstract data types, are discussed in Chapter 11. C++ support
for the other essentials of object-oriented programming is explored in this
section. The whole collection of details of C++ classes, inheritance, and
dynamic binding is large and complex. This section discusses only the most

important among these topics, specifically, those directly related to the design
issues described in Section 12.3.

C++ was the first widely used object-oriented programming language and is
still among the most popular. So, naturally, it is the one with which other
languages are often compared. For both of these reasons, our coverage of
C++ here is more detailed than that of the other example languages discussed
in this chapter.

12.4.2.1 General Characteristics
To maintain backward compatibility with C, C++ retains the type system of C
and adds classes to it. Therefore, C++ has both traditional imperative--
language types and the class structure of an object-oriented language. It
supports methods, as well as functions that are not related to specific classes.
This makes it a hybrid language, supporting both procedural programming
and object-oriented programming.

The objects of C++ can be static, stack dynamic, or heap dynamic. Explicit
deallocation using the delete operator is required for heap-dynamic objects,
because C++ does not include implicit storage reclamation.

Many class definitions include a destructor method, which is implicitly called
when an object of the class ceases to exist. The destructor is used to
deallocate heap-allocated memory that is referenced by data members. It may
also be used to record part or all of the state of the object just before it dies,
usually for debugging purposes.

12.4.2.2 Inheritance
A C++ class can be derived from an existing class, which is then its parent, or
base, class. Unlike Smalltalk and most other languages that support object--
oriented programming, a C++ class can also be stand-alone, without a
superclass. In the definition of a derived class, the name of the derived class
has the name of the base class attached with a colon (:), as in the following

syntactic form:

class derived_class_name : base_class_name { ... }

The data defined in a class definition are called data members of that class,
and the functions defined in a class definition are called member functions of
that class (member functions in other languages are usually called methods).
Some or all of the members of the base class may be inherited by the derived
class, which can also add new members and modify inherited member
functions.

All C++ objects must be initialized before they are used. Therefore, all C++
classes include at least one constructor method that initializes the data
members of the new object. Constructor methods are implicitly called when
an object is created. If any of the data members are pointers to heap-allocated
data, the constructor allocates that storage.

If a class is derived from another class, the inherited data members must be
initialized when the derived class object is created. To do this, the base class
constructor is implicitly called. When initialization data must be furnished to
the base class constructor, it is given in the call to the derived object -
constructor. In general, this is done with the following construct:

subclass(subclass parameters): base_class(superclass parameters) {

...

}

interview
On Paradigms and Better Programming

BJARNE STROUSTRUP

Bjarne Stroustrup is the designer and original implementer of C++ and the
author of A Tour of C++, Programming: Principles and Practice Using C++,
The C++ Programming Language, The Design and Evolution of C++, and
many other publications. His research interests include distributed systems,
design, programming techniques, software development tools, and
programming languages. He is actively involved in the ANSI/ISO
standardization of C++. Dr. Stroustrup is a managing director in the
technology division of Morgan Stanley in New York City, a Visiting
Professor in Computer Science at Columbia University, and a Distinguished
Research Professor in Computer Science at Texas A&M University. He is a
member of the National Academy of Engineering, an ACM Fellow, and an
IEEE Fellow. In 1993, Stroustrup received the ACM Grace Murray Hopper
Award “for his early work laying the foundations for the C++ programming
language. Based on the foundations and Dr. Stroustrup’s continuing efforts,
C++ has become one of the most influential programming languages in the
history of computing.”

(year of interview: 2002)

PROGRAMMING PARADIGMS
Your thoughts on the object-oriented paradigm: Its pluses and minuses.
Let me first say what I mean by OOP—too many people think that “object-
oriented” is simply a synonym for “good.” If so, there would be no need for
other paradigms. The key to OO is the use of class hierarchies providing
polymorphic behavior through some rough equivalent of virtual functions.
For proper OO, it is important to avoid directly accessing the data in such a
hierarchy and to use only a well-designed functional interface.

In addition to its well-documented strengths, object-oriented programming
also has obvious weaknesses. In particular, not every concept naturally fits
into a class hierarchy, and the mechanisms supporting object-oriented
programming can impose significant overheads compared to alternatives. For
many simple abstractions, classes that do not rely on hierarchies and run-time
binding provide a simpler and more efficient alternative. Furthermore, where
no run-time resolution is needed, generic programming relying on (compile-
time) parametric polymorphism is a better behaved and more efficient
approach.

So, C++: Is it OO or other? C++ supports several paradigms—including
OOP, generic programming, and procedural programming—and
combinations of these paradigms define multiparadigm programming as
supporting more than one programming style (“paradigm”) and combinations
of those styles.

Do you have a mini-example of multiparadigm programming? Consider
this variant of the classic “collection of shapes” examples (originating from
the early days of the first language to support object-oriented programming:
Simula 67):

void draw_all(const vector<Shape*>& vs)

{

 for (int i = 0; i<vs.size(); ++i)

 vs[i]->draw();

}

Here, I use the generic container vector together with the polymorphic type

Shape. The vector provides static type safety and optimal run-time
performance. The Shape provides the ability to handle a Shape (i.e., any
object of a class derived from Shape) without recompilation.

We can easily generalize this to any container that meets the C++ standard
library requirements:

template<class C>

 void draw_all(const C& c)

{

 typedef typename C::

 const_iterator CI;

 for (CI p = c.begin();

 p!=c.end(); ++p)

 (*p)->draw();

}

Using iterators allows us to apply this draw_all () to containers that do not
support subscripts, such as a standard library list:

vector<Shape*> vs;

list<Shape*> ls;

// . . .

draw_all(vs);

draw_all(ls);

We can even generalize this further to handle any sequence of elements
defined by a pair of iterators:

template<class Iterator> void draw_all(Iterator b, Iterator e)

{

 for_each(b,e,mem_fun(&Shape::draw));

}

To simplify the implementation, I used the standard library algorithm
for_each.

We might call this last version of draw_all() for a standard library list and
an array:

list<Shape*> ls;

Shape* as[100];

// . . .

draw_all(ls.begin(),ls.end());

draw_all(as,as+100);

SELECTING THE “RIGHT”
LANGUAGE FOR THE JOB
How useful is it to have this background in numerous paradigms? Or
would it be better to invest time in becoming even more familiar with
OO languages rather than learning these other paradigms? It is essential
for anyone who wants to be considered a professional in the areas of software
to know several languages and several programming paradigms. Currently,
C++ is the best language for multiparadigm programming and a good
language for learning various forms of programming. However, it’s not a
good idea to know just C++, let alone to know just a single-paradigm
language. That would be a bit like being colorblind or monoglot: You would
hardly know what you were missing. Much of the inspiration to good
programming comes from having learned and appreciated several
programming styles and seen how they can be used in different languages.

Furthermore, I consider programming of any nontrivial program a job for
professionals with a solid and broad education, rather than for people with a
hurried and narrow “training.”

If no constructor is included by the developer in a class definition, the
compiler includes a trivial constructor. This default constructor calls the
constructor of the base class, if there is a base class.

Class members can be private, protected, or public. Private members are
accessible only by member functions and friends of the class. Standalone
functions, member functions, and classes can be declared to be friends of a
class and thereby be given access to its private members. Public members are
visible everywhere. Protected members are like private members, except in
derived classes, whose access is described next. Derived classes can modify
accessibility for their inherited members. The complete syntactic form of a
derived class is as follows:

class derived_class_name : derivation_mode base_class_name

 {data member and member function declarations};

The derivation_mode can be either public or private.9 (Do not confuse
public and private derivation with public and private members.) The public
and protected members of a base class are also public and protected,
respectively, in a public-derived class. In a private-derived class, both the
public and protected members of the base class are private. So, in a class
hierarchy, a private-derived class cuts off access to all members of all
ancestor classes to all successor classes. Private members of a base class are
inherited by a derived class, but they are not visible to the members of that
derived class and are therefore of no use there. Private derivations provide the
possibility that a subclass can have members with different access than the
same members in the parent class. Consider the following example:

9. It can also be protected, but that option is not discussed here.

class base_class {

 private:

 int a;

 float x;

 protected:

 int b;

 float y;

 public:

 int c;

 float z;

};

 class subclass_1 : public base_class {. . .};

 class subclass_2 : private base_class {. . .};

In subclass_1, b and y are protected, and c and z are public. In subclass_2,
b, y, c, and z are private. No derived class of subclass_2 can have members
with access to any member of base_class. The data members a and x in
base_class are not accessible in either subclass_1 or subclass_2.

Note that private-derived subclasses cannot be subtypes. For example, if the
base class has a public data member, under private derivation that data
member would be private in the subclass. Therefore, if an object of the
subclass were substituted for an object of the base class, accesses to that data

member would be illegal on the subclass object. However, public-derived
subclasses can be and usually are subtypes.

Under private class derivation, no member of the parent class is implicitly
visible to the instances of the derived class. Any member that must be made
visible must be reexported in the derived class. This reexportation in effect
exempts a member from being hidden even though the derivation was
private. For example, consider the following class definition:

class subclass_3 : private base_class {

 base_class :: c;

 . . .

}

Now, instances of subclass_3 can access c. As far as c is concerned, it is as
if the derivation had been public. The double colon (::) in this class
definition is a scope resolution operator. It specifies the class where its
following entity is defined.

The example in the following paragraphs illustrates the purpose and use of
private derivation.

Consider the following example of C++ inheritance, in which a general
linked-list class is defined and then used to define two useful subclasses:

class single_linked_list {

 private:

 class node {

 public:

 node *link;

 int contents;

 };

 node *head;

 public:

 single_linked_list() {head = 0};

 void insert_at_head(int);

 void insert_at_tail(int);

 int remove_at_head();

 int empty();

};

The nested class, node, defines a cell of the linked list to consist of an integer

variable and a pointer to a node object. The node class is in the private clause,
which hides it from all other classes. Its members are public, however, so
they are visible to the nesting class, single_linked_list. If they were
private, node would need to declare the nesting class to be a friend to make
them visible in the nesting class. Note that nested classes have no special
access to members of the nesting class. Only static data members of the
nesting class are visible to methods of the nested class.10

10. A class can also be defined in a method of a nesting class. The scope
rules of such classes are the same as those for classes nested directly in other
classes, even for the local variables declared in the method in which they are
defined.

The enclosing class, single_linked_list, has just a single data member, a
pointer to act as the list’s header. It contains a constructor function, which
sets head to the null pointer value. The four member functions allow nodes to
be inserted at either end of a list object, nodes to be removed from one end of
a list, and lists to be tested for empty.

The following definitions provide stack and queue classes, both based on the
single_linked_list class:

class stack : public single_linked_list {

 public:

 stack() {}

 void push(int value) {

 insert_at_head(value);

 }

 int pop() {

 return remove_at_head();

 }

};

class queue : public single_linked_list {

 public:

 queue() {}

 void enqueue(int value) {

 insert_at_tail(value);

 }

 int dequeue() {

 remove_at_head();

 }

};

Note that objects of both the stack and queue subclasses can access the
empty function defined in the base class, single_linked_list (because it is
a public derivation). Both subclasses define constructor functions that do
nothing. When an object of a subclass is created, the proper constructor in the
subclass is implicitly called. Then, any applicable constructor in the base
class is called. So, in our example, when an object of type stack is created,
the constructor in single_linked_list is called, which does the necessary
initialization. Then the stack constructor is called, which does nothing.

The classes stack and queue both suffer from the same serious problem:
Clients of both can access all of the public members of the parent class,
single_linked_list. A client of a stack object could call insert_at_tail,
thereby destroying the integrity of its stack. Likewise, a client of a queue
object could call insert_at_head. These unwanted accesses are allowed
because both stack and queue are subtypes of single_linked_list. Public
derivation is used when one wants the subclass to inherit the entire interface
of the base class. The alternative is to use a derivation in which the subclass
inherits only the implementation of the base class. Our two example derived
classes can be written to make them not subtypes of their parent class by
using private, rather than public, derivation.11 Then, both will also need to
reexport empty, because it will become hidden to their instances. This
situation illustrates the motivation for the private-derivation option. The new
definitions of the stack and queue types, named stack_2 and queue_2, are
shown in the following:

11. They would not be subtypes because the public members of the parent
class can be seen in a client, but not in a client of the subclass, where those
members are private.

class stack_2 : private single_linked_list {

 public:

 stack_2() {}

 void push(int value) {

 single_linked_list :: insert_at_head(value);

 }

 int pop() {

 return single_linked_list :: remove_at_head();

 }

 single_linked_list:: empty();

};

class queue_2 : private single_linked_list {

 public:

 queue_2() {}

 void enqueue(int value) {

 single_linked_list :: insert_at_tail(value);

 }

 int dequeue() {

 single_linked_list :: remove_at_head();

 }

 single_linked_list:: empty();

};

These two classes use reexportation to allow access to base class methods for
clients. This was not necessary when public derivation was used.

The two versions of stack and queue illustrate the difference between
subtypes and derived types that are not subtypes. The linked list is a
generalization of both stacks and queues, because both can be implemented
as linked lists. So, it is natural to inherit from a linked-list class to define
stack and queue classes. However, neither is a subtype of the linked-list class,
because both make the public members of the parent class private, which
makes them inaccessible to clients.

One of the reasons friends are necessary is that sometimes a subprogram
must be written that can access the members of two different classes. For
example, suppose a program uses a class for vectors and one for matrices,
and a subprogram is needed to multiply a matrix object by a vector object. In
C++, the multiply function can be made a friend of both classes.

As previously stated, C++ provides multiple inheritance. As an example,
suppose we wanted a class for drawing that needed the behavior of a class
written for drawing figures and the methods of the new class needed to run in
a separate thread. We might define the following:

class Thread { . . . };

class Drawing { . . . };

class DrawThread : public Thread, public Drawing { . . . };

Class DrawThread inherits all of the members of both Thread and Drawing.
If both Thread and Drawing happen to include members with the same name,
they can be unambiguously referenced in objects of class DrawThread by

using the scope resolution operator (::). This example of multiple inheritance
is shown in Figure 12.5.

Figure 12.5 Multiple
inheritance

Some issues with the C++ implementation of multiple inheritance are
discussed in Section 12.5.

Overriding methods12 in C++ must have exactly the same parameter profile
as the overridden method. If there is any difference in the parameter profiles,
the method in the subclass is considered a new method that is unrelated to the
method with the same name in the ancestor class. The return type of the
overriding method either must be the same as that of the overridden method
or must be a publicly derived type of the return type of the overridden
method.

12. Recall that an overriding method is one that is defined in the derived class
to replace a virtual method inherited from an ancestor class. Calls to an

overriding method must be dynamically bound.

12.4.2.3 Dynamic Binding
All of the member functions we have defined thus far are statically bound;
that is, a call to one of them is statically bound to a function definition. A
C++ object could be manipulated through a value variable, rather than a
pointer or a reference. (Such an object would be static or stack dynamic.)
However, in that case, the object’s type is known and static, so dynamic
binding is not needed. On the other hand, a pointer variable that has the type
of a base class can be used to point to any heap-dynamic object of any class
publicly derived from that base class, making it a polymorphic variable.
Publicly derived subclasses are subtypes if none of the members of the base
class are private. Privately derived subclasses are never subtypes. A pointer
to a base class cannot be used to reference a method in a subclass that is not a
subtype.

C++ does not allow value variables (as opposed to pointers or references) to
be polymorphic. When a polymorphic variable is used to call a member
function overridden in one of the derived classes, the call must be
dynamically bound to the correct member function definition.

Consider the situation of having a base class named Shape, along with a
collection of derived classes for different kinds of shapes, such as circles,
rectangles, and so forth. If these shapes need to be displayed, then the
displaying member function, draw, must be unique for each descendant, or
kind of shape. These versions of draw must be defined to be virtual. When a
call to draw is made with a pointer to the base class of the derived classes,
that call must be dynamically bound to the member function of the correct
derived class. The following example has the skeletal definitions for the
example situation just described:

class Shape {

 public:

 virtual void draw() = 0;

 . . .

};

class Circle : public Shape {

 public:

 void draw() { . . . }

 . . .

};

class Rectangle : public Shape {

 public:

 void draw() { . . . }

 . . .

};

Given these definitions, the following code has examples of both statically
and dynamically bound calls:

Circle* circ = new Circle;

Rectangle* rect = new Rectangle;

Shape* ptr_shape;

ptr_shape = circ; // Now ptr_shape points to a

 // Circle object

ptr_shape->draw(); // Dynamically bound to the draw

 // in the Circle class

rect->draw(); // Statically bound to the draw

 // in the Rectangle class

This situation is shown in Figure 12.6.

Figure 12.6 Dynamic binding
Figure 12.6 Full Alternative Text

Notice that the draw function in the definition of the base class shape is set to
0. This peculiar syntax is used to indicate that this member function is a pure
virtual function, meaning that it has no body and it cannot be called. It must
be redefined in derived classes if they call the function. The purpose of a pure
virtual function is to provide the interface of a function without giving any of
its implementation. Pure virtual functions are usually defined when an actual
member function in the base class would not be useful. Recall that in

Section 12.2.3, a base class Building was discussed, and each subclass
described some particular kind of building. Each subclass had a draw method
but none of these would be useful in the base class. So, draw would be a pure
virtual function in the Building class.

Any class that includes a pure virtual function is an abstract class. In C++,
an abstract class is not marked with a reserved word. An abstract class can
include completely defined methods. Because of the presence of one or more
virtual functions, it is illegal to instantiate an abstract class. In a strict sense,
an abstract class is one that is used only to represent the characteristics of a
type. C++ provides abstract classes to model these truly abstract classes. If a
subclass of an abstract class does not redefine a pure virtual function of its
parent class, that function remains as a pure virtual function in the subclass
and the subclass is also an abstract class.

Abstract classes and inheritance together support a powerful technique for
software development. They allow types to be hierarchically defined so that
related types can be subclasses of truly abstract types that define their
common abstract characteristics.

Dynamic binding allows the code that uses members like draw to be written
before all or even any of the versions of draw are written. New derived
classes could be added years later, without requiring any change to the code
that uses such dynamically bound members. This is a highly useful feature of
object-oriented languages.

Reference assignments for stack-dynamic objects are different from pointer
assignments for heap-dynamic objects. For example, consider the following
code, which uses the same class hierarchy as the last example:

Circle circ; // Allocate a Circle object on the stack

Rectangle rect; // Allocate a Rectangle object on

 // the stack

rect = circ; // Copies the data member values from

 // the Circle object

rect.draw(); // Calls the draw from the Rectangle

 // object

In the assignment rect = circ, the member data from the object referenced

by circ would be assigned to the data members of the object referenced by
rect, but rect would still reference the Rectangle object. Therefore, the call
to draw through the object referenced by rect would be that of the
Rectangle class. If rect and circ were pointers to heap-dynamic objects, the
same assignment would be a pointer assignment, which would make rect
point to the Circle object, and a call to draw through rect would be bound
dynamically to the draw in the Circle object.

12.4.2.4 Evaluation
It is natural to compare the object-oriented features of C++ with those of
Smalltalk. The inheritance of C++ is more intricate than that of Smalltalk in
terms of access control. By using both the access controls within the class
definition and the derivation access controls, and also the possibility of friend
functions and friend classes, the C++ programmer has highly detailed control
over access to class members. Although C++ provides multiple inheritance
and Smalltalk does not, there are many who feel that is not an advantage for
C++. The downsides of multiple inheritance weigh heavily against its value.
In fact, C++ is the only language discussed in this chapter that supports
multiple inheritance. On the other hand, languages that provide alternatives to
multiple inheritance, such as Java and C#, clearly have an advantage over
Smalltalk in that area.

In C++, the programmer can specify whether static binding or dynamic
binding is to be used. Because static binding is faster, this is an advantage for
those situations where dynamic binding is not necessary. Furthermore, even
the dynamic binding in C++ is fast when compared with that of Smalltalk.
Binding a virtual member function call in C++ to a function definition has a
fixed cost, regardless of how distant in the inheritance hierarchy the
definition appears. Calls to virtual functions require only five more memory
references than statically bound calls (Stroustrup, 1988). In Smalltalk,
however, messages are always dynamically bound to methods, and the farther
away in the inheritance hierarchy the correct method is, the longer it takes.
The disadvantage of allowing the user to decide which bindings are static and
which are dynamic is that the original design must include these decisions,
which may have to be changed later.

The static type checking of C++ is an advantage over Smalltalk, in which all
type checking is dynamic. A Smalltalk program can be written with messages
to nonexistent methods, which are not discovered until the program is
executed. A C++ compiler finds such errors. Compiler-detected errors are
less expensive to repair than those found in testing.

Smalltalk is essentially typeless, meaning that all code is effectively generic.
This provides a great deal of flexibility, but static type checking is sacrificed.
C++ provides generic classes through its template facility (as described in
Chapter 11), which retains the benefits of static type checking.

The primary advantage of Smalltalk lies in the elegance and simplicity of the
language, which results from the single philosophy of its design. It is purely
and completely devoted to the object-oriented paradigm, devoid of
compromises necessitated by the whims of an entrenched user base. C++, on
the other hand, is a large and complex language with no single philosophy as
its foundation, except to support object-oriented programming and include
the C user base. One of its most significant goals was to preserve the
efficiency and flavor of C while providing the advantages of object-oriented
programming. Some people feel that the features of this language do not
always fit well together and that at least some of the complexity is
unnecessary.

According to Chambers and Ungar (1991), Smalltalk ran a particular set of
small C-style benchmarks at only 10 percent of the speed of optimized C.
C++ programs require only slightly more time than equivalent C programs
(Stroustrup, 1988). Given the great efficiency gap between Smalltalk and
C++, it is little wonder that the commercial use of C++ is far more
widespread than that of Smalltalk. There are other factors in this difference,
but efficiency is clearly a strong argument in favor of C++. Of course, all of
the compiled languages that support object-oriented programming run
approximately 10 times faster than Smalltalk.

12.4.3 Java
Because Java’s design of classes, inheritance, and methods is similar to that

of C++, in this section we focus only on those areas in which Java differs
from C++.

12.4.3.1 General Characteristics
As with C++, Java supports both objects and nonobject data. However, in
Java, only values of the primitive scalar types (Boolean, character, and the
numeric types) are not objects. Java’s enumerations and arrays are objects.
The reason Java has nonobjects is efficiency.

In Java 5.0+, primitive values are implicitly coerced when they are put in
object context. This coercion converts the primitive value to an object of the
wrapper class of the primitive value’s type. For example, putting an int value
or variable into object context causes the creation of an Integer object with
the value of the int primitive. This coercion is called boxing.

Whereas C++ classes can be defined to have no parent, that is not possible in
Java. All Java classes must be subclasses of the root class, Object, or some
class that is a descendant of Object. One advantage of this is that some
commonly needed methods, such as toString and equals, can be defined in
Object and inherited and used by all other classes.

All Java objects are explicit heap dynamic. Most are allocated with the new
operator, but there is no explicit deallocation operator. Garbage collection is
used for storage reclamation. Like many other language features, although
garbage collection avoids some serious problems, such as dangling pointers,
it can cause other problems. One such difficulty arises because the garbage
collector deallocates, or reclaims the storage occupied by an object, but it
does no more. For example, if an object has access to some resource other
than heap memory, such as a file or a lock on a shared resource, the garbage
collector does not reclaim these. For these situations, Java allows the
inclusion of a special method, finalize, which is related to a C++ destructor
function.

A finalize method is implicitly called when the garbage collector is about
to reclaim the storage occupied by the object. The problem with finalize is

that the time it (and the garbage collector) will run cannot be forced or even
predicted. The alternative to using finalize to reclaim resources held by an
object about to be garbage collected is to include a method that does the
reclamation. The only problem with this is that all clients of the objects must
be aware of this method and remember to call it.

12.4.3.2 Inheritance
In Java, a method can be defined to be final, which means that it cannot be
overridden in any descendant class. When the final reserved word is
specified on a class definition, it means the class cannot be subclassed. All of
the methods in a final class are implicitly final, which means that the
bindings of method calls to the methods of the class are statically bound.

The advantage of defining a class to be final is that no changes to the class
are allowed. For example, String is a final class and because of that any
method that receives a String reference in a parameter can depend on the
stability of the meaning of String’s methods. The disadvantage is that
defining a class to be final disallows reuses that require even minor
modifications.

Java includes the annotation @Override, which informs the compiler to check
to determine whether the following method overrides a method in an ancestor
class. If it does not, the compiler issues an error message.

Like C++, Java requires that parent class constructor be called before the
subclass constructor is called. If parameters are to be passed to the parent
class constructor, that constructor must be explicitly called, as in the
following example:

super(100, true);

If there is no explicit call to the parent class constructor, the compiler inserts
a call to the zero-parameter constructor in the parent class.

Java does not support the private derivations of C++. One can surmise that
the Java designers believed that subclasses should be subtypes, which they

are not when private derivations are supported. Thus, they did not include
them. So, Java’s subclasses can be subtypes.

Early versions of Java included a collection, Vector, which included a long
list of methods for manipulating data in a collection construct. These versions
of Java also included a subclass of Vector, Stack, which added methods for
push and pop operations. Unfortunately, because Java does not have private
derivation, all of the methods of Vector were also visible in the Stack class,
which made Stack objects liable to a variety of operations that could
invalidate those objects.

Java directly supports only single inheritance. However, it includes a kind of
abstract class, called an interface, which provides partial support for multiple
inheritance. An interface definition is similar to a class definition, except that
it can contain only named constants and method declarations (not
definitions). It cannot contain constructors, nonabstract methods, or variable
declarations. So, an interface is no more than what its name indicates—it
defines only the specification of a class. (Recall that a C++ abstract class can
have instance variables and all but one of the methods can be completely
defined.) A class does not inherit an interface; it implements it. In fact, a class
can implement any number of interfaces. To implement an interface, the class
must implement all of the methods whose specifications (but not bodies)
appear in the interface definition.

An interface can be used to simulate multiple inheritance. A class can be
derived from a class and implement an interface, with the interface taking the
place of a second parent class. This is sometimes called mixin inheritance,
because the constants and methods of the interface are mixed in with the
methods and data inherited from the superclass, as well as any new data
and/or methods defined in the subclass.

One more interesting capability of interfaces is that they provide another kind
of polymorphism. This is because interfaces can be treated as types. For
example, a method can specify a formal parameter that is an interface. Such a
formal parameter can accept an actual parameter of any class that implements
the interface, making the method polymorphic.

A nonparameter variable also can be declared to be of the type of an

interface. Such a variable can reference any object of any class that
implements the interface.

One of the problems with multiple inheritance occurs when a class is derived
from two parent classes and both define a public method with the same name
and protocol. This problem is avoided with interfaces. Although a class that
implements an interface must provide definitions for all of the methods
specified in the interface, if the class and the interface both include methods
with the same name and protocol, the class need not reimplement that
method. So, the method name conflicts that can occur with multiple
inheritance cannot occur with single inheritance and interfaces. Furthermore,
variable name conflicts are completely avoided because interfaces cannot
define variables.

An interface is not a replacement for multiple inheritance, because in multiple
inheritance there is code reuse, while interfaces provide no code reuse. This is
an important difference, because code reuse is one of the primary benefits of
inheritance. Java provides one way to partially avoid this deficiency. One of
the implemented interfaces could be replaced by an abstract class, which
could include code that could be inherited, thereby providing some code
reuse.

One problem with interfaces being a replacement for multiple inheritance is
the following: If a class attempts to implement two interfaces and both define
methods that have the same name and protocol, there is no way to implement
both in the class.

As an example of an interface, consider the sort method of the standard Java
class, Array. Any class that uses this method must provide an implementation
of a method to compare the elements to be sorted. The generic Comparable
interface provides the protocol for this comparing method, which is named
compareTo. The code for the Comparable interface is as follows:

public interface Comparable <T> {

 public int compareTo(T b);

}

The compareTo method must return a negative integer if the object through
which it is called belongs before the parameter object, zero if they are equal,

and a positive integer if the parameter belongs before the object through
which compareTo was called. A class that implements the Comparable
interface can sort the contents of any array of objects of the generic type, as
long as the implemented compareTo method for the generic type is
implemented and provides the appropriate value. Interfaces have become a
common substitute for multiple inheritance. Some form of interfaces are now
part of C#, Swift, Ruby, and Ada.

In addition to interfaces, Java also supports abstract classes, similar to those
of C++. The abstract methods of a Java abstract class are represented as just
the method’s header, which includes the abstract reserved word. The
abstract class is also marked abstract. Of course, abstract classes cannot be
instantiated.

Chapter 14 illustrates the use of interfaces in Java event handling.

12.4.3.3 Dynamic Binding
In C++, a method must be defined as virtual to allow dynamic binding. In
Java, all method calls are dynamically bound unless the called method has
been defined as final, in which case it cannot be overridden and all bindings
are static. Static binding is also used if the method is static or private, both
of which disallow overriding.

12.4.3.4 Nested Classes
Java has several varieties of nested classes, all of which have the advantage
of being hidden from all classes in their package, except for the nesting class.
Nonstatic classes that are nested directly in another class are called inner
classes. Each instance of an inner class must have an implicit pointer to the
instance of its nesting class to which it belongs. This gives the methods of the
nested class access to all of the members of the nesting class, including the
private members. Static nested classes do not have this pointer, so they
cannot access members of the nesting class. Therefore, static nested classes in

Java are like the nested classes of C++.

Though it seems odd in a static-scoped language, the members of the inner
class, even the private members, are accessible in the outer class. Such
references must include the variable that references the inner class object. For
example, suppose the outer class creates an instance of the inner class with
the following statement:

myInner = this.new Inner();

Then, if the inner class defines a variable named sum, it can be referenced in
the outer class as myInner.sum.

An instance of a nested class can only exist within an instance of its nesting
class. Nested classes can also be anonymous. Anonymous nested classes have
complex syntax but are really only an abbreviated way to define a class that
is used from just one location. An example of an anonymous nested class
appears in Chapter 14.

A local nested class is defined in a method of its nesting class. Local nested
classes are never defined with an access specifier (private or public). Their
scope is always limited to their nesting class. A method in a local nested class
can access the variables defined in its nesting class and the final variables
defined in the method in which the local nested class is defined. The
members of a local nested class are visible only in the method in which the
local nested class is defined.

12.4.3.5 Evaluation
Java’s design for supporting object-oriented programming is similar to that of
C++, but it employs more consistent adherence to object-oriented principles.
Java does not allow parentless classes and uses dynamic binding as the
“normal” way to bind method calls to method definitions. This, of course,
increases execution time slightly over languages in which many method
bindings are static. At the time this design decision was made, however, most
Java programs were interpreted, so interpretation time made the extra binding
time insignificant. Access controls for the contents of a class definition are

rather simple when compared with the jungle of access controls of C++,
ranging from derivation controls to friend functions. Finally, Java uses
interfaces to provide a form of support for multiple inheritance, which does
not have all of the drawbacks of actual multiple inheritance.

12.4.4 C#
C#’s support for object-oriented programming is similar to that of Java.

12.4.4.1 General Characteristics
C# includes both classes and structs, with the classes being very similar to
Java’s classes and the structs being somewhat less powerful constructs. One
important difference is that structs are value types; that is, they are stack
dynamic. This could cause the problem of object slicing, but this is prevented
by the restriction that structs cannot be subclassed. More details of how C#
structs differ from its classes appeared in Chapter 11.

12.4.4.2 Inheritance
C# uses the syntax of C++ for defining classes. For example,

public class NewClass : ParentClass { . . . }

A method inherited from the parent class can be replaced in the derived class
by marking its definition in the subclass with new. The new method hides the
method of the same name in the parent class to normal access. However, the
parent class version can still be called by prefixing the call with base. For
example,

base.Draw();

As with Java, subclasses can be subtypes. C#’s support for interfaces is the
same as that of Java. It does not support multiple inheritance.

12.4.4.3 Dynamic Binding
To allow dynamic binding of method calls to methods in C#, both the base
method and its corresponding methods in derived classes must be specially
marked. The base class method must be marked with virtual, as in C++. To
make clear the intent of a method in a subclass that has the same name and
protocol as a virtual method in an ancestor class, C# requires that such
methods be marked override if they are to override the parent class virtual
method.13 For example, the C# version of the C++ Shape class that appears
in Section 12.4.2.3 is as follows:

13. Recall that this can be specified in Java with the annotation @Override.

public class Shape {

 public virtual void Draw() { . . . }

 . . .

}

public class Circle : Shape {

 public override void Draw() { . . . }

 . . .

}

public class Rectangle : Shape {

 public override void Draw() { . . . }

 . . .

}

public class Square : Rectangle {

 public override void Draw() { . . . }

 . . .

}

C# includes abstract methods similar to those of C++, except that they are
specified with different syntax. For example, the following is a C# abstract
method:

abstract public void Draw();

A class that includes at least one abstract method is an abstract class, and
every abstract class must be marked abstract. Abstract classes cannot be
instantiated. It follows that any subclass of an abstract class that will be
instantiated must implement all abstract methods that it inherits.

As with Java, all C# classes are ultimately derived from a single root class,
Object. The Object class defines a collection of methods, including
ToString, Finalize, and Equals, which are inherited by all C# types.

12.4.4.4 Nested Classes
A C# class that is directly nested in a class behaves like a Java static nested
class (which is like a nested class in C++). Like C++, C# does not support
nested classes that behave like the nonstatic nested classes of Java.

12.4.4.5 Evaluation
Because C# is a recently designed C-based object-oriented language, one
should expect that its designers learned from their predecessors and
duplicated the successes of the past and remedied some of the problems. One
result of this, coupled with the few problems with Java, is that the differences
between C#’s support for object-oriented programming and that of Java are
relatively minor. The availability of structs in C#, which Java does not have,
can be considered an improvement. Like that of Java, C#’s support for
object-oriented programming is simpler than that of C++, which many
consider an improvement.

12.4.5 Ruby
As stated previously, Ruby is a pure object-oriented programming language
in the sense of Smalltalk. Virtually everything in the language is an object
and all computation is accomplished through message passing. Although
programs have expressions that use infix operators and therefore have the
same appearance as expressions in languages like Java, those expressions
actually are evaluated through message passing. As is the case with
Smalltalk, when one writes a + b, it is evaluated by sending the message + to
the object referenced by a, passing a reference to the object b as a parameter.
In other words, a + b is implemented as a.+ b.

12.4.5.1 General Characteristics
Ruby class definitions differ from those of languages such as C++ and Java in
that they are executable. Because of this, they are allowed to remain open
during execution. A program can add members to a class any number of
times, simply by providing secondary definitions of the class that include the
new members. During execution, the current definition of a class is the union
of all definitions of the class that have been executed. Method definitions are
also executable, which allows a program to choose between two versions of a
method definition during execution, simply by putting the two definitions in
the then and else clause of a selection construct.

Ruby objects are created with new, which implicitly calls a constructor. The
usual constructor in a Ruby class is named initialize. A constructor in a
subclass can initialize the data members of the parent class that have setters
defined. This is done by calling super with the initial values as actual
parameters. super calls the method in the parent class that has the same name
as the method in which the call to super appears.

Ruby classes can be nested, but the nested class has no special access to the
variables or methods of the nesting class.

All variables in Ruby are references to objects, and all are typeless. Recall
that the names of all instance variables in Ruby begin with an at sign (@).

In a clear departure from the other common programming languages, access
control in Ruby is different for data than it is for methods. All instance data
has private access by default, and that cannot be changed. Therefore, no
subclass in Ruby is a subtype. If external access to an instance variable is
required, accessor methods must be defined. For example, consider the
following skeletal class definition:

class MyClass

A constructor

 def initialize

 @one = 1

 @two = 2

 end

A getter for @one

 def one

 @one

 end

A setter for @one

 def one=(my_one)

 @one = my_one

 end

end # of class MyClass

The equal sign (=) attached to the name of the setter method means that its
variable is assignable. So, all setter methods have equal signs attached to
their names. The body of the one getter method illustrates the Ruby design of
methods returning the value of the last expression evaluated when there is no
return statement. In this case, the value of @one is returned.

Because getter and setter methods are so frequently needed, Ruby provides
shortcuts for creating them. If one wants a class to have getter methods for
the two instance variables, @one and @two, those getters can be specified with
the single statement in the class:

attr_reader :one, :two

attr_reader is actually a function call, using :one and :two as the actual
parameters. Preceding a variable with a colon (:) causes the variable name to
be used, rather than dereferencing it to the object to which it refers. Instead of
passing a value or an address, the text of the variable’s name is passed. This
is exactly how macro parameters are passed.

The function that similarly creates setters is called attr_writer. This
function has the same parameter profile as attr_reader.

The functions for creating getter and setter methods are so named because
they provide the protocol for objects of the class, which then are called
attributes. So, the attributes of a class define the data interface (the data
made public through accessor methods) to objects of the class.

Class variables, which are specified by preceding their names with two at
signs (@@), are private to the class and its instances. That privacy cannot be
changed. Also, unlike global and instance variables, class variables must be

initialized before they are used.

12.4.5.2 Inheritance
Subclasses are defined in Ruby using the less-than symbol (<), rather than the
colon of C++. For example,

class MySubClass < BaseClass

One distinct thing about the method access controls of Ruby is that they can
be changed in a subclass, simply by calling the access control functions. This
means that two subclasses of a base class can be defined so that objects of
one of the subclasses can access a method defined in the base class, but
objects of the other subclass cannot. Also, this allows one to change the
access of a publicly accessible method in the base class to a privately
accessible method in the subclass.

12.4.5.3 Dynamic Binding
Support for dynamic binding in Ruby is the same as it is in Smalltalk. -
Variables are not typed; rather, they are all references to objects of any class.
So, all variables are polymorphic and all bindings of method calls to methods
are dynamic.

12.4.5.4 Evaluation
Because Ruby is an object-oriented programming language in the purest
sense, its support for object-oriented programming is obviously adequate.
However, access control to class members is weaker than that of C++. Ruby
does not support abstract classes or interfaces, although its mixins are closely
related to interfaces. Finally, in large part because Ruby is interpreted, its
execution efficiency is far worse than that of the compiled languages.

Table 12.1 summarizes how the designers of the languages in this section
chose to deal with the design issues described in Section 12.3.

Table 12.1 Designs

12.5 Implementation of Object-
Oriented Constructs
There are at least two parts of language support for object-oriented
programming that pose interesting questions for language implementers:
storage structures for instance variables and the dynamic bindings of
messages to methods. In this section, we provide a brief look at these.

12.5.1 Instance Data Storage
In C++, classes are defined as extensions of C’s record structures—structs.
This similarity suggests a storage structure for the instance variables of class
instances—that of a record. This form of this structure is called a class
instance record (CIR). The structure of a CIR is static, so it is built at
compile time and used as a template for the creation of the data of class
instances. Every class has its own CIR. When a derivation takes place, the
CIR for the subclass is a copy of that of the parent class, with entries for the
new instance variables added at the end.

Because the structure of the CIR is static, access to all instance variables can
be done as it is in records, using constant offsets from the beginning of the
CIR instance. This makes these accesses as efficient as those for the fields of
records.

12.5.2 Dynamic Binding of
Method Calls to Methods
Methods in a class that are statically bound need not be involved in the CIR
for the class. However, methods that will be dynamically bound must have
entries in this structure. Such entries could simply have a pointer to the code

of the method, which must be set at object creation time. Calls to a method
could then be connected to the corresponding code through this pointer in the
CIR. The drawback to this technique is that every instance would need to
store pointers to all dynamically bound methods that could be called from the
instance.

Notice that the list of dynamically bound methods that can be called from an
instance of a class is the same for all instances of that class. Therefore, the list
of such methods must be stored only once. So the CIR for an instance needs
only a single pointer to that list to enable it to find called methods. The
storage structure for the list is often called a virtual method table (vtable).
Method calls can be represented as offsets from the beginning of the vtable.
Polymorphic variables of an ancestor class always reference the CIR of the
correct type object, so getting to the correct version of a dynamically bound
method is assured. Consider the following Java example, in which all
methods are dynamically bound:

public class A {

 public int a, b;

 public void draw() { . . . }

 public int area() { . . . }

}

public class B extends A {

 public int c, d;

 public void draw() { . . . }

 public void sift() { . . . }

}

The CIRs for the A and B classes, along with their vtables, are shown in
Figure 12.7. Notice that the method pointer for the area method in B’s vtable
points to the code for A’s area method. The reason is that B does not
override A’s area method, so if a client of B calls area, it is the area method
inherited from A. On the other hand, the pointers for draw and sift in B’s
vtable point to B’s draw and sift. The draw method is overridden in B and
sift is defined as an addition in B.

Figure 12.7 An example of the
CIRs with single inheritance

Figure 12.7 Full Alternative Text

Multiple inheritance complicates the implementation of dynamic binding.
Consider the following three C++ class definitions:

class A {

 public:

 int a;

 virtual void fun() { . . . }

 virtual void init() { . . . }

};

 class B {

 public:

 int b;

 virtual void sum() { . . . }

};

class C : public A, public B {

 public:

 int c;

 virtual void fun() { . . . }

 virtual void dud() { . . . }

};

The C class inherits the variable a and the init method from the A class. It
redefines the fun method, although both its fun and that of the parent class A
are potentially visible through a polymorphic variable (of type A). From B, C
inherits the variable b and the sum method. C defines its own variable, c, and
defines an uninherited method, dud. A CIR for C must include A’s data, B’s
data, and C’s data, as well as some means of accessing all visible methods.
Under single inheritance, the CIR would include a pointer to a vtable that has
the addresses of the code of all visible methods. With multiple inheritance,
however, it is not that simple. There must be at least two different views
available in the CIR—one for each of the parent classes, one of which
includes the view for the subclass, C. This inclusion of the view of the
subclass in the parent class’s view is just as in the implementation of single
inheritance.

There must also be two vtables: one for the A and C view and one for the B
view. The first part of the CIR for C in this case can be the C and A view,
which begins with a vtable pointer for the methods of C and those inherited
from A, and includes the data inherited from A. Following this in C’s CIR is
the B view part, which begins with a vtable pointer for the virtual methods of
B, which is followed by the data inherited from B and the data defined in C.
The CIR for C is shown in Figure 12.8.

Figure 12.8 An example of a
subclass CIR with multiple
parents

Figure 12.8 Full Alternative Text

12.6 Reflection
A discussion of reflection is not a perfect fit into a chapter on object
orientation, but it is even a worse fit into any other chapter of this book. So,
this is where we put it.

12.6.1 Introduction
In general, the later bindings take place in a programming language, the more
flexible the language is. For example, the late binding of data types in
scripting languages and functional languages allows their programs to be
more generic than those in the static-typed languages. Likewise, the dynamic
binding of method calls to methods that is part of the object-oriented
languages allows their programs to be easier to maintain and extend. Among
other things, reflection provides the possibility of late binding of calls to
methods that are outside the inheritance hierarchy of the calling code.

12.6.2 What Is Reflection?
A programming language that supports reflection allows its programs to have
run-time access to their types and structure and to be able to dynamically
modify their behavior. To allow a program to examine its types and structure,
that information must be gathered by the compiler or interpreter and made
available to the program. Just as information about the structure of a database
is called metadata, the types and structure of a program are called metadata.
The process of a program examining its metadata is called introspection. A
program can modify its behavior dynamically in several different ways: it
could change its metadata directly, it could use the metadata, or it could
intercede in the execution of the program. The first of these is complicated;
the second is less complex and is common among languages; the third often
is called intercession.

Some of the primary uses of reflection are in the construction of software
tools. A class browser needs to enumerate the classes of a program. Visual
Integrated Development Environments can use type information to assist a
developer in building type-correct code. Debuggers must be able to examine
private fields and methods of classes. Test systems need to be able to
discover all of the methods of a class to be sure that test data drives all of
them.

To illustrate a relatively simple and common use of reflection, we pose the
following problem. A zoo has a large area devoted to birds. The flight cage
for each species includes a plaque that provides general information about the
inhabitant’s species. Included on the plaque is a small screen onto which a
visitor with special interest in the species can enter his or her entrance ticket
number. At the exit to the bird exhibit, the visitor can again enter his or her
ticket number on a small screen, which causes a computer to print pictures of
the birds for which the visitor previously indicated particular interest. The
computer system that supports these activities has an object that includes a
method that draws a picture of its bird for each of the birds on display. This
seems simple enough. When a visitor selects a bird at its flight cage, the
system places a reference to an object associated with that bird in a list. At
the exit of the exhibit, the system calls the draw method of each object in the
visitor’s list. The process is complicated by the fact that the zoo supplies only
some of the bird objects. Some of them are purchased from third-party
vendors and some are donated by zoo benefactors. Because of the multiple
sources of the bird objects, they do not have a common base class (other than
Object) and do not implement a common interface, so what type references
can be saved? One obvious solution is to make each bird object the subclass
of a base class. References of the base class type could be stored in the list
and dynamic binding could be used to invoke the draw methods. The
drawback of this approach is that every bird class would need to be modified
to make the new classes subclasses of the common base class. It would be
better if the new bird classes could simply be added to a code file without
modification. Another possible solution would be to use instance of and
casting to determine the concrete types of the references. This would add
much code to the system, increasing its complexity and cost of maintenance.
A better solution is to use the dynamic binding that is possible with
reflection.

12.6.3 Reflection in Java
Java provides limited support for reflection. The primary class of the
metadata is defined in the namespace, java.lang.Class.14 This class has the
unfortunately confusing name, Class. The Java run-time system instantiates
an instance of Class for each object in the program. The Class class provides
a collection of methods to examine the type information and members of the
program objects. Class is the access point for all of the reflection API.

14. It is so named because its instantiations are themselves classes.

If the program has a reference to an object (not a primitive), the Class object
of that object can be obtained by calling its getClass method. All classes
inherit getClass from Object, from which all objects descend. Consider the
following examples:

float[] totals = new float[100];

Class fltlist = totals.getClass();

Class stg = "hello".getClass();

The value of the variable fltlist will be the Class object of the totals
array object. The value of stg will be the Class object of String (because
"hello" is an instance of String).

If there is no object of a class, its Class object can be obtained through the
class’ name by attaching .class to the name. For example, we could have the
following:

Class stg = String.class;

If the class has no name, its Class object can still be obtained by attaching
.class to the class definition. For example, consider the following:

Class intmat = int[][].class;

The .class modifier can also be attached to primitive types. Although
float.getClass() is illegal, float.class is not.

There are four methods to get the Class of a method. The getMethod method
searches a class to find a specific public method defined in the class or
inherited by the class. The getMethods method returns an array of all of the
public methods defined in a class or inherited by the class. The
getDeclaredMethod method searches for a specific method declared in a
class, including private methods. The getDeclaredMethods method returns
all of the methods defined in a class.

If the Class object of an object is known and a particular method defined by
the class of the object is found, that method can be called through the Method
object of the method with the invoke method. For example, if the Method
object named method is found with getMethod, it can be called with the
following:

method.invoke(...);

We can now develop a solution in Java for the problem posed in Section
12.6.2. The heart of this application is a class that defines a method that is
passed an Object reference. The method determines the class of the passed
reference, finds a draw method of that class, and calls that method. The
solution class is tested with a second class, ReflectTest, which creates an
array of three Object references to classes that represent three different birds.
Each of these defines a draw method that, when called, displays a message
indicating that it was called. Then the test calls the class method, passing the
elements of the array of references.

The caller method can raise three different exceptions, each of which is
handled in the method.

// A project to illustrate dynamic method calling

// using reflection in Java

package reflect;

import java.lang.reflect.*;

// A class to test the Reflect class

// Creates three objects that represent different birds

// and calls a method that dynamically calls the draw

// methods of the three bird classes

public class ReflectTest {

 public static void main(String[] args) {

 Object[] birdList = new Object[3];

 birdList[0] = new Bird1();

 birdList[1] = new Bird2();

 birdList[2] = new Bird3();

 Reflect.callDraw(birdList[2]);

 Reflect.callDraw(birdList[0]);

 Reflect.callDraw(birdList[1]);

 }

}

// A class to define the method that dynamically calls the

// methods of a passed class object

class Reflect {

 public static void callDraw(Object birdObj) {

 Class cls = birdObj.getClass();

 try {

 // Find the draw method of the given class

 Method method = cls.getMethod("draw");

 // Dynamically call the method

 method.invoke(birdObj);

 }

 // In case the given class does not support draw

 catch (NoSuchMethodException e) {

 throw new IllegalArgumentException (

 cls.getName() + "does not support draw");

 }

 // In case the callDraw cannot call draw

 catch (IllegalAccessException e) {

 throw new IllegalArgumentException (

 "Insufficient access permissions to call" +

 "draw in class " + cls.getName());

 }

 // In case draw throws an exception

 catch (InvocationTargetException e) {

 throw new RuntimeException(e);

 }

 }

}

class Bird1 {

 public void draw() {

 System.out.println("This is draw from Bird1");

 }

}

class Bird2 {

 public void draw() {

 System.out.println("This is draw from Bird2");

 }

}

class Bird3 {

 public void draw() {

 System.out.println("This is draw from Bird3");

 }

]

The output of this program is as follows:

This is the draw from Bird3

This is the draw from Bird1

This is the draw from Bird2

12.6.4 Reflection in C#
Support for reflection in C# is similar to that of Java, with a few important
differences. In C#, as in all .NET languages, the compiler places the
intermediate code, written in Common Intermediate Language (CIL), in an
assembly, which could include several files. An assembly also contains an
assembly version number and the metadata for all classes defined in the
assembly, as well as for all external classes it uses.

Instead of the java.lang.Class namespace, System.Type is used in .NET;
instead of java.lang.reflect, System.Reflection is used. Rather than the
getClass method, getType is used to get the class of an instance. Also, the
.NET languages use the typeof operator in place of the .class field used in
Java. Following is a C# version of the Java project shown above:

using System;

using System.Reflection;

namespace TestReflect

{

// A project to illustrate dynamic method calling

// using reflection in C#

// A class to test the Reflect class

// Creates three objects that represent different birds

// and calls a method that dynamically calls the draw

// methods of the three bird classes

public class ReflectTest {

 public static void Main(String[] args) {

 Object[] birdList = new Object[3];

 birdList[0] = new Bird1();

 birdList[1] = new Bird2();

 birdList[2] = new Bird3();

 Reflect.callDraw(birdList[2]);

 Reflect.callDraw(birdList[0]);

 Reflect.callDraw(birdList[1]);

 }

}

// A class to define the method that dynamically calls the

// methods of a passed class object

class Reflect {

 public static void callDraw(Object birdObj) {

 Type typ = birdObj.GetType();

 // Find the draw method of the given class

 MethodInfo method = typ.GetMethod("draw");

 // Dynamically call the method

 method.Invoke(birdObj, null);

 }

}

class Bird1 {

 public void draw() {

 Console.WriteLine("This is draw from Bird1");

 }

}

class Bird2 {

 public void draw() {

 Console.WriteLine("This is draw from Bird2");

 }

}

class Bird3 {

 public void draw() {

 Console.WriteLine("This is draw from Bird3");

 }

}

}

Our simple example of dynamic method binding shows just one of the many
uses of reflection.

In addition to the methods and fields of a class, the following program
elements can be accessed with reflection in both Java and C#: class
modifiers, such as public, static, and final, constructors, method parameter
types, and implemented interfaces. Also, a description of the inheritance path
of a class can be introspected. In C#, but not Java, the names of the formal
parameters of methods can be discovered.

One significant difference between Java’s reflection and that of C# is the
System.Reflection.Emit namespace, which is part of .NET. This

namespace provides the ability to create CIL code and an assembly to house
that code. Java provides no such capability, although it can be done with tools
from other suppliers.

Although reflection adds a variety of capabilities to the static-typed languages
Java and C#, the user of reflection must be aware of its downsides:

Performance nearly always suffers with the use of reflection. Resolving
types, methods, and fields at run time are not part of the cost of running
nonreflective code. Also, when types are dynamically resolved, some
optimizations cannot be done on the code.

Reflection exposes private fields and methods, which violate the rules of
abstraction and information hiding, and also may result in unexpected
side effects and adversely affect portability.

Although the advantage of early type checking is widely accepted, the
late binding that is possible with reflection obviously negates that
advantage.

Some reflective operations may not work when the code is run under a
security manager, also making it non-portable. One such security
environment is that of running applets. In most cases, if a problem can
be solved without reflection, reflection should not be used.

Reflection is an integral part of most dynamically typed languages. In LISP,
reflection is routinely used and the dynamic construction and execution of
code is not uncommon. In other interpreted languages, such as JavaScript,
Perl, and Python, the symbol table is kept during interpretation, providing all
useful type information.

In Python, for example, the type method returns the type of a given value.
For example, type([7, 14, 21]) is list. The isinstance method returns a
Boolean value if its first parameter has the type named in its second
parameter. For example, isinstance(17, int) returns True. The callable
function is used to determine whether an expression returns a function object.
The dir function returns the list of attributes, both data and methods, of its
parameter object.

SUMMARY
Object-oriented programming is based on three fundamental concepts:
abstract data types, inheritance, and dynamic bindinwg. Object-oriented
programming languages support the paradigm with classes, methods, objects,
and message passing.

The discussion of object-oriented programming languages in this chapter
revolves around seven design issues: exclusivity of objects, subclasses and
subtypes, type checking and polymorphism, single and multiple inheritance,
dynamic binding, explicit or implicit deallocation of objects, and nested
classes.

Smalltalk is a pure object-oriented language—everything is an object and all
computation is accomplished through message passing. All type checking
and binding of messages to methods is dynamic, and all inheritance is single.
Smalltalk has no explicit deallocation operation.

C++ provides support for data abstraction, inheritance, and optional dynamic
binding of messages to methods, along with all of the conventional features
of C. This means that it has two distinct type systems. C++ provides multiple
inheritance and explicit object deallocation. It includes a variety of access
controls for the entities in classes, some of which prevent subclasses from
being subtypes. Both constructor and destructor methods can be included in
classes; both are usually implicitly called.

While Smalltalk’s dynamic type binding provides somewhat more
programming flexibility than the hybrid language C++, it is far less efficient.

Unlike C++, Java is not a hybrid language; it is meant to support only object-
oriented programming. Java has both primitive scalar types and classes. All
objects are allocated from the heap and are accessed through reference
variables. There is no explicit object deallocation operation—garbage
collection is used. The only subprograms are methods, and they can be called
only through objects or classes. Only single inheritance is directly supported,

although a kind of multiple inheritance is possible using interfaces. All
binding of messages to methods is dynamic, except in the case of methods
that cannot be overridden. In addition to classes, Java includes packages as a
second encapsulation construct.

C#, which is based on C++ and Java, supports object-oriented programming.
Objects can be instantiated from either classes or structs. The struct objects
are stack dynamic and do not support inheritance. Methods in a derived class
can call the hidden methods of the parent class by including base on the
method name. Methods that can be overridden must be marked virtual, and
the overriding methods must be marked with override. All classes (and all
primitives) are derived from Object.

Ruby is an object-oriented scripting language in which all data are objects.
As with Smalltalk, all objects are heap allocated and all variables are typeless
references to objects. All constructors are named initialize. All instance
data are private, but getter and setter methods can be easily included. The
collection of all instance variables for which access methods have been
provided forms the public interface to the class. Such instance data are called
attributes. Ruby classes are dynamic in the sense that they are executable and
can be changed at any time. Ruby supports only single inheritance.

The instance variables of a class are stored in a CIR, the structure of which is
static. Subclasses have their own CIRs, as well as the CIR of their parent
class. Dynamic binding is supported with a virtual method table, which stores
pointers to specific methods. Multiple inheritance greatly complicates the
implementation of CIRs and virtual method tables.

Reflection is a process by which a program can access its classes and types
and possibly dynamically change them to affect program behavior. One of
the primary uses of reflection is in the construction of software tools, such as
visual program construction tools, debuggers, and test systems. The class and
type information, called metadata, is collected by the compiler or interpreter
for the language. In Java, the class information, such as the methods of the
class, are available in the Class object of a class. Support for reflection in C#,
which is similar to that of Java, is available in the System.Reflection
namespace.

REVIEW QUESTIONS
1. Describe the three characteristic features of object-oriented languages.

2. What is the difference between a class variable and an instance variable?

3. What is multiple inheritance?

4. What is a polymorphic variable?

5. What is an overriding method?

6. Describe a situation where dynamic binding is a great advantage over
static binding.

7. What is a virtual method?

8. What is an abstract method? What is an abstract class?

9. Describe briefly the seven design issues used in this chapter for object-
oriented languages.

10. What is a nesting class?

11. What is the message protocol of an object?

12. From where are Smalltalk objects allocated?

13. Explain how Smalltalk messages are bound to methods. When does this
take place?

14. What type checking is done in Smalltalk? When does it take place?

15. What kind of inheritance, single or multiple, does Smalltalk support?

16. What are the two most important effects that Smalltalk has had on
computing?

17. In essence, all Smalltalk variables are of a single type. What is that type?

18. From where can C++ objects be allocated?

19. How are C++ heap-allocated objects deallocated?

20. Are all C++ subclasses subtypes? If so, explain. If not, why not?

21. Under what circumstances is a C++ method call statically bound to a
method?

22. What drawback is there to allowing designers to specify which methods
can be statically bound?

23. What are the differences between private and public derivations in C++?

24. What is a friend function in C++?

25. What is a pure virtual function in C++?

26. How are parameters sent to a superclass’s constructor in C++?

27. What is the single most important practical difference between Smalltalk
and C++?

28. How is the type system of Java different from that of C++?

29. From where can Java objects be allocated?

30. What is boxing?

31. How are Java objects deallocated?

32. Are all Java subclasses subtypes?

33. How are superclass constructors called in Java?

34. Under what circumstances is a Java method call statically bound to a
method?

35. In what way do overriding methods in C# syntactically differ from their
counterparts in C++?

36. How can the parent version of an inherited method that is overridden in
a subclass be called in that subclass in C#?

37. How does Ruby implement primitive types, such as those for integer and
floating-point data?

38. How are getter methods defined in a Ruby class?

39. What access controls does Ruby support for instance variables?

40. What access controls does Ruby support for methods?

41. Are all Ruby subclasses subtypes?

42. Does Ruby support multiple inheritance?

43. What does reflection allow a program to do?

44. In the context of reflection, what is metadata?

45. What is introspection?

46. What is intercession?

47. What class in Java stores information about classes in a program?

48. For what is the Java name extension .class used?

49. What does the Java getMethods method do?

50. For what is the C# namespace System.Reflection.Emit used?

PROBLEM SET
1. What important part of support for object-oriented programming is

missing in SIMULA 67?

2. Explain the principle of substitution.

3. Explain the ways subclasses can be created that are not subtypes.

4. Compare the dynamic binding of C++ and Java.

5. Compare the class entity access controls of C++ and Java.

6. Compare the multiple inheritance of C++ with that provided by
interfaces in Java.

7. What is one programming situation where multiple inheritance has a
significant advantage over interfaces?

8. Explain the two problems with abstract data types that are ameliorated
by inheritance.

9. Describe the categories of changes that a subclass can make to its parent
class.

10. Explain one disadvantage of inheritance.

11. Explain the advantages and disadvantages of having all values in a
language be objects.

12. What exactly does it mean for a subclass to have an is-a relationship
with its parent class?

13. Describe the issue of how closely the parameters of an overriding
method must match those of the method it overrides.

14. Explain type checking in Smalltalk.

15. The designers of Java obviously thought it was not worth the additional
efficiency of allowing any method to be statically bound, as is the case
with C++. What are the arguments for and against the Java design?

16. What is the primary reason why all Java objects have a common
ancestor?

17. What is the purpose of the finalize clause in Java?

18. What would be gained if Java allowed stack-dynamic objects as well as
heap-dynamic objects? What would be the disadvantage of having both?

19. What are the differences between a C++ abstract class and a Java
interface?

20. Explain why allowing a class to implement multiple interfaces in Java
and C# does not create the same problems that multiple inheritance in
C++ creates.

21. Study and explain the issue of why C# does not include Java’s nonstatic
nested classes.

22. Can you define a reference variable for an abstract class? What use
would such a variable have?

23. Compare the access controls for instance variables in Java and Ruby.

24. Compare the type error detection for instance variables in Java and
Ruby.

25. Explain the downsides of reflection.

PROGRAMMING EXERCISES
1. Rewrite the single_linked_list, stack_2, and queue_2 classes in

Section 12.5.2 in Java and compare the result with the C++ version in
terms of readability and ease of programming.

2. Repeat Programming Exercise 1 using Ruby.

3. Design and implement a C++ program that defines a base class A, which
has a subclass B, which itself has a subclass C. The A class must
implement a method, which is overridden in both B and C. You must
also write a test class that instantiates A, B, and C and includes three
calls to the method. One of the calls must be statically bound to A’s
method. One call must be dynamically bound to B’s method, and one
must be dynamically bound to C’s method. All of the method calls must
be through a pointer to class A.

4. Write a program in C++ that calls both a dynamically bound method and
a statically bound method a large number of times, timing the calls to
both of the two. Compare the timing results and compute the difference
of the time required by the two. Explain the results.

5. Repeat Programming Exercise 1 using Java, forcing static binding with
final.

13 Concurrency
1. 13.1 Introduction

2. 13.2 Introduction to Subprogram-Level Concurrency

3. 13.3 Semaphores

4. 13.4 Monitors

5. 13.5 Message Passing

6. 13.6 Ada Support for Concurrency

7. 13.7 Java Threads

8. 13.8 C# Threads

9. 13.9 Concurrency in Functional Languages

10. 13.10 Statement-Level Concurrency

This chapter begins with introductions to the various kinds of concurrency at
the subprogram, or unit level, and at the statement level. Included is a brief
description of the most common kinds of multiprocessor computer
architectures. Next, a lengthy discussion on unit-level concurrency is
presented. This begins with a description of the fundamental concepts that
must be understood before discussing the problems and challenges of
language support for unit-level concurrency, specifically competition and
cooperation synchronization. Next, the design issues for providing language
support for concurrency are described. Following this is a detailed discussion
of three major approaches to language support for concurrency: semaphores,
monitors, and message passing. A pseudocode example program is used to -
demonstrate how semaphores can be used. Ada and Java are used to illustrate
monitors; for message passing, Ada is used. The Ada features that support
concurrency are described in some detail. Although tasks are the focus,

protected objects (which are effectively monitors) are also discussed. Support
for unit-level concurrency using threads in Java and C# is then discussed,
including approaches to synchronization. This is followed by brief overviews
of support for concurrency in several functional programming languages. The
last section of the chapter is a brief discussion of statement-level
concurrency, including an introduction to part of the language support
provided for it in High-Performance Fortran.

13.1 Introduction
Concurrency in software execution can occur at four different levels:
instruction level (executing two or more machine instructions
simultaneously), statement level (executing two or more high-level language
statements simultaneously), unit level (executing two or more subprogram
units simultaneously), and program level (executing two or more programs
simultaneously). Because no language design issues are involved with them,
instruction-level and program-level concurrency are not discussed in this
chapter. Concurrency at both the subprogram and the statement levels is
discussed, with most of the focus on the subprogram level.

At first glance, concurrency may appear to be a simple concept, but it
presents significant challenges to the programmer, the programming language
designer, and the operating system designer (because much of the support for
concurrency is provided by the operating system).

Concurrent control mechanisms increase programming flexibility. They were
originally invented to be used for particular problems faced in operating
systems, but they are required for a variety of other programming
applications. One of the most commonly used programs is Web browsers,
whose design is based heavily on concurrency. Browsers must perform many
different functions at the same time, among them sending and receiving data
from Web servers, rendering text and images on the screen, and reacting to
user actions with the mouse and the keyboard. Most contemporary browsers
use the extra core processors that are part of many contemporary personal
computers to perform some of their processing, for example the interpretation
of client-side scripting code. Another example is the software systems that
are designed to simulate actual physical systems that consist of multiple
concurrent subsystems. For all of these kinds of applications, the
programming language (or a library or at least the operating system) must
support unit-level concurrency.

Statement-level concurrency is quite different from concurrency at the unit
level. From a language designer’s point of view, statement-level concurrency

is largely a matter of specifying how data should be distributed over multiple
memories and which statements can be executed concurrently.

The goal of developing concurrent software is to produce scalable and
portable concurrent algorithms. A concurrent algorithm is scalable if the
speed of its execution increases when more processors are available. This is
important because the number of processors sometimes increases with the
new generations of machines. The algorithms must be portable because the
lifetime of hardware is relatively short. Therefore, software systems should
not depend on a particular architecture—that is, they should run efficiently on
machines with different architectures.

The intention of this chapter is to discuss the aspects of concurrency that are
most relevant to language design issues, rather than to present a definitive
study of all of the issues of concurrency, including the development of
concurrent programs. That would clearly be inappropriate for a book on
programming languages.

13.1.1 Multiprocessor
Architectures
A large number of different computer architectures have more than one
processor and can support some form of concurrent execution. Before
beginning to discuss concurrent execution of programs and statements, we
briefly describe some of these architectures.

The first computers that had multiple processors had one general-purpose
processor and one or more other processors, often called peripheral
processors, that were used only for input and output operations. This
architecture allowed those computers, which appeared in the late 1950s, to
execute one program while concurrently performing input or output for that
program or other programs.

By the early 1960s, there were machines that had multiple complete
processors. These processors were used by the job scheduler of the operating

system, which distributed separate jobs from a batch-job queue to the
separate processors. Systems with this structure supported program-level
concurrency.

In the mid-1960s, some machines appeared that had several identical partial
processors. These were fed instructions from a single instruction stream. For
example, some machines had two or more floating-point multipliers, while
others had two or more complete floating-point arithmetic units. The
compilers for these machines were required to determine which instructions
could be executed concurrently and to schedule these instructions
accordingly. Systems with this structure supported instruction-level
concurrency.

In 1966, Michael J. Flynn suggested a categorization of computer
architectures defined by whether the instruction and data streams were single
or multiple. The names of these were widely used from the 1970s to the early
2000s. The two categories that used multiple data streams are defined as
follows: Computers that have multiple processors that execute the same
instruction simultaneously, each on different data, are called Single
Instruction, Multiple Data (SIMD) architecture computers. In an SIMD
computer, each processor has its own local memory. One processor controls
the operation of the other processors. Because all of the processors, except
the controller, execute the same instruction at the same time, no
synchronization is required in the software. Perhaps the most widely used
SIMD machines are a category of machines called vector processors. They
have groups of registers that store the operands of a vector operation in which
the same instruction is executed on the whole group of operands
simultaneously. Originally, the kinds of programs that could most benefit
from this architecture were in scientific computation, an area of computing
that is often the target of multiprocessor machines. However, SIMD
processors are now used for a variety of application areas, among them
graphics and video processing. Until recently, most supercomputers were
vector processors.

Computers that have multiple processors that operate independently but
whose operations can be synchronized are called Multiple Instruction,
Multiple Data (MIMD) computers. Each processor in an MIMD computer

executes its own instruction stream. MIMD computers can appear in two
distinct configurations: distributed and shared memory systems. The
distributed MIMD machines, in which each processor has its own memory,
can be either built in a single chassis or distributed, perhaps over a large area.
The shared-memory MIMD machines obviously must provide some means of
synchronization to prevent memory access clashes. Even distributed MIMD
machines require synchronization to operate together on single programs.
MIMD computers, which are more general than SIMD computers, support
unit-level concurrency. The primary focus of this chapter is on language
design for shared memory MIMD computers, which are often called
multiprocessors.

With the advent of powerful but low-cost single-chip computers, it became
possible to have large numbers of these microprocessors connected into
physically small networks within a single chassis. These kinds of computers,
which often use off-the-shelf microprocessors, are available from a number
of different manufacturers.

One important reason why software has not evolved faster to make use of
concurrent machines is that the power of processors has continually
increased. One of the strongest motivations to use concurrent machines is to
increase the speed of computation. However, two hardware factors have
combined to provide faster computation, without requiring any change in the
architecture of software systems. First, processor clock rates have become
faster with each new generation of processors (the generations have appeared
roughly every 18 months). Second, several different kinds of concurrency
have been built into the processor architectures. Among these are the
pipelining of instructions and data from the memory to the processor
(instructions are fetched and decoded for future execution while the current
instruction is being executed), the use of separate lines for instructions and
data, prefetching of instructions and data, and parallelism in the execution of
arithmetic operations. All of these are collectively called hidden
concurrency. The result of the increases in execution speed is that there have
been great productivity gains without requiring software developers to
produce concurrent software systems.

However, the situation has changed. The end of the sequence of significant

increases in the speed of individual processors is now near. Significant
increases in computing power now result from increases in the number of
processors, for example large server systems like those run by Google and
Amazon and scientific research applications. Many other large computing
tasks are now run on machines with large numbers of relatively small
processors.

Another recent advance in computing hardware was the development of
multiple processors on a single chip, such as with the Intel Core Duo and
Core Quad chips, which is putting more pressure on software developers to
make more use of the available multiple processor machines. If they do not,
the concurrent hardware will be wasted and significant productivity gains will
not be realized.

13.1.2 Categories of Concurrency
There are two distinct categories of concurrent unit control. The most natural
category of concurrency is that in which, assuming that more than one
processor is available, several program units from the same program literally
execute simultaneously. This is physical concurrency. A slight relaxation of
this concept of concurrency allows the programmer and the application
software to assume that there are multiple processors providing actual
concurrency, when in fact the actual execution of programs is taking place in
interleaved fashion on a single processor. This is logical concurrency. From
the programmer’s and language designer’s points of view, logical
concurrency is the same as physical concurrency. It is the language
implementor’s task, using the capabilities of the underlying operating system,
to map the logical concurrency to the host hardware. Both logical and
physical concurrencies allow the concept of concurrency to be used as a
program design methodology. For the remainder of this chapter, the
discussion will apply to both physical and logical concurrencies.

One useful technique for visualizing the flow of execution through a program
is to imagine a thread laid on the statements of the source text of the program.
Every statement reached on a particular execution is covered by the thread
representing that execution. Visually following the thread through the source

program traces the execution flow through the executable version of the
program. Of course, in all but the simplest of programs, the thread follows a
highly complex path that would be impossible to follow visually. Formally, a
thread of control in a program is the sequence of program points reached as
control flows through the program.

Programs that have coroutines (see Chapter 9) but no concurrent
subprograms, though they are sometimes called quasi-concurrent, have a
single thread of control. Programs executed with physical concurrency can
have multiple threads of control. Each processor can execute one of the
threads. Although logically concurrent program execution may actually have
only a single thread of control, such programs can be designed and analyzed
only by imagining them as having multiple threads of control. A program
designed to have more than one thread of control is said to be
multithreaded. When a multithreaded program executes on a single-
processor machine, its threads are mapped onto a single thread. It becomes, in
this scenario, a virtually multithreaded program.

Statement-level concurrency is a relatively simple concept. In a common use
of statement-level concurrency, loops that include statements that operate on
array elements are unwound so that the processing can be distributed over
multiple processors. For example, a loop that executes 500 repetitions and
includes a statement that operates on one of 500 array elements may be
unwound so that each of 10 different processors can simultaneously process
50 of the array elements.

13.1.3 Motivations for the Use of
Concurrency
There are at least four different reasons to design concurrent software
systems. The first reason is the speed of execution of programs on machines
with multiple processors. These machines provide an effective way of
increasing the execution speed of programs, provided that the programs are
designed to make use of the concurrent hardware. There are now a large
number of installed multiple-processor computers, including many of the

personal computers sold in the last few years. It is wasteful not to use this
hardware capability.

The second reason is that even when a machine has just one processor, a
program written to use concurrent execution can be faster than the same
program written for sequential (nonconcurrent) execution. The requirement
for this to happen is that the program is not compute bound (the sequential
version does not fully utilize the processor).

The third reason is that concurrency provides a different method of
conceptualizing program solutions to problems. Many problem domains lend
themselves naturally to concurrency in much the same way that recursion is a
natural way to design solutions to some problems. Also, many programs are
written to simulate physical entities and activities. In many cases, the system
being simulated includes more than one entity, and the entities do whatever
they do simultaneously—for example, aircraft flying in a controlled airspace,
relay stations in a communications network, and the various machines in a
factory. Software that uses concurrency must be used to simulate such
systems accurately.

The fourth reason for using concurrency is to program applications that are
distributed over several machines, either locally or through the Internet.
Many machines, for example cars, have more than one built-in computer,
each of which is dedicated to some specific task. In many cases, these
collections of computers must synchronize their program executions. Internet
games are another example of software that is distributed over multiple
processors.

Concurrency is now used in numerous everyday computing tasks. Web
servers process document requests concurrently. Web browsers now use
secondary core processors to run graphic processing and to interpret
programming code embedded in documents. In every operating system there
are many concurrent processes being executed at all times, managing
resources, getting input from keyboards, displaying output from programs,
and reading and writing external memory devices. In short, concurrency has
become a ubiquitous part of computing.

13.2 Introduction to Subprogram-
Level Concurrency
Before language support for concurrency can be considered, one must
understand the underlying concepts of concurrency and the requirements for
it to be useful. These topics are covered in this section.

13.2.1 Fundamental Concepts
A task is a unit of a program, similar to a subprogram, that can be in
concurrent execution with other units of the same program. Each task in a
program can support one thread of control. Tasks are sometimes called
processes. In some languages, for example Java and C#, certain methods
serve as tasks. Such methods are executed in objects called threads.

Three characteristics of tasks distinguish them from subprograms. First, a
task may be implicitly started, whereas a subprogram must be explicitly
called. Second, when a program unit invokes a task, in some cases it need not
wait for the task to complete its execution before continuing its own. Third,
when the execution of a task is completed, control may or may not return to
the unit that started that execution.

Tasks fall into two general categories: heavyweight and lightweight. Simply
stated, a heavyweight task executes in its own address space. Lightweight
tasks all run in the same address space. It is easier to implement lightweight
tasks than heavyweight tasks. Furthermore, lightweight tasks can be more
efficient than heavyweight tasks, because less effort is required to manage
their execution.

A task can communicate with other tasks through shared nonlocal variables,
through message passing, or through parameters. If a task does not
communicate with or affect the execution of any other task in the program in
any way, it is said to be disjoint. Because tasks often work together to create

simulations or solve problems and therefore are not disjoint, they must use
some form of communication to either synchronize their executions or share
data or both.

Synchronization is a mechanism that controls the order in which tasks
execute. Two kinds of synchronization are required when tasks share data:
cooperation and competition. Cooperation synchronization is required
between task A and task B when task A must wait for task B to complete some
specific activity before task A can begin or continue its execution.
Competition synchronization is required between two tasks when both
require the use of some resource that cannot be simultaneously used.
Specifically, if task A needs to access shared data location x while task B is
accessing x, task A must wait for task B to complete its processing of x. So,
for cooperation synchronization, tasks may need to wait for the completion of
specific processing on which their correct operation depends, whereas for
competition synchronization, tasks may need to wait for the completion of
any other processing by any task currently occurring on specific shared data.

A simple form of cooperation synchronization can be illustrated by a
common problem called the producer-consumer problem. This problem
originated in the development of operating systems, in which one program
unit produces some data value or resource and another uses it. Produced data
are usually placed in a storage buffer by the producing unit and removed
from that buffer by the consuming unit. The sequence of stores to and
removals from the buffer must be synchronized. The consumer unit must not
be allowed to take data from the buffer if the buffer is empty. Likewise, the
producer unit cannot be allowed to place new data in the buffer if the buffer
is full. This is a problem of cooperation synchronization because the users of
the shared data structure must cooperate if the buffer is to be used correctly.

Competition synchronization prevents two tasks from accessing a shared data
structure at exactly the same time—a situation that could destroy the integrity
of that shared data. To provide competition synchronization, mutually
exclusive access to the shared data must be guaranteed.

To clarify the competition problem, consider the following scenario: Suppose
task A has the statement TOTAL += 1, where TOTAL is a shared integer
variable. Furthermore, suppose task B has the statement TOTAL *= 2. Task A

and task B could try to change TOTAL at the same time.

At the machine language level, each task may accomplish its operation on
TOTAL with the following three-step process:

1. Fetch the value of TOTAL.

2. Perform the arithmetic operation.

3. Put the new value back in TOTAL.

Without competition synchronization, given the previously described
operations performed by tasks A and B on TOTAL, four different values could
result, depending on the order of the steps of the operations. Assume TOTAL
has the value 3 before either A or B attempts to modify it. If task A completes
its operation before task B begins, the value will be 8, which is assumed here
to be correct. But if both A and B fetch the value of TOTAL before either task
puts its new value back, the result will be incorrect. If A puts its value back
first, the value of TOTAL will be 6. This case is shown in Figure 13.1. If B puts
its value back first, the value of TOTAL will be 4. Finally, if B completes its
operation before task A begins, the value will be 7. A situation that leads to
these problems is sometimes called a race condition, because two or more
tasks are racing to use the shared resource and the behavior of the program
depends on which task arrives first (and wins the race). The importance of
competition synchronization should now be clear.

Figure 13.1 The need for -
competition synchronization

Figure 13.1 Full Alternative Text

One general method for providing mutually exclusive access (to support
competition synchronization) to a shared resource is to consider the resource
to be something that a task can possess and allow only a single task to
possess it at a time. To gain possession of a shared resource, a task must
request it. Possession will be granted only when no other task has possession.
While a task possesses a resource, all other tasks are prevented from having
access to that resource. When a task is finished with a shared resource that it
possesses, it must relinquish that resource so it can be made available to other
tasks.

Three methods of providing for mutually exclusive access to a shared
resource are semaphores, which are discussed in Section 13.3; monitors,
which are discussed in Section 13.4; and message passing, which is discussed
in Section 13.5.

Mechanisms for synchronization must be able to delay task execution.
Synchronization imposes an order of execution on tasks that is enforced with
these delays. To understand what happens to tasks through their lifetimes, we
must consider how task execution is controlled. Regardless of whether a
machine has a single processor or more than one, there is always the
possibility of there being more tasks than there are processors. A run-time
system program called a scheduler manages the sharing of processors among
the tasks. If there were never any interruptions and tasks all had the same
priority, the scheduler could simply give each task a time slice, such as 0.1
second, and when a task’s turn came, the scheduler could let it execute on a
processor for that amount of time. Of course, there are several events that
complicate this, for example, task delays for synchronization and for input or
output operations. Because input and output operations are very slow relative
to the processor’s speed, a task is not allowed to keep a processor while it
waits for completion of such an operation.

Tasks can be in several different states:

1. New: A task is in the new state when it has been created but has not yet
begun its execution.

2. Ready: A ready task is ready to run but is not currently running. Either it
has not been given processor time by the scheduler, or it had run
previously but was blocked in one of the ways described in Paragraph 4
of this subsection. Tasks that are ready to run are stored in a queue that
is often called the task-ready queue.

3. Running: A running task is one that is currently executing; that is, it has
a processor and its code is being executed.

4. Blocked: A task that is blocked has been running, but that execution was
interrupted by one of several different events, the most common of
which is an input or output operation. In addition to input and output,
some languages provide operations for the user program to specify that a
task be blocked.

5. Dead: A dead task is no longer active in any sense. A task dies when its
execution is completed or it is explicitly killed by the program.

A flow diagram of the states of a task is shown in Figure 13.2.

Figure 13.2 Flow diagram of
task states

Figure 13.2 Full Alternative Text

One important issue in task execution is the following: How is a ready task
chosen to move to the running state when the task currently running has
become blocked or whose time slice has expired? Several different
algorithms have been used for making this choice, some based on specifiable
priority levels. The algorithm that does the choosing is implemented in the
scheduler.

Associated with the concurrent execution of tasks and the use of shared
resources is the concept of liveness. In the environment of sequential
programs, a program has the liveness characteristic if it continues to execute,
eventually leading to completion. In more general terms, liveness means that
if some event—say, program completion—is supposed to occur, it will occur,
eventually. That is, progress is continually made. In a concurrent
environment and with shared resources, the liveness of a task can cease to
exist, meaning that the program cannot continue and thus will never
terminate.

For example, suppose task A and task B both need the shared resources X and
Y to complete their work. Furthermore, suppose that task A gains possession
of X and task B gains possession of Y. After some execution, task A needs
resource Y to continue, so it requests Y but must wait until B releases it.
Likewise, task B requests X but must wait until A releases it. Neither
relinquishes the resource it possesses, and as a result, both lose their liveness,
guaranteeing that execution of the program will never complete normally.
This particular kind of loss of liveness is called deadlock. Deadlock is a
serious threat to the reliability of a program, and therefore its avoidance
demands serious consideration in both language and program design.

We are now ready to discuss some of the linguistic mechanisms for providing
concurrent unit control.

13.2.2 Language Design for
Concurrency

In some cases, concurrency is implemented through libraries. Among these is
OpenMP, an applications programming interface to support shared memory
multiprocessor programming in C, C++, and Fortran on a variety of
platforms. Our interest in this book, of course, is language support for
concurrency. A number of languages have been designed to support
concurrency, beginning with PL/I in the mid-1960s and including the
contemporary languages Ada 95, Java, C#, F#, Python, and Ruby.1

1. In the cases of Python and Ruby, programs are interpreted, so there only
can be logical concurrency. Even if the machine has multiple processors,
these programs cannot make use of more than one.

13.2.3 Design Issues
The most important design issues for language support for concurrency have
already been discussed at length: competition and cooperation
synchronization. In addition to these, there are several design issues of
secondary importance. Prominent among them is how an application can
influence task scheduling. Also, there are the issues of how and when tasks
start and end their executions, and how and when they are created.

Keep in mind that our discussion of concurrency is intentionally incomplete,
and only the most important of the language design issues related to support
for concurrency are discussed.

The following sections discuss three alternative approaches to the design
issues for concurrency: semaphores, monitors, and message passing.

13.3 Semaphores
A semaphore is a simple mechanism that can be used to provide
synchronization of tasks. Although semaphores are an early approach to
providing synchronization, they are still used, both in contemporary
languages and in library-based concurrency support systems. In the following
paragraphs, we describe semaphores and discuss how they can be used for
this purpose.

13.3.1 Introduction
In an effort to provide competition synchronization through mutually
exclusive access to shared data structures, Edsger Dijkstra devised
semaphores in 1965 (Dijkstra, 1968b). Semaphores can also be used to
provide cooperation synchronization.

To provide limited access to a data structure, guards can be placed around the
code that accesses the structure. A guard is a linguistic device that allows the
guarded code to be executed only when a specified condition is true. So, a
guard can be used to allow only one task to access a particular shared data
structure at a time. A semaphore is an implementation of a guard.
Specifically, a semaphore is a data structure that consists of an integer and a
queue that stores task descriptors. A task descriptor is a data structure that
stores all of the relevant information about the execution state of a task.

An integral part of a guard mechanism is a procedure for ensuring that all
attempted executions of the guarded code eventually take place. The typical
approach is to have requests for access that occur when access cannot be
granted or stored in the task descriptor queue, from which they are later
allowed to leave and execute the guarded code. This is the reason a
semaphore must have both a counter and a task descriptor queue.

The only two operations provided for semaphores were originally named P
and V by Dijkstra, after the two Dutch words passeren (to pass) and vrygeren

(to release) (Andrews and Schneider, 1983). We will refer to these as wait
and release, respectively, in the remainder of this section.

13.3.2 Cooperation
Synchronization
Through much of this chapter, we use the example of a shared buffer used by
producers and consumers to illustrate the different approaches to providing
cooperation and competition synchronization. For cooperation
synchronization, such a buffer must have some way of recording both the
number of empty positions and the number of filled positions in the buffer (to
prevent buffer underflow and overflow). The counter component of a
semaphore can be used for this purpose. One semaphore variable—for
example, emptyspots—can use its counter to maintain the number of empty
locations in a shared buffer used by producers and consumers, and another—
say, fullspots—can use its counter to maintain the number of filled
locations in the buffer. The queues of these semaphores can store the
descriptors of tasks that have been forced to wait for access to the buffer. The
queue of emptyspots can store producer tasks that are waiting for available
positions in the buffer; the queue of fullspots can store consumer tasks
waiting for values to be placed in the buffer.

Our example buffer is designed as an abstract data type in which all data
enters the buffer through the subprogram DEPOSIT, and all data leaves the
buffer through the subprogram FETCH. The DEPOSIT subprogram needs only
to check with the emptyspots semaphore to see whether there are any empty
positions. If there is at least one, it can proceed with the DEPOSIT, which must
have the side effect of decrementing the counter of emptyspots. If the buffer
is full, the caller to DEPOSIT must be made to wait in the emptyspots queue
for an empty spot to become available. When the DEPOSIT is complete, the
DEPOSIT subprogram increments the counter of the fullspots semaphore to
indicate that there is one more filled location in the buffer.

The FETCH subprogram has the opposite sequence of DEPOSIT. It checks the
fullspots semaphore to see whether the buffer contains at least one item. If

it does, an item is removed and the emptyspots semaphore has its counter
incremented by 1. If the buffer is empty, the calling task is put in the
fullspots queue to wait until an item appears. When FETCH is finished, it
must increment the counter of emptyspots.

The operations on semaphore types often are not direct—they are done
through wait and release subprograms. Therefore, the DEPOSIT operation
just described is actually accomplished in part by calls to wait and release.
Note that wait and release must be able to access the task-ready queue.

The wait semaphore subprogram is used to test the counter of a given
semaphore variable. If the value is greater than zero, the caller can carry out
its operation. In this case, the counter value of the semaphore variable is
decremented to indicate that there is now one fewer of whatever it counts. If
the value of the counter is zero, the caller must be placed on the waiting
queue of the semaphore variable, and the processor must be given to some
other ready task.

The release semaphore subprogram is used by a task to allow some other
task to have one of whatever the counter of the specified semaphore variable
counts. If the queue of the specified semaphore variable is empty, which
means no task is waiting, release increments its counter (to indicate there is
one more of whatever is being controlled that is now available). If one or
more tasks are waiting, release moves one of them from the semaphore
queue to the ready queue.

The following are concise pseudocode descriptions of wait and release:

wait(aSemaphore)

if aSemaphore’s counter > 0 then

    decrement aSemaphore’s counter

else

   put the caller in aSemaphore’s queue

   attempt to transfer control to some ready task

   (if the task-ready queue is empty, deadlock occurs)

end if

release(aSemaphore)

if aSemaphore’s queue is empty (no task is waiting) then

    increment aSemaphore’s counter

else

   put the calling task in the task-ready queue

   transfer control to a task from aSemaphore’s queue

end

We can now present an example program that implements cooperation
synchronization for a shared buffer. In this case, the shared buffer stores
integer values and is a logically circular structure. It is designed for use by
possibly multiple producer and consumer tasks.

The following pseudocode shows the definition of the producer and
consumer tasks. Two semaphores are used to ensure against buffer underflow
or overflow, thus providing cooperation synchronization. Assume that the
buffer has length BUFLEN, and the routines that actually manipulate it already
exist as FETCH and DEPOSIT. Accesses to the counter of a semaphore are
specified by dot notation. For example, if fullspots is a semaphore, its
counter is referenced by fullspots.count.

semaphore fullspots, emptyspots;

fullspots.count = 0;

emptyspots.count = BUFLEN;

task producer;

 loop

 -- produce VALUE --

 wait(emptyspots); { wait for a space }

 DEPOSIT(VALUE);

 release(fullspots); { increase filled spaces }

 end loop;

end producer;

task consumer;

 loop

 wait(fullspots); { make sure it is not empty }

 FETCH(VALUE);

 release(emptyspots); { increase empty spaces }

 -- consume VALUE --

 end loop

end consumer;

The semaphore fullspots causes the consumer task to be queued to wait for
a buffer entry if it is currently empty. The semaphore emptyspots causes the
producer task to be queued to wait for an empty space in the buffer if it is
currently full.

13.3.3 Competition
Synchronization
Our buffer example does not provide competition synchronization. Access to
the structure can be controlled with an additional semaphore. This semaphore
need not count anything but can simply indicate with its counter whether the
buffer is currently being used. The wait statement allows the access only if
the semaphore’s counter has the value 1, which indicates that the shared
buffer is not currently being accessed. If the semaphore’s counter has a value
of 0, there is a current access taking place, and the task is placed in the queue
of the semaphore. Notice that the semaphore’s counter must be initialized to
1. The queues of semaphores must always be initialized to empty before use
of the queue can begin.

A semaphore that requires only a binary-valued counter, like the one used to
provide competition synchronization in the following example, is called a
binary semaphore.

The example pseudocode that follows illustrates the use of semaphores to
provide both competition and cooperation synchronization for a concurrently
accessed shared buffer. The access semaphore is used to ensure mutually
exclusive access to the buffer. Remember that there may be more than one
producer and more than one consumer.

semaphore access, fullspots, emptyspots;

access.count = 1;

fullspots.count = 0;

emptyspots.count = BUFLEN;

task producer;

 loop

 -- produce VALUE --

 wait(emptyspots); { wait for a space }

 wait(access); { wait for access }

 DEPOSIT(VALUE);

 release(access); { relinquish access }

 release(fullspots); { increase filled spaces }

 end loop;

end producer;

task consumer;

 loop

 wait(fullspots); { make sure it is not empty }

 wait(access); { wait for access }

 FETCH(VALUE);

 release(access); { relinquish access }

 release(emptyspots); { increase empty spaces }

 -- consume VALUE --

 end loop

end consumer;

A brief look at this example may lead one to believe that there is a problem.
Specifically, suppose that while a task is waiting at the wait(access) call in
consumer, another task takes the last value from the shared buffer.
Fortunately, this cannot happen, because the wait(fullspots) reserves a
value in the buffer for the task that calls it by decrementing the fullspots
counter.

There is one crucial aspect of semaphores that thus far has not been
discussed. Recall the earlier description of the problem of competition
synchronization: Operations on shared data must not overlap. If a second
operation begins while an earlier operation is still in progress, the shared data
can become corrupted. A semaphore is itself a shared data object, so the
operations on semaphores are also susceptible to the same problem. It is
therefore essential that semaphore operations be uninterruptible. Many
computers have uninterruptible instructions that were designed specifically
for semaphore operations. If such instructions are not available, then using
semaphores to provide competition synchronization is a serious problem with
no simple solution.

13.3.4 Evaluation
Using semaphores to provide cooperation synchronization creates an unsafe
programming environment. There is no way to check statically for the
correctness of their use, which depends on the semantics of the program in
which they appear. In the buffer example, leaving out the wait(emptyspots)
statement of the producer task would result in buffer overflow. Leaving out
the wait(fullspots) statement of the consumer task would result in buffer
underflow. Leaving out either of the releases would result in deadlock. These
are cooperation synchronization failures.

The reliability problems that semaphores cause in providing cooperation
synchronization also arise when using them for competition synchronization.
Leaving out the wait(access) statement in either task can cause insecure
access to the buffer. Leaving out the release(access) statement in either
task results in deadlock. These are competition synchronization failures.
Noting the danger in using semaphores, Per Brinch Hansen (1973) wrote,
“The semaphore is an elegant synchronization tool for an ideal programmer
who never makes mistakes.” Unfortunately, ideal programmers are rare.

13.4 Monitors
One solution to some of the problems of semaphores in a concurrent
environment is to encapsulate shared data structures with their operations and
hide their representations—that is, to make shared data structures abstract
data types with some special restrictions. This solution can provide
competition synchronization without semaphores by transferring
responsibility for synchronization to the run-time system.

13.4.1 Introduction
When the concepts of data abstraction were being formulated, the people
involved in that effort applied the same concepts to shared data in concurrent
programming environments to produce monitors. According to Per Brinch
Hansen (Brinch Hansen, 1977, p. xvi), Edsger Dijkstra suggested in 1971 that
all synchronization operations on shared data be gathered into a single
program unit. Brinch Hansen (1973) formalized this concept in the
environment of operating systems. The following year, Hoare (1974) named
these structures monitors.

The first programming language to incorporate monitors was Concurrent
Pascal (Brinch Hansen, 1975). Modula (Wirth, 1977), CSP/k (Holt et al.,
1978), and Mesa (Mitchell et al., 1979) also provide monitors. Among
contemporary languages, monitors are supported by Ada, Java, and C#, all of
which are discussed later in this chapter.

13.4.2 Competition
Synchronization
One of the most important features of monitors is that shared data is resident
in the monitor rather than in any of the client units. The programmer does not

synchronize mutually exclusive access to shared data through the use of
semaphores or other mechanisms. Because the access mechanisms are part of
the monitor, implementation of a monitor can be made to guarantee
synchronized access by allowing only one access at a time. Calls to monitor
procedures are implicitly blocked and stored in a queue if the monitor is busy
at the time of the call.

13.4.3 Cooperation
Synchronization
Although mutually exclusive access to shared data is intrinsic with a monitor,
cooperation between processes is still the task of the programmer. In
particular, the programmer must guarantee that a shared buffer does not
experience underflow or overflow. Different languages provide different
ways of programming cooperation synchronization, all of which are related to
semaphores.

A figure depicting a program containing four tasks and a monitor that
provides synchronized access to a concurrently shared buffer is shown in
Figure 13.3. In this figure, the interface to the monitor is shown as the two
boxes labeled insert and remove (for the insertion and removal of data). The
monitor appears exactly like an abstract data type—a data structure with
limited access—which is what a monitor is.

Figure 13.3 A program using a
monitor to control access to a
shared buffer

Figure 13.3 Full Alternative Text

13.4.4 Evaluation
Monitors are a better way to provide competition synchronization than are
semaphores, primarily because of the problems of semaphores, as discussed
in Section 13.3. The cooperation synchronization is still a problem with
monitors, as will be clear when Ada and Java implementations of monitors
are discussed in the following sections.

Semaphores and monitors are equally powerful at expressing concurrency
control—semaphores can be used to implement monitors and monitors can be
used to implement semaphores.

Ada provides two ways to implement monitors. Ada 83 includes a general
tasking model that can be used to support monitors. Ada 95 added a cleaner
and more efficient way of constructing monitors, called protected objects.
Both of these approaches use message passing as a basic model for
supporting concurrency. The message-passing model allows concurrent units
to be distributed, which monitors do not allow. Message passing is described
in Section 13.5; Ada support for message passing is discussed in Section
13.6.

In Java, a monitor can be implemented in a class designed as an abstract data
type, with the shared data being the type. Accesses to objects of the class are
controlled by adding the synchronized modifier to the access methods. An
example of a monitor for the shared buffer written in Java is given in Section
13.7.4.

C# has a predefined class, Monitor, which is designed for implementing
monitors.

13.5 Message Passing
This section introduces the fundamental concept of message passing in
concurrency. Note that this concept of message passing is unrelated to the
message passing used in object-oriented programming to enact methods.

13.5.1 Introduction
The first efforts to design languages that provide the capability for message
passing among concurrent tasks were those of Brinch Hansen (1978) and
Hoare (1978). These pioneer developers of message passing also developed a
technique for handling the problem of what to do when multiple simultaneous
requests were made by other tasks to communicate with a given task. It was
decided that some form of nondeterminism was required to provide fairness
in choosing which among those requests would be taken first. This fairness
can be defined in various ways, but in general, it means that all requesters are
provided an equal chance of communicating with a given task (assuming that
every requester has the same priority). Nondeterministic constructs for
statement-level control, called guarded commands, were introduced by
Dijkstra (1975). Guarded commands are discussed in Chapter 8. Guarded
commands are the basis of the construct designed for controlling message
passing.

13.5.2 The Concept of
Synchronous Message Passing
Message passing can be either synchronous or asynchronous. Here, we
describe synchronous message passing. The basic concept of synchronous
message passing is that tasks are often busy, and when busy, they cannot be
interrupted by other units. Suppose task A and task B are both in execution,
and A wishes to send a message to B. Clearly, if B is busy, it is not desirable to

allow another task to interrupt it. That would disrupt B’s current processing.
Furthermore, messages usually cause associated processing in the receiver,
which might not be sensible if other processing is incomplete. The alternative
is to provide a linguistic mechanism that allows a task to specify to other
tasks when it is ready to receive messages. This approach is somewhat like an
executive who instructs his or her secretary to hold all incoming calls until
another activity, perhaps an important conversation, is completed. Later,
when the current conversation is complete, the executive tells the secretary
that he or she is now willing to talk to one of the callers who has been placed
on hold.

A task can be designed so that it can suspend its execution at some point,
either because it is idle or because it needs information from another unit
before it can continue. This is like a person who is waiting for an important
call. In some cases, there is nothing else to do but sit and wait. However, if
task A is waiting for a message at the time task B sends that message, the
message can be transmitted. This actual transmission of the message is called
a rendezvous. Note that a rendezvous can occur only if both the sender and
receiver want it to happen. During a rendezvous, the information of the
message can be transmitted in either or both directions.

Both cooperation and competition synchronization of tasks can be
conveniently handled with the message-passing model, as described in the
following section.

13.6 Ada Support for Concurrency
This section describes the support for concurrency provided by Ada. Ada 83
supports only synchronous message passing.

13.6.1 Fundamentals
The Ada design for tasks is partially based on the work of Brinch Hansen and
Hoare in that message passing is the design basis and nondeterminism is used
to choose among the tasks that have sent messages.

The full Ada tasking model is complex, and the following discussion of it is
limited. The focus here will be on the Ada version of the synchronous
message-passing mechanism.

Ada tasks can be more active than monitors. Monitors are passive entities that
provide management services for the shared data they store. They provide
their services, though only when those services are requested. When used to
manage shared data, Ada tasks can be thought of as managers that can reside
with the resource they manage. They have several mechanisms, some
deterministic and some nondeterministic, that allow them to choose among
competing requests for access to their resources.

There are two syntactic parts to an Ada task—a specification part and a body
part—both with the same name. The interface of a task is its entry points or
locations where it can accept messages from other tasks. Because these entry
points are part of its interface, it is natural that they be listed in the
specification part of a task. Because a rendezvous can involve an exchange of
information, messages can have parameters; therefore, task entry points must
also allow parameters, which must also be described in the specification part.
In appearance, a task specification is similar to the package specification for
an abstract data type.

As an example of an Ada task specification, consider the following code,

which includes a single entry point named Entry_1, which has an in-mode
parameter:

task Task_Example is

 entry Entry_1(Item : in Integer);

end Task_Example;

A task body must include some syntactic form of the entry points that
correspond to the entry clauses in that task’s specification part. In Ada, these
task body entry points are specified by clauses that are introduced by the
accept reserved word. An accept clause is defined as the range of
statements beginning with the accept reserved word and ending with the
matching end reserved word. accept clauses are themselves relatively
simple, but other constructs in which they can be embedded can make their
semantics complex. A simple accept clause has the following form:

accept entry_name (formal parameters) do

 ...

end entry_name;

The accept entry name matches the name in an entry clause in the
associated task specification part. The optional parameters provide the means
of communicating data between the caller and the called task. The statements
between the do and the end define the operations that take place during the
rendezvous. These statements are together called the accept clause body.
During the actual rendezvous, the sender task is suspended.

Whenever an accept clause receives a message that it is not willing to accept,
for whatever reason, the sender task must be suspended until the accept
clause in the receiver task is ready to accept the message. Of course, the
accept clause must also remember the sender tasks that have sent messages
that were not accepted. For this purpose, each accept clause in a task has a
queue associated with it that stores a list of other tasks that have
unsuccessfully attempted to communicate with it.

The following is the skeletal body of the task whose specification was given
previously:

task body Task_Example is

 begin

 loop

 accept Entry_1(Item : in Integer) do

 ...

 end Entry_1;

 end loop;

 end Task_Example;

The accept clause of this task body is the implementation of the entry
named Entry_1 in the task specification. If the execution of Task_Example
begins and reaches the Entry_1 accept clause before any other task sends a
message to Entry_1, Task_Example is suspended. If another task sends a
message to Entry_1 while Task_Example is suspended at its accept, a
rendezvous occurs and the accept clause body is executed. Then, because of
the loop, execution proceeds back to the accept. If no other task has sent a
message to Entry_1, execution is again suspended to wait for the next
message.

A rendezvous can occur in two basic ways in this simple example. First, the
receiver task, Task_Example, can be waiting for another task to send a
message to the Entry_1 entry. When the message is sent, the rendezvous
occurs. This is the situation described earlier. Second, the receiver task can be
busy with one rendezvous, or with some other processing not associated with
a rendezvous, when another task attempts to send a message to the same
entry. In that case, the sender is suspended until the receiver is free to accept
that message in a rendezvous. If several messages arrive while the receiver is
busy, the senders are queued to wait their turn for a rendezvous.

The two rendezvous just described are illustrated with the timeline diagrams
in Figure 13.4.

Figure 13.4 Two ways a
rendezvous with Task_Example
can occur

Figure 13.4 Full Alternative Text

Tasks need not have entry points. Such tasks are called actor tasks because
they do not wait for a rendezvous in order to do their work. Actor tasks can
rendezvous with other tasks by sending them messages. In contrast to actor

tasks, a task can have accept clauses but not have any code outside those
accept clauses, so it can only react to other tasks. Such a task is called a
server task.

An Ada task that sends a message to another task must know the entry name
in that task. However, the opposite is not true: A task entry need not know the
name of the task from which it will accept messages. This asymmetry is in
contrast to the design of the language known as CSP, or Communicating
Sequential Processes (Hoare, 1978). In CSP, which also uses the message--
passing model of concurrency, tasks accept messages only from explicitly
named tasks. The disadvantage of this is that libraries of tasks cannot be built
for general use.

The usual graphical method of describing a rendezvous in which task A sends
a message to task B is shown in Figure 13.5.

Figure 13.5 Graphical -

representation of a rendezvous
caused by a message sent from
task A to task B

Figure 13.5 Full Alternative Text

Tasks are declared in the declaration part of a package, subprogram, or block.
Statically created tasks2 begin executing at the same time as the statements in
the code to which that declarative part is attached. For example, a task
declared in a main program begins execution at the same time as the first
statement in the code body of the main program. Task termination, which is a
complex issue, is discussed later in this section.

2. Tasks can also be dynamically created, but such tasks are not covered here.

Tasks may have any number of entries. The order in which the associated
accept clauses appear in the task dictates the order in which messages can be
accepted. If a task has more than one entry point and requires them to be able
to receive messages in any order, the task uses a select statement to enclose
the entries. For example, suppose a task models the activities of a bank teller,
who must serve customers at a walk-up station inside the bank and also serve
customers at a drive-up window. The following skeletal teller task illustrates
a select construct:

task body Teller is

begin

 loop

 select

 accept Drive_Up(formal parameters) do

 ...

 end Drive_Up;

 ...

 or

 accept Walk_Up(formal parameters) do

 ...

 end Walk_Up;

 ...

 end select;

 end loop;

end Teller;

In this task, there are two accept clauses, Walk_Up and Drive_Up, each of
which has an associated queue. The action of the select, when it is executed,
is to examine the queues associated with the two accept clauses. If one of the
queues is empty, but the other contains at least one waiting message
(customer), the accept clause associated with the waiting message or
messages has a rendezvous with the task that sent the first message that was
received. If both accept clauses have empty queues, the select waits until
one of the entries is called. If both accept clauses have nonempty queues,
one of the accept clauses is nondeterministically chosen to have a
rendezvous with one of its callers. The loop forces the select statement to be
executed repeatedly, forever.

The end of the accept clause marks the end of the code that assigns or
references the formal parameters of the accept clause. The code, if there is
any, between an accept clause and the next or (or the end select, if the
accept clause is the last one in the select) is called the extended accept
clause. The extended accept clause is executed only after the associated
(immediately preceding) accept clause is executed. This execution of the
extended accept clause is not part of the rendezvous and can take place
concurrently with the execution of the calling task. The sender is suspended
during the rendezvous, but it is put back in the ready queue when the end of
the accept clause is reached. If an accept clause has no formal parameters,
the do-end is not required, and the accept clause can consist entirely of an
extended accept clause. Such an accept clause would be used exclusively
for synchronization. Extended accept clauses are illustrated in the Buf_Task
task in Section 13.6.3.

13.6.2 Cooperation
Synchronization
Each accept clause can have a guard attached, in the form of a when clause,

that can delay rendezvous. For example,

when not Full(Buffer) =>

 accept Deposit(New_Value) do

 ...

 end

An accept clause with a when clause is either open or closed. If the Boolean
expression of the when clause is currently true, that accept clause is called
open; if the Boolean expression is false, the accept clause is called closed.
An accept clause that does not have a guard is always open. An open accept
clause is available for rendezvous; a closed accept clause cannot rendezvous.

Suppose there are several guarded accept clauses in a select clause. Such a
select clause is usually placed in an infinite loop. The loop causes the
select clause to be executed repeatedly, with each when clause evaluated on
each repetition. Each repetition causes a list of open accept clauses to be
constructed. If exactly one of the open clauses has a nonempty queue, a
message from that queue is taken and a rendezvous takes place. If more than
one of the open accept clauses has nonempty queues, one queue is chosen
nondeterministically, a message is taken from that queue, and a rendezvous
takes place. If the queues of all open clauses are empty, the task waits for a
message to arrive at one of those accept clauses, at which time a rendezvous
will occur. If a select is executed and every accept clause is closed, a run-
time exception or error results. This possibility can be avoided either by
making sure one of the when clauses is always true or by adding an else
clause in the select. An else clause can include any sequence of statements,
except an accept clause.

A select clause may have a special statement, terminate, that is selected
only when it is open and no other accept clause is open. A terminate clause,
when selected, means that the task is finished with its job but is not yet
terminated. Task termination is discussed later in this section.

13.6.3 Competition
Synchronization

The features described so far provide for cooperation synchronization and
communication among tasks. Next, we discuss how mutually exclusive
access to shared data structures can be enforced in Ada.

If access to a data structure is to be controlled by a task, then mutually
exclusive access can be achieved by declaring the data structure within a task.
The semantics of task execution usually guarantees mutually exclusive access
to the structure, because only one accept clause in the task can be active at a
given time. The only exceptions to this occur when tasks are nested in
procedures or other tasks. For example, if a task that defines a shared data
structure has a nested task, that nested task can also access the shared
structure, which could destroy the integrity of the data. Thus, tasks that are
meant to control access to a shared data structure should not define tasks.

The following is an example of an Ada task that implements a monitor for a
buffer. The buffer behaves very much like the buffer in Section 13.3, in
which synchronization is controlled with semaphores.

task Buf_Task is

 entry Deposit(Item : in Integer);

 entry Fetch(Item : out Integer);

end Buf_Task;

task body Buf_Task is

 Bufsize : constant Integer := 100;

 Buf : array (1..Bufsize) of Integer;

 Filled : Integer range 0..Bufsize := 0;

 Next_In,

 Next_Out : Integer range 1..Bufsize := 1;

begin

 loop

 select

 when Filled < Bufsize =>

 accept Deposit(Item : in Integer) do

 Buf(Next_In) := Item;

 end Deposit;

 Next_In := (Next_In mod Bufsize) + 1;

 Filled := Filled + 1;

 or

 when Filled > 0 =>

 accept Fetch(Item : out Integer) do

 Item := Buf(Next_Out);

 end Fetch;

 Next_Out := (Next_Out mod Bufsize) + 1;

 Filled := Filled - 1;

 end select;

 end loop;

end Buf_Task;

In this example, both accept clauses are extended. These extended clauses
can be executed concurrently with the tasks that called the associated accept
clauses.

The tasks for a producer and a consumer that could use Buf_Task have the
following form:

task Producer;

task Consumer;

task body Producer is

 New_Value : Integer;

begin

 loop

 -- produce New_Value --

 Buf_Task.Deposit(New_Value);

 end loop;

end Producer;

task body Consumer is

 Stored_Value : Integer;

begin

 loop

 Buf_Task.Fetch(Stored_Value);

 -- consume Stored_Value --

 end loop;

end Consumer;

13.6.4 Protected Objects
As we have seen, access to shared data can be controlled by enclosing the
data in a task and allowing access only through task entries, which implicitly
provide competition synchronization. One problem with this method is that it
is difficult to implement the rendezvous mechanism efficiently. Ada 95
protected objects provide an alternative method of providing competition
synchronization that need not involve the rendezvous mechanism.

A protected object is not a task; it is more like a monitor, as described in

Section 13.4. Protected objects can be accessed either by protected
subprograms or by entries that are syntactically similar to the accept clauses
in tasks.3 The protected subprograms can be either protected procedures,
which provide mutually exclusive read-write access to the data of the
protected object, or protected functions, which provide concurrent read-only
access to that data. Entries differ from protected subprograms in that they can
have guards.

3. Entries in protected object bodies use the reserved word entry, rather than
the accept used in task bodies.

Within the body of a protected procedure, the current instance of the
enclosing protected unit is defined to be a variable; within the body of a
protected function, the current instance of the enclosing protected unit is
defined to be a constant, which allows concurrent read-only access.

Entry calls to a protected object provide synchronous communication with
one or more tasks using the same protected object. These entry calls provide
access similar to that provided to the data enclosed in a task.

The buffer problem that is solved with a task in the previous subsection can
be more simply solved with a protected object. Note that this example does
not include protected subprograms.

protected Buffer is

 entry Deposit(Item : in Integer);

 entry Fetch(Item : out Integer);

private

 Bufsize : constant Integer := 100;

 Buf : array (1..Bufsize) of Integer;

 Filled : Integer range 0..Bufsize := 0;

 Next_In,

 Next_Out : Integer range 1..Bufsize := 1;

 end Buffer;

protected body Buffer is

 entry Deposit(Item : in Integer)

 when Filled < Bufsize is

 begin

 Buf(Next_In) := Item;

 Next_In := (Next_In mod Bufsize) + 1;

 Filled := Filled + 1;

 end Deposit;

 entry Fetch(Item : out Integer) when Filled > 0 is

 begin Item := Buf(Next_Out);

 Next_Out := (Next_Out mod Bufsize) + 1;

 Filled := Filled - 1;

 end Fetch;

end Buffer;

13.6.5 Evaluation
Using the general message-passing model of concurrency to construct
monitors is like using Ada packages to support abstract data types—both are
tools that are more general than is necessary. Protected objects are a better
way to provide synchronized access to shared data.

In the absence of distributed processors with independent memories, the
choice between monitors and tasks with message passing as a means of
implementing synchronized access to shared data in a concurrent
environment is somewhat a matter of taste. However, in the case of Ada,
protected objects are clearly better than tasks for supporting concurrent
access to shared data. Not only is the code simpler; it is also much more
efficient.

For distributed systems, message passing is a better model for concurrency,
because it naturally supports the concept of separate processes executing in
parallel on separate processors.

13.7 Java Threads
The concurrent units in Java are methods named run, whose code can be in
concurrent execution with other such methods (of other objects) and with the
main method. The process in which the run methods execute is called a
thread. Java’s threads are lightweight tasks, which means that they all run in
the same address space. This is different from Ada tasks, which are
heavyweight threads (they run in their own address spaces).4 One important
result of this difference is that threads require far less overhead than Ada’s
tasks.

4. Actually, although Ada tasks behave as if they were heavyweight tasks, in
some cases, they are now implemented as threads. This is sometimes done
using libraries, such as the IBM Rational Apex Native POSIX Threading
Library.

There are two ways to define a class with a run method. One of these is to
define a subclass of the predefined class Thread and override its run method.
However, if the new subclass has a necessary natural parent, then defining it
as a subclass of Thread obviously will not work. In these situations, we
define a subclass that inherits from its natural parent and implements the
Runnable interface. Runnable provides the run method protocol, so any class
that implements Runnable must define run. An object of the class that
implements Runnable is passed to the Thread constructor. So, this approach
still requires a Thread object, as will be seen in the example in Section
13.7.5.

In Ada, tasks can be either actors or servers and tasks communicate with each
other through accept clauses. Java run methods are all actors and there is no
mechanism for them to communicate with each other, except for the join
method (see Section 13.7.1) and through shared data.

Java threads is a complex topic—this section only provides an introduction to
its simplest but most useful parts.

13.7.1 The Thread Class
The Thread class is not the natural parent of any other classes. It provides
some services for its subclasses, but it is not related in any natural way to
their computational purposes. Thread is the only class available for creating
concurrent Java programs. As previously stated, Section 13.7.5 will briefly
discuss the use of the Runnable interface.

The Thread class includes five constructors and a collection of methods and
constants. The run method, which describes the actions of the thread, is
always overridden by subclasses of Thread. The start method of Thread
starts its thread as a concurrent unit by calling its run method.5 The call to
start is unusual in that control returns immediately to the caller, which then
continues its execution, in parallel with the newly started run method.

5. Calling the run method directly does not always work, because
initialization that is sometimes required is included in the start method.

Following is a skeletal subclass of Thread and a code fragment that creates an
object of the subclass and starts the run method’s execution in the new
thread:

class MyThread extends Thread {

 public void run() { . . . }

}

. . .

Thread myTh = new MyThread();

myTh.start();

When a Java application program begins execution, a new thread is created
(in which the main method will run) and main is called. Therefore, all Java
application programs run in threads.

When a program has multiple threads, a scheduler must determine which
thread or threads will run at any given time. In many cases, there is only a
single processor available, so only one thread actually runs at a time. It is
difficult to give a precise description of how the Java scheduler works,
because the different implementations (Solaris, Windows, and so on) do not

necessarily schedule threads in exactly the same way. Typically, however, the
scheduler gives equal-size time slices to each ready thread in round-robin
fashion, assuming all of these threads have the same priority. Section 13.7.2
describes how different priorities can be given to different threads.

The Thread class provides several methods for controlling the execution of
threads. The yield method, which takes no parameters, is a request from the
running thread to surrender the processor voluntarily.6 The thread is put
immediately in the task-ready queue, making it ready to run. The scheduler
then chooses the highest-priority thread from the task-ready queue. If there
are no other ready threads with priority higher than the one that just yielded
the processor, it may also be the next thread to get the processor.

6. The yield method is actually defined to be a “suggestion” to the scheduler,
which it may or may not follow (though it usually does).

The sleep method has a single parameter, which is the integer number of
milliseconds that the caller of sleep wants the thread to be blocked. After the
specified number of milliseconds has passed, the thread will be put in the
task-ready queue. Because there is no way to know how long a thread will be
in the task-ready queue before it runs, the parameter to sleep is the minimum
amount of time the thread will not be in execution. The sleep method can
throw an InterruptedException, which must be handled in the method that
calls sleep. Exceptions are described in detail in Chapter 14.

The join method is used to force a method to delay its execution until the
run method of another thread has completed its execution. join is used when
the processing of a method cannot continue until the work of the other thread
is complete. For example, we might have the following run method:

public void run() {

 . . .

 Thread myTh = new Thread();

 myTh.start();

 // do part of the computation of this thread

 myTh.join(); // Wait for myTh to complete

 // do the rest of the computation of this thread

}

The join method puts the thread that calls it in the blocked state, which can

be ended only by the completion of the thread on which join was called. If
that thread happens to be blocked, there is the possibility of deadlock. To
prevent this, join can be called with a parameter, which is the time limit in
milliseconds of how long the calling thread will wait for the called thread to
complete. For example, the following call to join will cause the calling
thread to wait two seconds for myTh to complete. If it has not completed its
execution after two seconds have passed, the calling thread is put back in the
ready queue, which means that it will continue its execution as soon as it is
scheduled.

myTh.join(2000);

Early versions of Java included three more Thread methods: stop, suspend,
and resume. All three of these have been deprecated because of safety
problems. The stop method is sometimes overridden with a simple method
that destroys the thread by setting its reference variable to null.

The normal way a run method ends its execution is by reaching the end of its
code. However, in many cases, threads run until told to terminate. Regarding
this, there is the question of how a thread can determine whether it should
continue or end. The interrupt method is one way to communicate to a
thread that it should stop. This method does not stop the thread; rather, it
sends the thread a message that actually just sets a bit in the thread object,
which can be checked by the thread. The bit is checked with the predicate
method, isInterrupted. This is not a complete solution, because the thread
one is attempting to interrupt may be sleeping or waiting at the time the
interrupt method is called, which means that it will not be checking to see
if it has been interrupted. For these situations, the interrupt method also
throws an exception, InterruptedException, which also causes the thread to
awaken (from sleeping or waiting). So, a thread can periodically check to see
whether it has been interrupted and if so, whether it can terminate. The thread
cannot miss the interrupt, because if it was asleep or waiting when the
interrupt occurred, it will be awakened by the interrupt. Actually, there are
more details to the actions and uses of interrupt, but they are not covered
here (Arnold et al., 2006).

13.7.2 Priorities
The priorities of threads need not all be the same. A thread’s default priority
initially is the same as the thread that created it. If main creates a thread, its
default priority is the constant NORM_PRIORITY, which is usually 5. Thread
defines two other priority constants, MAX_PRIORITY and MIN_PRIORITY, whose
values are usually 10 and 1, respectively.7 The priority of a thread can be
changed with the method setPriority. The new priority can be any of the
predefined constants or any other number between MIN_PRIORITY and
MAX_PRIORITY. The getPriority method returns the current priority of a
thread. The priority constants are defined in Thread.

7. The number of priorities is implementation dependent, so there may be
fewer or more than 10 levels in some implementations.

When there are threads with different priorities, the scheduler’s behavior is
controlled by those priorities. When the executing thread is blocked or killed
or the time slice for it expires, the scheduler chooses the thread from the task-
ready queue that has the highest priority. A thread with lower priority will
run only if one of higher priority is not in the task-ready queue when the
opportunity arises.

13.7.3 Semaphores
The java.util.concurrent.Semaphore package defines the Semaphore
class. Objects of this class implement counting semaphores. A counting
semaphore has a counter, but no queue for storing thread descriptors. The
Semaphore class defines two methods, acquire and release, which
correspond to the wait and release operations described in Section 13.3.

The basic constructor for Semaphore takes one integer parameter, which
initializes the semaphore’s counter. For example, the following could be used
to initialize the fullspots and emptyspots semaphores for the buffer
example of Section 13.3.2:

fullspots = new Semaphore(0);

emptyspots = new Semaphore(BUFLEN);

The deposit operation of the producer method would appear as follows:

emptyspots.acquire();

deposit(value);

fullspots.release();

Likewise, the fetch operation of the consumer method would appear as
follows:

fullspots.acquire();

fetch(value);

emptyspots.release();

The deposit and fetch methods could use the approach used in Section
13.7.4 to provide the competition synchronization required for the accesses to
the buffer.

13.7.4 Competition
Synchronization
Java methods (but not constructors) can be specified to be synchronized. A
synchronized method called through a specific object must complete its
execution before any other synchronized method can run on that object.
Competition synchronization on an object is implemented by specifying that
the methods that access shared data are synchronized. The synchronized
mechanism is implemented as follows: Every Java object has a lock.
Synchronized methods must acquire the lock of the object before they are
allowed to execute, which prevents other synchronized methods from
executing on the object during that time. A synchronized method releases the
lock on the object on which it runs when it completes its execution, even if
that completion is due to an exception. Consider the following skeletal class
definition:

class ManageBuf {

 private int [100] buf;

 . . .

 public synchronized void deposit(int item) { . . . }

 public synchronized int fetch() { . . . }

 . . .

}

The two methods defined in ManageBuf are both defined to be synchronized,
which prevents them from interfering with each other while executing on the
same object, when they are called by separate threads.

An object whose methods are all synchronized is effectively a monitor. Note
that an object may have one or more synchronized methods, as well as one or
more unsynchronized methods. An unsynchronized method can run on an
object at anytime, even during the execution of a synchronized method.

In some cases, the number of statements that deal with the shared data
structure is significantly less than the number of other statements in the
method in which it resides. In these cases, it is better to synchronize the code
segment that changes the shared data structure rather than the whole method.
This can be done with a so-called synchronized statement, whose general
form is as follows:

synchronized (expression){

 statements

}

The expression in this code must evaluate to an object and the statement can
be a single statement or a compound statement. The object is locked during
execution of the statement or compound statement, so the statement or
compound statement is executed exactly as if it were the body of a
synchronized method.

An object that has synchronized methods defined for it must have a queue
associated with it that stores the synchronized methods that have attempted to
execute on it while it was being operated upon by another synchronized
method. Actually, every object has a queue called the intrinsic condition
queue. These queues are implicitly supplied. When a synchronized method
completes its execution on an object, a method that is waiting in the object’s
intrinsic condition queue, if there is such a method, is put in the task-ready
queue.

13.7.5 Cooperation
Synchronization
Cooperation synchronization in Java is implemented with the wait, notify,
and notifyAll methods, all of which are defined in Object, the root class of
all Java classes. All classes except Object inherit these methods. Every
object has a wait list of all of the threads that have called wait on the object.
The notify method is called to tell one waiting thread that an event that it
may have been waiting for has occurred. The specific thread that is awakened
by notify cannot be determined, because the Java Virtual Machine (JVM)
chooses one from the wait list of the thread object at random. Because of this,
along with the fact that the waiting threads may be waiting for different
conditions, the notifyAll method is often used, rather than notify. The
notifyAll method awakens all of the threads on the object’s wait list by
putting them in the task-ready queue.

The methods wait, notify, and notifyAll can be called only from within a
synchronized method, because they use the lock placed on an object by such
a method. The call to wait is always put in a while loop that is controlled by
the condition for which the method is waiting. The while loop is necessary
because the notify or notifyAll that awakened the thread may have been
called because of a change in a condition other than the one for which the
thread was waiting. If it was a call to notifyAll, there is even a smaller
chance that the condition being waited for is now true. Because of the use of
notifyAll, some other thread may have changed the condition to false since
it was last tested.

The wait method can throw InterruptedException, which is a descendant
of Exception. Java’s exception handling is discussed in Chapter 14.
Therefore, any code that calls wait must also catch InterruptedException.
Assuming the condition being waited for is called theCondition, the
conventional way to use wait is as follows:

try {

 while (!theCondition)

 wait();

 -- Do whatever is needed after theCondition comes true

}

catch(InterruptedException myProblem) { . . . }

The following program implements a circular queue for storing int values. It
illustrates both cooperation and competition synchronization.

// Queue

// This class implements a circular queue for storing int

// values. It includes a constructor for allocating and

// initializing the queue to a specified size. It has

// synchronized methods for inserting values into and

// removing values from the queue.

class Queue {

 private int [] que;

 private int nextIn,

 nextOut,

 filled,

 queSize;

 public Queue(int size) {

 que = new int [size];

 filled = 0;

 nextIn = 1;

 nextOut = 1;

 queSize = size;

 } //** end of Queue constructor

 public synchronized void deposit (int item)

 throws InterruptedException {

 try {

 while (filled == queSize)

 wait();

 que [nextIn] = item;

 nextIn = (nextIn % queSize) + 1;

 filled++;

 notifyAll();

 } //** end of try clause

 catch(InterruptedException e) {}

 } //** end of deposit method

 public synchronized int fetch()

 throws InterruptedException {

 int item = 0;

 try {

 while (filled == 0)

 wait();

 item = que [nextOut];

 nextOut = (nextOut % queSize) + 1;

 filled--;

 notifyAll();

 } //** end of try clause

 catch(InterruptedException e) {}

 return item;

 } //** end of fetch method

} //** end of Queue class

Notice that the exception handler (catch) does nothing here.

Classes to define producer and consumer objects that could use the Queue
class can be defined as follows:

class Producer extends Thread {

 private Queue buffer;

 public Producer(Queue que) {

 buffer = que;

 }

 public void run() {

 int new_item;

 while (true) {

 //-- Create a new_item

 buffer.deposit(new_item);

 }

 }

}

class Consumer extends Thread {

 private Queue buffer;

 public Consumer(Queue que) {

 buffer = que;

 }

 public void run() {

 int stored_item;

 while (true) {

 stored_item = buffer.fetch();

 //-- Consume the stored_item

 }

 }

}

The following code creates a Queue object, and a Producer and a Consumer
object, both attached to the Queue object, and starts their execution:

Queue buff1 = new Queue(100);

Producer producer1 = new Producer(buff1);

Consumer consumer1 = new Consumer(buff1);

producer1.start();

consumer1.start();

We could define one or both of the Producer and the Consumer as -
implementations of the Runnable interface rather than as subclasses of
Thread. The only difference is in the first line, which would now appear as
follows:

class Producer implements Runnable { . . . }

To create and run an object of such a class, it is still necessary to create a
Thread object that is connected to the object. This is illustrated in the
following code:

Producer producer1 = new Producer(buff1);

Thread producerThread = new Thread(producer1);

producerThread.start();

Note that the buffer object is passed to the Producer constructor and the
Producer object is passed to the Thread constructor.

13.7.6 Nonblocking
Synchronization
Java includes some classes for controlling accesses to certain variables that
do not include blocking or waiting. The java.util.concurrent.atomic
package defines classes that allow certain nonblocking synchronized access
to int, long, and boolean primitive type variables, as well as references and
arrays. For example, the AtomicInteger class defines getter and setter
methods, as well as methods for add, increment, and decrement operations.
These operations are all atomic; that is, they cannot be interrupted, so locks
are not required to guarantee the integrity of the values of the affected
variables in a multithreaded program. This is fine-grained synchronization—
just a single variable. Most machines now have atomic instructions for these
operations on int and long types, so they are often easy to implement
(implicit locks are not required).

The advantage of nonblocking synchronization is efficiency. A nonblocking
access that does not occur during contention will be no slower, and usually
faster than one that uses synchronized. A nonblocking access that occurs
during contention definitely will be faster than one that uses synchronized,
because the latter will require suspension and rescheduling of threads.

13.7.7 Explicit Locks
Java 5.0 introduced explicit locks as an alternative to synchronized method
and blocks, which provide implicit locks. The Lock interface declares the
lock, unlock, and tryLock methods. The predefined ReentrantLock class
implements the Lock interface. To lock a block of code, the following idiom
can be used:

Lock lock = new ReentrantLock();

. . .

Lock.lock();

try {

 // The code that accesses the shared data

} finally {

 Lock.unlock();

}

This skeletal code creates a Lock object and calls the lock method on the
Lock object. Then, it uses a try block to enclose the critical code. The call to
unlock is in a finally clause to guarantee the lock is released, regardless of
what happens in the try block.

There are at least two situations in which explicit locks are used rather than
implicit locks: First, if the application needs to try to acquire a lock but
cannot wait forever for it, the Lock interface includes a method, tryLock, that
takes a time limit parameter. If the lock is not acquired within the time limit,
execution continues at the statement following the call to tryLock. Second,
explicit locks are used when it is not convenient to have the lock-unlock pairs
block structured. Implicit locks are always unlocked at the end of the
compound statement in which they are locked. Explicit locks can be unlocked
anywhere in the code, regardless of the structure of the program.

One danger of using explicit locks (and is not the case with using implicit
locks) is that of omitting the unlock. Implicit locks are implicitly unlocked at
the end of the locked block. However, explicit locks stay locked until
explicitly unlocked, which can potentially be never.

As stated previously, each object has an intrinsic condition queue, which
stores threads waiting for a condition on the object. The wait, notify, and
notifyAll methods are the API for an intrinsic condition queue. Because
each object can have just one condition queue, a queue may have threads in it
waiting for different conditions. For example, the queue for our buffer
example Queue can have threads waiting for either of two conditions (filled
== queSize or filled == 0). That is the reason why the buffer uses
notifyAll. (If it used notify, only one thread would be awakened, and it
might be one that was waiting for a different condition than the one that
actually became true.) However, notifyAll is expensive to use, because it
awakens all threads waiting on an object and all must check their condition to
determine which one runs. Furthermore, to check their condition, they must
first acquire the lock on the object.

An alternative to using the intrinsic condition queue is the Condition
interface, which uses a condition queue associated with a Lock object. It also
declares alternatives to wait, notify, and notifyAll named await, signal,
and signalAll. There can be any number of Condition objects with one
Lock object. With Condition, signal, rather than signalAll, can be used,
which is both easier to understand and more efficient, in part because it
results in fewer context switches.

13.7.8 Evaluation
Java’s support for concurrency is relatively simple but effective. All Java run
methods are actor tasks and there is no mechanism for communication,
except through shared data, as there is among Ada tasks. Because they are
heavyweight threads, Ada’s tasks easily can be distributed to different
processors; in particular, different processors with different memories, which
could be on different computers in different places. These kinds of systems
are not possible with Java’s threads.

13.8 C# Threads
Although C#’s threads are loosely based on those of Java, there are
significant differences. Following is a brief overview of C#’s threads.

13.8.1 Basic Thread Operations
Rather than just methods named run, as in Java, any C# method can run in its
own thread. When C# threads are created, they are associated with an
instance of a predefined delegate, ThreadStart. When execution of a thread
is started, its delegate has the address of the method it is supposed to run. So,
execution of a thread is controlled through its associated delegate.

A C# thread is created by creating a Thread object. The Thread constructor
must be sent an instantiation of ThreadStart, to which must be sent the name
of the method that is to run in the thread. For example, we might have

public void MyRun1() { . . . }

. . .

Thread myThread = new Thread(new ThreadStart(MyRun1));

In this example, we create a thread named myThread, whose delegate points
to the method MyRun1. So, when the thread begins execution it calls the
method whose address is in its delegate. In this example, myThread is the
delegate and MyRun1 is the method.

Unlike Java, in which all threads are actors, C# has two categories of threads:
actors and servers. Actor threads are not called specifically; rather, they are
started. Also, the methods that they execute do not take parameters or return
values. As with Java, creating a thread does not start its concurrent execution.
For actor threads, execution must be requested through a method of the
Thread class, in this case named Start, as in

myThread.Start();

As in Java, a thread can be made to wait for another thread to finish its
execution before continuing, using the similarly named method Join. For
example, suppose thread A has the following call:

B.Join();

Thread A will be blocked until thread B exits.

The Join method can take an int parameter, which specifies a time limit in
milliseconds that the caller will wait for the thread to finish.

A thread can be suspended for a specified amount of time with Sleep, which
is a public static method of Thread. The parameter to Sleep is an integer
number of milliseconds. Unlike its Java relative, C#’s Sleep does not raise
any exceptions, so it need not be called in a try block.

A thread can be terminated with the Abort method, although it does not
literally kill the thread. Instead, it throws ThreadAbortException, which the
thread can catch. When the thread catches this exception, it usually
deallocates any resources it allocated, and then ends (by getting to the end of
its code).

A server thread runs only when called through its delegate. These threads are
called servers because they provide some service when it is requested. Server
threads are more interesting than actor threads because they usually interact
with other threads and often must have their execution synchronized with
other threads.

Recall from Chapter 9, that any C# method can be called indirectly through a
delegate. Such calls can be made by treating the delegate object as if it were
the name of the method. This was actually an abbreviation for a call to a
delegate method named Invoke. So, if a delegate object’s name is chgfun1
and the method it references takes one int parameter, we could call that
method with either of the following statements:

chgfun1(7);

chgfun1.Invoke(7);

These calls are synchronous; that is, when the method is called, the caller is

blocked until the method completes its execution. C# also supports
asynchronous calls to methods that execute in threads. When a thread is
called asynchronously, the called thread and the caller thread execute
concurrently, because the caller is not blocked during the execution of the
called thread.

A thread is called asynchronously through the delegate instance method
BeginInvoke, to which are sent the parameters for the method of the
delegate, along with two additional parameters, one of type AsyncCallback
and the other of type object. BeginInvoke returns an object that implements
the IAsyncResult interface. The delegate class also defines the EndInvoke
instance method, which takes one parameter of type IAsyncResult and
returns the same type that is returned by the method encapsulated in the
delegate object. To call a thread asynchronously, we call it with
BeginInvoke. For now, we will use null for the last two parameters. Suppose
we have the following method declaration and thread definition:

public float MyMethod1(int x);

. . .

Thread myThread = new Thread(new ThreadStart(MyMethod1));

The following statement calls MyMethod asynchronously:

IAsyncResult result = myThread.BeginInvoke(10, null, null);

The return value of the called thread is fetched with EndInvoke method,
which takes as its parameter the object (of type IAsyncResult) returned by
BeginInvoke. EndInvoke returns the return value of the called thread. For
example, to get the float result of the call to MyMethod, we would use the
following statement:

float returnValue = EndInvoke(result);

If the caller must continue some work while the called thread executes, it
must have a way to determine when the called thread is finished. For this, the
IAsyncResult interface defines the IsCompleted property. While the called
thread is executing, the caller can include code it can execute in a while loop
that depends on IsCompleted. For example, we could have the following:

IAsyncResult result = myThread.BeginInvoke(10, null, null);

while(!result.IsCompleted) {

 // Do some computation

}

This is an effective way to accomplish something in the calling thread while
waiting for the called thread to complete its work. However, if the amount of
computation in the while loop is relatively small, this is an inefficient way to
use that time (because of the time required to test IsCompleted). An
alternative is to give the called thread a delegate with the address of a
callback method and have it call that method when it is finished. The delegate
is sent as the second last parameter to BeginInvoke. For example, consider
the following call to BeginInvoke:

IAsyncResult result = myThread.BeginInvoke(10,

 new AsyncCallback(MyMethodComplete), null);

The callback method is defined in the caller. Such methods often simply set a
Boolean variable, for example named isDone, to true. No matter how long
the called thread takes, the callback method is called only once.

13.8.2 Synchronizing Threads
There are three different ways that C# threads can be synchronized: the
Interlocked class, the Monitor class from the System.Threading
namespace, and the lock statement. Each of these mechanisms is designed
for a specific need. The Interlocked class is used when the only operations
that need to be synchronized are the incrementing and decrementing of an
integer. These operations are done atomically with the two methods of
Interlocked, Increment and Decrement, both of which take a reference to
an integer as the parameter. For example, to increment a shared integer
named counter in a thread, we could use

Interlocked.Increment(ref counter);

The lock statement is used to mark a critical section of code in a thread. The
syntax of this is as follows:

lock(token) {

 // The critical section

}

If the code to be synchronized is in a private instance method, the token is the
current object, so this is used as the token for lock. If the code to be
synchronized is in a public instance method, a new instance of object is
created (in the class of the method with the code to be synchronized) and a
reference to it is used as the token for lock.

The Monitor class defines five methods, Enter, Wait, Pulse, PulseAll, and
Exit, which can be used to provide more control of the synchronization of
threads. The Enter method, which takes an object reference as its parameter,
marks the beginning of synchronization of the thread on that object. The Wait
method suspends execution of the thread and instructs the Common
Language Runtime (CLR) of .NET that this thread wants to resume its
execution the next time there is an opportunity. The Pulse method, which
also takes an object reference as its parameter, notifies one waiting thread
that it now has a chance to run again. PulseAll is similar to Java’s
notifyAll. Threads that have been waiting are run in the order in which they
called the Wait method. The Exit method ends the critical section of the
thread.

The lock statement is compiled into a monitor, so lock is shorthand for a
monitor. A monitor is used when the additional control (for example, with
Wait and PulseAll) is needed.

.NET 4.0 added a collection of generic concurrent data structures, including
structures for queues, stacks, and bags.8 These new classes are thread safe,
meaning that they can be used in a multithreaded program without requiring
the programmer to worry about competition synchronization. The
System.Collections.Concurrent namespace defines these classes, whose
names are ConcurrentQueue<T>, ConcurrentStack<T>, and
ConcurrentBag<T>. So, our producer-consumer queue program could be
written in C# using a ConcurrentQueue<T> for the data structure and there
would be no need to program the competition synchronization for it. Because
these concurrent collections are defined in .NET, they are also available in all
of the other .NET languages.

8. Bags are unordered collections of objects.

13.8.3 Evaluation
C#’s threads are a slight improvement over those of its predecessor, Java. For
one thing, any method can be run in its own thread. Recall that in Java, only
methods named run can run in their own threads. Java supports actor threads
only, but C# supports both actor and server threads. Thread termination is
also cleaner with C# (calling a method (Abort) is more elegant than setting
the thread’s pointer to null). Synchronization of thread execution is more
sophisticated in C#, because C# has several different mechanisms, each for a
specific application. Java’s Lock variables are similar to the locks of C#,
except that in Java, a lock must be explicitly unlocked with a call to unlock.
This provides one more way to create erroneous code. C# threads, like those
of Java, are lightweight, so although they are more efficient, they cannot be
as versatile as Ada’s tasks. The availability of the concurrent collection
classes is another advantage C# has over the other nonfunctional languages
discussed in this chapter.

13.9 Concurrency in Functional
Languages
This section provides a brief overview of support for concurrency in several
functional programming languages.

13.9.1 Multi-LISP
Multi-LISP (Halstead, 1985) is an extension to Scheme that allows the
programmer to specify program parts that can be executed concurrently.
These forms of concurrency are implicit; the programmer is simply telling the
compiler (or interpreter) some parts of the program that can be run
concurrently.

One of the ways a programmer can tell the system about possible
concurrency is the pcall construct. If a function call is embedded in a pcall
construct, the parameters to the function can be evaluated concurrently. For
example, consider the following pcall construct:

(pcall f a b c d)

The function is f, with parameters a, b, c, and d. The effect of pcall is that
the parameters of the function can be evaluated concurrently (any or all of the
parameters could be complicated expressions). Unfortunately, whether this
process can be safely used, that is, without affecting the semantics of the
function evaluation, is the responsibility of the programmer. This is actually a
simple matter if the language does not allow side effects or if the programmer
designed the function not to have side effects or at least to have limited ones.
However, Multi-LISP does allow some side effects. If the function was not
written to avoid side effects, it may be difficult for the programmer to
determine whether pcall can be safely used.

The future construct of Multi-LISP is a more interesting and potentially

more productive source of concurrency. As with pcall, a function call is
wrapped in a future construct. Such a function is evaluated in a separate
thread, with the parent thread continuing its execution. The parent thread
continues until it needs to use the return value of the function. If the function
has not completed its execution when its result is needed, the parent thread
waits until it has before it continues.

If a function has two or more parameters, they can also be wrapped in future
constructs, in which case their evaluations can be done concurrently in
separate threads.

These are the only additions to Scheme in Multi-LISP.

13.9.2 Concurrent ML
Concurrent ML (CML) is an extension to ML that includes a form of threads
and a form of synchronous message passing to support concurrency. The
language is completely described in Reppy (1999).

A thread is created in CML with the spawn primitive, which takes the
function as its parameter. In many cases, the function is specified as an
anonymous function. As soon as the thread is created, the function begins its
execution in the new thread. The return value of the function is discarded.
The effects of the function are either output produced or through
communications with other threads. Either the parent thread (the one that
spawned the new thread) or the child thread (the new one) could terminate
first and it would not affect the execution of the other.

Channels provide the means of communicating between threads. A channel is
created with the channel constructor. For example, the following statement
creates a channel of arbitrary type named mychannel:

let val mychannel = channel()

The two primary operations (functions) on channels are for sending (send)
and receiving (recv) messages. The type of the message is inferred from the
send operation. For example, the following function call sends the integer

value 7, and therefore the type of the channel is then inferred to be integer:

send(mychannel, 7)

The recv function names the channel as its parameter. Its return value is the
value it received.

Because CML communications are synchronous, a message is both sent and
received only if both the sender and the receiver are ready. If a thread sends a
message on a channel and no other thread is ready to receive on that channel,
the sender is blocked and waits for another thread to execute a recv on the
channel. Likewise, if a recv is executed on a channel by a thread but no other
thread has sent a message on that channel, the thread that ran the recv is
blocked and waits for a message on that channel.

Because channels are types, functions can take them as parameters.

As was the case with Ada’s synchronous message passing, an issue with
CML synchronous message passing is deciding which message to choose
when more than one channel has received one. And the same solution is used:
the guarded command do-od construct that chooses randomly among
messages to different channels.

The synchronization mechanism of CML is the event. An explanation of this
complicated mechanism is beyond the scope of this chapter (and this book).

13.9.3 F#
Part of the F# support for concurrency is based on the same .NET classes that
are used by C#, specifically System.Threading.Thread. For example,
suppose we want to run the function myConMethod in its own thread. The
following function, when called, will create the thread and start the execution
of the function in the new thread:

let createThread() =

 let newThread = new Thread(myConMethod)

 newThread.Start()

Recall that in C#, it is necessary to create an instance of a predefined
delegate, ThreadStart, send its constructor the name of the subprogram, and
send the new delegate instance as a parameter to the Thread constructor. In
F#, if a function expects a delegate as its parameter, a lambda expression or a
function can be sent and the compiler will behave as if you sent the delegate.
So, in the above code, the function myConMethod is sent as the parameter to
the Thread constructor, but what is actually sent is a new instance of
ThreadStart (to which was sent myConMethod).

The Thread class defines the Sleep method, which puts the thread from
which it is called to sleep for the number of milliseconds that is sent to it as a
parameter.

Shared immutable data does not require synchronization among the threads
that access it. However, if the shared data is mutable, which is possible in F#,
locking will be required to prevent corruption of the shared data by multiple
threads attempting to change it. A mutable variable can be locked while a
function operates on it to provide synchronized access to the object with the
lock function. This function takes two parameters, the first of which is the
variable to be changed. The second parameter is a lambda expression that
changes the variable.

A mutable heap-allocated variable is of type ref. For example, the following
declaration creates such a variable named sum with the initial value of 0:

let sum = ref 0

A ref type variable can be changed in a lambda expression that uses the
ALGOL/Pascal/Ada assignment operator, :=. The ref variable must be
prefixed with an exclamation point (!) to get its value. In the following, the
mutable variable sum is locked while the lambda expression adds the value of
x to it:

lock(sum) (fun () -> sum := !sum + x)

Threads can be called asynchronously, just as with C#, using the same
subprograms, BeginInvoke and EndInvoke, as well as the IAsyncResult
interface to facilitate the determination of the completion of the execution of

the asynchronously called thread.

As stated previously, F# has the concurrent generic collections of .NET
available to its programs. This can save a great deal of programming effort
when building multithreaded programs that need a shared data structure in the
form of a queue, stack, or bag.

13.10 Statement-Level Concurrency
In this section, we take a brief look at language design for statement-level
concurrency. From the language design point of view, the objective of such
designs is to provide a mechanism that the programmer can use to inform the
compiler of ways it can map the program onto a multiprocessor architecture.9

9. Although ALGOL 68 included a semaphore type that was meant to deal
with statement-level concurrency, we do not discuss that application of
semaphores here.

In this section, only one collection of linguistic constructs from one language
for statement-level concurrency is discussed: High-Performance Fortran.

13.10.1 High-Performance
Fortran
High-Performance Fortran (HPF; ACM, 1993b) is a collection of extensions
to Fortran 90 that are meant to allow programmers to specify information to
the compiler to help it optimize the execution of programs on multiprocessor
computers. HPF includes both new specification statements and intrinsic, or
built-in, subprograms. This section discusses only some of the HPF
statements.

The primary specification statements of HPF are for specifying the number of
processors, the distribution of data over the memories of those processors,
and the alignment of data with other data in terms of memory placement. The
HPF specification statements appear as special comments in a Fortran
program. Each of them is introduced by the prefix !HPF$, where ! is the
character used to begin lines of comments in Fortran 90. This prefix makes
them invisible to Fortran 90 compilers but easy for HPF compilers to
recognize.

The PROCESSORS specification has the following form:

!HPF$ PROCESSORS procs (n)

This statement is used to specify to the compiler the number of processors
that can be used by the code generated for this program. This information is
used in conjunction with other specifications to tell the compiler how data are
to be distributed to the memories associated with the processors.

The DISTRIBUTE and ALIGN specifications are used to provide information to
the compiler on machines that do not share memory—that is, each processor
has its own memory. The assumption is that an access by a processor to its
own memory is faster than an access to the memory of another processor.

The DISTRIBUTE statement specifies what data are to be distributed and the
kind of distribution that is to be used. Its form is as follows:

!HPF$ DISTRIBUTE (kind) ONTO procs :: identifier_list

In this statement, kind can be either BLOCK or CYCLIC. The identifier list is the
names of the array variables that are to be distributed. A variable that is
specified to be BLOCK distributed is divided into n equal groups, where each
group consists of contiguous collections of array elements evenly distributed
over the memories of all the processors. For example, if an array with 500
elements named LIST is BLOCK distributed over 5 processors, the first 100
elements of LIST will be stored in the memory of the first processor, the
second 100 in the memory of the second processor, and so forth. A CYCLIC
distribution specifies that individual elements of the array are cyclically
stored in the memories of the processors. For example, if LIST is CYCLIC
distributed, again over five processors, the first element of LIST will be stored
in the memory of the first processor, the second element in the memory of the
second processor, and so forth.

The form of the ALIGN statement is

ALIGN array1_element WITH array2_element

ALIGN is used to relate the distribution of one array with that of another. For
example,

ALIGN list1(index) WITH list2(index+1)

specifies that the index element of list1 is to be stored in the memory of the
same processor as the index+1 element of list2, for all values of index. The
two array references in an ALIGN appear together in some statement of the
program. Putting them in the same memory (which means the same
processor) ensures that the references to them will be as close as possible.

Consider the following example code segment:

 REAL list_1 (1000), list_2 (1000)

 INTEGER list_3 (500), list_4 (501)

!HPF$ PROCESSORS proc (10)

!HPF$ DISTRIBUTE (BLOCK) ONTO procs :: list_1, list_2

!HPF$ ALIGN list_3 (index) WITH list_4 (index+1)

 . . .

 list_1 (index) = list_2 (index)

 list_3 (index) = list_4 (index+1)

In each execution of these assignment statements, the two referenced array
elements will be stored in the memory of the same processor.

The HPF specification statements provide information for the compiler that it
may or may not use to optimize the code it produces. What the compiler
actually does depends on its level of sophistication and the particular
architecture of the target machine.

The FORALL statement specifies a sequence of assignment statements that may
be executed concurrently. For example,

FORALL (index = 1:1000)

 list_1(index) = list_2(index)

END FORALL

specifies the assignment of the elements of list_2 to the corresponding
elements of list_1. However, the assignments are restricted to the following
order: the right side of all 1,000 assignments must be evaluated first, before
any assignments take place. This permits concurrent execution of all of the
assignment statements. In addition to assignment statements, FORALL
statements can appear in the body of a FORALL construct. The FORALL
statement is a good match with vector machines, in which the same

instruction is applied to many data values, usually in one or more arrays. The
HPF FORALL statement is included in Fortran 95 and subsequent versions of
Fortran.

We have briefly discussed only a small part of the capabilities of HPF.
However, it should be enough to provide the reader with an idea of the kinds
of language extensions that are useful for programming computers with
possibly large numbers of processors.

C# 4.0 (and the other .NET languages) include two methods that behave
somewhat like FORALL. They are loop control statements in which the
iterations can be unrolled and the bodies executed concurrently. These are
Parallel.For and Parallel.ForEach.

SUMMARY
Concurrent execution can be at the instruction, statement, or subprogram
level. We use the phrase physical concurrency when multiple processors are
actually used to execute concurrent units. If concurrent units are executed on
a single processor, we use the term logical concurrency. The underlying
conceptual model of all concurrency can be referred to as logical
concurrency.

Most multiprocessor computers fall into one of two broad categories—SIMD
or MIMD. MIMD computers can be distributed.

Languages that support subprogram-level concurrency must provide two
fundamental capabilities: mutually exclusive access to shared data structures
(competition synchronization) and cooperation among tasks (cooperation
synchronization).

Tasks can be in any one of five different states: new, ready, running, blocked,
or dead.

Rather than designing language constructs for supporting concurrency,
sometimes libraries, such as OpenMP, are used.

The design issues for language support for concurrency are how competition
and cooperation synchronization are provided, how an application can
influence task scheduling, how and when tasks start and end their executions,
and how and when they are created.

A semaphore is a data structure consisting of an integer and a task description
queue. Semaphores can be used to provide both competition and cooperation
synchronization among concurrent tasks. It is easy to use semaphores
incorrectly, resulting in errors that cannot be detected by the compiler, linker,
or run-time system.

Monitors are data abstractions that provide a natural way of providing
mutually exclusive access to data shared among tasks. They are supported by

several programming languages, among them Ada, Java, and C#.
Cooperation synchronization in languages with monitors must be provided
with some form of semaphores.

The underlying concept of the message-passing model of concurrency is that
tasks send each other messages to synchronize their execution.

Ada provides complex but effective constructs, based on the message-passing
model, for concurrency. Ada’s tasks are heavyweight tasks. Tasks
communicate with each other through the rendezvous mechanism, which is
synchronous message passing. A rendezvous is the action of a task accepting
a message sent by another task. Ada includes both simple and complicated
methods of controlling the occurrences of rendezvous among tasks.

Ada 95+ includes additional capabilities for the support of concurrency,
primarily protected objects. Ada 95+ supports monitors in two ways, with
tasks and with protected objects.

Java supports lightweight concurrent units in a relatively simple but effective
way. Any class that either inherits from Thread or implements Runnable can
override a method named run and have that method’s code executed
concurrently with other such methods and with the main program.
Competition synchronization is specified by defining methods that access
shared data to be implicitly synchronized. Small sections of code can also be
implicitly synchronized. A class whose methods are all synchronized is a
monitor. Cooperation synchronization is implemented with the methods wait,
notify, and notifyAll. The Thread class also provides the sleep, yield,
join, and interrupt methods.

Java has direct support for counting semaphores through its Semaphore class
and its acquire and release methods. It also had some classes for providing
nonblocking atomic operations, such as addition, increment, and decrement
operations for integers. Java also provides explicit locks with the Lock
interface and ReentrantLock class and its lock and unlock methods. In
addition to implicit synchronization using synchronized, Java provides
implicit nonblocking synchronization of int, long, and boolean type
variables, as well as references and arrays. In these cases, atomic getters,
setters, add, increment, and decrement operations are provided.

C#’s support for concurrency is based on that of Java but is slightly more
sophisticated. Any method can be run in a thread. Both actor and server
threads are supported. All threads are controlled through associated delegates.
Server threads can be synchronously called with Invoke or asynchronously
called with BeginInvoke. A callback method address can be sent to the called
thread. Three kinds of thread synchronization are supported with the
Interlocked class, which provides atomic increment and decrement
operations, the Monitor class, and the lock statement.

All .NET languages have the use of the generic concurrent data structures for
stacks, queues, and bags, for which competition synchronization is implicit.

Multi-LISP extends Scheme slightly to allow the programmer to inform the
implementation about program parts that can be executed concurrently.
Concurrent ML extends ML to support a form of threads and a form of
synchronous message passing among those threads. This message passing is
designed with channels. F# programs have access to all of the .NET support
classes for concurrency. Data shared among threads that is mutable can have
access synchronized.

High-Performance Fortran includes statements for specifying how data is to
be distributed over the memory units connected to multiple processors. Also
included are statements for specifying collections of statements that can be
executed concurrently.

BIBLIOGRAPHIC NOTES
The general subject of concurrency is discussed at great length in
Andrews and Schneider (1983), Holt et al. (1978), and Ben-Ari (1982).

The monitor concept is developed and its implementation in Concurrent
Pascal is described by Brinch Hansen (1977).

The early development of the message-passing model of concurrent unit
control is discussed by Hoare (1978) and Brinch Hansen (1978). An in-
depth discussion of the development of the Ada tasking model can be
found in Ichbiah et al. (1979). Ada 95 is described in detail in ARM
(1995). High-Performance Fortran is described in ACM (1993b).

REVIEW QUESTIONS
1. What are the three possible levels of concurrency in programs?

2. Describe the logical architecture of an SIMD computer.

3. Describe the logical architecture of an MIMD computer.

4. What level of program concurrency is best supported by SIMD
computers?

5. What level of program concurrency is best supported by MIMD
computers?

6. Describe the logical architecture of a vector processor.

7. What is the difference between physical and logical concurrency?

8. What is a thread of control in a program?

9. Why are coroutines called quasi-concurrent?

10. What is a multithreaded program?

11. What are four reasons for studying language support for concurrency?

12. What is a heavyweight task? What is a lightweight task?

13. Define task, synchronization, competition and cooperation
synchronization, liveness, race condition, and deadlock.

14. What kind of tasks do not require any kind of synchronization?

15. Describe the five different states in which a task can be.

16. What is a task descriptor?

17. In the context of language support for concurrency, what is a guard?

18. What is the purpose of a task-ready queue?

19. What are the two primary design issues for language support for
concurrency?

20. Describe the actions of the wait and release operations for semaphores.

21. What is a binary semaphore? What is a counting semaphore?

22. What are the primary problems with using semaphores to provide
synchronization?

23. What advantage do monitors have over semaphores?

24. In what three common languages can monitors be implemented?

25. Define rendezvous, accept clause, entry clause, actor task, server task,
extended accept clause, open accept clause, closed accept clause, and
completed task.

26. Which is more general, concurrency through monitors or concurrency
through message passing?

27. Are Ada tasks created statically or dynamically?

28. What purpose does an extended accept clause serve?

29. How is cooperation synchronization provided for Ada tasks?

30. What is the advantage of protected objects in Ada 95 over tasks for
providing access to shared data objects?

31. Specifically, what Java program unit can run concurrently with the main
method in an application program?

32. Are Java threads lightweight or heavyweight tasks?

33. What does the Java sleep method do?

34. What does the Java yield method do?

35. What does the Java join method do?

36. What does the Java interrupt method do?

37. What are the two Java constructs that can be declared to be
synchronized?

38. How can the priority of a thread be set in Java?

39. Can Java threads be actor threads, server threads, or either?

40. Describe the actions of the three Java methods that are used to support
cooperation synchronization.

41. What kind of Java object is a monitor?

42. Explain why Java includes the Runnable interface.

43. What are the two methods used with Java Semaphore objects?

44. What is the advantage of the nonblocking synchronization in Java?

45. What are the methods of the Java AtomicInteger class and what is the
purpose of this class?

46. How are explicit locks supported in Java?

47. What kinds of methods can be run in a C# thread?

48. Can C# threads be actor threads, server threads, or either?

49. What are the two ways a C# thread can be called synchronously?

50. How can a C# thread be called asynchronously?

51. How is the returned value from an asynchronously called thread
retrieved in C#?

52. What is different about C#’s Sleep method, relative to Java’s sleep?

53. What exactly does C#’s Abort method do?

54. What is the purpose of C#’s Interlocked class?

55. What does the C# lock statement do?

56. On what language is Multi-LISP based?

57. What is the semantics of Multi-LISP’s pcall construct?

58. How is a thread created in CML?

59. What is the type of an F# heap-allocated mutable variable?

60. Why don’t F# immutable variables require synchronized access in a
multithreaded program?

61. What is the objective of the specification statements of HPF?

62. What is the purpose of the FORALL statement of HPF and Fortran?

PROBLEM SET
1. Explain clearly why competition synchronization is not a problem in a

programming environment that supports coroutines but not concurrency.

2. What is the best action a system can take when deadlock is detected?

3. Busy waiting is a method whereby a task waits for a given event by
continuously checking for that event to occur. What is the main problem
with this approach?

4. In the producer-consumer example of Section 13.3, suppose that we
incorrectly replaced the release(access) in the consumer process with
wait(access). What would be the result of this error on execution of
the system?

5. From a book on assembly language programming for a computer that
uses an Intel Pentium processor, determine what instructions are
provided to support the construction of semaphores.

6. Suppose two tasks, A and B, must use the shared variable Buf_Size. Task
A adds 2 to Buf_Size, and task B subtracts 1 from it. Assume that such
arithmetic operations are done by the three-step process of fetching the
current value, performing the arithmetic, and putting the new value
back. In the absence of competition synchronization, what sequences of
events are possible and what values result from these operations?
Assume that the initial value of Buf_Size is 6.

7. Compare the Java competition synchronization mechanism with that of
Ada.

8. Compare the Java cooperation synchronization mechanism with that of
Ada.

9. What happens if a monitor procedure calls another procedure in the
same monitor?

10. Explain the relative safety of cooperation synchronization using
semaphores and using Ada’s when clauses in tasks.

PROGRAMMING EXERCISES
1. Write an Ada task to implement general semaphores.

2. Write an Ada task to manage a shared buffer such as the one in our
example, but use the semaphore task from Programming Exercise 1.

3. Define semaphores in Ada and use them to provide both cooperation and
competition synchronization in the shared-buffer example.

4. Write Programming Exercise 3 using Java.

5. Write the shared-buffer example of the chapter in C#.

6. The reader-writer problem can be stated as follows: A shared memory
location can be concurrently read by any number of tasks, but when a
task must write to the shared memory location, it must have exclusive
access. Write a Java program for the reader-writer problem.

7. Write Programming Exercise 6 using Ada.

8. Write Programming Exercise 6 using C#.

14 Exception Handling and Event
Handling

1. 14.1 Introduction to Exception Handling

2. 14.2 Exception Handling in C++

3. 14.3 Exception Handling in Java

4. 14.4 Exception Handling in Python and Ruby

5. 14.5 Introduction to Event Handling

6. 14.6 Event Handling with Java

7. 14.7 Event Handling in C#

This chapter discusses programming language support for two related parts of
many contemporary programs: exception handling and event handling. Both
exceptions and events occur at times that cannot be predetermined, and both
are best handled with special language constructs and processes. Some of
these constructs and processes—for example, propagation—are similar for
exception handling and event handling.

We first describe the fundamental concepts of exception handling, including
hardware- and software-detectable exceptions, exception handlers, and the
raising of exceptions. Then, the design issues for exception handling are
introduced and discussed, including the binding of exceptions to exception
handlers, continuation, and default handlers. This section is followed by
descriptions and evaluations of the exception-handling facilities of two
programming languages: C++ and Java. Brief introductions to exception
handling in Python and Ruby are then presented.

The latter part of this chapter is about event handling. We first present an -
introduction to the basic concepts of event handling. This is followed by

discussions of the event-handling approaches of Java and C#.

14.1 Introduction to Exception
Handling
Most computer hardware systems are capable of detecting certain run-time
error conditions, such as floating-point overflow. Early programming -
languages were designed and implemented in such a way that the user
program could neither detect nor attempt to deal with such errors. In these
languages, the occurrence of such an error simply causes the program to be
terminated and control to be transferred to the operating system. The typical
operating system reaction to a run-time error is to display a diagnostic
message, which may be meaningful and therefore useful, or highly cryptic.
After displaying the message, the program is terminated.

In the case of input and output operations, however, the situation is somewhat
different. For example, a Fortran Read statement can intercept input errors
and end-of-file conditions, both of which are detected by the input device
hardware. In both cases, the Read statement can specify the label of some
statement in the user program that deals with the condition. In the case of the
end-of-file, the condition obviously is not always considered an error. In most
cases, it is nothing more than a signal that one kind of processing is
completed and another kind must begin. In spite of the obvious difference
between end-of-file and events that are always errors, such as a failed input
process, Fortran handles both situations with the same mechanism. Consider
the following Fortran Read statement:

Read(Unit=5, Fmt=1000, Err=100, End=999) Weight

The Err clause specifies that control is to be transferred to the statement
labeled 100 if an error occurs in the read operation. The End clause specifies
that control is to be transferred to the statement labeled 999 if the read
operation encounters the end of the file. So, Fortran uses simple branches for
both input errors and end-of-file.

There is a category of serious errors that are not detectable by hardware but

can be detected by code generated by the compiler. For example, array
subscript range errors are almost never detected by hardware,1 but they lead
to serious errors that often are not noticed until later in the program
execution.

1. In the 1970s, there were some computers that did detect subscript range
errors in hardware.

Detection of subscript range errors is sometimes required by the language
design. For example, the Java language specification requires Java compilers
to generate code to check the correctness of every subscript expression (they
do not generate such code when it can be determined at compile time that a
subscript expression cannot have an out-of-range value, for example, if the
subscript is a literal). In C, subscript ranges are not checked because the cost
of such checking was (and still is) not believed to be worth the benefit of
detecting such errors. In some compilers for some languages, subscript range
checking can be selected (if not turned on by default) or turned off (if it is on
by default) as desired in the program or in the command that executes the
compiler.

The designers of most contemporary languages have included mechanisms
that allow programs to react in a standard way to certain run-time errors, as
well as other program-detected unusual events. Programs may also be
notified when certain events are detected by hardware or system software, so
that they also can react to these events.

14.1.1 Basic Concepts
We consider both the errors detected by hardware, such as disk read errors,
and unusual conditions, such as end-of-file (which is also detected by
hardware), to be exceptions. We further extend the concept of an exception to
include errors or unusual conditions that are software-detectable (by either a
software interpreter or the user code itself). Accordingly, we define
exception to be any unusual event, erroneous or not, that is detectable by
either hardware or software and that may require special processing.

The special processing that may be required when an exception is detected is
called exception handling. This processing is done by a code unit or segment
called an exception handler. An exception is raised when its associated
event occurs. In some C-based languages, exceptions are said to be thrown,
rather than raised.2 Different kinds of exceptions require different exception
handlers. Detection of end-of-file nearly always requires some specific
program action. But, clearly, that action would not also be appropriate for an
array index range error exception. In some cases, the only action is the
generation of an error message and an orderly termination of the program.

2. C++ was the first C-based language that included exception handling. The
word throw was used, rather than raise, because the standard C library
includes a function named raise.

The absence of separate or specific exception-handling facilities in a
language does not preclude the handling of user-defined, software-detected
exceptions. Such an exception detected within a program unit is often
handled by the unit’s caller. One possible design is to send an auxiliary
parameter, which is used as a status variable. The status variable is assigned a
value in the called subprogram according to the correctness and/or
normalness of the results of its computations. Immediately upon return from
the called unit, the caller tests the status variable. If the value indicates that an
exception has occurred, the handler, which may reside in the calling unit, can
be enacted. Many of the C standard library functions use a variant of this
approach: The return values are used as error indicators.

Another possibility is to pass a label parameter to the subprogram. Of course,
this approach is possible only in languages that allow labels to be used as
parameters. Passing a label allows the called unit to return to a different point
in the caller if an exception has occurred. As in the first alternative, the
handler is often a segment of the calling unit’s code. This is a common use of
label parameters in Fortran.

A third possibility is to have the handler defined as a separate subprogram
whose name is passed as a parameter to the called unit. In this case, the
handler subprogram is provided by the caller, but the called unit calls the
handler when an exception is raised. One problem with this approach is that
one is required to send a handler subprogram with every call to every

subprogram that takes a handler subprogram as a parameter, whether it is
needed or not. Furthermore, to deal with several different kinds of
exceptions, several different handler routines would need to be passed,
complicating the code.

If it is desirable to handle an exception in the unit in which it is detected, the
handler is included as a segment of code in that unit.

There are some definite advantages to having exception handling built into a
language. First, without exception handling, the code required to detect error
conditions can considerably clutter a program. For example, suppose a
subprogram includes expressions that contain 10 references to elements of a
matrix named mat, and any one of them could have an index out-of-range
error. Further suppose that the language does not require index range
checking. Without built-in index range checking, every one of these
operations may need to be preceded by code to detect a possible index range
error. For example, consider the following reference to an element of mat,
which has 10 rows and 20 columns:

if (row >= 0 && row < 10 && col >= 0 && col < 20)

 sum += mat[row][col];

else

 System.out.println("Index range error on mat, row = " +

 row + " col = " + col);

The presence of exception handling in the language would permit the -
compiler to insert machine code for such checks before every array element
access, greatly shortening and simplifying the source program.

Another advantage of language support for exception handling results from
exception propagation. Exception propagation allows an exception raised in
one program unit to be handled in some other unit in its dynamic or static
ancestry. This allows a single exception handler to be used for any number of
different program units. This reuse can result in significant savings in
development cost, program size, and program complexity.

A language that supports exception handling encourages its users to consider
all of the events that could occur during program execution and how they can
be handled. This approach is far better than not considering such possibilities

and simply hoping nothing will go wrong.

Finally, there are programs in which dealing with nonerroneous but unusual
situations can be simplified with exception handling, and in which program
structure can become overly convoluted without it.

14.1.2 Design Issues
We now explore some of the design issues for an exception-handling system
when it is part of a programming language. Such a system might allow both
predefined and user-defined exceptions and exception handlers. Note that
predefined exceptions are implicitly raised, whereas user-defined exceptions
must be explicitly raised by user code. Consider the following skeletal
subprogram that includes an exception-handling mechanism for an implicitly
raised exception:

void example() {

 . . .

 average = sum / total;

 . . .

 return;

/* Exception handlers */

 when zero_divide {

 average = 0;

 printf("Error–divisor (total) is zero\n");

 }

 . . .

}

The exception of division by zero, which is implicitly raised, causes control
to transfer to the appropriate handler, which is then executed.

The first design issue for exception handling is how an exception occurrence
is bound to an exception handler. This issue occurs on two different levels.
On the unit level, there is the question of how the same exception being
raised at different points in a unit can be bound to different handlers within
the unit. For example, in the example subprogram, there is a handler for a -
division-by-zero exception that appears to be written to deal with an
occurrence of division by zero in a particular statement (the one shown). But

suppose the function includes several other expressions with division
operators. For those operators, this handler would probably not be
appropriate. So, it should be possible to bind the exceptions that can be raised
by particular statements to particular handlers, even though the same
exception can be raised by many different statements.

At a higher level, the binding question arises when there is no exception
handler local to the unit in which the exception is raised. In this case, the
language designer must decide whether to propagate the exception to some
other unit and, if so, where. How this propagation takes place and how far it
goes have an important impact on the writability of exception handlers. For
example, if handlers must be local, then many handlers must be written,
which complicates both the writing and reading of the program. On the other
hand, if exceptions are propagated, a single handler might handle the same
exception raised in several program units, which may require the handler to
be more general than one would prefer.

An issue that is related to the binding of an exception to an exception handler
is whether information about the exception is made available to the handler.

history note
PL/I (ANSI, 1976) pioneered the concept of allowing user programs to be
directly involved in exception handling. The language allowed the user to
write exception handlers for a long list of language-defined exceptions.
Furthermore, PL/I introduced the concept of user-defined exceptions, which
allow programs to create software-detected exceptions. These exceptions use
the same mechanisms that are used for the built-in exceptions.

Since PL/I was designed, a substantial amount of work has been done to
design alternative methods of exception handling, and exception-handling
mechanisms have been included in a long list of subsequent programming
languages.

After an exception handler executes, either control can transfer to somewhere
in the program outside of the handler code or program execution can simply

terminate. We term this the question of control continuation after handler
execution, or simply continuation. Termination is obviously the simplest
choice, and in many error exception conditions, the best. However, in other
situations, particularly those associated with unusual but not erroneous
events, the choice of continuing execution is best. This design is called
resumption. In these cases, some conventions must be chosen to determine
where execution should continue. It might be the statement that raised the
exception, the statement after the statement that raised the exception, or
possibly some other unit. The choice to return to the statement that raised the
exception may seem like a good one, but in the case of an error exception, it
is useful only if the handler somehow is able to modify the values or
operations that caused the exception to be raised. Otherwise, the exception
will simply be reraised. The required modification for an error exception is
often very difficult to predict. Even when possible, however, it may not be a
sound practice. It allows the program to remove the symptom of a problem
without removing the cause.

The two issues of binding of exceptions to handlers and continuation are
illustrated in Figure 14.1.

Figure 14.1 Exception-handling

control flow
Figure 14.1 Full Alternative Text

When exception handling is included, a subprogram’s execution can
terminate in two ways: when its execution is complete or when it encounters
an exception.3 In some situations, it is necessary to complete some
computation regardless of how subprogram execution terminates. The ability
to specify such a computation is called finalization. The choice of whether to
support finalization is obviously a design issue for exception handling.

3. Of course, even if the language does not support exception handling, a
subprogram could terminate due to a system-detected error.

Another design issue is the following: If users are allowed to define
exceptions, how are these exceptions specified? The usual answer is to
require that they be declared in the specification parts of the program units in
which they can be raised. The scope of a declared exception is usually the
scope of the program unit that contains the declaration.

In the case where a language provides predefined exceptions, several other
design issues follow. For example, should the language run-time system
provide default handlers for the built-in exceptions, or should the user be
required to write handlers for all exceptions? Another question is whether
predefined exceptions can be raised explicitly by the user program. This
usage can be convenient if there are software-detectable situations in which
the user would like to use a predefined handler.

Another issue is whether hardware-detectable errors can be handled by user
programs. If not, all exceptions obviously are software detectable. A related
question is whether there should be any predefined exceptions. Predefined
exceptions are implicitly raised by either hardware or system software.

The exception-handling design issues can be summarized as follows:

How and where are exception handlers specified, and what is their
scope?

How is an exception occurrence bound to an exception handler?

Can information about an exception be passed to the handler?

Where does execution continue, if at all, after an exception handler
completes its execution? (This is the question of continuation or
resumption.)

Is some form of finalization provided?

How are user-defined exceptions specified?

If there are predefined exceptions, should there be default exception
handlers for programs that do not provide their own?

Can predefined exceptions be explicitly raised?

Are hardware-detectable errors treated as exceptions that may be
handled?

Are there any predefined exceptions?

We are now in a position to examine the exception-handling facilities of
several contemporary programming languages.

14.2 Exception Handling in C++
The exception handling of C++ was accepted by the ANSI C++
standardization committee in 1990 and subsequently found its way into C++
implementations. The design is based in part on the exception handling of
CLU, Ada, and ML.

14.2.1 Exception Handlers
C++ uses a special construct that is introduced with the reserved word try to
specify the scope for exception handlers. A try construct includes a
compound statement called the try clause and a list of exception handlers.
The compound statement defines the scope of the following handlers. The
general form of this construct is as follows:

try {

//** Code that might raise an exception

} catch (formal parameter) {

//** A handler body

}

. . .

catch(formal parameter) {

//** A handler body

}

Each catch function is an exception handler. A catch function can have only
a single formal parameter, which is similar to a formal parameter in a
function definition in C++, including the possibility of it being an ellipsis
(...). A handler with an ellipsis formal parameter is the catch-all handler;
it is enacted for any raised exception if no appropriate handler was found.
The formal parameter also can be a naked type specifier, such as float, as in
a function prototype. In such a case, the only purpose of the formal parameter
is to make the handler uniquely identifiable. When information about the
exception is to be passed to the handler, the formal parameter includes a
variable name that is used for that purpose. Because the class of the

parameter can be any user-defined class, the parameter can include as many
data members as are necessary. Binding exceptions to handlers are discussed
in Section 14.3.2.

In C++, exception handlers can include any C++ code.

14.2.2 Binding Exceptions to
Handlers
C++ exceptions are raised only by the explicit statement throw, whose
general form in EBNF is as follows:

throw [expression];

The brackets here are metasymbols used to specify that the expression is
optional. A throw without an operand can appear only in a handler. When it
appears there, it reraises the exception, which is then handled elsewhere.

The type of the throw expression selects the particular handler, which of
course must have a “matching” type formal parameter. In this case, matching
means the following: A handler with a formal parameter of type T, const T,
T& (a reference to an object of type T), or const T& matches a throw with an
expression of type T. In the case where T is a class, a handler whose
parameter is type T or any class that is an ancestor of T matches. There are
more complicated situations in which a throw expression matches a formal
parameter, but they are not described here.

An exception raised in a try clause causes an immediate end to the execution
of the code in that try clause. The search for a matching handler begins with
the handlers that immediately follow the try clause. The matching process is
done sequentially on the handlers until a match is found. This means that if
any other match precedes an exactly matching handler, the exactly matching
handler will not be used. Therefore, handlers for specific exceptions are
placed at the top of the list, followed by more generic handlers. The last
handler is often one with an ellipsis (...) formal parameter, which matches

any exception. This would guarantee that all exceptions are caught.

If an exception is raised in a try clause and there is no matching handler
associated with that try clause, the exception is propagated. If the try clause
is nested inside another try clause, the exception is propagated to the
handlers associated with the outer try clause. If none of the enclosing try
clauses yields a matching handler, the exception is propagated to the caller of
the function in which it was raised. If the call to the function was not in a try
clause, the exception is propagated to that function’s caller. If no matching
handler is found in the program through this propagation process, the default
handler is called. This handler is further discussed in Section 14.2.4.

14.2.3 Continuation
After a handler has completed its execution, control flows to the first
statement following the try construct (the statement immediately after the
last handler in the sequence of handlers of which it is an element). A handler
may reraise an exception, using a throw without an expression, in which case
that exception is propagated.

14.2.4 Other Design Choices
In terms of the design issues summarized in Section 14.1.2, the exception
handling of C++ is simple. There are only user-defined exceptions, and they
are not specified (though they might be declared as new classes). There is a
default exception handler, unexpected, whose only action is to terminate the
program. This handler catches all exceptions not caught by the program. It
can be replaced by a user-defined handler. The replacement handler must be a
function that returns void and takes no parameters. The replacement function
is set by assigning its name to set_terminate.

A C++ function can list the types of the exceptions (the types of the throw
expressions) that it could raise. This is done by attaching the reserved word
throw, followed by a parenthesized list of these types, to the function header.

For example,

int fun() throw (int, char *) { . . . }

specifies that the function fun could raise exceptions of type int and char *
but no others. The purpose of the throw clause is to notify users of the
function what exceptions might be raised by the function. The throw clause is
in effect a contract between the function and its callers. It guarantees that no
other exception will be raised in the function.

If the types in the throw clause are classes, then the function can raise any
exception that is derived from the listed classes. If a function header has a
throw clause and raises an exception that is not listed in the throw clause and
is not derived from a class listed there, the default handler is called. Note that
this error cannot be detected at compile time. The list of types in the list may
be empty, meaning that the function will not raise any exceptions. If there is
no throw specification on the header, the function can raise any exception.
The list is not part of the function’s type.

If a function overrides a function that has a throw clause, the overriding
function cannot have a throw clause with more exceptions than the
overridden function.

Although C++ has no predefined exceptions, the standard libraries define and
throw exceptions, such as out_of_range, which can be thrown by library
container classes, and overflow_error, which can be thrown by math library
functions.

14.2.5 An Example
The following example program illustrates some simple uses of exception
handlers in C++. The program computes and prints a distribution of input
grades by using an array of counters. The input is a sequence of grades,
terminated by a negative number. The negative number raises a
Nega tiveInput
Exception exception because the grades must be nonnegative integers. There
are 10 categories of grades (0−9, 10−19, … , 90−100). The grades themselves

are used to compute indexes into an array of counters, one for each grade
category. Invalid input grades are detected by trapping indexing errors in the
counter array. A grade of 100 is special in the computation of the grade
distribution because the categories all have 10 possible grade values, except
the highest, which has 11 (90, 91, . . . , 100). (The fact that there are more
possible A grades than B’s or C’s is conclusive evidence of the generosity of
teachers.) The grade of 100 is also handled in the same exception handler that
is used for invalid input data.

// Grade Distribution

// Input: A list of integer values that represent

// grades, followed by a negative number

// Output: A distribution of grades, as a percentage for

// each of the categories 0-9, 10-19, . . .,

// 90-100.

#include <iostream>

int main() { //* Any exception can be raised

 int new_grade,

 index,

 limit_1,

 limit_2,

 freq[10] = {0,0,0,0,0,0,0,0,0,0};

// The exception definition to deal with the end of data

class NegativeInputException {

 public:

 NegativeInputException() { //* Constructor

 cout << ”End of input data reached" << endl;

 } //** end of constructor

} //** end of NegativeInputException class

 try {

 while (true) {

 cout << ”Please input a grade" << endl;

 if ((cin >> new_grade) < 0) //* End of data

 throw NegativeInputException();

 index = new_grade / 10;

 {try {

 if (index > 9)

 throw new_grade;

 freq[index]++;

 } //* end of inner try compound

 catch(int grade) { //* Handler for index errors

 if (grade == 100)

 freq[9]++;

 else

 cout << ”Error -- new grade: " << grade

 << " is out of range" << endl;

 } //* end of catch(int grade)

 } //* end of the block for the inner try-catch pair

 } //* end of while (1)

 } //* end of outer try block

 catch(NegativeInputException& e) { //**Handler for

 //** negative input

 cout << ”Limits Frequency" << endl;

 for (index = 0; index < 10; index++) {

 limit_1 = 10 * index;

 limit_2 = limit_1 + 9;

 if (index == 9)

 limit_2 = 100;

 cout << limit_1 << limit_2 << freq[index] << endl;

 } //* end of for (index = 0)

 } //* end of catch (NegativeInputException& e)

 } //* end of main

This program is meant to illustrate the mechanics of C++ exception handling.
Note that the index range exception is often handled in C++ by overloading
the indexing operation, which could then raise the exception, rather than the
direct detection of the indexing operation with the selection construct used in
our example.

14.2.6 Evaluation
One deficiency of exception handling in C++ is that there are no predefined
hardware-detectable exceptions that can be handled by the user. Exceptions
are connected to handlers through a parameter type in which the formal
parameter may be omitted. The type of the formal parameter of a handler
determines the condition under which it is called but may have nothing
whatsoever to do with the nature of the raised exception. Therefore, the use
of predefined types for exceptions certainly does not promote readability. It is
much better to define classes for exceptions with meaningful names in a
meaningful hierarchy that can be used for defining exceptions. The exception
parameter provides a way to pass information about an exception to the
exception handler.

14.3 Exception Handling in Java
In Chapter 13, the Java example program includes the use of exception -
handling with little explanation. This section describes the details of Java’s
exception-handling capabilities.

Java’s exception handling is based on that of C++, but it is designed to be
more in line with the object-oriented language paradigm. Furthermore, Java
includes a collection of predefined exceptions that are implicitly raised by the
Java run-time system.

14.3.1 Classes of Exceptions
All Java exceptions are objects of classes that are descendants of the
Throwable class. The Java system includes two predefined exception classes
that are subclasses of Throwable: Error and Exception. The Error class and
its descendants are related to errors that are thrown by the Java run-time
system, such as running out of heap memory. These exceptions are never
thrown by user programs, and they should never be handled there. There are
two system-defined direct descendants of Exception: RuntimeException and
IOException. As its name indicates, IOException is thrown when an error
has occurred in an input or output operation, all of which are defined as
methods in the various classes defined in the package java.io.

There are predefined classes that are descendants of RuntimeException. In
most cases, RuntimeException is thrown when a user program causes an
error. For example, ArrayIndexOutOfBoundsException, which is defined in
java.util, is a commonly thrown exception that descends from
RuntimeException. Another commonly thrown exception that descends from
RuntimeException is NullPointerException.

User programs can define their own exception classes. The convention in
Java is that user-defined exceptions are subclasses of Exception.

14.3.2 Exception Handlers
The exception handlers of Java have the same form as those of C++, except
that every catch must have a parameter and the class of the parameter must
be a descendant of the predefined class Throwable.

The syntax of the try construct in Java is exactly as that of C++, except for
the finally clause described in Section 14.3.6.

14.3.3 Binding Exceptions to
Handlers
Throwing an exception is simple. An instance of the exception class is given
as the operand of the throw statement. For example, suppose we define an
exception named MyException as

class MyException extends Exception {

 public MyException() {}

 public MyException(String message) {

 super (message);

 }

}

This exception can be thrown with the following statement:

throw new MyException();

One of the two constructors we have included in our new class has no
parameter and the other has a String object parameter that it sends to the
superclass (Exception), which displays it. Therefore, our new exception
could be thrown with

throw new MyException

 ("a message to specify the location of the error");

The binding of exceptions to handlers in Java is similar to that of C++. If an

exception is thrown in the compound statement of a try construct, it is bound
to the first handler (catch function) immediately following the try clause
whose parameter is the same class as the thrown object, or an ancestor of it. If
a matching handler is found, the throw is bound to it and it is executed.

Exceptions can be handled and then rethrown by including a throw statement
without an operand at the end of the handler. The newly thrown exception
will not be handled in the same try where it was originally thrown, so
looping is not a concern. This rethrowing is usually done when some local
action is useful, but further handling by an enclosing try clause or a try
clause in the caller is necessary. A throw statement in a handler could also
throw some exception other than the one that transferred control to this
handler.

To ensure that exceptions that can be thrown in a try clause are always
handled in a method, a special handler can be written that matches all
exceptions that are derived from Exception simply by defining the handler
with an Exception type parameter, as in

catch (Exception genericObject) {

 . . .

}

Because a class name always matches itself or any ancestor class, any class
derived from Exception matches Exception. Of course, such an exception
handler should always be placed at the end of the list of handlers, for it will
block the use of any handler that follows it in the try construct in which it
appears. This occurs because the search for a matching handler is sequential,
and the search ends when a match is found.

14.3.4 Other Design Choices
As part of its reflection facilities, the Java run-time system stores the class
name of every object in the program. The method getClass can be used to
get an object that stores the class name, which itself can be gotten with the
getName method. So, we can retrieve the name of the class of the actual
parameter from the throw statement that caused the handler’s execution. For

the handler shown earlier, this is done with

genericObject.getClass().getName()

In addition, the message associated with the parameter object, which is
created by the constructor, can be gotten with

genericObject.getMessage()

Furthermore, in the case of user-defined exceptions, the thrown object could
include any number of data fields that might be useful in the handler.

The throws clause of Java has the appearance and placement (in a program)
that is similar to that of the throw specification of C++. However, the
semantics of throws is somewhat different from that of the C++ throw
clause.

The appearance of an exception class name in the throws clause of a Java
method specifies that that exception class or any of its descendant exception
classes can be thrown but not handled by the method. For example, when a
method specifies that it can throw IOException, it means it can throw an
IOException object or an object of any of its descendant classes, such as
EOFException, and it does not handle the exception it throws.

Exceptions of class Error and RuntimeException and their descendants are
called unchecked exceptions. All other exceptions are called checked
exceptions. Unchecked exceptions are never a concern of the compiler.
However, the compiler ensures that all checked exceptions a method can
throw are either listed in its throws clause or handled in the method. Note
that checking this at compile time differs from C++, in which it is done at run
time. The reason why exceptions of the classes Error and RuntimeException
and their descendants are unchecked is that any method could throw them. A
program can catch unchecked exceptions, but it is not required.

As is the case with C++, a method cannot declare more exceptions in its
throws clause than the method it overrides, though it may declare fewer. So
if a method has no throws clause, neither can any method that overrides it. A
method can throw any exception listed in its throws clause, along with any of
the descendant classes of those exceptions.

A method that does not directly throw a particular exception, but calls
another method that could throw that exception, must list the exception in its
throws clause. This is the reason the buildDist method (in the example in
the next subsection), which uses the readLine method, must specify
IOException in the throws clause of its header.

A method that does not include a throws clause cannot propagate any
checked exception. Recall that in C++, a function without a throw clause can
throw any exception.

A method that calls a method that lists a particular checked exception in its
throws clause has three alternatives for dealing with that exception: First, it
can catch the exception and handle it. Second, it can catch the exception and
throw an exception that is listed in its own throws clause. Third, it could
declare the exception in its own throws clause and not handle it, which
effectively propagates the exception to an enclosing try clause, if there is
one, or to the method’s caller, if there is no enclosing try clause.

There are no default exception handlers, and it is not possible to disable
exceptions. Continuation in Java is exactly as in C++.

14.3.5 An Example
Following is the Java program with the capabilities of the C++ program in
Section 14.2.5:

// Grade Distribution

// Input: A list of integer values that represent

// grades, followed by a negative number

// Output: A distribution of grades, as a percentage for

// each of the categories 0-9, 10-19, . . .,

// 90-100.

import java.io.*;

// The exception definition to deal with the end of data

class NegativeInputException extends Exception {

 public NegativeInputException() {

 System.out.println("End of input data reached");

 } //** end of constructor

} //** end of NegativeInputException class

class GradeDist {

 int newGrade,

 index,

 limit_1,

 limit_2;

 int [] freq = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

void buildDist() throws IOException {

 DataInputStream in = new DataInputStream(System.in);

 try {

 while (true) {

 System.out.println("Please input a grade");

 newGrade = Integer.parseInt(in.readLine());

 if (newGrade < 0)

 throw new NegativeInputException();

 index = newGrade / 10;

 try {

 freq[index]++;

 } //** end of inner try clause

 catch(ArrayIndexOutOfBoundsException e) {

 if (newGrade == 100)

 freq [9]++;

 else

 System.out.println("Error - new grade: " +

 newGrade + " is out of range");

 } //** end of catch (ArrayIndex. . .

 } //** end of while (true) . . .

 } //** end of outer try clause

 catch(NegativeInputException e) {

 System.out.println ("\nLimits Frequency\n");

 for (index = 0; index < 10; index++) {

 limit_1 = 10 * index;

 limit_2 = limit_1 + 9;

 if (index == 9)

 limit_2 = 100;

 System.out.println("" + limit_1 + " - " +

 limit_2 + "   " + freq [index]);

 } //** end of for (index = 0; ...

 } //** end of catch (NegativeInputException ...

} //** end of method buildDist

The exception for a negative input, NegativeInputException, is defined in
the program. Its constructor displays a message when an object of the class is
created. Its handler produces the output of the method.
ArrayIndexOutOfBoundsException is a predefined unchecked exception that
is thrown by the Java run-time system. In both of these cases, the handler
does not include an object name in its parameter. In neither case would a

name serve any purpose. Although all handlers get objects as parameters,
they often are not useful.

14.3.6 The finally Clause
There are some situations in which a process must be executed regardless of
whether a try clause throws an exception or the exception is handled in the
method. One example of such a situation is a file that must be closed.
Another is if the method has some external resource that must be freed in the
method regardless of how the execution of the method terminates. The
finally clause was designed for these kinds of needs. A finally clause is
placed at the end of the list of handlers just after a complete try construct. In
general, the try construct and its finally clause appear as

try {

 . . .

}

catch (. . .) {

 . . .

}

. . . //** More handlers

finally {

 . . .

}

The semantics of this construct is as follows: If the try clause throws no
exceptions, the finally clause is executed before execution continues after
the try construct. If the try clause throws an exception and it is caught by a
following handler, the finally clause is executed after the handler completes
its execution. If the try clause throws an exception but it is not caught by a
handler following the try construct, the finally clause is executed before
the exception is propagated.

A try construct with no exception handlers can be followed by a finally
clause. This makes sense, of course, only if the compound statement has a
throw, break, continue, or return statement. Its purpose in these cases is the
same as when it is used with exception handling. For example, consider the
following:

try {

 for (index = 0; index < 100; index++) {

 . . .

 if (. . .) {

 return;

 } //** end of if

 . . .

 } //** end of for

} //** end of try clause

finally {

 . . .

} //** end of try construct

The finally clause here will be executed, regardless of whether the return
terminates the loop or it ends normally.

14.3.7 Assertions
In the discussion of Plankalkül in Chapter 2, we mentioned that it included
assertions. Assertions were added to Java in version 1.4. To use them, it is
necessary to enable them by running the program with the enableassertions
(or ea) flag, as in

java -enableassertions MyProgram

There are two possible forms of the assert statement:

assert condition;

assert condition : expression;

In the first case, the condition is tested when execution reaches the assert. If
the condition evaluates to true, nothing happens. If it evaluates to false, the
AssertionError exception is thrown. In the second case, the action is the
same, except that the value of the expression is passed to the AssertionError
constructor as a string and becomes debugging output.

The assert statement is used for defensive programming. A program may be
written with many assert statements, which ensure that the program’s

computation is on track to produce correct results. Many programmers put in
such checks when they write a program, as an aid to debugging, even though
the language they are using does not support assertions. When the program is
sufficiently tested, these checks are removed. The advantage of assert
statements, which have the same purpose, is that they can be disabled without
removing them from the program. This saves the effort of removing them and
also allows their use during subsequent program maintenance.

14.3.8 Evaluation
The Java mechanisms for exception handling are an improvement over the
C++ version on which they are based.

First, a C++ program can throw any type defined in the program or by the
system. In Java, only objects that are instances of Throwable or some class
that descends from it can be thrown. This separates the objects that can be
thrown from all of the other objects (and nonobjects) that inhabit a program.
What significance can be attached to an exception that causes an int value to
be thrown?

Second, a C++ program unit that does not include a throw clause can throw
any exception, which tells the reader nothing. A Java method that does not
include a throws clause cannot throw any checked exception that it does not
handle. Therefore, the reader of a Java method knows from its header what
exceptions it could throw but does not handle. A C++ compiler ignores throw
clauses, but a Java compiler ensures that all exceptions that a method can
throw are listed in its throws clause.

Third, the finally clause is a useful addition. It allows cleanup kinds of
actions to take place regardless of how a compound statement terminated.

Finally, the Java run-time system implicitly throws a variety of predefined
exceptions, such as for array indices out of range and dereferencing null
references, which can be handled by any user program. A C++ program can
handle only those exceptions that it explicitly throws (or that are thrown by
library classes it uses).

C# includes exception-handling constructs that are very much like those of
Java, except that C# does not have a throws clause.

14.4 Exception Handling in Python
and Ruby
This section provides brief overviews of the exception-handling mechanisms
of Python and Ruby.

14.4.1 Python
In Python, exceptions are objects. The base class of all exception classes is
BaseException, from which the Exception class is derived. BaseException
provides some services that are useful for all exception classes, but it is not
usually directly subclassed. All predefined exception classes are derived from
Exception and user-defined exception classes also are derived from it. The
most commonly used predefined subclasses of Exception are
ArithmeticError, whose primary subclasses are OverflowError,
ZeroDivisionError, and FloatingPointError, and LookupError, whose
main subclasses are IndexError and KeyError.

The statements for dealing with exceptions are similar to those of Java. The
general form of a try construct is as follows:

try:

 The try block (the range of statements to be watched for exceptions)

except Exception1:

 Handler for Exception1

except Exception2:

 Handler for Exception2

...

else:

 The else block (what to do when no exception is raised)

finally:

 The finally block (what must be done regardless of what happened)

Both the else and the finally clauses are optional.

One difference between handlers in Java and Python is that Python uses
except to introduce them, rather than catch. The else clause is executed if
no exception is raised in the try block. The finally clause has the same
semantics as its counterpart in Java: If an exception is raised in the try block
but is not handled by an immediately following handler, the exception is
propagated after the finally block is executed. Because a handler handles its
named exception, as well as all subclasses of that exception, a handler that
names Exception handles all predefined and user-defined exceptions.

An unhandled exception is propagated to progressively larger enclosing try
constructs, searching for an appropriate handler. If none is found, the
exception is propagated to the function’s caller, again searching for a handler
in a nesting try construct. If no handler is found at any level, the default
handler is called, which produces an error message and a stack trace and
terminates the program.

The raise statement of Python is similar to the throw statement of Java and
C++. The parameter for raise is the class name of the exception to be raised.
For example, we could have the following:

raise IndexError

This statement implicitly creates an instance of the named class, IndexError.

An exception handler can gain access to the object of the raised exception by
providing an as clause and a variable name, as in the following:

except Exception as ex_obj:

This is a universal handler, as it handles all exceptions. The exception object
can be printed with a print statement in the handler, which produces the
message of the object. For example, if the exception was
ZeroDivisionError, the message would be division by zero.

Python’s assert statement provides a mechanism for making some exception
handling optional. The general form of assert is as follows:

assert test, data

In this statement, test is a Boolean flag or expression and data is the value
that is sent to the constructor for the exception object to be raised. The
meaning of this statement, which optionally raises the AssertionError
exception, can be described with the following code:

if __debug__:

 if not test:

 raise AssertionError(data)

__debug__ is a predefined flag that is set to True unless the -0 flag is used on
the command that runs the program. This allows one to disable all assert
statements for a particular run of the program. If an AssertionError
exception is not handled by the program, like other unhandled exceptions, it
terminates the program after using the default handler.

Python does not have an equivalent to the throws clause of Java.

14.4.2 Ruby
Like Python, Ruby exceptions are objects and it has a large collection of
predefined exception classes. All of the exceptions that are handled by
application programs are either objects of the StandardError class or a class
that descends from it. StandardError is derived from Exception, which
provides two useful methods to all its descendants. These are message, which
returns the human-readable error message, and backtrace, which returns a
stack trace starting from the method where the exception was raised. Some of
the predefined subclasses of StandardError are ArgumentError,
IndexError, IOError, and ZeroDivisionError.

Exceptions are explicitly raised with the raise method. raise is often called
with a string parameter. In this case, it raises a new RuntimeError object with
the string as its message. For example, we could have the following:

raise "bad parameter" if count == 0

raise could also have two parameters, the first of which would be an object
of an exception class. The exception method of this object is called and the

returned Exception object is raised. In this case, the second parameter would
be the string message to be displayed. For example, we could have the
following:

raise TypeError, "Float parameter expected"

if not param.is_a? Float

An exception handler is specified with a rescue clause, which is attached to a
statement. To attach an exception handler to a segment of code, the code is
placed in a begin-end block. The rescue clause is placed in the block after
the code of the block. In general, this appears as in the following:

begin

 The sequence of statements in the block

rescue

 The handler

end

A begin-end block can include an else clause and/or an ensure clause. The
else clause is exactly like that of Python. The ensure clause is exactly like a
finally clause. A method can act as a container for exception handling in
place of a begin-end block.

In a clear departure from most other languages, Ruby allows a segment of
code that raised an exception to be rerun after the exception is handled. This
is specified with a retry statement at the end of the handler.

14.5 Introduction to Event Handling
Event handling is similar to exception handling. In both cases, the handlers
are implicitly called by the occurrence of something, either an exception or
an event. While exceptions can be raised either explicitly by user code or
implicitly by hardware or a software interpreter, events are created by
external actions, such as user interactions through a graphical user interface
(GUI). In this section, the fundamentals of event handling, which are less
complex than those of exception handling, are introduced.

In conventional (non-event-driven) programming, the program code itself
specifies the order in which that code is executed, although the order is
usually affected by the program’s input data. In event-driven programming,
parts of the program are executed at completely unpredictable times, often
triggered by user interactions with the executing program.

The particular kind of event handling discussed in this chapter is related to
GUIs. Therefore, most of the events are caused by user interactions through
graphical objects or components, often called widgets. The most common
widgets are buttons. Implementing reactions to user interactions with GUI
components is the most common form of event handling.

An event is a notification that something specific has occurred, such as a
mouse click on a graphical button. Strictly speaking, an event is an object that
is implicitly created by the run-time system in response to a user action, at
least in the context in which event handling is being discussed here.

An event handler is a segment of code that is executed in response to the
appearance of an event. Event handlers enable a program to be responsive to
user actions.

Although event-driven programming was being used long before GUIs
appeared, it has become a widely used programming methodology only in
response to the popularity of these interfaces. As an example, consider the
GUIs presented to users of Web browsers. Many Web documents presented

to browser users are now dynamic. Such a document may present an order
form to the user, who chooses the merchandise by clicking buttons. The
required internal computations associated with these button clicks are
performed by event handlers that react to the click events.

Another common use of event handlers is to check for simple errors and
omissions in the elements of a form, either when they are changed or when
the form is submitted to the Web server for processing. Using event handling
on the browser to check the validity of form data saves the time of sending
that data to the server, where their correctness then must be checked by a
server-resident program or script before they can be processed. This kind of
event-driven programming is often done using a client-side scripting
language, such as JavaScript.

14.6 Event Handling with Java
In addition to Web applications, non-Web Java applications can present GUIs
to users. GUIs in Java applications are discussed in this section.

The initial version of Java provided a somewhat primitive form of support for
GUI components. In version 1.2 of the language, released in late 1998, a new
collection of components was added. These were collectively called Swing.

14.6.1 Java Swing GUI
Components4
4. Over the last few years, Swing is slowly being replaced by a new GUI
toolset named JAVAFX.

The Swing collection of classes and interfaces, defined in javax.swing,
includes GUI components, or widgets. Because our interest here is event
handling, not GUI components, we discuss only two kinds of widgets: text
boxes and radio buttons.

A text box is an object of class JTextField. The simplest JTextField
constructor takes a single parameter, the length of the box in characters. For
example,

JTextField name = new JTextField(32);

The JTextField constructor can also take a literal string as an optional first
parameter. This string parameter, when present, is displayed as the initial
contents of the text box.

Radio buttons are special buttons that are placed in a button group container.
A button group is an object of class ButtonGroup, whose constructor takes no
parameters. In a radio button group, only one button can be pressed at a time.

If any button in the group becomes pressed, the previously pressed button is
implicitly unpressed. The JRadioButton constructor, used for creating radio
buttons, takes two parameters: a label and the initial state of the radio button
(true or false, for pressed and not pressed, respectively). If one radio button
in a group is initially set to pressed, the others in the group default to
unpressed. After the radio buttons are created, they are placed in their button
group with the add method of the group object. Consider the following
example:

ButtonGroup payment = new ButtonGroup();

JRadioButton box1 = new JRadioButton("Visa", true);

JRadioButton box2 = new JRadioButton("Master Charge");

JRadioButton box3 = new JRadioButton("Discover");

payment.add(box1);

payment.add(box2);

payment.add(box3);

A JFrame object is a frame, which is displayed as a separate window. The
JFrame class defines the data and methods that are needed for frames. So, a
class that uses a frame can be a subclass of JFrame. A JFrame has several
layers called panes. We are interested in just one of those layers, the content
pane. Components of a GUI are placed in a JPanel object (a panel), which is
used to organize and define the layout of the components. A frame is created
and the panel containing the components is added to that frame’s content
pane.

Predefined graphic objects, such as GUI components, are placed directly in a
panel. The following creates the panel object used in the following discussion
of components:

JPanel myPanel = new JPanel();

After the components have been created with constructors, they are placed in
the panel with the add method, as in

myPanel.add(button1);

14.6.2 The Java Event Model

When a user interacts with a GUI component, for example by clicking a
button, the component creates an event object and calls an event handler
through an object called an event listener, passing the event object. The event
handler provides the associated actions. GUI components are event
generators. In Java, events are connected to event handlers through event
listeners. Event listeners are connected to event generators through event
listener registration. Listener registration is done with a method of the class
that implements the listener interface, as described later in this section. Only
event listeners that are registered for a specific event are notified when that
event occurs.

The listener method that receives the message implements an event handler.
To make the event-handling methods conform to a standard protocol, an
interface is used. An interface prescribes standard method protocols but does
not provide implementations of those methods.

A class that needs to implement an event handler must implement an
interface for the listener for that handler. There are several classes of events
and listener interfaces. One class of events is ItemEvent, which is associated
with the event of clicking a checkbox or a radio button, or selecting a list
item. The ItemListener interface includes the protocol of a method,
itemStateChanged, which is the handler for ItemEvent events. So, to provide
an action that is triggered by a radio button click, the interface ItemListener
must be implemented, which requires a definition of the method,
itemStateChanged.

As stated previously, the connection of a component to an event listener is
made with a method of the class that implements the listener interface. For
example, because ItemEvent is the class name of event objects created by
user actions on radio buttons, the addItemListener method is used to register
a listener for radio buttons. The listener for button events created in a panel
could be implemented in the panel or a subclass of JPanel. So, for a radio
button named button1 in a panel named myPanel that implements the
ItemEvent event handler for buttons, we would register the listener with the
following statement:

button1.addItemListener(this);

Each event handler method receives an event parameter, which provides
information about the event. Event classes have methods to access that
information. For example, when called through a radio button, the
isSelected method returns true or false, depending on whether the button
was on or off (pressed or not pressed), respectively.

All the event-related classes are in the java.awt.event package, so it is
imported to any class that uses events.

The following is an example application, RadioB, that illustrates the use of
events and event handling. This application constructs radio buttons that
control the font style of the contents of a text field. It creates a Font object for
each of four font styles. Each of these has a radio button to enable the user to
select the font style.

The purpose of this example is to show how events raised by GUI
components can be handled to change the output display of the program
dynamically. Because of our narrow focus on event handling, some parts of
this program are not explained here.

/* RadioB.java

 An example to illustrate event handling with interactive

 radio buttons that control the font style of a textfield

 */

package radiob;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class RadioB extends JPanel implements

 ItemListener {

 private JTextField text;

 private Font plainFont, boldFont, italicFont,

 boldItalicFont;

 private JRadioButton plain, bold, italic, boldItalic;

 private ButtonGroup radioButtons;

// The constructor method is where the display is initially

// built

 public RadioB() {

// Create the test text string and set its font

 text = new JTextField(

 "In what font style should I appear?", 25);

 text.setFont(plainFont);

// Create radio buttons for the fonts and add them to

// a new button group

 plain = new JRadioButton("Plain", true);

 bold = new JRadioButton("Bold");

 italic = new JRadioButton("Italic");

 boldItalic = new JRadioButton("Bold Italic");

 radioButtons = new ButtonGroup();

 radioButtons.add(plain);

 radioButtons.add(bold);

 radioButtons.add(italic);

 radioButtons.add(boldItalic);

 // Create a panel and put the text and the radio

 // buttons in it; then add the panel to the frame

 JPanel radioPanel = new JPanel();

 radioPanel.add(text);

 radioPanel.add(plain);

 radioPanel.add(bold);

 radioPanel.add(italic);

 radioPanel.add(boldItalic);

 add(radioPanel, BorderLayout.LINE_START);

// Register the event handlers

 plain.addItemListener(this);

 bold.addItemListener(this);

 italic.addItemListener(this);

 boldItalic.addItemListener(this);

// Create the fonts

 plainFont = new Font("Serif", Font.PLAIN, 16);

 boldFont = new Font("Serif", Font.BOLD, 16);

 italicFont = new Font("Serif", Font.ITALIC, 16);

 boldItalicFont = new Font("Serif", Font.BOLD +

 Font.ITALIC, 16);

 } // End of the constructor for RadioB

// The event handler

 public void itemStateChanged (ItemEvent e) {

// Determine which button is on and set the font

// accordingly

 if (plain.isSelected())

 text.setFont(plainFont);

 else if (bold.isSelected())

 text.setFont(boldFont);

 else if (italic.isSelected())

 text.setFont(italicFont);

 else if (boldItalic.isSelected())

 text.setFont(boldItalicFont);

 } // End of itemStateChanged

// The main method

 public static void main(String[] args) {

// Create the window frame

 JFrame myFrame = new JFrame(" Radio button

 example");

// Create the content pane and set it to the frame

 JComponent myContentPane = new RadioB();

 myContentPane.setOpaque(true);

 myFrame.setContentPane(myContentPane);

// Display the window.

 myFrame.pack();

 myFrame.setVisible(true);

 }

} // End of RadioB

The RadioB.java application produces the screen shown in Figure 14.2.

Figure 14.2 Output of
RadioB.java

Source: Java radio applet screenshot.

14.7 Event Handling in C#
Event handling in C# (and in the other .NET languages) is similar to that of
Java. .NET provides two approaches to creating GUIs in applications, the
original Windows Forms and the more recent Windows Presentation
Foundation. The latter is the more sophisticated and complex of the two.
Because our interest is just in event handling, we will use the simpler
Windows Forms to discuss our subject.

Using Windows Forms, a C# application that constructs a GUI is created by
subclassing the Form predefined class, which is defined in the
System.Windows.Forms namespace. This class implicitly provides a window
to contain our components. There is no need to build frames or panels
explicitly.

Text can be placed in a Label object and radio buttons are objects of the
RadioButton class. The size of a Label object is not explicitly specified in
the constructor; rather it can be specified by setting the AutoSize data
member of the Label object to true, which sets the size according to what is
placed in it.

Components can be placed at a particular location in the window by
assigning a new Point object to the Location property of the component.
The Point class is defined in the System.Drawing namespace. The Point
constructor takes two parameters, which are the coordinates of the object in
pixels. For example, Point(100, 200) is a position that is 100 pixels from
the left edge of the window and 200 pixels from the top. The label of a
component is set by assigning a string literal to the Text property of the
component. After creating a component, it is added to the form window by
sending it to the Add method of the Controls subclass of the form. Therefore,
the following code creates a radio button with the label Plain at the (100,
300) position in the output window:

private RadioButton plain = new RadioButton();

plain.Location = new Point(100, 300);

plain.Text = "Plain";

Controls.Add(plain);

All C# event handlers have the same protocol: the return type is void and the
two parameters are of types object and EventArgs. Neither of the parameters
needs to be used for a simple situation. An event handler method can have
any name. A radio button is tested to determine whether it is clicked with the
Boolean Checked property of the button. Consider the following skeletal
example of an event handler:

private void rb_CheckedChanged (object o, EventArgs e){

 if (plain.Checked) . . .

 . . .

}

To register an event, a new EventHandler object must be created. The
constructor for this class is sent the name of the handler method. The new
object is added to the predefined delegate for the event on the component
object (using the += assignment operator). For example, when a radio button
changes from unchecked to checked, the CheckedChanged event is raised and
the handlers registered on the associated delegate, which is referenced by the
name of the event, are called. If the event handler is named
rb_CheckedChanged, the following statement would register the handler for
the CheckedChanged event on the radio button plain:

plain. CheckedChanged +=

 new EventHandler(rb_CheckedChanged);

Following is the RadioB example from Section 14.6 rewritten in C#. Once
again, because our focus is on event handling, we do not explain all of the
details of the program.

// RadioB.cs

// An example to illustrate event handling with

// interactive radio buttons that control the font

// style of a string of text

namespace RadioB {

 using System;

 using System.Drawing;

 using System.Windows.Forms;

 public class RadioB : Form {

 private Label text = new Label();

 private RadioButton plain = new RadioButton();

 private RadioButton bold = new RadioButton();

 private RadioButton italic = new RadioButton();

 private RadioButton boldItalic = new RadioButton();

 // Constructor for RadioB

 public RadioB() {

 // Initialize the attributes of the text and radio

 // buttons

 text.AutoSize = true;

 text.Text = "In what font style should I appear?";

 plain.Location = new Point(220,0);

 plain.Text = "Plain";

 plain.Checked = true;

 bold.Location = new Point(350, 0);

 bold.Text = "Bold";

 italic.Location = new Point(480, 0);

 italic.Text = "Italics";

 boldItalic.Location = new Point(610, 0);

 boldItalic.Text = "Bold/Italics";

 // Add the text and the radio buttons to the form

 Controls.Add(text);

 Controls.Add(plain);

 Controls.Add(bold);

 Controls.Add(italic);

 Controls.Add(boldItalic);

 // Register the event handler for the radio buttons

 plain.CheckedChanged +=

 new EventHandler(rb_CheckedChanged);

 bold.CheckedChanged +=

 new EventHandler(rb_CheckedChanged);

 italic.CheckedChanged +=

 new EventHandler(rb_CheckedChanged);

 boldItalic.CheckedChanged +=

 new EventHandler(rb_CheckedChanged);

 }

 // The main method is where execution begins

 static void Main() {

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault (false);

 Application.Run(new RadioB());

 }

 // The event handler

 private void rb_CheckedChanged (object o,

 EventArgs e) {

 // Determine which button is on and set the font

 // accordingly

 if (plain.Checked)

 text.Font =

 new Font(text.Font.Name, text.Font.Size,

 FontStyle.Regular);

 if (bold.Checked)

 text.Font =

 new Font(text.Font.Name, text.Font.Size,

 FontStyle.Bold);

 if (italic.Checked)

 text.Font =

 new Font(text.Font.Name, text.Font.Size,

 FontStyle.Italic);

 if (boldItalic.Checked)

 text.Font =

 new Font(text.Font.Name, text.Font.Size,

 FontStyle.Italic ^ FontStyle.Bold);

 } // End of radioButton_CheckedChanged

 } // End of RadioB

}

The output from this program is exactly like that shown in Figure 14.2.

SUMMARY
C++ includes no predefined exceptions (except those defined in the standard
library). C++ exceptions are objects of a primitive type, a predefined class, or
a user-defined class. Exceptions are bound to handlers by connecting the type
of the expression in the throw statement to that of the formal parameter of the
handler. Handlers all have the same name—catch. The C++ throw clause of
a method lists the types of exceptions that the method could throw.

Java exceptions are objects whose ancestry must trace back to a class that
descends from the Throwable class. There are two categories of exceptions—
checked and unchecked. Checked exceptions are a concern for the user
program and the compiler. Unchecked exceptions can occur anywhere and
are often ignored by user programs.

The Java throws clause of a method lists the checked exceptions that it could
throw and does not handle. It must include exceptions that methods it calls
could raise and propagate back to its caller.

The Java finally clause provides a mechanism for guaranteeing that some
code will be executed regardless of how the execution of a try compound
terminates.

Java now includes an assert statement, which facilitates defensive
programming.

Python’s exception handling is similar to that of Java, although it adds the
else clause to the try construct. Also, it uses except clauses rather than
catch clauses to define handlers and raise instead of throw. Access to the
data of an exception object is gained by assigning the object to a variable
with an as clause. Python’s assert statement is a conditional raise.

Exception handling in Ruby is similar to that of Python. Every exception
class has two methods, message and backtrace. Exceptions are often raised
with a raise statement with a single string parameter. This creates a new

RuntimeError object with the string as its message. The raise statement can
be made conditional by adding a conditional expression to it. The scope of
exception handlers usually is specified with a begin-end block. Handlers are
defined in rescue clauses. A begin-end block can include an else clause and
an ensure clause, which is like the finally clause of Python and Java.

An event is a notification that something has occurred that requires special
processing. Events are often created by user interactions with a program
through a graphical user interface. Java event handlers are called through
event listeners. An event listener must be registered for an event if it is to be
notified when the event occurs. Two of the most commonly used event
listeners interfaces are actionPerformed and itemStateChanged.

Windows Forms is the original approach to building GUI components and
handling events in .NET languages. A C# application builds a GUI in this
approach by subclassing the Form class. All .NET event handlers use the
same protocol. Event handlers are registered by creating an EventHandler
object and assigning it to the predefined delegate associated with the GUI
object that can raise the event.

BIBLIOGRAPHIC NOTES
One of the most important papers on exception handling that is not connected
with a particular programming language is the work by Goodenough (1975).
The problems with the PL/I design for exception handling are covered in
MacLaren (1977). Exception handling in C++ is described by Stroustrup
(1997). Exception handling in Java is described by Campione et al. (2001).

REVIEW QUESTIONS
1. Define exception, exception handler, raising an exception, continuation,

finalization, and built-in exception.

2. What are the two alternatives for designing continuation?

3. What are the advantages of having support for exception handling built
in to a language?

4. What are the design issues for exception handling?

5. What does it mean for an exception to be bound to an exception
handler?

6. What is the name of all C++ exception handlers?

7. How can exceptions be explicitly raised in C++?

8. How are exceptions bound to handlers in C++?

9. How can an exception handler be written in C++ so that it handles any
exception?

10. Where does execution control go when a C++ exception handler has
completed its execution?

11. Does C++ include built-in exceptions?

12. Why is the raising of an exception in C++ not called raise?

13. What is the root class of all Java exception classes?

14. What is the parent class of most Java user-defined exception classes?

15. How can an exception handler be written in Java so that it handles any

exception?

16. What are the differences between a C++ throw specification and a Java
throws clause?

17. What is the difference between checked and unchecked exceptions in
Java?

18. How can an exception handler be written in Java so that it handles any
exception?

19. What is the purpose of the Java finally clause?

20. What advantage do language-defined assertions have over simple if-
then constructs?

21. Explain what an else block in Python does.

22. What is the purpose of an as clause in Python?

23. Explain what an assert statement in Python does.

24. What does the message method of Ruby’s StandardError class do?

25. What exactly happens when a raise statement with a string parameter is
executed?

26. What exactly does a Ruby ensure clause do?

27. In what ways are exception handling and event handling related?

28. Define event and event handler.

29. What is event-driven programming?

30. What is the purpose of a Java JFrame?

31. What is the purpose of a Java JPanel?

32. What object is often used as the event listener in Java GUI applications?

33. What is the origin of the protocol for an event handler in Java?

34. What method is used to register an event handler in Java?

35. Using .NET’s Windows Forms, what namespace is required to build a
GUI for a C# application?

36. How is a component positioned in a form using Windows Forms?

37. What is the protocol of a .NET event handler?

38. What class of object must be created to register a .NET event handler?

39. What role do delegates play in the process of registering event handlers?

PROBLEM SET
1. What did the designers of C get in return for not requiring subscript

range checking?

2. Describe three approaches to exception handling in languages that do
not provide direct support for it.

3. From textbooks on the PL/I and Ada programming languages, look up
the respective sets of built-in exceptions. Do a comparative evaluation of
the two, considering both completeness and flexibility.

4. From a textbook on COBOL, determine how exception handling is done
in COBOL programs.

5. In languages without exception-handling facilities, it is common to have
most subprograms include an “error” parameter, which can be set to
some value representing “OK” or some other value representing “error
in procedure.” What advantage does a linguistic exception-handling
facility like that of Java have over this method?

6. In a language without exception-handling facilities, we could send an
error-handling procedure as a parameter to each procedure that can
detect errors that must be handled. What disadvantages are there to this
method?

7. Compare the methods suggested in Problems 5 and 6. Which do you
think is better and why?

8. Write a comparative analysis of the throw clause of C++ and the throws
clause of Java.

9. Consider the following C++ skeletal program:

class Big {

 int i;

 float f;

 void fun1() throw int {

 . . .

 try {

 . . .

 throw i;

 . . .

 throw f;

 . . .

 }

 catch(float) { . . . }

 . . .

 }

}

class Small {

 int j;

 float g;

 void fun2() throw float {

 . . .

 try {

 . . .

 try {

 Big.fun1();

 . . .

 throw j;

 . . .

 throw g;

 . . .

 }

 catch(int) { . . . }

 . . .

 }

 catch(float) { . . . }

 }

}

In each of the four throw statements, where is the exception handled?
Note that fun1 is called from fun2 in class Small.

10. Write a detailed comparison of the exception-handling capabilities of
C++ and those of Java.

11. With the help of a book on ML, write a detailed comparison of the
exception-handling capabilities of ML and those of Java.

12. Summarize the arguments in favor of the termination and resumption
models of continuation.

PROGRAMMING EXERCISES
1. Suppose you are writing a C++ function that has three alternative

approaches for accomplishing its requirements. Write a skeletal version
of this function so that if the first alternative raises any exception, the
second is tried, and if the second alternative raises any exception, the
third is executed. Write the code as if the three methods were procedures
named alt1, alt2, and alt3.

2. Write a Java program that inputs a list of integer values in the range of
−100 to 100 from the keyboard and computes the sum of the squares of
the input values. This program must use exception handling to ensure
that the input values are in range and are legal integers, to handle the
error of the sum of the squares becoming larger than a standard Integer
variable can store, and to detect end-of-file and use it to cause the output
of the result. In the case of overflow of the sum, an error message must
be printed and the program terminated.

3. Write a C++ program for the specification of Programming Exercise 2.

4. Revise the Java program of Section 14.3.5 to use EOFException to
detect the end of the input.

5. Rewrite the Java code of Section 14.3.6 that uses a finally clause
in C++.

15 Functional Programming
Languages

1. 15.1 Introduction

2. 15.2 Mathematical Functions

3. 15.3 Fundamentals of Functional Programming Languages

4. 15.4 The First Functional Programming Language: Lisp

5. 15.5 An Introduction to Scheme

6. 15.6 Common Lisp

7. 15.7 ML

8. 15.8 Haskell

9. 15.9 F#

10. 15.10 Support for Functional Programming in Primarily Imperative
Languages

11. 15.11 A Comparison of Functional and Imperative Languages

This chapter introduces functional programming and some of the
programming languages that have been designed for this approach to
software development. We begin by reviewing the fundamental ideas of
mathematical functions, because functional languages are based on them.
Next, the idea of a functional programming language is introduced, followed
by a look at the first functional language, Lisp. The next, somewhat lengthy
section, is devoted to an introduction to Scheme, including some of its
primitive functions, special forms, functional forms, and some examples of
simple functions written in Scheme. Next, we provide brief introductions to

Common Lisp, ML, Haskell, and F#. Then, we discuss support for functional
programming that is included in some imperative languages. The following
section describes some of the applications of functional programming
languages. Finally, we present a brief comparison of functional and
imperative languages.

15.1 Introduction
Most of the earlier chapters of this book have been concerned primarily with
the imperative programming languages. The high degree of similarity among
the imperative languages arises in part from one of the common bases of their
design: the von Neumann architecture, as discussed in Chapter 1. Imperative
languages can be thought of collectively as a progression of developments to
improve the basic model, which was Fortran I. All have been designed to
make efficient use of von Neumann architecture computers. Although the
imperative style of programming has been found acceptable by most
programmers, its heavy reliance on the underlying architecture is thought by
some to be an unnecessary restriction on the alternative approaches to
software development.

Other bases for language design exist, some of them oriented more to
particular programming paradigms or methodologies than to efficient
execution on a particular computer architecture. Thus far, however, only a
relatively small minority of programs have been written in nonimperative
languages.

The functional programming paradigm, which is based on mathematical
functions, is the design basis of the most important nonimperative styles of
languages. This style of programming is supported by functional
programming languages.

The 1977 ACM Turing Award was given to John Backus for his work in the
development of Fortran. Each recipient of this award presents a lecture when
the award is formally given, and the lecture is subsequently published in the
Communications of the ACM. In his Turing Award lecture, Backus (1978)
made a case that purely functional programming languages are better than
imperative languages because they result in programs that are more readable,
more reliable, and more likely to be correct. The crux of his argument was
that purely functional programs are easier to understand, both during and
after development, largely because the meanings of expressions are
independent of their context (one characterizing feature of a pure functional

programming language is that neither expressions nor functions have side
effects).

In this lecture, Backus proposed a pure functional language, FP (functional
programming), which he used to frame his argument. Although the language
did not succeed, at least in terms of achieving widespread use, his idea
motivated debate and research on pure functional programming languages.
The point here is that some well-known computer scientists have attempted to
promote the concept that functional programming languages are superior to
the traditional imperative languages, though those efforts have obviously
fallen short of their goals. However, over the last decade, prompted in part by
the maturing of the typed functional languages, such as ML, Haskell, OCaml,
and F#, there has been an increase in the interest in and use of functional
programming languages.

One of the fundamental characteristics of programs written in imperative
languages is that they have state, which changes throughout the execution
process. This state is represented by the program’s variables. The author and
all readers of the program must understand the uses of its variables and how
the program’s state changes through execution. For a large program, this is a
daunting task. This is one problem with programs written in an imperative
language that is not present in a program written in a pure functional
language, for such programs have neither variables nor state.

Lisp began as a pure functional language but soon acquired some important
imperative features that increased its execution efficiency. It is still the most
important of the functional languages, at least in the sense that it is the only
one that has achieved widespread use. It dominates in the areas of knowledge
representation, machine learning, intelligent training systems, and the
modeling of speech. Common Lisp is an amalgam of several early 1980s
dialects of Lisp.

Scheme is a small, static-scoped dialect of Lisp. Scheme has been widely
used to teach functional programming. It is also used in some universities to
teach introductory programming courses.

The development of the typed functional programming languages, primarily
ML, Haskell, OCaml, and F#, has led to a significant expansion of the areas

of computing in which functional languages are now used. As these
languages have matured, their practical use is growing. They are now being
used in areas such as database processing, financial modeling, statistical
analysis, and bioinformatics.

One objective of this chapter is to provide an introduction to functional
programming using the core of Scheme, intentionally leaving out its
imperative features. Sufficient material on Scheme is included to allow the
reader to write some simple but interesting programs. It is difficult to acquire
an actual feel for functional programming without some actual programming
experience, so that is strongly encouraged.

15.2 Mathematical Functions
A mathematical function is a mapping of members of one set, called the
domain set, to another set, called the range set. A function definition
specifies the domain and range sets, either explicitly or implicitly, along with
the mapping. The mapping is described by an expression or, in some cases,
by a table. Functions are often applied to a particular element of the domain
set, given as a parameter to the function. Note that the domain set may be the
cross product of several sets (reflecting that there can be more than one
parameter). A function yields an element of the range set.

One of the fundamental characteristics of mathematical functions is that the
evaluation order of their mapping expressions is controlled by recursion and
conditional expressions, rather than by the sequencing and iterative repetition
that are common to programs written in the imperative programming
languages.

Another important characteristic of mathematical functions is that because
they have no side effects and cannot depend on any external values, they
always map a particular element of the domain to the same element of the
range. However, a subprogram in an imperative language may depend on the
current values of several nonlocal or global variables. This makes it difficult
to determine statically what values the subprogram will produce and what
side effects it will have on a particular execution.

In mathematics, there is no such thing as a variable that models a memory
location. Local variables in functions in imperative programming languages
maintain the state of the function. Computation is accomplished by
evaluating expressions in assignment statements that change the state of the
program. In mathematics, there is no concept of the state of a function.

A mathematical function maps its parameter(s) to a value (or values), rather
than specifying a sequence of operations on values in memory to produce a
value.

15.2.1 Simple Functions
Function definitions are often written as a function name, followed by a list
of parameters in parentheses, followed by the mapping expression. For
example,

cube(x)≡x * x * x, where x is a real number.

In this definition, the domain and range sets are the real numbers. The symbol
≡ is used to mean “is defined as.” The parameter x can represent any member
of the domain set, but it is fixed to represent one specific element during
evaluation of the function expression. This is one way the parameters of
mathematical functions differ from the variables in imperative languages.

Function applications are specified by pairing the function name with a
particular element of the domain set. The range element is obtained by
evaluating the function-mapping expression with the domain element
substituted for the occurrences of the parameter. Once again, it is important to
note that during evaluation, the mapping of a function contains no unbound
parameters, where a bound parameter is a name for a particular value. Every
occurrence of a parameter is bound to a value from the domain set and is a
constant during evaluation. For example, consider the following evaluation of
cube(x):

cube (2.0)=2.0 * 2.0 * 2.0=8

The parameter x is bound to 2.0 during the evaluation and there are no
unbound parameters. Furthermore, x is a constant (its value cannot be
changed) during the evaluation.

Early theoretical work on functions separated the task of defining a function
from that of naming the function. Lambda notation, as devised by Alonzo
Church (1941), provides a method for defining nameless functions. A
lambda expression specifies the parameters and the mapping of a function.
The lambda expression is the function itself, which is nameless. For example,
consider the following lambda expression:

λ(x)x * x * x

Church defined a formal computation model (a formal system for function
definition, function application, and recursion) using lambda expressions.
This is called lambda calculus. Lambda calculus can be either typed or
untyped. Untyped lambda calculus serves as the inspiration for the functional
programming languages.

As stated earlier, before evaluation a parameter represents any member of the
domain set, but during evaluation it is bound to a particular member. When a
lambda expression is evaluated for a given parameter, the expression is said
to be applied to that parameter. The mechanics of such an application are the
same as for any function evaluation. Application of the example lambda
expression is denoted as in the following example:

(λ(x)x * x * x)(2)

which results in the value 8.

Lambda expressions, like other function definitions, can have more than one
parameter.

15.2.2 Functional Forms
A higher-order function, or functional form, is one that either takes one or
more functions as parameters or yields a function as its result, or both. One
common kind of functional form is function composition, which has two
functional parameters and yields a function whose value is the first actual
parameter function applied to the result of the second. Function composition
is written as an expression, using º as an operator, as in

h≡f ° g

For example, if

f(x)≡x+2 g(x)≡3*x

then h is defined as

h(x)≡f(g(x)), or h(x)≡(3*x)+2

Apply-to-all is a functional form that takes a single function as a parameter.1
If applied to a list of parameters, apply-to-all applies its functional parameter
to each of the values in the list parameter and collects the results in a list or
sequence. Apply-to-all is denoted by α. Consider the following example:

1. In programming languages, these are often called map functions.

Let

h(x)≡x*x

then

α(h,(2,3,4)) yields (4, 9, 16)

There are other functional forms, but these two examples illustrate the basic
characteristics of all of them.

15.3 Fundamentals of Functional
Programming Languages
The objective of the design of a functional programming language is to
mimic mathematical functions to the greatest extent possible. This results in
an approach to problem solving that is fundamentally different from
approaches used with imperative languages. In an imperative language, an
expression is evaluated and the result is stored in a memory location, which is
represented as a variable in a program. This is the purpose of assignment
statements. This necessary attention to memory cells, whose values represent
the state of the program, results in a relatively low-level programming
methodology.

A program in an assembly language often must also store the results of partial
evaluations of expressions. For example, to evaluate

(x+y)/(a−b)

the value of (x+y) is computed first. That value must then be stored while (a
−b) is evaluated. The compiler handles the storage of intermediate results of
expression evaluations in high-level languages. The storage of intermediate
results is still required, but the details are hidden from the programmer.

A purely functional programming language does not use variables or
assignment statements, thus freeing the programmer from concerns related to
the memory cells, or state, of the program. Without variables, iterative
constructs are not possible, for they are controlled by variables. Repetition
must be specified with recursion rather than with iteration. Programs are
function definitions and function application specifications, and executions
consist of evaluating function applications. Without variables, the execution
of a purely functional program has no state in the sense of operational and
denotational semantics. The execution of a function always produces the
same result when given the same parameters. This characteristic is called
referential transparency. It makes the semantics of purely functional

languages far simpler than the semantics of the imperative languages (and the
functional languages that include imperative features). It also makes testing
easier, because each function can be tested separately, without any concern
for its context.

A functional language provides a set of primitive functions, a set of
functional forms to construct complex functions from those primitive
functions, a function application operation, and some structure or structures
for representing data. These structures are used to represent the parameters
and values computed by functions. If a functional language is well designed,
it requires only a relatively small number of primitive functions.

As we have seen in earlier chapters, the first functional programming
language, Lisp, uses a syntactic form for both data and code that is very
different from that of the imperative languages. However, many functional
languages designed later use syntax for their code that is similar to that of the
imperative languages.

Although there are a few purely functional languages, for example, Haskell,
most of the languages that are called functional include some imperative
features, for example, mutable variables and constructs that act as assignment
statements.

Some concepts and constructs that originated in functional languages, such as
lazy evaluation and anonymous subprograms, have now found their way into
some languages that are considered imperative.

Although early functional languages were often implemented with
interpreters, many programs written in functional programming languages are
now compiled.

15.4 The First Functional
Programming Language: Lisp
Many functional programming languages have been developed. The oldest
and most widely used is Lisp (or one of its descendants), which was
developed by John McCarthy at MIT in 1959. Studying functional languages
through Lisp is somewhat akin to studying the imperative languages through
Fortran: Lisp was the first functional language, but although it has steadily
evolved for half a century, it no longer represents the latest design concepts
for functional languages. In addition, with the exception of the first version,
all Lisp dialects include imperative-language features, such as imperative-
style variables, assignment statements, and iteration. (Imperative-style
variables are used to name memory cells, whose values can change many
times during program execution.) Despite this and their somewhat odd form,
the descendants of the original Lisp represent well the fundamental concepts
of functional programming and are therefore worthy of study.

15.4.1 Data Types and Structures
There were only two categories of data objects in the original Lisp: atoms and
lists. List elements are pairs, where the first part is the data of the element,
which is a pointer to either an atom or a nested list. The second part of a pair
can be a pointer to an atom, a pointer to another element, or a special value,
nil. Elements are linked together in lists with the second parts. Atoms and
lists are not types in the sense that imperative languages have types. In fact,
the original Lisp was a typeless language. Atoms are either symbols, in the
form of identifiers, or numeric literals.

Recall from Chapter 2, that Lisp originally used lists as its data structure
because they were thought to be an essential part of list processing. As it
eventually developed, however, Lisp rarely requires the general list
operations of insertion and deletion at positions other than the beginning of a

list.

Lists are specified in Lisp by delimiting their elements with parentheses. The
elements of simple lists are restricted to atoms, as in

(A B C D)

Nested list structures are also specified by parentheses. For example, the list

(A (B C) D (E (F G)))

is a list of four elements. The first is the atom A; the second is the sublist (B
C); the third is the atom D; the fourth is the sublist (E (F G)), which has as
its second element the sublist (F G).

In a Lisp implementation, a list is usually stored as linked list structure in
which each node has two pointers, one to reference the data of the node and
the other to form the linked list. A list is referenced by a pointer to its first
element.

The internal representations of our two example lists are shown in Figure
15.1. Note that the elements of a list are shown horizontally. The last element
of a list has no successor, so its link is nil. Sublists are shown with the same
structure.

Figure 15.1 Internal
representation of two Lisp lists

Figure 15.1 Full Alternative Text

15.4.2 The First Lisp Interpreter
The original intent of Lisp’s design was to have a notation for programs that
would be as close to Fortran’s as possible, with additions when necessary.
This notation was called M-notation, for meta-notation. There was to be a
compiler that would translate programs written in M-notation into
semantically equivalent machine code programs for the IBM 704.

Early in the development of Lisp, McCarthy wrote a paper to promote list
processing as an approach to general symbolic processing. McCarthy
believed that list processing could be used to study computability, that at the
time was usually studied using Turing machines, which are based on the
imperative model of computation. McCarthy thought that the functional
processing of symbolic lists was a more natural model of computation than
Turing machines, that operated on symbols written on tapes, which
represented state. One of the common requirements of the study of
computation is that one must be able to prove certain computability
characteristics of the whole class of whatever model of computation is being
used. In the case of the Turing machine model, one can construct a universal
Turing machine that can mimic the operations of any other Turing machine.
From this concept came the idea of constructing a universal Lisp function
that could evaluate any other function in Lisp.

The first requirement for the universal Lisp function was a notation that
allowed functions to be expressed in the same way data was expressed. The
parenthesized list notation described in Section 15.4.1 had already been
adopted for Lisp data, so it was decided to invent conventions for function
definitions and function calls that could also be expressed in list notation.
Function calls were specified in a prefix list form originally called
Cambridge Polish,2 as in the following:

2. This name first was used in the early development of Lisp. The name was
chosen because Lisp lists resemble the prefix notation used by the Polish
logician Jan Lukasiewicz, and because Lisp was born at MIT in Cambridge,
Massachusetts. Some now prefer to call the notation Cambridge prefix.

(function_name parameter1 . . . cparametern)

For example, if + is a function that takes two or more numeric parameters,
the following two expressions evaluate to 12 and 20, respectively:

(+ 5 7)

(+ 3 4 7 6)

The lambda notation described in Section 15.2.1 was chosen to specify
function definitions. It had to be modified, however, to allow the binding of

functions to names so that functions could be referenced by other functions
and by themselves. This name binding was specified by a list consisting of
the function name and a list containing the lambda expression, as in

(function_name (LAMBDA (param1...paramn) expression))

If you have had no prior exposure to functional programming, it may seem
odd to even consider a nameless function. However, nameless functions are
sometimes useful in functional programming (as well as in mathematics and
imperative programming). For example, consider a function whose action is
to produce a function for immediate application to a parameter list. The
produced function has no need for a name, for it is applied only at the point
of its construction. Such an example is given in Section 15.5.14.

Lisp functions specified in this new notation were called S-expressions, for
symbolic expressions. Eventually, all Lisp structures, both data and code,
were called S-expressions. An S-expression can be either a list or an atom.
We will usually refer to S-expressions simply as expressions.

McCarthy successfully developed a universal function that could evaluate
any other function. This function was named EVAL and was itself in the form
of an expression. Two of the people in the AI Project, which was developing
Lisp, Stephen B. Russell and Daniel J. Edwards, noticed that an
implementation of EVAL could serve as a Lisp interpreter, and they promptly
constructed such an implementation (McCarthy et al., 1965).

There were several important results of this quick, easy, and unexpected
implementation. First, all early Lisp implementations copied EVAL and were
therefore interpretive. Second, the definition of M-notation, which was the
planned programming notation for Lisp, was never completed or
implemented, so S-expressions became Lisp’s only notation. The use of the
same notation for data and code has important consequences, one of which
will be discussed in Section 15.5.14. Third, much of the original language
design was effectively frozen, keeping certain odd features in the language,
such as the conditional expression form and the use of () for both the empty
list and logical false.

Another feature of early Lisp systems that was apparently accidental was the

use of dynamic scoping. Functions were evaluated in the environments of
their callers. No one at the time knew much about scoping, and there may
have been little thought given to the choice. Dynamic scoping was used for
most dialects of Lisp before 1975. Contemporary dialects either use static
scoping or allow the programmer to choose between static and dynamic
scoping.

An interpreter for Lisp can be written in Lisp. Such an interpreter, which is
not a large program, describes the operational semantics of Lisp, in Lisp. This
is vivid evidence of the semantic simplicity of the language.

15.5 An Introduction to Scheme
In this section, we describe the core part of Scheme (Dybvig, 2011). We have
chosen Scheme because it is relatively simple, it is popular in colleges and
universities, and Scheme interpreters are readily available (and free) for a
wide variety of computers. The version of Scheme described in this section is
Scheme 4. Note that this section covers only a small part of Scheme, and it
includes none of Scheme’s imperative features.

15.5.1 Origins of Scheme
The Scheme language, which is a dialect of Lisp, was developed at MIT in
the mid-1970s (Sussman and Steele, 1975). It is characterized by its small
size, its exclusive use of static scoping, and its treatment of functions as first-
class entities. As first-class entities, Scheme functions can be the values of
expressions, elements of lists, passed as parameters, and returned from
functions. Early versions of Lisp did not provide all of these capabilities.

As an essentially typeless small language with simple syntax and semantics,
Scheme is well suited to educational applications, such as courses in
functional programming, and also to general introductions to programming.

Most of the Scheme code in the following sections would require only minor
modifications to be converted to valid Lisp code.

15.5.2 The Scheme Interpreter
A Scheme interpreter in interactive mode is an infinite read-evaluate-print
loop (often abbreviated as REPL). It repeatedly reads an expression typed by
the user (in the form of a list), interprets the expression, and displays the
resulting value. This form of interpreter is also used by Ruby and Python.
Expressions are interpreted by the function EVAL. Literals evaluate to

themselves. So, if you type a number to the interpreter, it simply displays the
number. Expressions that are calls to primitive functions are evaluated in the
following way: First, each of the parameter expressions is evaluated, in no
particular order. Then, the primitive function is applied to the parameter
values, and the resulting value is displayed.

Of course, Scheme programs that are stored in files can be loaded and
interpreted.

Comments in Scheme are any text following a semicolon on any line.

15.5.3 Primitive Numeric
Functions
Scheme includes primitive functions for the basic arithmetic operations.
These are +, -, *, and /, for add, subtract, multiply, and divide. * and + can
have zero or more parameters. If * is given no parameters, it returns 1; if + is
given no parameters, it returns 0. + adds all of its parameters together. *
multiplies all its parameters together. / and - can have two or more
parameters. In the case of subtraction, all but the first parameter are
subtracted from the first. Division is similar to subtraction. Some examples
are:

There are a large number of other numeric functions in Scheme, among them
MODULO, ROUND, MAX, MIN, LOG, SIN, and SQRT. SQRT returns the square root of
its numeric parameter, if the parameter’s value is not negative. If the
parameter is negative, SQRT yields a complex number.

In Scheme, note that we use uppercase letters for all reserved words and
predefined functions. The official definition of the language specifies that
there is no distinction between uppercase and lowercase in these. However,
some implementations, for example DrRacket’s teaching languages, require
lowercase for reserved words and predefined functions.

If a function has a fixed number of parameters, such as SQRT, the number of
parameters in the call must match that number. If not, the interpreter will
produce an error message.

15.5.4 Defining Functions
A Scheme program is a collection of function definitions. Consequently,
knowing how to define these functions is a prerequisite to writing the

simplest program. In Scheme, a nameless function actually includes the word
LAMBDA, and is called a lambda expression. For example,

(LAMBDA (x) (* x x))

is a nameless function that returns the square of its given numeric parameter.
This function can be applied in the same way that named functions are: by
placing it in the beginning of a list that contains the actual parameters. For
example, the following expression yields 49:

((LAMBDA (x) (* x x)) 7)

In this expression, x is called a bound variable within the lambda
expression. During the evaluation of this expression, x is bound to 7. A bound
variable never changes in the expression after being bound to an actual
parameter value at the time evaluation of the lambda expression begins.

Lambda expressions can have any number of parameters. For example, we
could have the following:

(LAMBDA (a b c x) (+ (* a x x) (* b x) c))

The Scheme special form function DEFINE serves two fundamental needs of
Scheme programming: to bind a name to a value and to bind a name to a
lambda expression. The form of DEFINE that binds a name to a value may
make it appear that DEFINE can be used to create imperative language-style
variables. However, these name bindings create named values, not variables.

DEFINE is called a special form because it is interpreted (by EVAL) in a
different way than the normal primitives like the arithmetic functions, as we
shall soon see.

The simplest form of DEFINE is one used to bind a name to the value of an
expression. This form is

(DEFINE symbol expression)

For example,

(DEFINE pi 3.14159)

(DEFINE two_pi (* 2 pi))

If these two expressions have been typed to the Scheme interpreter and then
pi is typed, the number 3.14159 will be displayed; when two_pi is typed,
6.28318 will be displayed. In both cases, the displayed numbers may have
more digits than are shown here.

This form of DEFINE is analogous to a declaration of a named constant in an
imperative language. For example, in Java, the equivalents to the above
defined names are as follows:

final float PI = 3.14159;

final float TWO_PI = 2.0 * PI;

Names in Scheme can consist of letters, digits, and special characters except
parentheses; they are case insensitive and must not begin with a digit.

The second use of the DEFINE function is to bind a lambda expression to a
name. In this case, the lambda expression is abbreviated by removing the
word LAMBDA. To bind a name to a lambda expression, DEFINE takes two lists
as parameters. The first parameter is the prototype of a function call, with the
function name followed by the formal parameters, together in a list. The
second list contains an expression to which the name is to be bound. The
general form of such a DEFINE is3

3. Actually, the general form of DEFINE has as its body a list containing a
sequence of one or more expressions, although in most cases only one is
included. We include only one for simplicity’s sake.

(DEFINE (function_name parameters)

(expression)

)

Of course, this form of DEFINE is the definition of a named function.

The following example call to DEFINE binds the name square to a functional
expression that takes one parameter:

(DEFINE (square number) (* number number))

After the interpreter evaluates this function, it can be used, as in

(square 5)

which displays 25.

To illustrate the difference between primitive functions and the DEFINE
special form, consider the following:

(DEFINE x 10)

If DEFINE were a primitive function, EVAL’s first action on this expression
would be to evaluate the two parameters of DEFINE. If x were not already
bound to a value, this would be an error. Furthermore, if x were already
defined, it would also be an error, because this DEFINE would attempt to
redefine x, which is illegal. Remember, x is the name of a value; it is not a
variable in the imperative sense.

Following is another example of a function. It computes the length of the
hypotenuse (the longest side) of a right triangle, given the lengths of the two
other sides.

(DEFINE (hypotenuse side1 side2)

 (SQRT(+(square side1)(square side2)))

)

Notice that hypotenuse uses square, which was defined previously.

15.5.5 Output Functions
Scheme includes a few simple output functions, but when used with the
interactive interpreter, most output from Scheme programs is the normal
output from the interpreter, displaying the results of applying EVAL to top-
level functions.

Note that explicit input and output are not part of the pure functional

programming model, because input operations change the program state and
output operations have side effects. Neither of these can be part of a pure
functional language. Therefore, this chapter does not describe the explicit
input or output functions of Scheme.

15.5.6 Numeric Predicate
Functions
A predicate function is one that returns a Boolean value (some representation
of either true or false). Scheme includes a collection of predicate functions
for numeric data. Among them are the following:

Notice that the names for all predefined predicate functions that have words
for names end with question marks. In Scheme, the two Boolean values are

#T and #F (or #t and #f), although the Scheme predefined predicate functions
return the empty list, (), for false.

When a list is interpreted as a Boolean, any nonempty list evaluates to true;
the empty list evaluates to false. This is similar to the interpretation of
integers in C as Boolean values; zero evaluates to false and any nonzero
value evaluates to true.

In the interest of readability, all of our example predicate functions in this
chapter return #F, rather than ().

The NOT function is used to invert the logic of a Boolean expression.

15.5.7 Control Flow
Scheme uses three different constructs for control flow: one similar to the
selection construct of the imperative languages and two based on the
evaluation control used in mathematical functions.

The Scheme two-way selector function, named IF, has three parameters: a
predicate expression, a then expression, and an else expression. A call to IF
has the form

(IF predicate then_expression else_expression)

For example,

(DEFINE (factorial n)

 (IF (<= n 1)

 1

 (* n (factorial (- n 1)))

))

Recall that the multiple selection of Scheme, COND, was discussed in
Chapter 8. Following is an example of a simple function that uses COND:

(DEFINE (leap? year)

 (COND

 ((ZERO? (MODULO year 400)) #T)

 ((ZERO? (MODULO year 100)) #F)

 (ELSE (ZERO? (MODULO year 4)))

))

The following subsections contain additional examples of the use of COND.

The third Scheme control mechanism is recursion, which is used, as in
mathematics, to specify repetition. Most of the example functions in Section
15.5.10 use recursion.

15.5.8 List Functions
One of the more common uses of the Lisp-based programming languages is
list processing. This subsection introduces the Scheme functions for dealing
with lists. Recall that Scheme’s list operations were briefly introduced in
Chapter 6. Following is a more detailed discussion of list processing in
Scheme.

Scheme programs are interpreted by the function application function, EVAL.
When applied to a primitive function, EVAL first evaluates the parameters of
the given function. This action is necessary when the actual parameters in a
function call are themselves function calls, which is frequently the case. In
some calls, however, the parameters are data elements rather than function
references. When a parameter is not a function reference, it obviously should
not be evaluated. We were not concerned with this earlier, because numeric
literals always evaluate to themselves and cannot be mistaken for function
names.

Suppose we have a function that has two parameters, an atom and a list, and
the purpose of the function is to determine whether the given atom is in the
given list. Neither the atom nor the list should be evaluated; they are literal
data to be processed. To avoid evaluating a parameter, it is first given as a
parameter to the primitive function QUOTE, which simply returns it without
change. The following examples illustrate QUOTE:

(QUOTE A) returns A

(QUOTE (A B C)) returns (A B C)

Calls to QUOTE are usually abbreviated by preceding the expression to be
quoted with an apostrophe (') and leaving out the parentheses around the
expression. Thus, instead of (QUOTE (A B)), '(A B) is used.

The necessity of QUOTE arises because of the fundamental nature of Scheme
(and the other Lisp-based languages): data and code have the same form.
Although this may seem odd to imperative language programmers, it results
in some interesting and powerful processes, one of which is discussed in
Section 15.5.14.

The CAR, CDR, and CONS functions were introduced in Chapter 6.
Following are additional examples of the operations of CAR and CDR:

(CAR '(A B C)) returns A

(CAR '((A B) C D)) returns (A B)

(CAR 'A) is an error because A is not a list

(CAR '(A)) returns A

(CAR '()) is an error

(CDR '(A B C)) returns (B C)

(CDR '((A B) C D)) returns (C D)

(CDR 'A) is an error

(CDR '(A)) returns ()

(CDR '()) is an error

The names of the CAR and CDR functions are peculiar at best. The origin of
these names lies in the first implementation of Lisp, which was on an IBM
704 computer. The 704’s memory words had two fields, named decrement
and address, that were used in various operand addressing strategies. Each of
these fields could store a machine memory address. The 704 also included
two machine instructions, also named CAR (contents of the address part of a
register) and CDR (contents of the decrement part of a register), that extracted
the associated fields. It was natural to use the two fields to store the two
pointers of a list node so that a memory word could neatly store a node.
Using these conventions, the CAR and CDR instructions of the 704 provided
efficient list selectors. The names carried over into the primitives of all
dialects of Lisp.

As another example of a simple function, consider

(DEFINE (second a_list) (CAR (CDR a_list)))

Once this function is evaluated, it can be used, as in

(second '(A B C))

which returns B.

Some of the most commonly used functional compositions in Scheme are
built in as single functions. For example, (CAAR x) is equivalent to (CAR(CAR
x)), (CADR x) is equivalent to (CAR (CDR x)), and (CADDAR x) is equivalent
to (CAR (CDR (CDR (CAR x)))). Any combination of A’s and D’s, up to four,
are legal between the ‘C’ and the ‘R’ in the function’s name. As an example,
consider the following evaluation of CADDAR:

(CADDAR '((A B (C) D) E)) =

(CAR (CDR (CDR (CAR '((A B (C) D) E))))) =

(CAR (CDR (CDR '(A B (C) D)))) =

(CAR (CDR '(B (C) D))) =

(CAR '((C) D)) =

(C)

Following are example calls to CONS:

(CONS 'A '()) returns (A)

(CONS 'A '(B C)) returns (A B C)

(CONS '() '(A B)) returns (() A B)

(CONS '(A B) '(C D)) returns ((A B) C D)

The results of these CONS operations are shown in Figure 15.2. Note that CONS
is, in a sense, the inverse of CAR and CDR. CAR and CDR take a list apart, and
CONS constructs a new list from two given list parts. The two parameters to
CONS become the CAR and CDR of the new list. Thus, if a_list is a list, then

(CONS (CAR a_list) (CDR a_list))

returns a list with the same structure and same elements as a_list.

Figure 15.2 The result of
several CONS operations

Figure 15.2 Full Alternative Text

Dealing only with the relatively simple problems and programs discussed in
this chapter, it is unlikely one would intentionally apply CONS to two atoms,
although that is legal. The result of such an application is a dotted pair, so
named because of the way it is displayed by Scheme. For example, consider
the following call:

(CONS 'A 'B)

If the result of this is displayed, it would appear as

(A . B)

This dotted pair indicates that instead of an atom and a pointer or a pointer
and a pointer, this cell has two atoms.

LIST is a function that constructs a list from a variable number of parameters.
It is a shorthand version of nested CONS functions, as illustrated in the
following:

(LIST 'apple 'orange 'grape)

returns

(apple orange grape)

Using CONS, the call to LIST above is written as follows:

(CONS 'apple (CONS 'orange (CONS 'grape '())))

15.5.9 Predicate Functions for
Symbolic Atoms and Lists
Scheme has three fundamental predicate functions, EQ?, NULL?, and LIST?,
for symbolic atoms and lists.

The EQ? function takes two expressions as parameters, although it is usually
used with two symbolic atom parameters. It returns #T if both parameters

have the same pointer value—that is, they point to the same atom or list;
otherwise, it returns #F. If the two parameters are symbolic atoms, EQ? returns
#T if they are the same symbols (because Scheme does not make duplicates of
symbols); otherwise #F. Consider the following examples:

(EQ? 'A 'A) returns #T

(EQ? 'A 'B) returns #F

(EQ? 'A '(A B)) returns #F

(EQ? '(A B) '(A B)) returns #F or #T

(EQ? 3.4 (+ 3 0.4)) returns #F or #T

As the fourth example indicates, the result of comparing lists with EQ? is not
consistent. The reason for this is that two lists that are exactly the same often
are not duplicated in memory. At the time the Scheme system creates a list, it
checks to see whether there is already such a list. If there is, the new list is
nothing more than a pointer to the existing list. In these cases, the two lists
will be judged equal by EQ?. However, in some cases, it may be difficult to
detect the presence of an identical list, in which case a new list is created. In
this scenario, EQ? yields #F.

The last case shows that the addition may produce a new value, in which case
it would not be equal (with EQ?) to 3.4, or it may recognize that it already has
the value 3.4 and use it, in which case EQ? will use the pointer to the old 3.4
and return #T.

As we have seen, EQ? works for symbolic atoms but does not necessarily
work for numeric atoms. The = predicate works for numeric atoms but not
symbolic atoms. As discussed previously, EQ? also does not work reliably for
list parameters.

Sometimes it is convenient to be able to test two atoms for equality when it is
not known whether they are symbolic or numeric. For this purpose, Scheme
has a different predicate, EQV?, which works on both numeric and symbolic
atoms. Consider the following examples:

(EQV? 'A 'A) returns #T

(EQV? 'A 'B) returns #F

(EQV? 3 3) returns #T

(EQV? 'A 3) returns #F

(EQV? 3.4 (+ 3 0.4)) returns #T

(EQV? 3.0 3) returns #F

Notice that the last example demonstrates that floating-point values are
different from integer values. EQV? is not a pointer comparison, it is a value
comparison.

The primary reason to use EQ? or = rather than EQV? when it is possible is that
EQ? and = are faster than EQV?.

The LIST? predicate function returns #T if its single argument is a list and #F
otherwise, as in the following examples:

(LIST? '(X Y)) returns #T

(LIST? 'X) returns #F

(LIST? '()) returns #T

The NULL? function tests its parameter to determine whether it is the empty
list and returns #T if it is. Consider the following examples:

 (NULL? '(A B)) returns #F

(NULL? '()) returns #T

(NULL? 'A) returns #F

(NULL? '(())) returns #F

The last call yields #F because the parameter is not the empty list. Rather, it is
a list containing a single element, the empty list.

15.5.10 Example Scheme
Functions
This section contains several examples of function definitions in Scheme.
These programs solve simple list-processing problems.

Consider the problem of membership of a given atom in a given list that does
not include sublists. Such a list is called a simple list. If the function is
named member, it could be used as follows:

(member 'B '(A B C)) returns #T

(member 'B '(A C D E)) returns #F

Thinking in terms of iteration, the membership problem is simply to compare
the given atom and the individual elements of the given list, one at a time in
some order, until either a match is found or there are no more elements in the
list to be compared. A similar process can be accomplished using recursion.
The function can compare the given atom with the CAR of the list. If they
match, the value #T is returned. If they do not match, the CAR of the list
should be ignored and the search continued on the CDR of the list. This can be
done by having the function call itself with the CDR of the list as the list
parameter and return the result of this recursive call. This process will end if
the given atom is found in the list. If the atom is not in the list, the function
will eventually be called (by itself) with a null list as the actual parameter.
That event must force the function to return #F. In this process, there are two
ways out of the recursion: Either the list is empty on some call, in which case
#F is returned, or a match is found and #T is returned.

Altogether, there are three cases that must be handled in the function: an
empty input list, a match between the atom and the CAR of the list, or a
mismatch between the atom and the CAR of the list, which causes the
recursive call. These three are the three parameters to COND, with the last
being the default case that is triggered by an ELSE predicate. The complete
function follows:4

4. Most Scheme systems define a function named member and do not allow a
user to redefine it. So, if the reader wants to try this function, it must be
defined with some other name.

(DEFINE (member atm a_list)

 (COND

 ((NULL? a_list) #F)

 ((EQ? atm (CAR a_list)) #T)

 (ELSE (member atm (CDR a_list)))

))

This form is typical of simple Scheme list-processing functions. In such
functions, the data in lists are processed one element at a time. The individual
elements are specified with CAR, and the process is continued using recursion
on the CDR of the list.

Note that the null test must precede the equal test, because applying CAR to an
empty list is an error.

As another example, consider the problem of determining whether two given
lists are equal. If the two lists are simple, the solution is relatively easy,
although some programming techniques with which the reader may not be
familiar are involved. A predicate function, equalsimp, for comparing simple
lists is shown here:

(DEFINE (equalsimp list1 list2)

 (COND

 ((NULL? list1) (NULL? list2))

 ((NULL? list2) #F)

 ((EQ? (CAR list1) (CAR list2))

 (equalsimp (CDR list1) (CDR list2)))

 (ELSE #F)

))

The first case, which is handled by the first parameter to COND, is for when the
first list parameter is the empty list. This can occur in an external call if the
first list parameter is initially empty. Because a recursive call uses the CDRs of
the two parameter lists as its parameters, the first list parameter can be empty
in such a call (if the first list parameter is now empty). When the first list
parameter is empty, the second list parameter must be checked to see whether
it is also empty. If so, they are equal (either initially or the CARs were equal on
all previous recursive calls), and NULL? correctly returns #T. If the second list
parameter is not empty, it is larger than the first list parameter and #F should
be returned, as it is by NULL?.

The next case deals with the second list being empty when the first list is not.
This situation occurs only when the first list is longer than the second. Only
the second list must be tested, because the first case catches all instances of
the first list being empty.

The third case is the recursive step that tests for equality between two
corresponding elements in the two lists. It does this by comparing the CARs of
the two nonempty lists. If they are equal, then the two lists are equal up to
that point, so recursion is used on the CDRs of both. This case fails when two
unequal atoms are found. When this occurs, the process need not continue, so

the default case ELSE is selected, which returns #F.

Note that equalsimp expects lists as parameters and does not operate
correctly if either or both parameters are atoms.

The problem of comparing general lists is slightly more complex than this,
because sublists must be traced completely in the comparison process. In this
situation, the power of recursion is uniquely appropriate, because the form of
sublists is the same as that of the given lists. Any time the corresponding
elements of the two given lists are lists, they are separated into their two
parts, CAR and CDR, and recursion is used on them. This is a perfect example
of the usefulness of the divide-and-conquer approach. If the corresponding
elements of the two given lists are atoms, they can simply be compared using
EQ?.

The definition of the complete function follows:

(DEFINE (equal list1 list2)

 (COND

 ((NOT (LIST? list1)) (EQ? list1 list2))

 ((NOT (LIST? list2)) #F)

 ((NULL? list1) (NULL? list2))

 ((NULL? list2) #F)

 ((equal (CAR list1) (CAR list2))

 (equal (CDR list1) (CDR list2)))

 (ELSE #F)

))

The first two cases of the COND handle the situation where either of the
parameters is an atom instead of a list. The third and fourth cases are for the
situation where one or both lists are empty. These cases also prevent
subsequent cases from attempting to apply CAR to an empty list. The fifth
COND case is the most interesting. The predicate is a recursive call with the
CARs of the lists as parameters. If this recursive call returns #T, then recursion
is used again on the CDRs of the lists. This algorithm allows the two lists to
include sublists to any depth.

This definition of equal works on any pair of expressions, not just lists.
equal is equivalent to the system predicate function EQUAL?. Note that EQUAL?
should be used only when necessary (the forms of the actual parameters are

not known), because it is much slower than EQ? and EQV?.

Another commonly needed list operation is that of constructing a new list that
contains all of the elements of two given list arguments. This is usually
implemented as a Scheme function named append. The result list can be
constructed by repeated use of CONS to place the elements of the first list
argument into the second list argument, which becomes the result list. To
clarify the action of append, consider the following examples:

(append '(A B) '(C D R)) returns (A B C D R)

(append '((A B) C) '(D (E F))) returns ((A B) C D (E F))

The definition of append is5

5. As was the case with member, a user usually cannot define a function
named append.

(DEFINE (append list1 list2)

 (COND

 ((NULL? list1) list2)

 (ELSE (CONS (CAR list1) (append (CDR list1) list2)))

))

The first COND case is used to terminate the recursive process when the first
argument list is empty, returning the second list. In the second case (the
ELSE), the CAR of the first parameter list is CONSed onto the result returned by
the recursive call, which passes the CDR of the first list as its first parameter.

Consider the following Scheme function, named guess, which uses the
member function described in this section. Try to determine what it does
before reading the description that follows it. Assume the parameters are
simple lists.

(DEFINE (guess list1 list2)

 (COND

 ((NULL? list1) '())

 ((member (CAR list1) list2)

 (CONS (CAR list1) (guess (CDR list1) list2)))

 (ELSE (guess (CDR list1) list2))

))

guess yields a simple list that contains the common elements of its two
parameter lists. So, if the parameter lists represent sets, guess computes a list
that represents the intersection of those two sets.

15.5.11 LET

LET is a function (initially described in Chapter 5) that creates a local scope in
which names are temporarily bound to the values of expressions. It is often
used to factor out the common subexpressions from more complicated
expressions. These names can then be used in the evaluation of another
expression, but they cannot be rebound to new values in LET. The following
example illustrates the use of LET. It computes the roots of a given quadratic
equation, assuming the roots are real.6 The mathematical definitions of the
real (as opposed to complex) roots of the quadratic equation ax2+bx+c are as
follows: root1=(−b+sqrt(b2−4 ac))/2a and root 2=(−b−sqrt(b2−4 ac))/2 a

6. Some versions of Scheme include “complex” as a data type and will
compute the roots of the equation, regardless of whether they are real or
complex.

(DEFINE (quadratic_roots a b c)

 (LET (

 (root_part_over_2a

 (/ (SQRT (- (* b b) (* 4 a c))) (* 2 a)))

 (minus_b_over_2a (/ (- 0 b) (* 2 a)))

)

 (LIST (+ minus_b_over_2a root_part_over_2a)

 (- minus_b_over_2a root_part_over_2a))

))

This example uses LIST to create the list of the two values that make up the
result.

Because the names bound in the first part of a LET construct cannot be
changed in the following expression, they are not the same as local variables
in a block in an imperative language. They could all be eliminated by textual
substitution of their respective expressions for their names in the LET
expression.

LET is actually shorthand for a LAMBDA expression applied to a parameter. The
following two expressions are equivalent:

(LET ((alpha 7))(* 5 alpha))

((LAMBDA (alpha) (* 5 alpha)) 7)

In the first expression, 7 is bound to alpha with LET; in the second, 7 is bound
to alpha through the parameter of the LAMBDA expression.

15.5.12 Tail Recursion in Scheme
A function is tail recursive if its recursive call is the last operation in the
function. This means that the return value of the recursive call is the return
value of the nonrecursive call to the function. For example, the member
function of Section 15.5.10, repeated here, is tail recursive.

(DEFINE (member atm a_list)

 (COND

 ((NULL? a_list) #F)

 ((EQ? atm (CAR a_list)) #T)

 (ELSE (member atm (CDR a_list)))

))

This function can be automatically converted by a compiler to use iteration,
resulting in faster execution than in its recursive form.

However, many functions that use recursion for repetition are not tail
recursive. Programmers who are concerned with efficiency have discovered
ways to rewrite some of these functions so that they are tail recursive. One
example of this uses an accumulating parameter and a helper function. As an
example of this approach, consider the factorial function from Section 15.5.7,
which is repeated here:

(DEFINE (factorial n)

 (IF (<= n 1)

 1

 (* n (factorial (- n 1)))

))

The last operation of this function is the multiplication. The function works
by creating the list of numbers to be multiplied together and then doing the
multiplications as the recursion unwinds to produce the result. Each of these
numbers is created by an activation of the function and each is stored in an
activation record instance. As the recursion unwinds the numbers are
multiplied together. Recall that the stack is shown after several recursive calls
to factorial in Chapter 9. This factorial function can be rewritten with an
auxiliary helper function, which uses a parameter to accumulate the partial
factorial. The helper function, which is tail recursive, also takes factorial’s
parameter. These functions are as follows:

(DEFINE (facthelper n factpartial)

 (IF (<= n 1)

 factpartial

 (facthelper (- n 1) (* n factpartial))

))

(DEFINE (factorial n)

 (facthelper n 1)

)

With these functions, the result is computed during the recursive calls, rather
than as the recursion unwinds. Because there is nothing useful in the
activation record instances, they are not necessary. Regardless of how many
recursive calls are requested, only one activation record instance is necessary.
This makes the tail-recursive version far more efficient than the non-tail-
recursive version.

The Scheme language definition requires that Scheme language processing
systems convert all tail-recursive functions to replace that recursion with
iteration. Therefore, it is important, at least for efficiency’s sake, to define
functions that use recursion to specify repetition to be tail recursive. Some
optimizing compilers for some functional languages can even perform
conversions of some non-tail-recursive functions to equivalent tail-recursive
functions and then code these functions to use iteration instead of recursion
for repetition.

15.5.13 Functional Forms

This section describes two common mathematical functional forms that are
provided by Scheme: composition and apply-to-all. Both are mathematically
defined in Section 15.2.2.

15.5.13.1 Functional Composition
Functional composition is the only primitive functional form provided by the
original Lisp. All subsequent Lisp dialects, including Scheme, also provide it.
As stated in Section 15.2.2, function composition is a functional form that
takes two functions as parameters and returns a function that first applies the
second parameter function to its parameter and then applies the first
parameter function to the return value of the second parameter function. In
other words, the function h is the composition function of f and g if h(x) =
f(g(x)). For example, consider the following example:

(DEFINE (g x) (* 3 x))

(DEFINE (f x) (+ 2 x))

Now the functional composition of f and g can be written as follows:

(DEFINE (h x) (+ 2 (* 3 x)))

In Scheme, the functional composition function compose can be written as
follows:

(DEFINE (compose f g) (LAMBDA (x)(f (g x))))

For example, we could have the following:

((compose CAR CDR) '((a b) c d))

This call would yield c. This is an alternative, though less efficient, form of
CADR. Now consider another call to compose:

((compose CDR CAR) '((a b) c d))

This call would yield (b). This is an alternative to CDAR.

As yet another example of the use of compose, consider the following:

(DEFINE (third a_list)

 ((compose CAR (compose CDR CDR)) a_list))

This is an alternative to CADDR.

15.5.13.2 An Apply-to-All
Functional Form
The most common functional forms provided in functional programming -
languages are variations of mathematical apply-to-all functional forms. The
simplest of these is map, which has two parameters: a function and a list. map
applies the given function to each element of the given list and returns a list
of the results of these applications. A Scheme definition of map follows:7

7. As was the case with member, map is a predefined function that cannot be
redefined by users.

(DEFINE (map fun a_list)

 (COND

 ((NULL? a_list) '())

 (ELSE (CONS (fun (CAR a_list)) (map fun (CDR a_list))))

))

Note the simple form of map, which expresses a complex functional form.

As an example of the use of map, suppose we want all of the elements of a list
cubed. We can accomplish this with the following:

(map (LAMBDA (num) (* num num num)) '(3 4 2 6))

This call returns (27 64 8 216).

Note that in this example, the first parameter to mapcar is a LAMBDA
expression. When EVAL evaluates the LAMBDA expression, it constructs a
function that has the same form as any predefined function except that it is

nameless. In the example expression, this nameless function is immediately
applied to each element of the parameter list and the results are returned in a
list.

15.5.14 Functions That Build Code
The fact that programs and data have the same structure can be exploited in
constructing programs. Recall that the Scheme interpreter uses a function
named EVAL. The Scheme system applies EVAL to every expression typed,
whether it is at the Scheme prompt in the interactive interpreter or is part of a
program being interpreted. The EVAL function can also be called directly by
Scheme programs. This provides the possibility of a Scheme program
creating expressions and calling EVAL to evaluate them. This is not something
that is unique to Scheme, but the simple forms of its expressions make it easy
to create them during execution.

One of the simplest examples of this process involves numeric atoms. Recall
that Scheme includes a function named +, which takes any number of
numeric atoms as arguments and returns their sum. For example, (+ 3 7 10
2) returns 22.

Our problem is the following: Suppose that in a program we have a list of
numeric atoms and need the sum. We cannot apply + directly on the list,
because + can take only atomic parameters, not a list of numeric atoms. We
could, of course, write a function that repeatedly adds the CAR of the list to the
sum of its CDR, using recursion to go through the list. Such a function follows:

(DEFINE (adder a_list)

 (COND

 ((NULL? a_list) 0)

 (ELSE (+ (CAR a_list) (adder (CDR a_list))))

))

Following is an example call to adder, along with the recursive calls and
returns:

(adder '(3 4 5))

(+ 3 (adder (4 5)))

(+ 3 (+ 4 (adder (5))))

(+ 3 (+ 4 (+ 5 (adder ()))))

(+ 3 (+ 4 (+ 5 0)))

(+ 3 (+ 4 5))

(+ 3 9)

(12)

An alternative solution to the problem is to write a function that builds a call
to + with the proper parameter forms. This can be done by using CONS to build
a new list that is identical to the parameter list except it has the atom +
inserted at its beginning. This new list can then be submitted to EVAL for
evaluation, as in the following:

(DEFINE (adder a_list)

 (COND

 ((NULL? a_list) 0)

 (ELSE (EVAL (CONS '+ a_list)))

))

Note that the + function’s name is quoted to prevent EVAL from evaluating it
in the evaluation of CONS. Following is an example call to this new version of
adder, along with the call to EVAL and the return value:

(adder '(3 4 5))

(EVAL (+ 3 4 5)

(12)

In all earlier versions of Scheme, the EVAL function evaluated its expression
in the outermost scope of the program. The later versions of Scheme,
beginning with Scheme 4, requires a second parameter to EVAL that specifies
the scope in which the expression is to be evaluated. For simplicity’s sake,
we left the scope parameter out of our example, and we do not discuss scope
names here.

15.6 Common Lisp
Common Lisp (Steele, 1990) was created in an effort to combine the features
of several early 1980s dialects of Lisp, including Scheme, into a single
language. Being something of a union of languages, it is quite large and
complex, similar in these regards to C++ and C#. Its basis, however, is the
original Lisp, so its syntax, primitive functions, and fundamental nature come
from that language.

Following is the factorial function written in Common Lisp:

(DEFUN factorial (x)

 (IF (<= n 1)

 1

 (* n factorial (- n 1)))

))

Only the first line of this function differs syntactically from the Scheme
version of the same function.

The list of features of Common Lisp is long: a large number of data types and
structures, including records, arrays, complex numbers, and character strings;
powerful input and output operations; and a form of packages for
modularizing collections of functions and data, and also for providing access
control. Common Lisp includes several imperative constructs, as well as
some mutable types.

Recognizing the occasional flexibility provided by dynamic scoping, as well
as the simplicity of static scoping, Common Lisp allows both. The default
scoping for variables is static, but by declaring a variable to be “special,” that
variable becomes dynamically scoped.

Macros are often used in Common Lisp to extend the language. In fact, some
of the predefined functions are actually macros. For example, DOLIST, which
takes two parameters, a variable and a list, is a macro. For example, consider
the following:

(DOLIST (x '(1 2 3)) (print x))

This produces the following:

1

2

3

NIL

NIL here is the return value of DOLIST.

Macros create their effect in two steps: First, the macro is expanded. Second,
the expanded macro, which is Lisp code, is evaluated. Users can define their
own macros with DEFMACRO.

The Common Lisp backquote operator (`) is similar to Scheme’s QUOTE,
except some parts of the parameter can be unquoted by preceding them with
commas. For example, consider the following two examples:

`(a (* 3 4) c)

This expression evaluates to (a (* 3 4) c). However, the following
expression:

`(a ,(* 3 4) c)

evaluates to (a 12 c).

Lisp implementations have a front end called the reader that transforms the
text of Lisp programs into a code representation. Then, the macro calls in the
code representation are expanded into code representations. The output of
this step is then either interpreted or compiled into the machine language of
the host computer, or perhaps into an intermediate code than can be
interpreted. There is a special kind of macro, named reader macros or read
macros, that are expanded during the reader phase of a Lisp language
processor. A reader macro expands a specific character into a string of Lisp
code. For example, the apostrophe in Lisp is a read macro that expands to a
call to QUOTE. Users can define their own reader macros to create other
shorthand constructs.

Common Lisp, as well as other Lisp-based languages, have a symbol data
type. The reserved words are symbols that evaluate to themselves, as are T
and NIL. Technically, symbols are either bound or unbound. Parameter
symbols are bound while the function is being evaluated. Also, symbols that
are the names of imperative-style variables and have been assigned values are
bound. Other symbols are unbound. For example, consider the following
expression:

(LIST '(A B C))

The symbols A, B, and C are unbound. Recall that Ruby also has a symbol
data type.

In a sense, Scheme and Common Lisp are opposites. Scheme is far smaller
and semantically simpler, in part because of its exclusive use of static
scoping, but also because it was designed to be used for teaching
programming, whereas Common Lisp was meant to be a commercial
language. Common Lisp has succeeded in being a widely used language for
AI applications, among other areas. Scheme, on the other hand, is more
frequently used in college courses on functional programming. It is also more
likely to be studied as a functional language because of its relatively small
size. An important design goal of Common Lisp that caused it to be a large
language was the desire to make it compatible with several of the dialects of
Lisp from which it was derived.

The Common Lisp Object System (CLOS) (Paepeke, 1993) was developed in
the late 1980s as an object-oriented version of Common Lisp. This language
supports generic functions and multiple inheritance, among other constructs.

15.7 ML
ML (Milner et al., 1997) is a static-scoped functional programming language,
like Scheme. However, it differs from Lisp and its dialects, including
Scheme, in a number of significant ways. One important difference is that
ML is a strongly typed language, whereas Scheme is essentially typeless. ML
has type declarations for function parameters and the return types of
functions, although because of its type inferencing they are often not used.
The type of every variable and expression can be statically determined. ML,
like other functional programming languages, does not have variables in the
sense of the imperative languages. It does have identifiers, which have the
appearance of names of variables in imperative languages. However, these
identifiers are best thought of as names for values. Once set, they cannot be
changed. They are like the named constants of imperative languages like
final declarations in Java. ML identifiers do not have fixed types—any
identifier can be the name of a value of any type.

A table called the evaluation environment stores the names of all implicitly
and explicitly declared identifiers in a program, along with their types. This is
like a run-time symbol table. When an identifier is declared, either implicitly
or explicitly, it is placed in the evaluation environment.

Another important difference between Scheme and ML is that ML uses a
syntax that is more closely related to that of an imperative language than that
of Lisp. For example, arithmetic expressions are written in ML using infix
notation.

Function declarations in ML appear in the general form

fun function_name(formal parameters) = expression;

When called, the value of the expression is returned by the function.
Actually, the expression can be a list of expressions, separated by semicolons
and surrounded by parentheses. The return value in this case is that of the last
expression. Of course, unless they have side effects, the expressions before
the last serve no purpose. Because we are not considering the parts of ML

that have side effects, we only consider function definitions with a single
expression.

Now we can discuss type inference. Consider the following ML function
declaration:

fun circumf(r) = 3.14159 * r * r;

This specifies a function named circumf that takes a floating-point (real in
ML) parameter and produces a floating-point result. The types are inferred
from the type of the literal in the expression. Likewise, in the function

fun times10(x) = 10 * x;

the parameter and functional value are inferred to be of type int.

Consider the following ML function:

fun square(x) = x * x;

ML determines the type of both the parameter and the return value from the *
operator in the function definition. Because this is an arithmetic operator, the
type of the parameter and the function are assumed to be numeric. In ML, the
default numeric type is int. So, it is inferred that the type of the parameter
and the return value of square is int.

If square were called with a floating-point value, as in

square(2.75);

it would cause an error, because ML does not coerce real values to int type.
If we wanted square to accept real parameters, it could be rewritten as

fun square(x) : real = x * x;

Because ML does not allow overloaded functions, this version could not
coexist with the earlier int version. The last version defined would be the
only one.

The fact that the functional value is typed real is sufficient to infer that the

parameter is also real type. Each of the following definitions is also legal:

fun square(x : real) = x * x;

fun square(x) = (x : real) * x;

fun square(x) = x * (x : real);

Type inference is also used in the functional languages Miranda, Haskell, and
F#.

The ML selection control flow construct is similar to that of the imperative
languages. It has the following general form:

if expression then then_expression else else_expression

The first expression must evaluate to a Boolean value.

The conditional expressions of Scheme can appear at the function definition
level in ML. In Scheme, the COND function is used to determine the value of
the given parameter, which in turn specifies the value returned by COND. In
ML, the computation performed by a function can be defined for different
forms of the given parameter. This feature is meant to mimic the form and
meaning of conditional function definitions in mathematics. In ML, the
particular expression that defines the return value of a function is chosen by
pattern matching against the given parameter. For example, without using
this pattern matching, a function to compute factorial could be written as
follows:

fun fact(n : int): int = if n <= 1 then 1

 else n * fact(n - 1);

Multiple definitions of a function can be written using parameter pattern
matching. The different function definitions that depend on the form of the
parameter are separated by an OR symbol (|). For example, using pattern
matching, the factorial function could be written as follows:

fun fact(0) = 1

| fact(1) = 1

| fact(n : int): int = n * fact(n - 1);

If fact is called with the actual parameter 0, the first definition is used; if the

actual parameter is 1, the second definition is used; if an int value that is
neither 0 nor 1 is sent, the third definition is used.

As discussed in Chapter 6, ML supports lists and list operations. Recall that
hd, tl, and :: are ML’s versions of Scheme’s CAR, CDR, and CONS.

Because of the availability of patterned function parameters, the hd and tl
functions are much less frequently used in ML than CAR and CDR are used in
Scheme. For example, in a formal parameter, the expression

(h :: t)

is actually two formal parameters, the head and tail of given list parameter,
while the single corresponding actual parameter is a list. For example, the
number of elements in a given list can be computed with the following
function:

fun length([]) = 0

| length(h :: t) = 1 + length(t);

As another example of these concepts, consider the append function, which
does what the Scheme append function does:

fun append([], lis2) = lis2

| append(h :: t, lis2) = h :: append(t, lis2);

The first case in this function handles the situation of the function being
called with an empty list as the first parameter. This case also terminates the
recursion when the initial call has a nonempty first parameter. The second
case of the function breaks the first parameter list into its head and tail (hd
and tl). The head is CONSed onto the result of the recursive call, which uses
the tail as its first parameter.

In ML, names are bound to values with value declaration statements of the
form

val new_name = expression;

For example,

val distance = time * speed;

Do not get the idea that this statement is exactly like the assignment
statements in the imperative languages, for it is not. The val statement binds
a name to a value, but the name cannot be later rebound to a new value. Well,
in a sense it can. Actually, if you do rebind a name with a second val
statement, it causes a new entry in the evaluation environment that is not
related to the previous version of the name. In fact, after the new binding, the
old evaluation environment entry (for the previous binding) is no longer
visible. Also, the type of the new binding need not be the same as that of the
previous binding. val statements do not have side effects. They simply add a
name to the current evaluation environment and bind it to a value.

The normal use of val is in a let expression.8 Consider the following
example:

8. Let expressions in ML were introduced in Chapter 5.

let val radius = 2.7

 val pi = 3.14159

in pi * radius * radius

end;

ML includes several higher-order functions that are commonly used in
functional programming. Among these are a filtering function for lists,
filter, which takes a predicate function as its parameter. The predicate
function is often given as a lambda expression, which in ML is defined
exactly like a function, except with the fn reserved word, instead of fun, and
of course the lambda expression is nameless. filter returns a function that
takes a list as a parameter. It tests each element of the list with the predicate.
Each element on which the predicate returns true is added to a new list, which
is the return value of the function. Consider the following use of filter:

filter(fn(x) => x < 100, [25, 1, 50, 711, 100, 150, 27,

 161, 3]);

This application would return [25, 1, 50, 27, 3].

The map function takes a single parameter, which is a function. The resulting
function takes a list as a parameter. It applies its function to each element of

the list and returns a list of the results of those applications. Consider the
following code:

fun cube x = x * x * x;

val cubeList = map cube;

val newList = cubeList [1, 3, 5];

After execution, the value of newList is [1, 27, 125]. This could be done
more simply by defining the cube function as a lambda expression, as in the
following:

val newList = map (fn x => x * x * x, [1, 3, 5]);

ML has a binary operator for composing two functions, o (a lowercase “oh”).
For example, to build a function h that first applies function f and then
applies function g to the returned value from f, we could use the following:

val h = g o f;

Strictly speaking, ML functions take a single parameter. When a function is
defined with more than one parameter, ML considers the parameters to be a
tuple, even though the parentheses that normally delimit a tuple value are
optional. The commas that separate the parameters (tuple elements) are
required.

The process of currying replaces a function with more than one parameter
with a function with one parameter that returns a function that takes the other
parameters of the initial function.

ML functions that take more than one parameter can be defined in curried
form by leaving out the commas between the parameters (and the delimiting
parentheses).9 For example, we could have the following:

9. This form of functions is named for Haskell Curry, a British
mathematician who studied them.

fun add a b = a + b;

Although this appears to define a function with two parameters, it actually
defines one with just one parameter. The add function takes an integer

parameter (a) and returns a function that also takes an integer parameter (b).
A call to this function also excludes the commas between the parameters, as
in the following:

add 3 5;

This call to add returns 8, as expected.

Curried functions are interesting and useful because new functions can be
constructed from them by partial evaluation. Partial evaluation means that
the function is evaluated with actual parameters for one or more of the
leftmost formal parameters. For example, we could define a new function as
follows:

fun add5 x = add 5 x;

The add5 function takes the actual parameter 5 and evaluates the add function
with 5 as the value of its first formal parameter. It returns a function that adds
5 to its single parameter, as in the following:

val num = add5 10;

The value of num is now 15. We could create any number of new functions
from the curried function add to add any specific number to a given
parameter.

Curried functions also can be written in Scheme, Haskell, and F#. Consider
the following Scheme function:

(DEFINE (add x y) (+ x y))

A curried version of this would be as follows:

DEFINE (add y) (LAMBDA (x) (+ y x)))

This can be called as follows:

((add 3) 4)

ML has enumerated types, arrays, and tuples. ML also has exception

handling and a module facility for implementing abstract data types.

ML has had a significant impact on the evolution of programming languages.
For language researchers, it has become one of the most studied languages.
Furthermore, it has spawned several subsequent languages, among them
Haskell, Caml, OCaml, and F#.

15.8 Haskell
Haskell (Thompson, 1999) is similar to ML in that it uses a similar syntax, is
static scoped, is strongly typed, and uses the same type inferencing method.
There are three characteristics of Haskell that set it apart from ML: First,
functions in Haskell can be overloaded (functions in ML cannot). Second,
nonstrict semantics are used in Haskell, whereas in ML (and most other
programming languages) strict semantics are used. Third, Haskell is a pure
functional programming language, meaning it has no expressions or
statements that have side effects, whereas ML allows some side effects (for
example, ML has mutable arrays). Both nonstrict semantics and function
overloading are further discussed later in this section.

The code in this section is written in version 1.4 of Haskell.

Consider the following definition of the factorial function, which uses pattern
matching on its parameters:

fact 0 = 1

fact 1 = 1

fact n = n * fact (n - 1)

Note the differences in syntax between this definition and its ML version in
Section 15.7. First, there is no reserved word to introduce the function
definition (fun in ML). Second, alternative definitions of functions (with
different formal parameters) all have the same appearance.

Using pattern matching, we can define a function for computing the nth
Fibonacci number with the following:

fib 0 = 1

fib 1 = 1

fib (n + 2) = fib (n + 1) + fib n

Guards can be added to lines of a function definition to specify the
circumstances under which the definition can be applied. For example,

fact n

 | n == 0 = 1

 | n == 1 = 1

 | n > 1 = n * fact(n - 1)

This definition of factorial is more precise than the previous one, as it
restricts the range of actual parameter values to those for which it works. This
form of a function definition is called a conditional expression, after the
mathematical expressions on which it is based.

An otherwise can appear as the last condition in a conditional expression,
with the obvious semantics. For example,

sub n

 | n < 10 = 0

 | n > 100 = 2

 | otherwise = 1

Notice the similarity between the guards here and the guarded commands
discussed in Chapter 8.

Consider the following function definition, whose purpose is the same as the
corresponding ML function in Section 15.7:

square x = x * x

In this case, however, because of Haskell’s support for polymorphism, this
function can take a parameter of any numeric type.

As with ML, lists are written in brackets in Haskell, as in

colors = [”blue”, ”green”, ”red”, ”yellow”]

Haskell includes a collection of list operators. For example, lists can be
catenated with ++, : serves as an infix version of CONS, and .. is used to
specify an arithmetic series in a list. For example,

5:[2, 7, 9] results in [5, 2, 7, 9]

[1, 3..11] results in [1, 3, 5, 7, 9, 11]

[1, 3, 5] ++ [2, 4, 6] results in [1, 3, 5, 2, 4, 6]

Notice that the : operator is just like ML’s :: operator.10 Using : and pattern
matching, we can define a simple function to compute the product of a given
list of numbers:

10. It is interesting that ML uses : for attaching a type name to a name and : :
for CONS, while Haskell uses these two operators in exactly opposite ways.

product [] = 1

product (a:x) = a * product x

Using product, we can write a factorial function in the simpler form

fact n = product [1..n]

Haskell includes a let construct that is similar to ML’s let and val. For
example, we could write

quadratic_root a b c =

 let minus_b_over_2a = - b / (2.0 * a)

 root_part_over_2a =

 sqrt(b ^ 2 - 4.0 * a * c) / (2.0 * a)

 in

 minus_b_over_2a - root_part_over_2a,

 minus_b_over_2a + root_part_over_2a

Haskell’s list comprehensions were introduced in Chapter 6. For example,
consider the following example of a list comprehension:

[n * n * n | n <- [1..50]]

This defines a list of the cubes of the numbers from 1 to 50. It is read as “a
list of all n*n*n such that n is taken from the range of 1 to 50.” In this case,
the qualifier is in the form of a generator. It generates the numbers from 1 to
50. In other cases, the qualifiers are in the form of Boolean expressions and
they are called tests. This notation can be used to describe algorithms for
doing many things, such as finding permutations of lists and sorting lists. For
example, consider the following function, which when given a number n
returns a list of all its factors:

factors n = [i | i <- [1..n ‘div‘ 2], n ‘mod‘ i == 0]

The list comprehension in factors creates a list of numbers, each
temporarily bound to the name i, ranging from 1 to n/2, such that n `mod` i
is zero. This is indeed a very exacting and short definition of the factors of a
given number. The backticks (backward apostrophes) surrounding div and
mod are used to specify the infix use of these functions. When they are called
in functional notation, as in div n 2, the backticks are not used.

Next, consider the concision of Haskell illustrated in the following
implementation of the quicksort algorithm:

sort [] = []

sort (h:t) = sort [b | b <- t, b <- h]

 ++ [h] ++

 sort [b | b <- t, b > h]

In this program, the set of list elements that are smaller or equal to the list
head are sorted and catenated with the head element, then the set of elements
that are greater than the list head are sorted and catenated onto the previous
result. This definition of quicksort is significantly shorter and simpler than
the same algorithm coded in an imperative language.

A programming language is strict if it requires all actual parameters to be
fully evaluated, which ensures that the value of a function does not depend on
the order in which the parameters are evaluated. A language is nonstrict if it
does not have the strict requirement. Nonstrict languages can have several
distinct advantages over strict languages. First, nonstrict languages are
generally more efficient, because some evaluation is avoided.11 Second,
some interesting capabilities are possible with nonstrict languages that are not
possible with strict languages. Among these are infinite lists. Nonstrict
languages can use an evaluation form called lazy evaluation, which means
that expressions are evaluated only if and when their values are needed.

11. Notice how this is related to short-circuit evaluation of Boolean
expressions, which is done in some imperative languages.

Recall that in Scheme the parameters to a function are fully evaluated before
the function is called, so it has strict semantics. Lazy evaluation means that
an actual parameter is evaluated only when its value is necessary to evaluate
the function. So, if a function has two parameters, but on a particular

execution of the function the first parameter is not used, the actual parameter
passed for that execution will not be evaluated. Furthermore, if only a part of
an actual parameter must be evaluated for an execution of the function, the
rest is left unevaluated. Finally, actual parameters are evaluated only once, if
at all, even if the same actual parameter appears more than once in a function
call.

As stated previously, lazy evaluation allows one to define infinite data
structures. For example, consider the following:

positives = [0..]

evens = [2, 4..]

squares = [n * n | n <- [0..]]

Of course, no computer can actually represent all of the numbers of these
lists, but that does not prevent their use if lazy evaluation is used. For
example, if we wanted to know if a particular number was a perfect square,
we could check the squares list with a membership function. Suppose we
had a predicate function named member that determined whether a given atom
is contained a given list. Then we could use it as in

member 16 squares

which would return True. The squares definition would be evaluated until
the 16 was found. The member function would need to be carefully written.
Specifically, suppose it were defined as follows:

member b [] = False

member b (a:x)= (a == b) || member b x

The second line of this definition breaks the first parameter into its head and
tail. Its return value is true if either the head matches the element for which it
is searching (b) or if the recursive call with the tail of the list returns True.

This definition of member would work correctly with squares only if the
given number were a perfect square. If not, squares would keep generating
squares forever, or until some memory limitation was reached, looking for
the given number in the list. The following function performs the
membership test of an ordered list, abandoning the search and returning

False if a number greater than the searched-for number is found.12

12. This assumes that the list is in ascending order.

member2 n (m:x)

 | m < n = member2 n x

 | m == n = True

 | otherwise = False

Lazy evaluation sometimes provides a modularization tool. Suppose that in a
program there is a call to function f and the parameter to f is the return value
of a function g.13 So, we have f(g(x)). Further suppose that g produces a
large amount of data, a little at a time, and that f must then process this data,
a little at a time. In a conventional imperative language, g would run on the
whole input producing a file of its output. Then f would run using the file as
its input. This approach requires the time to both write and read the file, as
well as the storage for the file. With lazy evaluation, the executions of f and g
implicitly would be tightly synchronized. Function g will execute only long
enough to produce enough data for f to begin its processing. When f is ready
for more data, g will be restarted to produce more, while f waits. If f
terminates without getting all of g’s output, g is aborted, thereby avoiding
useless computation. Also, g need not be a terminating function, perhaps
because it produces an infinite amount of output. g will be forced to terminate
when f terminates. So, under lazy evaluation, g runs as little as possible. This
evaluation process supports the modularization of programs into generator
units and selector units, where the generator produces a large number of
possible results and the selector chooses the appropriate subset.

13. This example appears in Hughes (1989).

Lazy evaluation is not without its costs. It would certainly be surprising if
such expressive power and flexibility were free. In this case, the cost is in a
far more complicated semantics, which results in much slower speed of
execution.

15.9 F#
F# is a .NET functional programming language whose core is based on
OCaml, which is a descendant of ML and Haskell. Although it is
fundamentally a functional language, it includes imperative features and
supports object-oriented programming. One of the most important
characteristics of F# is that it has a full-featured IDE, an extensive library of
utilities that supports imperative, object-oriented, and functional
programming, and has interoperability with a collection of nonfunctional
languages (all of the .NET languages).

F# is a first-class .NET language. This means that F# programs can interact in
every way with other .NET languages. For example, F# classes can be used
and subclassed by programs in other languages, and vice versa. Furthermore,
F# programs have access to all of the .NET Framework APIs. The F#
implementation is available free from Microsoft (http://
research.microsoft.com/fsharp/fsharp.aspx). It is also supported by
Visual Studio.

F# includes a variety of data types. Among these are tuples, like those of
Python and the functional languages ML and Haskell, lists, discriminated
unions, an expansion of ML’s unions, and records, like those of ML, which
are like tuples except the components are named. F# has both mutable and
immutable arrays.

Recall from Chapter 6, that F#’s lists are similar to those of ML, except that
the elements are separated by semicolons and hd and tl must be called as
methods of List.

F# supports sequence values, which are types from the .NET namespace
System.Collections.Generic.IEnumerable. In F#, sequences are
abbreviated as seq<type>, where <type> indicates the type of the generic.
For example, the type seq<int> is a sequence of integer values. Sequence
values can be created with generators and they can be iterated. The simplest
sequences are generated with range expressions, as in the following example:

http://research.microsoft.com/fsharp/fsharp.aspx

let x = seq {1..4};;

In the examples of F#, we assume that the interactive interpreter is used,
which requires the two semicolons at the end of each statement. The
expression above generates seq[1; 2; 3; 4]. (List and sequence elements
are separated by semicolons.) The generation of a sequence is lazy; for
example, the following defines y to be a very long sequence, but only the
needed elements are generated. For display, only the first four are generated.

let y = seq {0..100000000};;

y;;

val it: seq<int> = seq[0; 1; 2; 3;...]

The first line above defines y; the second line requests that the value of y be
displayed; the third is the output of the F# interactive interpreter.

The default step size for integer sequence definitions is 1, but it can be set by
including it in the middle of the range specification, as in the following
example:

seq {1..2..7};;

This generates seq [1; 3; 5; 7].

The values of a sequence can be iterated with a for-in construct, as in the
following example:

let seq1 = seq {0..3..11};;

for value in seq1 do printfn ”value = %d” value;;

This produces the following:

value = 0

value = 3

value = 6

value = 9

Iterators can also be used to create sequences, as in the following example:

let cubes = seq {for i in 1..5 -> (i, i * i * i)};;

This generates the following list of tuples:

seq [(1, 1); (2, 8); (3, 27); (4, 64); (5, 125)]

This use of iterators to generate collections is a form of list comprehension.

Sequencing can also be used to generate lists and arrays, although in these
cases the generation is not lazy. In fact, the primary difference between lists
and sequences in F# is that sequences are lazy, and thus can be infinite,
whereas lists are not lazy. Lists are in their entirety stored in memory. That is
not the case with sequences.

The functions of F# are similar to those of ML and Haskell. If named, they
are defined with let statements. If unnamed, which means technically they
are lambda expressions, they are defined with the fun reserved word. The
following lambda expression illustrates their syntax:

(fun a b -> a / b)

Note that there is no difference between a name defined with let and a
function without parameters defined with let.

Indentation is used to show the extent of a function definition. For example,
consider the following function definition:

let f =

 let pi = 3.14159

 let twoPi = 2.0 * pi

 twoPi;;

Note that F#, like ML, does not coerce numeric values, so if this function
used 2 in the second-last line, rather than 2.0, an error would be reported.

If a function is recursive, the reserved word rec must precede its name in its
definition. Following is an F# version of factorial:

let rec factorial x =

 if x <= 1 then 1

 else n * factorial(n - 1)

Names defined in functions can be outscoped, which means they can be

redefined, which ends their former scope. For example, we could have the
following:

let x4 x =

 let x = x * x

 let x = x * x

 x;;

In this function, the first let in the body of the x4 function creates a new
version of x, defining it to have the value of the square of the parameter x.
This terminates the scope of the parameter. So, the second let in the function
body uses the new x in its right side and creates yet another version of x,
thereby terminating the scope of the x created in the previous let.

There are two important functional operators in F#, pipeline (|>) and function
composition (>>). The pipeline operator is a binary operator that sends the
value of its left operand, which is an expression, to the last parameter of the
function call, which is the right operand. It is used to chain together function
calls while flowing the data being processed to each call. Consider the
following example code, which uses the high-order functions filter and
map:

let myNums = [1; 2; 3; 4; 5]

let evensTimesFive = myNums

 |> List.filter (fun n -> n % 2 = 0)

 |> List.map (fun n -> 5 * n)

The evensTimesFive function begins with the list myNums, filters out the
numbers that are not even with filter, and uses map to map a lambda
expression that multiplies the numbers in a given list by five. The return
value of evensTimesFive is [10; 20].

The function composition operator builds a function that applies its left
operand to a given parameter, which is a function, and then passes the result
returned from that function to its right operand, which is also a function. So,
the F# expression (f >> g)x is equivalent to the mathematical expression
g(f(x)).

Like ML, F# supports curried functions and partial evaluation. The ML
example in Section 15.7 could be written in F# as follows:

let add a b = a + b;;

let add5 = add 5;;

Note that, unlike ML, the syntax of the formal parameter list in F# is the
same for all functions, so all functions with more than one parameter can be
curried.

F# is interesting for several reasons: First, it builds on the past functional
languages as a functional language. Second, it supports virtually all
programming methodologies in widespread use today. Third, it is the first
functional language that is designed for interoperability with other widely
used languages. Fourth, it starts out with an elaborate and well-developed
IDE and library of utility software with .NET and its framework.

15.10 Support for Functional
Programming in Primarily
Imperative Languages
Imperative programming languages have typically provided only limited
support for functional programming. That limited support has resulted in little
use of those languages for functional programming. The most important
restriction, related to functional programming, of imperative languages of the
past was the lack of support for higher-order functions.

One indication of the increasing interest and use of functional programming
is the partial support for it that has begun to appear over the last decade in
programming languages that are primarily imperative. For example,
anonymous functions, which are like lambda expressions, are now part of
JavaScript, Python, Ruby, Java, and C#.

In JavaScript, named functions are defined with the following syntax:

function name (formal-parameters) {

 body

}

An anonymous function is defined in JavaScript with the same syntax, except
that the name of the function is omitted.

In C#, a lambda expression is an instance of a delegate. They can be
anonymous or named. An anonymous lambda expression is simpler than an
anonymous method because methods must define their parameter types and
return type, but lambda expressions use the C# inferencing process to avoid
those necessities. The syntax of an unnamed lambda expression in C# is as
follows:

parameter(s) => expression

If there is more than one parameter, they must be enclosed in parentheses. If
there are no parameters, empty parentheses must appear in the place of the
parameters. If the system cannot infer the types of the parameters, they can be
preceded by type names. The type of the return value is never specified; it is
always inferred by the context of the lambda expression. The expression is
either a single expression or a compound statement enclosed in braces. Such
a compound statement must include a return statement.

One common use of anonymous lambda expressions is as actual parameters
to methods that are specified to take delegates as parameters. For example,
C# has a collection of methods for arrays that perform searching operations.
For example, the FindAll method finds all of the elements of an array that
satisfy a given instance of a delegate that takes a parameter of the type of the
array’s elements and returns a Boolean value. For example, we could have
the following:

int[] numbers = {-3, 0, 4, 5, 1, 7, -3, -6, -9, 0, 3};

int[] positives = Array.FindAll(numbers, n => n > 0);

// Now, positives is {4, 5, 1, 7, 3}

Lambda expressions in C# can also be named. The language has generic
delegates that make defining such lambda expressions simple, although they
do not cover all possibilities. One commonly used generic delegate is Func,
which can take up to sixteen generic parameters for the parameters of the
lambda expression, plus one more for the return type. For example, consider
the following example of a named lambda expression and an invocation of it:

Func<int, int, int> eval1 = (a, b) => 3 * a + (b / 2);

int result = eval1(6, 22);

C# lambda expressions can access variables defined outside their definitions.
When they do, the lifetimes of the accessed external variables, which are
called captured variables, are extended so that they still exist when the
lambda expression is used. A lambda expression that captures outside
variables is a closure.

Lambda expressions were added to Java 8. The general syntax of these
expressions is like that of C#, except that -> is used instead of =>. The syntax
of parameters, the inferencing of parameter types and the return type, and the

expression or block with a return are the same as with C#. Prior to Java 8,
there was no convenient way to pass a block of code to a method or have the
method return a block of code.14

14. One inconvenient way was to define a class with a method that contained
the code, instantiate the class, and pass a reference to it.

Python’s lambda expressions define simple one-statement anonymous
functions. The syntax of a lambda expression in Python is exemplified by the
following:

lambda a, b : 2 * a - b

Note that the formal parameters are separated from function body by a colon.

Python includes the higher-order functions filter and map. Both often use
lambda expressions as their first parameter. The second parameter of these is
a sequence type, and both return the same sequence type as their second
parameter. In Python, strings, lists, and tuples are considered sequences.
Consider the following example of using the map function in Python:

map(lambda x: x ** 3, [2, 4, 6, 8])

This call returns [8, 64, 216, 512].

Python also supports partial function applications. Consider the following
example:

from operator import add

add5 = partial (add, 5)

The from declaration here imports the functional version of the addition
operator, which is named add, from the operator module.

After defining add5, it can be used with one parameter, as in the following:

add5(15)

This call returns 20.

As described in Chapter 6, Python includes lists and list comprehensions.

Ruby’s blocks are effectively subprograms that are sent to methods, which
makes the method a higher-order subprogram. A Ruby block can be
converted to a subprogram object with lambda. For example, consider the
following:

times = lambda {|a, b| a * b}

Following is an example of using times:

x = times.(3, 4)

This sets x to 12. The times object can be curried with the following:

times5 = times.curry.(5)

This function can be used as in the following:

x5 = times5.(3)

This sets x5 to 15.

15.11 A Comparison of Functional
and Imperative Languages
This section discusses some of the differences between imperative and
functional languages.

Functional languages can have a very simple syntactic structure. The list
structure of Lisp, which is used for both code and data, clearly illustrates this.
The syntax of the imperative languages is much more complex. This makes
them more difficult to learn and to use.

The semantics of functional languages is also simpler than that of the
imperative languages. For example, in the denotational semantics description
of an imperative loop construct given in Section 3.5.2, the loop is converted
from an iterative construct to a recursive construct. This conversion is
unnecessary in a pure functional language, in which there is no iteration.
Furthermore, we assumed there were no expression side effects in all of the
denotational semantic descriptions of imperative constructs in Chapter 3.
This restriction is unrealistic for imperative languages, because all of the C-
based languages include expression side effects. This restriction is not needed
for the denotational descriptions of pure functional languages.

Some in the functional programming community have claimed that the use of
functional programming results in an order-of-magnitude increase in
productivity, largely due to functional programs being claimed to be only
10 percent as large as their imperative counterparts. While such numbers
have been actually shown for certain problem areas, for other problem areas,
functional programs are more like 25 percent as large as imperative solutions
to the same problems (Wadler, 1998). These factors allow proponents of
functional programming to claim productivity advantages over imperative
programming of 4 to 10 times. However, program size alone is not
necessarily a good measure of productivity. Certainly not all lines of source
code have equal complexity, nor do they take the same amount of time to
produce. In fact, because of the necessity of dealing with variables,

imperative programs have many trivially simple lines for initializing and
making small changes to variables.

Execution efficiency is another basis for comparison. When functional
programs are interpreted, they are of course much slower than their compiled
imperative counterparts. However, there are now compilers for most
functional languages, so that execution speed disparities between functional
languages and compiled imperative languages are no longer so great. One
might be tempted to say that because functional programs are significantly
smaller than equivalent imperative programs, they should execute much
faster than the imperative programs. However, this often is not the case,
because of a collection of language characteristics of the functional
languages, such as lazy evaluation, that have a negative impact on execution
efficiency. Considering the relative efficiency of functional and imperative
programs, it is reasonable to estimate that an average functional program will
execute in about twice the time of its imperative counterpart (Wadler, 1998).
This may sound like a significant difference, one that would often lead one to
dismiss the functional languages for a given application. However, this
factor-of-two difference is important only in situations where execution speed
is of the utmost importance. There are many situations where a factor of two
in execution speed is not considered important. For example, consider that
many programs written in imperative languages, such as the Web software
written in JavaScript and PHP, are interpreted and therefore are much slower
than equivalent compiled versions. For these applications, execution speed is
not the first priority.

Another source of the difference in execution efficiency between functional
and imperative programs is the fact that imperative languages were designed
to run efficiently on von Neumann architecture computers, while the design
of functional languages is based on mathematical functions. This gives the
imperative languages a large advantage.

Functional languages have a potential advantage in readability. In many
imperative programs, the details of dealing with variables obscure the logic of
the program. Consider a function that computes the sum of the cubes of the
first n positive integers. In C, such a function would likely appear similar to
the following:

int sum_cubes(int n){

 int sum = 0;

 for(int index = 1; index <= n; index++)

 sum += index * index * index;

 return sum;

}

In Haskell, the function could be:

sumCubes n = sum (map (^3) [1..n])

This version simply specifies three steps:

1. Build the list of numbers ([1..n]).

2. Create a new list by mapping a function that computes the cube of a
number onto each number in the list.

3. Sum the new list.

Because of the lack of details of variables and iteration control, this version is
more readable than the C version.15

15. Of course, the C version could have been written in a more functional
style, but most C programmers probably would not write it that way.

Concurrent execution in the imperative languages is difficult to design and
difficult to use, as we saw in Chapter 13. In an imperative language, the
programmer must make a static division of the program into its concurrent
parts, which are then written as tasks, whose execution often must be
synchronized. This can be a complicated process. Programs in functional
languages are naturally divided into functions. In a pure functional language,
these functions are independent in the sense that they do not create side
effects and their operations do not depend on any nonlocal or global
variables. Therefore, it is much easier to determine which of them can be
concurrently executed. The actual parameter expressions in calls often can be
evaluated concurrently. Simply by specifying that it can be done, a function
can be implicitly evaluated in a separate thread, as in Multilisp. And, of
course, access to shared immutable data does not require synchronization.

One simple factor that strongly affects the complexity of imperative, or
procedural programming, is the necessary attention of the programmer to the
state of the program at each step of its development. In a large program, the
state of the program is a large number of values (for the large number of
program variables). In pure functional programming, there is no state; hence,
no need to devote attention to keeping it in mind.

It is not a simple matter to determine precisely why functional languages
have not attained greater popularity. The inefficiency of the early
implementations was clearly a factor then, and it is likely that at least some
contemporary imperative programmers still believe that programs written in
functional languages are slow. In addition, the vast majority of programmers
learn programming using imperative languages, which makes functional
programs appear to them to be strange and difficult to understand. For many
who are comfortable with imperative programming, the switch to functional
programming is an unattractive and potentially difficult move. On the other
hand, those who begin with a functional language never notice anything
strange about functional programs.

SUMMARY
Mathematical functions are named or unnamed mappings that use only
conditional expressions and recursion to control their evaluations. Complex
functions can be defined using higher-order functions or functional forms, in
which functions are used as parameters, returned values, or both.

Functional programming languages are modeled on mathematical functions.
In their pure form, they do not use variables or assignment statements to
produce results; rather, they use function applications, conditional
expressions, and recursion for execution control and functional forms to
construct complex functions. Lisp began as a purely functional language but
soon acquired a number of imperative-language features added in order to
increase its efficiency and ease of use.

The first version of Lisp grew out of the need for a list-processing language
for AI applications. Lisp is still the most widely used language for that
application area.

The first implementation of Lisp was serendipitous: The original version of
EVAL was developed solely to demonstrate that a universal Lisp function
could be written.

Because Lisp data and Lisp programs have the same form, it is possible to
have a program build another program. The availability of EVAL allows
dynamically constructed programs to be executed immediately.

Scheme is a relatively simple dialect of Lisp that uses static scoping
exclusively. Like Lisp, Scheme’s primary primitives include functions for
constructing and dismantling lists, functions for conditional expressions, and
simple predicates for numbers, symbols, and lists.

Common Lisp is a Lisp-based language that was designed to include most of
the features of the Lisp dialects of the early 1980s. It allows both static- and
dynamic-scoped variables and includes many imperative features. Common

Lisp uses macros to define some of its functions. Users are allowed to define
their own macros. The language includes reader macros, which are also user
definable. Reader macros define single-symbol macros.

ML is a static-scoped and strongly typed functional programming language
that uses a syntax that is more closely related to that of an imperative
language than to Lisp. It includes a type-inferencing system, exception
handling, a variety of data structures, and abstract data types.

ML does not do any type coercions and does not allow function overloading.
Multiple definitions of functions can be defined using pattern matching of the
actual parameter form. Currying is the process of replacing a function that
takes multiple parameters with one that takes a single parameter and returns a
function that takes the other parameters. ML, as well as several other
functional languages, supports currying.

Haskell is similar to ML, except that all expressions in Haskell are evaluated
using a lazy method, which allows programs to deal with infinite lists.
Haskell also supports list comprehensions, which provide a convenient and
familiar syntax for describing sets. Unlike ML and Scheme, Haskell is a pure
functional language.

F# is a .NET programming language that supports functional and imperative
programming, including object-oriented programming. Its functional
programming core is based on OCaml, a descendent of ML and Haskell. F# is
supported by an elaborate and widely used IDE. It also interoperates with
other .NET languages and has access to the .NET class library.

BIBLIOGRAPHIC NOTES
The first published version of Lisp can be found in McCarthy (1960). A
widely used version from the mid-1960s until the late 1970s is described
in McCarthy et al. (1965) and Weissman (1967). Common Lisp is
described in Steele (1990). The Scheme language is described in Dybvig
(2011). ML is defined in Milner et al. (1997). Ullman (1998) is an
excellent introductory textbook for ML. Programming in Haskell is
introduced in Thompson (1999). F# is described in Syme et al. (2010).

The Scheme programs in this chapter were developed using DrRacket’s
legacy language R5RS.

A rigorous discussion of functional programming in general can be
found in Henderson (1980). The process of implementing functional
languages through graph reduction is discussed in detail in Peyton Jones
(1987).

REVIEW QUESTIONS
1. Define functional form, simple list, bound variable, and referential

transparency.

2. What does a lambda expression specify?

3. What data types were parts of the original Lisp?

4. In what common data structure are Lisp lists normally stored?

5. Explain why QUOTE is needed for a parameter that is a data list.

6. What is a simple list?

7. What does the abbreviation REPL stand for?

8. What are the three parameters to IF?

9. What are the differences between =, EQ?, EQV?, and EQUAL?

10. What are the differences between the evaluation method used for the
Scheme special form DEFINE and that used for its primitive functions?

11. What are the two forms of DEFINE?

12. Describe the syntax and semantics of COND.

13. Why are CAR and CDR so named?

14. If CONS is called with two atoms, say 'A and 'B, what is the returned?

15. Describe the syntax and semantics of LET in Scheme.

16. What are the differences between CONS, LIST, and APPEND?

17. Describe the syntax and semantics of mapcar in Scheme.

18. What is tail recursion? Why is it important to define functions that use
recursion to specify repetition to be tail recursive?

19. Why were imperative features added to most dialects of Lisp?

20. In what ways are Common Lisp and Scheme opposites?

21. What scoping rule is used in Scheme? In Common Lisp? In ML? In
Haskell? In F#?

22. What happens during the reader phase of a Common Lisp language
processor?

23. What are two ways that ML is fundamentally different from Scheme?

24. What is stored in an ML evaluation environment?

25. What is the difference between an ML val statement and an assignment
statement in C?

26. What is type inferencing, as used in ML?

27. What is the use of the fn reserved word in ML?

28. Can ML functions that deal with scalar numerics be generic?

29. What is a curried function?

30. What does partial evaluation mean?

31. Describe the actions of the ML filter function.

32. What operator does ML use for Scheme’s CAR?

33. What operator does ML use for functional composition?

34. What are the three characteristics of Haskell that make it different from
ML?

35. What does lazy evaluation mean?

36. What is a strict programming language?

37. What programming paradigms are supported by F#?

38. With what other programming languages can F# interoperate?

39. What does F#’s let do?

40. How is the scope of a F# let construct terminated?

41. What is the underlying difference between a sequence and a list in F#?

42. What is the difference between the let of ML and that of F#, in terms of
extent?

43. What is the syntax of a lambda expression in F#?

44. Does F# coerce numeric values in expressions? Argue in support of the
design choice.

45. What support does Python provide for functional programming?

46. What function in Ruby is used to create a curried function?

47. Is the use of functional programming expanding or shrinking?

48. What is one characteristic of functional programming languages that
makes their semantics simpler than that of imperative languages?

49. What is the flaw in using lines of code to compare the productivity of
functional languages and that of imperative languages?

50. Why can concurrency be easier with functional languages than
imperative languages?

PROBLEM SET
1. Read John Backus’s paper on FP (Backus, 1978) and compare the

features of Scheme discussed in this chapter with the corresponding
features of FP.

2. Find definitions of the Scheme functions EVAL and APPLY, and explain
their actions.

3. One of the most modern and complete programming environments is the
INTERLISP system for Lisp, as described in “The INTERLISP
Programming Environment,” by Teitelmen and Masinter (IEEE
Computer, Vol. 14, No. 4, April 1981). Read this article carefully and
compare the difficulty of writing Lisp programs on your system with
that of using INTERLISP (assuming that you do not normally use
INTERLISP).

4. Refer to a book on Lisp programming and determine what arguments
support the inclusion of the PROG feature in Lisp.

5. Find at least one example of a typed functional programming language
being used to build a commercial system in each of the following areas:
database processing, financial modeling, statistical analysis, and
bioinformatics.

6. A functional language could use some data structure other than the list.
For example, it could use strings of single-character symbols. What
primitives would such a language have in place of the CAR, CDR, and
CONS primitives of Scheme?

7. Make a list of the features of F# that are not in ML.

8. If Scheme were a pure functional language, could it include DISPLAY?
Why or why not?

9. What does the following Scheme function do?

(define (y s lis)

 (cond

 ((null? lis) '())

 ((equal? s (car lis)) lis)

 (else (y s (cdr lis)))

))

10. What does the following Scheme function do?

(define (x lis)

 (cond

 ((null? lis) 0)

 ((not (list? (car lis)))

 (cond

 ((eq? (car lis) #f) (x (cdr lis)))

 (else (+ 1 (x (cdr lis))))))

 (else (+ (x (car lis)) (x (cdr lis))))

PROGRAMMING EXERCISES
1. Write a Scheme function that computes the volume of a sphere, given its

radius.

2. Write a Scheme function that computes the real roots of a given
quadratic equation. If the roots are complex, the function must display a
message indicating that. This function must use an IF function. The
three parameters to the function are the three coefficients of the
quadratic equation.

3. Repeat Programming Exercise 2 using a COND function, rather than an IF
function.

4. Write a Scheme function that takes two numeric parameters, A and B,
and returns A raised to the B power.

5. Write a Scheme function that returns the number of zeros in a given
simple list of numbers.

6. Write a Scheme function that takes a simple list of numbers as a
parameter and returns a list with the largest and smallest numbers in the
input list.

7. Write a Scheme function that takes a list and an atom as parameters and
returns a list identical to its parameter list except with all top-level
instances of the given atom deleted.

8. Write a Scheme function that takes a list as a parameter and returns a list
identical to the parameter except the last element has been deleted.

9. Repeat Programming Exercise 7, except that the atom can be either an
atom or a list.

10. Write a Scheme function that takes two atoms and a list as parameters
and returns a list identical to the parameter list except all occurrences of

the first given atom in the list are replaced with the second given atom,
no matter how deeply the first atom is nested.

11. Write a Scheme function that returns the reverse of its simple list
parameter.

12. Write a Scheme predicate function that tests for the structural equality of
two given lists. Two lists are structurally equal if they have the same list
structure, although their atoms may be different.

13. Write a Scheme function that returns the union of two simple list
parameters that represent sets.

14. Write a Scheme function with two parameters, an atom and a list, that
returns a list identical to the parameter list except with all occurrences,
no matter how deep, of the given atom deleted. The returned list cannot
contain anything in place of the deleted atoms.

15. Write a Scheme function that takes a list as a parameter and returns a list
identical to the parameter list except with the second top-level element
removed. If the given list does not have two elements, the function
should return ().

16. Write a Scheme function that takes a simple list of numbers as its
parameter and returns a list identical to the parameter list except with the
numbers in ascending order.

17. Write a Scheme function that takes a simple list of numbers as its
parameter and returns the largest and smallest numbers in the list.

18. Write a Scheme function that takes a simple list as its parameter and
returns a list of all permutations of the given list.

19. Write the quicksort algorithm in Scheme.

20. Rewrite the following Scheme function as a tail-recursive function:

(DEFINE (doit n)

 (IF (= n 0)

 0

 (+ n (doit (- n 1)))

))

21. Write any of the first 19 Programming Exercises in F#.

22. Write any of the first 19 Programming Exercises in ML.

16 Logic Programming Languages
1. 16.1 Introduction

2. 16.2 A Brief Introduction to Predicate Calculus

3. 16.3 Predicate Calculus and Proving Theorems

4. 16.4 An Overview of Logic Programming

5. 16.5 The Origins of Prolog

6. 16.6 The Basic Elements of Prolog

7. 16.7 Deficiencies of Prolog

8. 16.8 Applications of Logic Programming

The objectives of this chapter are to introduce the concepts of logic
programming and logic programming languages, including a brief description
of a subset of Prolog. We begin with an introduction to predicate calculus,
which is the basis for logic programming languages. This is followed by a
discussion of how predicate calculus can be used for automatic theorem-
proving systems. Then, we present a general overview of logic programming.
Next, a lengthy section introduces the basics of the Prolog programming
language, including arithmetic, list processing, and a trace tool that can be
used to help debug programs and also to illustrate how the Prolog system
works. The final two sections describe some of the problems of Prolog as a
logic language and some of the application areas in which Prolog has been
used.

16.1 Introduction
Chapter 15 discusses the functional programming paradigm, which is
significantly different from the software development methodologies used
with the imperative languages. In this chapter, we describe another different
programming methodology. In this case, the approach is to express programs
in a form of symbolic logic and use a logical inferencing process to produce
results. Logic programs are declarative rather than procedural, which means
that only the specifications of the desired results are stated rather than
detailed procedures for producing them. Programs in logic programming
languages are collections of facts and rules. Such a program is used by asking
it questions, which it attempts to answer by consulting the facts and rules.
“Consulting” is perhaps misleading here, for the process is far more complex
than that word connotes. This approach to problem solving may sound like it
addresses only a very narrow category of problems, but it is more flexible
than might be thought.

Programming that uses a form of symbolic logic as a programming language
is often called logic programming, and languages based on symbolic logic
are called logic programming languages, or declarative languages. We
have chosen to describe the logic programming language Prolog, because it is
the only widely used logic language.

The syntax of logic programming languages is remarkably different from that
of the imperative and functional languages. The semantics of logic programs
also bears little resemblance to that of imperative-language programs. These
observations should lead the reader to some curiosity about the nature of
logic programming and declarative languages.

16.2 A Brief Introduction to
Predicate Calculus
Before we can discuss logic programming, we must briefly investigate its
basis, which is formal logic. This is not our first contact with formal logic in
this text; it was used extensively in the axiomatic semantics described in
Chapter 3.

A proposition can be thought of as a logical statement that may or may not
be true. It consists of objects and the relationships among objects. Formal
logic was developed to provide a method for describing propositions, with
the goal of allowing those formally stated propositions to be checked for
validity.

Symbolic logic can be used for the three basic needs of formal logic: to
express propositions, to express the relationships between propositions, and
to describe how new propositions can be inferred from other propositions that
are assumed to be true.

There is a close relationship between formal logic and mathematics. In fact,
much of mathematics can be thought of in terms of logic. The fundamental
axioms of number and set theory are the initial set of propositions, which are
assumed to be true. Theorems are the additional propositions that can be
inferred from the initial set.

The particular form of symbolic logic that is used for logic programming is
called first-order predicate calculus (though it is a bit imprecise, we will
usually refer to it as predicate calculus). In the following subsections, we
present a brief look at predicate calculus. Our goal is to lay the groundwork
for a discussion of logic programming and the logic programming language
Prolog.

16.2.1 Propositions

The objects in logic programming propositions are represented by simple
terms, which are either constants or variables. A constant is a symbol that
represents an object. A variable is a symbol that can represent different
objects at different times, although in a sense that is far closer to mathematics
than the variables in an imperative programming language.

The simplest propositions, which are called atomic propositions, consist of
compound terms. A compound term is one element of a mathematical
relation, written in a form that has the appearance of mathematical function
notation. Recall from Chapter 15 that a mathematical function is a mapping,
which can be represented either as an expression or as a table or list of tuples.
Compound terms are elements of the tabular definition of a function.

A compound term is composed of two parts: a functor, which is the function
symbol that names the relation, and an ordered list of parameters, which
together represent an element of the relation. A compound term with a single
parameter is a 1-tuple; one with two parameters is a 2-tuple, and so forth. For
example, we might have the two propositions

man(jake)

like(bob, steak)

which state that {jake} is a 1-tuple in the relation named man, and that {bob,
steak} is a 2-tuple in the relation named like. If we added the proposition

man(fred)

to the two previous propositions, then the relation man would have two
distinct elements, {jake} and {fred}. All of the simple terms in these
propositions—man, jake, like, bob, and steak—are constants. Note that these
propositions have no intrinsic semantics. They mean whatever we want them
to mean. For example, the second example may mean that bob likes steak, or
that steak likes bob, or that bob is in some way similar to a steak.

Propositions can be stated in two modes: one in which the proposition is
defined to be true, and one in which the truth of the proposition is something
that is to be determined. In other words, propositions either can be facts or

queries. The example propositions above could be either.

Compound propositions have two or more atomic propositions, which are
connected by logical connectors, or operators, in the same way compound
logic expressions are constructed in imperative languages. The names,
symbols, and meanings of the predicate calculus logical connectors are as
follows:

The following are examples of compound propositions:

a ∩ b ⊃ c a ∩⫎b⊃ d

The ⫎ operator has the highest precedence. The operators ∩, ∪, and ≡ all
have higher precedence than ⊃ and ⊂. So, the second example above is
equivalent to

(a ∩(⫎ b)) ⊃ d

Variables can appear in propositions but only when introduced by special
symbols called quantifiers. Predicate calculus includes two quantifiers, as
described below, where X is a variable and P is a proposition:

The period between X and P simply separates the variable from the
proposition. For example, consider the following:

∀X. (woman (X) ⊃ human (X))

∃X. (mother (mary, X) ∩ male (X))

The first of these propositions means that for any value of X, if X is a woman,
then X is a human. The second means that there exists a value of X such that
mary is the mother of X and X is a male; in other words, mary has a son. The
scope of the universal and existential quantifiers is the atomic propositions to
which they are attached. This scope can be extended using parentheses, as in
the two compound propositions just described. So, the universal and
existential quantifiers have higher precedence than any of the operators.

16.2.2 Clausal Form
We are discussing predicate calculus because it is the basis for logic
programming languages. As with other languages, logic languages are best in
their simplest form, meaning that redundancy should be minimized.

One problem with predicate calculus as we have described it thus far is that
there are too many different ways of stating propositions that have the same
meaning; that is, there is a great deal of redundancy. This is not such a
problem for logicians, but if predicate calculus is to be used in an automated
(computerized) system, it is a serious problem. To simplify matters, a
standard form for propositions is desirable. Clausal form, which is a
relatively simple form of propositions, is one such standard form. All
propositions can be expressed in clausal form. A proposition in clausal form
has the following general syntax:

B1 ∪ B2 ∪ … ∪ Bn ⊂ A1 ∩ A2 ∩ … ∩ Am

in which the A’s and B’s are terms. The meaning of this clausal form
proposition is as follows: If all of the A’s are true, then at least one B is true.
The primary characteristics of clausal form propositions are the following:

Existential quantifiers are not required; universal quantifiers are implicit in
the use of variables in the atomic propositions; and no operators other than
conjunction and disjunction are required. Also, conjunction and disjunction
need appear only in the order shown in the general clausal form: disjunction
on the left side and conjunction on the right side. All predicate calculus
propositions can be algorithmically converted to clausal form. Nilsson (1971)
gives proof that this can be done, as well as a simple conversion algorithm for
doing it.

The right side of a clausal form proposition is called the antecedent. The left
side is called the consequent because it is the consequence of the truth of the
antecedent. As examples of clausal form propositions, consider the following:

likes (bob, trout) ⊂ likes (bob, fish) ∩ fish (trout)

father (louis, al) ∪ father (louis, violet) ⊂

father (al, bob) ∩ mother (violet, bob) ∩ grandfather (louis, bob)

The English version of the first of these states that if bob likes fish and a trout
is a fish, then bob likes trout. The second states that if al is bob’s father and
violet is bob’s mother and louis is bob’s grandfather, then louis is either al’s
father or violet’s father.

16.3 Predicate Calculus and Proving
Theorems
Predicate calculus provides a method of expressing collections of
propositions. One use of collections of propositions is to determine whether
any interesting or useful facts can be inferred from them. This is exactly
analogous to the work of mathematicians, who strive to discover new
theorems that can be inferred from known axioms and theorems.

The early days of computer science (the 1950s and early 1960s) saw a great
deal of interest in automating the theorem-proving process. One of the most
significant breakthroughs in automatic theorem proving was the discovery of
the resolution principle by Alan Robinson (1965) at Syracuse University.

Resolution is an inference rule that allows inferred propositions to be
computed from given propositions, thus providing a method with potential
application to automatic theorem proving. Resolution was devised to be
applied to propositions in clausal form. The concept of resolution is the
following: Suppose there are two propositions with the forms

P1 ⊂ P2 Q1 ⊂ Q2

Their meaning is that P2 implies P1 and Q2 implies Q1. Furthermore,
suppose that P1 is identical to Q2, so that we could rename P1 and Q2 as T.
Then, we could rewrite the two propositions as

T ⊂ P2 Q1 ⊂ T

Now, because P2 implies T and T implies Q1, it is logically obvious that P2
implies Q1, which we could write as

Q1 ⊂ P2

The process of inferring this proposition from the original two propositions is
resolution.

As another example, consider the two propositions:

older (joanne, jake) ⊂ mother (joanne, jake)

wiser (joanne, jake) ⊂ older (joanne, jake)

From these propositions, the following proposition can be constructed using
resolution:

wiser(joanne, jake) ⊂ mother(joanne, jake)

The mechanics of this resolution construction are simple: The terms of the
left sides of the two clausal propositions are OR’d together to make the left
side of the new proposition. Then the right sides of the two clausal
propositions are AND’d together to get the right side of the new proposition.
Next, any term that appears on both sides of the new proposition is removed
from both sides. The process is exactly the same when the propositions have
multiple terms on either or both sides. The left side of the new inferred
proposition initially contains all of the terms of the left sides of the two given
propositions. The new right side is similarly constructed. Then the term that
appears on both sides of the new proposition is removed. For example, if we
have

father(bob, jake) ∪ mother(bob, jake) ⊂ parent(bob, jake)

grandfather(bob, fred) ⊂ father(bob, jake) ∩ father(jake, fred)

resolution says that

mother(bob, jake) ∪ grandfather(bob, fred) ⊂

parent(bob, jake) ∩ father(jake, fred)

which has all but one of the atomic propositions of both of the original
propositions. The one atomic proposition that allowed the operation father
(bob, jake) in the left side of the first and in the right side of the second is left
out. In English, we would say

Resolution is actually more complex than these simple examples illustrate. In
particular, the presence of variables in propositions requires resolution to find
values for those variables that allow the matching process to succeed. This
process of determining useful values for variables is called unification. The
temporary assigning of values to variables to allow unification is called
instantiation.

It is common for the resolution process to instantiate a variable with a value,
fail to complete the required matching, and then be required to backtrack and
instantiate the variable with a different value. We will discuss unification and
backtracking more extensively in the context of Prolog.

A critically important property of resolution is its ability to detect any
inconsistency in a given set of propositions. This is based on the formal
property of resolution called refutation complete. What this means is that
given a set of inconsistent propositions, resolution can prove them to be
inconsistent. This allows resolution to be used to prove theorems, which can
be done as follows: We can envision a theorem proof in terms of predicate
calculus as a given set of pertinent propositions, with the negation of the
theorem itself stated as a new proposition. The theorem is negated so that
resolution can be used to prove the theorem by finding an inconsistency. This
is proof by contradiction, a frequently used approach to proving theorems in
mathematics. Typically, the original propositions are called the hypotheses,
and the negation of the theorem is called the goal.

Theoretically, this process is valid and useful. The time required for
resolution, however, can be a problem. Although resolution is a finite process
when the set of propositions is finite, the time required to find an
inconsistency in a large database of propositions may be huge.

Theorem proving is the basis for logic programming. Much of what is

computed can be couched in the form of a list of given facts and relationships
as hypotheses, and a goal to be inferred from the hypotheses, using
resolution.

Resolution on a hypotheses and a goal that are general propositions, even if
they are in clausal form, is often not practical. Although it may be possible to
prove a theorem using clausal form propositions, it may not happen in a
reasonable amount of time. One way to simplify the resolution process is to
restrict the form of the propositions. One useful restriction is to require the
propositions to be Horn clauses. Horn clauses only can be in one of two
forms: They have either a single atomic proposition on the left side or an
empty left side.1 The left side of a clausal form proposition is sometimes
called the head, and Horn clauses with left sides are called headed Horn
clauses. Headed Horn clauses are used to state relationships, such as

1. Horn clauses are named after Alfred Horn (1951), who studied clauses in
this form.

likes(bob, trout) ⊂ likes(bob, fish) ∩ fish(trout)

Horn clauses with empty left sides, which are often used to state facts, are
called headless Horn clauses. For example,

father(bob, jake)

Most, but not all, propositions can be stated as Horn clauses. The restriction
to Horn clauses makes resolution a practical process for proving theorems.

16.4 An Overview of Logic
Programming
Languages used for logic programming are called declarative languages,
because programs written in them consist of declarations rather than
assignments and control flow statements. These declarations are actually
statements, or propositions, in symbolic logic.

One of the essential characteristics of logic programming languages is their
semantics, which is called declarative semantics. The basic concept of this
semantics is that there is a simple way to determine the meaning of each
statement, and it does not depend on how the statement might be used to
solve a problem. Declarative semantics is considerably simpler than the
semantics of the imperative languages. For example, the meaning of a given
proposition in a logic programming language can be concisely determined
from the statement itself. In an imperative language, the semantics of a
simple assignment statement requires examination of local declarations,
knowledge of the scoping rules of the language, and possibly even
examination of programs in other files just to determine the types of the
variables in the assignment statement. Then, assuming the expression of the
assignment contains variables, the execution of the program prior to the
assignment statement must be traced to determine the values of those
variables. The resulting action of the statement, then, depends on its run-time
context. Comparing this semantics with that of a proposition in a logic
language, with no need to consider textual context or execution sequences, it
is clear that declarative semantics is far simpler than the semantics of
imperative languages. Thus, declarative semantics is often stated as one of
the advantages that declarative languages have over imperative languages
(Hogger, 1984, pp. 240–241).

Programming in both imperative and functional languages is primarily
procedural, which means that the programmer knows what is to be
accomplished by a program and instructs the computer on exactly how the
computation is to be done. In other words, the computer is treated as a simple

device that obeys orders. Everything that is computed must have every detail
of that computation spelled out. Some believe that this is the essence of the
difficulty of programming using imperative and functional languages.

Programming in a logic programming language is nonprocedural. Programs
in such languages do not state exactly how a result is to be computed but
rather describe the form of the result. The difference is that we assume the
computer system can somehow determine how the result is to be computed.
What is needed to provide this capability for logic programming languages is
a concise means of supplying the computer with both the relevant
information and a method of inference for computing desired results.
Predicate calculus supplies the basic form of communication to the computer,
and resolution provides the inference technique.

Sorting is commonly used to illustrate the difference between procedural and
nonprocedural systems. In a language like Java, sorting is done by explaining
in a Java program all of the details of some sorting algorithm to a computer
that has a Java compiler. The computer, after translating the Java program
into machine code or some interpretive intermediate code, follows the
instructions and produces the sorted list.

In a nonprocedural language, it is necessary only to describe the
characteristics of the sorted list: It is some permutation of the given list such
that for each pair of adjacent elements, a given relationship holds between the
two elements. To state this formally, suppose the list to be sorted is in an
array named list that has a subscript range 1 . . . n. The concept of sorting the
elements of the given list, named old_list, and placing them in a separate
array, named new_list, can then be expressed as follows:

sort(old_list, new_list) ⊂ permute(old_list, new_list) ∩ sorted(new_list)

sorted (list) ⊂∀j such that 11≤j<n, list(j) ≤list(j+1)

where permute is a predicate that returns true if its second parameter array is
a permutation of its first parameter array.

From this description, the nonprocedural language system could produce the
sorted list. That makes nonprocedural programming sound like the mere

production of concise software requirements specifications, which is a fair
assessment. Unfortunately, however, it is not that simple. Logic programs
that use only resolution face serious problems of execution efficiency. In our
example of sorting, if the list is long, the number of permutations is huge, and
they must be generated and tested, one by one, until the one that is in order is
found—a very lengthy process. Of course, one must consider the possibility
that the best form of a logic language may not yet have been determined, and
good methods of creating programs in logic programming languages for large
problems have not yet been developed.

16.5 The Origins of Prolog
As was stated in Chapter 2, Alain Colmerauer and Phillippe Roussel at the
University of Aix-Marseille, with some assistance from Robert Kowalski at
the University of Edinburgh, developed the fundamental design of Prolog.
Colmerauer and Roussel were interested in natural-language processing;
Kowalski was interested in automated theorem proving. The collaboration
between the University of Aix-Marseille and the University of Edinburgh
continued until the mid-1970s. Since then, research on the development and
use of the language has progressed independently at those two locations,
resulting in, among other things, two syntactically different dialects of
Prolog.

The development of Prolog and other research efforts in logic programming
received limited attention outside of Edinburgh and Marseille until the
announcement in 1981 that the Japanese government was launching a large
research project called the Fifth Generation Computing Systems (FGCS;
Fuchi, 1981; Moto-oka, 1981). One of the primary objectives of the project
was to develop intelligent machines, and Prolog was chosen as the basis for
this effort. The announcement of FGCS aroused a sudden strong interest in
artificial intelligence and logic programming in researchers and the
governments of the United States and several European countries.

After a decade of effort, the FGCS project was quietly dropped. Despite the
great assumed potential of logic programming and Prolog, little of great
significance had been discovered. This led to the decline in the interest in and
use of Prolog, although it still has its proponents.

16.6 The Basic Elements of Prolog
There are now a number of different dialects of Prolog. These can be grouped
into several categories: those that grew from the Marseille group, those that
came from the Edinburgh group, and some dialects that have been developed
for microcomputers, such as micro-Prolog, which is described by Clark and
McCabe (1984). The syntactic forms of these are somewhat different. Rather
than attempt to describe the syntax of several dialects of Prolog or some
hybrid of them, we have chosen one particular, widely available dialect,
which is the one developed at Edinburgh. This form of the language is
sometimes called Edinburgh syntax. Its first implementation was on a DEC
System-10 (Warren et al., 1979). Prolog implementations are available for
virtually all popular computer platforms, for example, from the Free Software
Organization (http://www.gnu.org).

16.6.1 Terms
As with programs in other languages, Prolog programs consist of collections
of statements. There are only a few kinds of statements in Prolog, but they
can be complex. All Prolog statements, as well as Prolog data, are
constructed from terms.

A Prolog term is a constant, a variable, or a structure. A constant is either an
atom or an integer. Atoms are the symbolic values of Prolog and are similar
to their counterparts in LISP. In particular, an atom is either a string of letters,
digits, and underscores that begins with a lowercase letter or a string of any
printable ASCII characters delimited by apostrophes.

A variable is any string of letters, digits, and underscores that begins with an
uppercase letter or an underscore (_). Variables are not bound to types by
declarations. The binding of a value, and thus a type, to a variable is called an
instantiation. Instantiation occurs only in the resolution process. A variable
that has not been assigned a value is called uninstantiated. Instantiations last

only as long as it takes to satisfy one complete goal, which involves the proof
or disproof of one proposition. Prolog variables are only distant relatives, in
terms of both semantics and use, to the variables in the imperative languages.

The last kind of term is called a structure. Structures represent the atomic
propositions of predicate calculus, and their general form is the same:

functor(parameter list)

The functor is any atom and is used to identify the structure. The parameter
list can be any list of atoms, variables, or other structures. As discussed at
length in the following subsection, structures are the means of specifying
facts in Prolog. They can also be thought of as objects, in which case they
allow facts to be stated in terms of several related atoms. In this sense,
structures are relations, for they state relationships among terms. A structure
is also a predicate when its context specifies it to be a query (question).

16.6.2 Fact Statements
Our discussion of Prolog statements begins with those statements used to
construct the hypotheses, or database of assumed information—the
statements from which new information can be inferred.

Prolog has two basic statement forms; these correspond to the headless and
headed Horn clauses of predicate calculus. The simplest form of headless
Horn clause in Prolog is a single structure, which is interpreted as an
unconditional assertion, or fact. Logically, facts are simply propositions that
are assumed to be true.

The following examples illustrate the kinds of facts one can have in a Prolog
program. Notice that every Prolog statement is terminated by a period.

female(shelley).

male(bill).

female(mary).

male(jake).

father(bill, jake).

father(bill, shelley).

mother(mary, jake).

mother(mary, shelley).

These simple structures state certain facts about jake, shelley, bill, and
mary. For example, the first states that shelley is a female. The last four
connect their two parameters with a relationship that is named in the functor
atom; for example, the fifth proposition might be interpreted to mean that
bill is the father of jake. Note that these Prolog propositions, like those of
predicate calculus, have no intrinsic semantics. They mean whatever the
programmer wants them to mean. For example, the proposition

father(bill, jake).

could mean bill and jake have the same father or that jake is the father
of bill. The most common and straightforward meaning, however, might be
that bill is the father of jake.

16.6.3 Rule Statements
The other basic form of Prolog statement for constructing the database
corresponds to a headed Horn clause. This form can be related to a known
theorem in mathematics from which a conclusion can be drawn if the set of
given conditions is satisfied. The right side is the antecedent, or if part, and
the left side is the consequent, or then part. If the antecedent of a Prolog
statement is true, then the consequent of the statement must also be true.
Because they are Horn clauses, the consequent of a Prolog statement is a
single term, while the antecedent can be either a single term or a conjunction.

Conjunctions contain multiple terms that are separated by logical AND
operations. In Prolog, the AND operation is implied. The structures that
specify atomic propositions in a conjunction are separated by commas, so one
could consider the commas to be AND operators. As an example of a
conjunction, consider the following:

female(shelley), child(shelley).

The general form of the Prolog headed Horn clause statement is

consequence :- antecedent_expression.

It is read as follows: “consequence can be concluded if the antecedent
expression is true or can be made to be true by some instantiation of its
variables.” For example,

ancestor(mary, shelley) :- mother(mary, shelley).

states that if mary is the mother of shelley, then mary is an ancestor of
shelley. Headed Horn clauses are called rules, because they state rules of
implication between propositions.

As with clausal form propositions in predicate calculus, Prolog statements
can use variables to generalize their meaning. Recall that variables in clausal
form provide a kind of implied universal quantifier. The following
demonstrates the use of variables in Prolog statements:

parent(X, Y) :- mother(X, Y).

parent(X, Y) :- father(X, Y).

grandparent(X, Z) :- parent(X, Y) , parent(Y, Z).

These statements give rules of implication among some variables, or
universal objects. In this case, the universal objects are X, Y, and Z. The first
rule states that if there are instantiations of X and Y such that mother(X, Y) is
true, then for those same instantiations of X and Y, parent(X, Y) is true.

The = operator, which is an infix operator, succeeds if its two term operands
are the same. For example, X = Y. The not operator, which is a unary
operator, reverses its operand, in the sense that it succeeds if its operand fails.
For example, not(X = Y) succeeds if X is not equal to Y.

16.6.4 Goal Statements
So far, we have described the Prolog statements for logical propositions,
which are used to describe both known facts and rules that describe logical
relationships among facts. These statements are the basis for the theorem-
proving model. The theorem is in the form of a proposition that we want the
system to either prove or disprove. In Prolog, these propositions are called

goals, or queries. The syntactic form of Prolog goal statements is identical to
that of headless Horn clauses. For example, we could have

man(fred).

to which the system will respond either yes or no. The answer yes means that
the system has proved the goal was true under the given database of facts and
relationships. The answer no means that either the goal was determined to be
false or the system was simply unable to prove it.

Conjunctive propositions and propositions with variables are also legal goals.
When variables are present, the system not only asserts the validity of the
goal but also identifies the instantiations of the variables that make the goal
true. For example,

father(X, mike).

can be asked. The system will then attempt, through unification, to find an
instantiation of X that results in a true value for the goal.

Because goal statements and some nongoal statements have the same form
(headless Horn clauses), a Prolog implementation must have some means of
distinguishing between the two. Interactive Prolog implementations do this
by simply having two modes, indicated by different interactive prompts: one
for entering fact and rule statements and one for entering goals. The user can
change the mode at any time.

16.6.5 The Inferencing Process of
Prolog
This section examines Prolog resolution. Efficient use of Prolog requires that
the programmer know precisely what the Prolog system does with his or her
program.

When a goal is a compound proposition, each of the facts (structures) is
called a subgoal. To prove that a goal is true, the inferencing process must
find a chain of inference rules and/or facts in the database that connect the
goal to one or more facts in the database. For example, if Q is the goal, then
either Q must be found as a fact in the database or the inferencing process
must find a fact P1 and a sequence of propositions P2, P3…, Pn such that

P2 :- P1

P3 :- P2

. . .

Q :- Pn

Of course, the process can be and often is complicated by rules with
compound right sides and rules with variables. The process of finding the Ps,
when they exist, is basically a comparison, or matching, of terms with each
other.

Because the process of proving a subgoal is done through a proposition--
matching process, it is sometimes called matching. In some cases, proving a
subgoal is called satisfying that subgoal.

Consider the following query:

man(bob).

This goal statement is the simplest kind. It is relatively easy for resolution to
determine whether it is true or false: The pattern of this goal is compared with
the facts and rules in the database. If the database includes the fact

man(bob).

the proof is trivial. If, however, the database contains the following fact and
inference rule,

father(bob).

man(X) :- father(X).

Prolog would be required to find these two statements and use them to infer
the truth of the goal. This would necessitate unification to instantiate X
temporarily to bob.

Now consider the goal

man(X).

In this case, Prolog must match the goal against the propositions in the
database. The first proposition that it finds that has the form of the goal, with
any object as its parameter, will cause X to be instantiated with that object’s
value. X is then displayed as the result. If there is no proposition having the
form of the goal, the system indicates, by saying no, that the goal cannot be
satisfied.

There are two opposite approaches to attempting to match a given goal to a
fact in the database. The system can begin with the facts and rules of the
database and attempt to find a sequence of matches that lead to the goal. This
approach is called bottom-up resolution, or forward chaining. The
alternative is to begin with the goal and attempt to find a sequence of
matching propositions that lead to some set of original facts in the database.
This approach is called top-down resolution, or backward chaining. In
general, backward chaining works well when there is a reasonably small set
of candidate answers. The forward chaining approach is better when the
number of possibly correct answers is large; in this situation, backward
chaining would require a very large number of matches to get to an answer.
Prolog implementations use backward chaining for resolution, presumably

because its designers believed backward chaining was more suitable for a
larger class of problems than forward chaining.

The following example illustrates the difference between forward and
backward chaining. Consider the query:

man(bob).

Assume the database contains

father(bob).

man(X) :- father(X).

Forward chaining would search for and find the first proposition. The goal is
then inferred by matching the first proposition with the right side of the
second rule (father(X)) through instantiation of X to bob and then matching
the left side of the second proposition to the goal. Backward chaining would
first match the goal with the left side of the second proposition (man(X))
through the instantiation of X to bob. As its last step, it would match the right
side of the second proposition (now father(bob)) with the first proposition.

The next design question arises whenever the goal has more than one
structure, as in our example. The question then is whether the solution search
is done depth first or breadth first. A depth-first search finds a complete
sequence of propositions—a proof—for the first subgoal before working on
the others. A breadth-first search works on all subgoals of a given goal in
parallel. Prolog’s designers chose the depth-first approach primarily because
it can be done with fewer computer resources. The breadth-first approach is a
parallel search that can require a large amount of memory.

The last feature of Prolog’s resolution mechanism that must be discussed is
backtracking. When a goal with multiple subgoals is being processed and the
system fails to show the truth of one of the subgoals, the system abandons the
subgoal it cannot prove. It then reconsiders the previous subgoal, if there is
one, and attempts to find an alternative solution to it. This backing up in the
goal to the reconsideration of a previously proven subgoal is called
backtracking. A new solution is found by beginning the search where the
previous search for that subgoal stopped. Multiple solutions to a subgoal
result from different instantiations of its variables. Backtracking can require a

great deal of time and space because it may have to find all possible proofs to
every subgoal. These subgoal proofs may not be organized to minimize the
time required to find the one that will result in the final complete proof,
which exacerbates the problem.

To solidify your understanding of backtracking, consider the following
example. Assume that there is a set of facts and rules in the database and that
Prolog has been presented with the following compound goal:

male(X), parent(X, shelley).

This goal asks whether there is an instantiation of X such that X is a male and
X is a parent of shelley. As its first step, Prolog finds the first fact in the
database with male as its functor. It then instantiates X to the parameter of the
found fact, say mike. Then, it attempts to prove that parent(mike, shelley)
is true. If it fails, it backtracks to the first subgoal, male(X), and attempts to
resatisfy it with some alternative instantiation of X. The resolution process
may have to find every male in the database before it finds the one that is a
parent of shelley. It definitely must find all males to prove that the goal
cannot be satisfied. Note that our example goal might be processed more
efficiently if the order of the two subgoals were reversed. Then, only after
resolution had found a parent of shelley would it try to match that person
with the male subgoal. This is more efficient if shelley has fewer parents
than there are males in the database, which seems like a reasonable
assumption. Section 16.7.1 discusses a method of limiting the backtracking
done by a Prolog system.

Database searches in Prolog always proceed in the direction of first to last.

The following two subsections describe Prolog examples that further
illustrate the resolution process.

16.6.6 Simple Arithmetic
Prolog supports integer variables and integer arithmetic. Originally, the
arithmetic operators were functors, so that the sum of 7 and the variable X
was formed with

+(7, X)

Prolog now allows a more abbreviated syntax for arithmetic with the is
operator. This operator takes an arithmetic expression as its right operand and
a variable as its left operand. All variables in the expression must already be
instantiated, but the left-side variable cannot be previously instantiated. For
example, in

A is B / 17 + C.

if B and C are instantiated but A is not, then this clause will cause A to be
instantiated with the value of the expression. When this happens, the clause is
satisfied. If either B or C is not instantiated or A is instantiated, the clause is
not satisfied and no instantiation of A can take place. The semantics of an is
proposition is considerably different from that of an assignment statement in
an imperative language. This difference can lead to an interesting scenario.
Because the is operator makes the clause in which it appears look like an
assignment statement, a beginning Prolog programmer may be tempted to
write a statement such as

Sum is Sum + Number.

which is never useful, or even legal, in Prolog. If Sum is not instantiated, the
reference to it in the right side is undefined and the clause fails. If Sum is
already instantiated, the clause fails, because the left operand cannot have a
current instantiation when is is evaluated. In either case, the instantiation of
Sum to the new value will not take place. (If the value of Sum + Number is
required, it can be bound to some new name.)

Prolog does not have assignment statements in the same sense as imperative
languages. They are simply not needed in most of the programming for which
Prolog was designed. The usefulness of assignment statements in imperative
languages often depends on the capability of the programmer to control the
execution control flow of the code in which the assignment statement is
embedded. Because this type of control is not always possible in Prolog, such
statements are far less useful.

As a simple example of the use of numeric computation in Prolog, consider
the following problem: Suppose we know the average speeds of several

automobiles on a particular racetrack and the amount of time they are on the
track. This basic information can be coded as facts, and the relationship
between speed, time, and distance can be written as a rule, as in the
following:

speed(ford, 100).

speed(chevy, 105).

speed(dodge, 95).

speed(volvo, 80).

time(ford, 20).

time(chevy, 21).

time(dodge, 24).

time(volvo, 24).

distance(X, Y) :- speed(X, Speed),

 time(X, Time),

 Y is Speed * Time.

Now, queries can request the distance traveled by a particular car. For
example, the query

distance(chevy, Chevy_Distance).

instantiates Chevy_Distance with the value 2205. The first two clauses in the
right side of the distance computation statement instantiate the variables
Speed and Time with the corresponding values of the given automobile
functor. After satisfying the goal, Prolog also displays the name
Chevy_Distance and its value.

At this point it is instructive to take an operational look at how a Prolog
system produces results. Prolog has a built-in structure named trace that
displays the instantiations of values to variables at each step during the
attempt to satisfy a given goal. trace is used to understand and debug Prolog
programs. To understand trace, it is best to introduce a different model of
the execution of Prolog programs, called the tracing model.

The tracing model describes Prolog execution in terms of four events: (1)
call, which occurs at the beginning of an attempt to satisfy a goal, (2) exit,
which occurs when a goal has been satisfied, (3) redo, which occurs when
backtrack causes an attempt to resatisfy a goal, and (4) fail, which occurs
when a goal fails. Call and exit can be related directly to the execution model

of a subprogram in an imperative language if processes like distance are
thought of as subprograms. The other two events are unique to logic
programming systems. In the following trace example, a trace of the
computation of the value for Chevy_Distance, the goal requires no redo or
fail events:

trace.

adistance(chevy, Chevy_Distance).

(1) 1 Call: distance(chevy, _0)?

(2) 2 Call: speed(chevy, _5)?

(2) 2 Exit: speed(chevy, 105)

(3) 2 Call: time(chevy, _6)?

(3) 2 Exit: time(chevy, 21)

(4) 2 Call: _0 is 105*21?

(4) 2 Exit: 2205 is 105*21

(1) 1 Exit: distance(chevy, 2205)

Chevy_Distance = 2205

Symbols in the trace that begin with the underscore character (_) are internal
variables used to store instantiated values. The first column of the trace
indicates the subgoal whose match is currently being attempted. For example,
in the example trace, the first line with the indication (3) is an attempt to
instantiate the temporary variable _6 with a time value for chevy, where time
is the second term in the right side of the statement that describes the
computation of distance. The second column indicates the call depth of the
matching process. The third column indicates the current action.

To illustrate backtracking, consider the following example database and
traced compound goal:

likes(jake, chocolate).

likes(jake, apricots).

likes(darcie, licorice).

likes(darcie, apricots).

trace.

likes(jake, X), likes(darcie, X).

(1) 1 Call: likes(jake, _0)?

(1) 1 Exit: likes(jake, chocolate)

(2) 1 Call: likes(darcie, chocolate)?

(2) 1 Fail: likes(darcie, chocolate)

(1) 1 Redo: likes(jake, _0)?

(1) 1 Exit: likes(jake, apricots)

(3) 1 Call: likes(darcie, apricots)?

(3) 1 Exit: likes(darcie, apricots)

X = apricots

One can think about Prolog computations graphically as follows: Consider
each goal as a box with four ports—call, fail, exit, and redo. Control enters a
goal in the forward direction through its call port. Control can also enter a
goal from the reverse direction through its redo port. Control can also leave a
goal in two ways: If the goal succeeded, control leaves through the exit port;
if the goal failed, control leaves through the fail port. A model of the example
is shown in Figure 16.1. In this example, control flows through each subgoal
twice. The second subgoal fails the first time, which forces a return through
redo to the first subgoal.

Figure 16.1 Control flow model
for the goal likes (jake, X),
likes (darcie, X)

Figure 16.1 Full Alternative Text

16.6.7 List Structures
So far, the only Prolog data structure we have discussed is the atomic
proposition, which looks more like a function call than a data structure.
Atomic propositions, which are also called structures, are actually a form of
records. The other basic data structure supported is the list. Lists are
sequences of any number of elements, where the elements can be atoms,
atomic propositions, or any other terms, including other lists.

Prolog uses the syntax of ML and Haskell to specify lists. The list elements
are separated by commas, and the entire list is delimited by square brackets,
as in

[apple, prune, grape, kumquat]

The notation [] is used to denote the empty list. Instead of having explicit
functions for constructing and dismantling lists, Prolog simply uses a special
notation. [X | Y] denotes a list with head X and tail Y, where head and tail
correspond to CAR and CDR in LISP. This is similar to the notation used in ML
and Haskell.

A list can be created with a simple structure, as in

new_list([apple, prune, grape, kumquat]).

which states that the constant list [apple, prune, grape, kumquat] is a
new element of the relation named new_list (a name we just made up). This
statement does not bind the list to a variable named new_list; rather, it does
the kind of thing that the proposition

male(jake)

does. That is, it states that [apple, prune, grape, kumquat] is a new
element of new_list. Therefore, we could have a second proposition with a
list argument, such as

new_list([apricot, peach, pear])

In query mode, one of the elements of new_list can be dismantled into head
and tail with

new_list([New_List_Head | New_List_Tail]).

If new_list has been set to have the two elements as shown, this statement
instantiates New_List_Head with the head of the first list element (in this case,
apple) and New_List_Tail with the tail of the list (or [prune, grape,
kumquat]). If this were part of a compound goal and backtracking forced a
new evaluation of it, New_List_Head and New_List_Tail would be
reinstantiated to apricot and [peach, pear], respectively, because
[apricot, peach, pear] is the next element of new_list.

The | operator used to dismantle lists can also be used to create lists from
given instantiated head and tail components, as in

[Element_1 | List_2]

If Element_1 has been instantiated with pickle and List_2 has been
instantiated with [peanut, prune, popcorn], the sample notation will
create, for this one reference, the list [pickle, peanut, prune, popcorn].

As stated previously, the list notation that includes the | symbol is universal:
It can specify either a list construction or a list dismantling. Note further that
the following are equivalent:

[apricot, peach, pear | []]

[apricot, peach | [pear]]

[apricot | [peach, pear]]

With lists, certain basic operations are often required, such as those found in
LISP, ML, and Haskell. As an example of such operations in Prolog, we
examine a definition of append, which is related to such a function in LISP.
In this example, the differences and similarities between functional and
declarative languages can be seen. We need not specify how Prolog is to
construct a new list from the given lists; rather, we need specify only the
characteristics of the new list in terms of the given lists.

In appearance, the Prolog definition of append is very similar to the ML

version that appears in Chapter 15, and a kind of recursion in resolution is
used in a similar way to produce the new list. In the case of Prolog, the
recursion is caused and controlled by the resolution process. As with ML and
Haskell, a pattern-matching process is used to choose, based on the actual
parameter, between two different definitions of the append process.

The first two parameters to the append operation in the following code are the
two lists to be appended, and the third parameter is the resulting list:

append([], List, List).

append([Head | List_1], List_2, [Head | List_3]) :-

 append(List_1, List_2, List_3).

The first proposition specifies that when the empty list is appended to any
other list, that other list is the result. This statement corresponds to the -
recursion-terminating step of the ML append function. Note that the
terminating proposition is placed before the recursion proposition. This is
done because we know that Prolog will match the two propositions in order,
starting with the first (because of its use of the depth-first order).

The second proposition specifies several characteristics of the new list. It
corresponds to the recursion step in the ML function. The left-side predicate
states that the first element of the new list is the same as the first element of
the first given list, because they are both named Head. Whenever Head is
instantiated to a value, all occurrences of Head in the goal are, in effect,
simultaneously instantiated to that value. The right side of the second
statement specifies that the tail of the first given list (List_1) has the second
given list (List_2) appended to it to form the tail (List_3) of the resulting
list.

One way to read the second statement of append is as follows: Appending the
list [Head | List_1] to any list List_2 produces the list [Head | List_3],
but only if the list List_3 is formed by appending List_1 to List_2. In LISP,
this would be

(CONS (CAR FIRST) (APPEND (CDR FIRST) SECOND))

In both the Prolog and LISP versions, the resulting list is not constructed until
the recursion produces the terminating condition; in this case, the first list

must become empty. Then, the resulting list is built using the append function
itself; the elements taken from the first list are added, in reverse order, to the
second list. The reversing is done by the unraveling of the recursion.

One fundamental difference between Prolog’s append and those of LISP and
ML is that Prolog’s append is a predicate—it does not return a list, it returns
yes or no. The new list is the value of its third parameter.

To illustrate how the append process progresses, consider the following
traced example:

trace.

append([bob, jo], [jake, darcie], Family).

(1) 1 Call: append([bob, jo], [jake, darcie], _10)?

(2) 2 Call: append([jo], [jake, darcie], _18)?

(3) 3 Call: append([], [jake, darcie], _25)?

(3) 3 Exit: append([], [jake, darcie], [jake, darcie])

(2) 2 Exit: append([jo], [jake, darcie], [jo, jake,

 darcie])

(1) 1 Exit: append([bob, jo], [jake, darcie],

 [bob, jo, jake, darcie])

Family = [bob, jo, jake, darcie]

yes

The first two calls, which represent subgoals, have List_1 nonempty, so they
create the recursive calls from the right side of the second statement. The left
side of the second statement effectively specifies the arguments for the
recursive calls, or goals, thus dismantling the first list one element per step.
When the first list becomes empty, in a call, or subgoal, the current instance
of the right side of the second statement succeeds by matching the first
statement. The effect of this is to return as the third parameter the value of the
empty list appended to the second original parameter list. On successive
exits, which represent successful matches, the elements that were removed
from the first list are appended to the resulting list, Family. When the exit
from the first goal is accomplished, the process is complete, and the resulting
list is displayed.

Another difference between Prolog’s append and those of LISP and ML is
that Prolog’s append is more flexible than that of those languages. For
example, in Prolog we can use append to determine what two lists can be

appended to get [a, b, c] with

append(X, Y, [a, b, c]).

This results in the following:

X = []

Y = [a, b, c]

If we type a semicolon at this output we get the alternative result:

X = [a]

Y = [b, c]

Continuing, we get the following:

X = [a, b]

Y = [c];

X = [a, b, c]

Y = []

The append predicate can also be used to create other list operations, such as
the following, whose effect we invite the reader to determine. Note that
list_op_2 is meant to be used by providing a list as its first parameter and a
variable as its second, and the result of list_op_2 is the value to which the
second parameter is instantiated.

list_op_2([], []).

list_op_2([Head | Tail], List) :-

list_op_2(Tail, Result), append(Result, [Head], List).

As you may have been able to determine, list_op_2 causes the Prolog
system to instantiate its second parameter with a list that has the elements of
the list of the first parameter, but in reverse order. For example, ([apple,
orange, grape], Q) instantiates Q with the list [grape, orange, apple].

Once again, although the LISP and Prolog languages are fundamentally
different, similar operations can use similar approaches. In the case of the
reverse operation, both the Prolog’s list_op_2 and LISP’s reverse function
include the recursion-terminating condition, along with the basic process of
appending the reversal of the CDR or tail of the list to the CAR or head of the

list to create the result list.

The following is a trace of this process, now named reverse:

trace.

reverse([a, b, c], Q).

(1) 1 Call: reverse([a, b, c], _6)?

(2) 2 Call: reverse([b, c], _65636)?

(3) 3 Call: reverse([c], _65646)?

(4) 4 Call: reverse([], _65656)?

(4) 4 Exit: reverse([], [])

(5) 4 Call: append([], [c], _65646)?

(5) 4 Exit: append([], [c], [c])

(3) 3 Exit: reverse([c], [c])

(6) 3 Call: append([c], [b], _65636)?

(7) 4 Call: append([], [b], _25)?

(7) 4 Exit: append([], [b], [b])

(6) 3 Exit: append([c], [b], [c, b])

(2) 2 Exit: reverse([b, c], [c, b])

(8) 2 Call: append([c, b], [a], _6)?

(9) 3 Call: append([b], [a], _32)?

(10) 4 Call: append([], [a], _39)?

(10) 4 Exit: append([], [a], [a])

(9) 3 Exit: append([b], [a], [b, a])

(8) 2 Exit: append([c, b], [a], [c, b, a])

(1) 1 Exit: reverse([a, b, c], [c, b, a])

Q = [c, b, a]

Suppose we need to be able to determine whether a given symbol is in a
given list. A straightforward Prolog description of this is

member(Element, [Element | _]).

member(Element, [_ | List]) :- member(Element, List).

The underscore indicates an “anonymous” variable; it is used to mean that we
do not care what instantiation it might get from unification. The first -
statement in the previous example succeeds if Element is the head of the list,
either initially or after several recursions through the second statement. The
second statement succeeds if Element is in the tail of the list. Consider the -
following traced examples:

trace.

member(a, [b, c, d]).

(1) 1 Call: member(a, [b, c, d])?

(2) 2 Call: member(a, [c, d])?

(3) 3 Call: member(a, [d])?

(4) 4 Call: member(a, [])?

(4) 4 Fail: member(a, [])

(3) 3 Fail: member(a, [d])

(2) 2 Fail: member(a, [c, d])

(1) 1 Fail: member(a, [b, c, d])

no

member(a, [b, a, c]).

(1) 1 Call: member(a, [b, a, c])?

(2) 2 Call: member(a, [a, c])?

(2) 2 Exit: member(a, [a, c])

(1) 1 Exit: member(a, [b, a, c])

yes

16.7 Deficiencies of Prolog
Although Prolog is a useful tool, it is neither a pure nor a perfect logic
programming language. This section describes some of the problems with
Prolog.

16.7.1 Resolution Order Control
Prolog, for reasons of efficiency, allows the user to control the ordering of -
pattern matching during resolution. In a pure logic programming
environment, the order of attempted matches that take place during resolution
is nondeterministic, and all matches could be attempted concurrently.
However, because Prolog always matches in the same order, starting at the
beginning of the database and at the left end of a given goal, the user can
profoundly affect efficiency by ordering the database statements to optimize a
particular application. For example, if the user knows that certain rules are
much more likely to succeed than the others during a particular “execution,”
then the program can be made more efficient by placing those rules at the
beginning of the database.

In addition to allowing the user to control database and subgoal ordering,
Prolog, in another concession to efficiency, allows some explicit control of
backtracking. This is done with the cut operator, which is specified by an
exclamation point (!). The cut operator is actually a goal, not an operator. As
a goal, it always succeeds immediately, but it cannot be resatisfied through
backtracking. Thus, a side effect of the cut is that subgoals to its left in a
compound goal also cannot be resatisfied through backtracking. For example,
in the goal

a, b, !, c, d.

if both a and b succeed but c fails, the whole goal fails. This goal would be
used if it were known that whenever c fails, it is a waste of time to resatisfy b
or a.

The purpose of the cut then is to allow the user to make programs more
efficient by telling the system when it should not attempt to resatisfy
subgoals that presumably could not result in a complete proof.

As an example of the use of the cut operator, consider the member rules from
Section 16.6.7, which are:

member(Element, [Element | _]).

member(Element, [_ | List]) :- member(Element, List).

If the list argument to member represents a set, then it can be satisfied only
once (sets contain no duplicate elements). Therefore, if member is used as a
subgoal in a multiple subgoal goal statement, there can be a problem. The
problem is that if member succeeds but the next subgoal fails, backtracking
will attempt to resatisfy member by continuing a prior match. But because the
list argument to member has only one copy of the element to begin with,
member cannot possibly succeed again, which eventually causes the whole
goal to fail, in spite of any additional attempts to resatisfy member. For
example, consider the goal:

dem_candidate(X) :- member(X, democrats), tests(X).

This goal determines whether a given person is a democrat and is a good
candidate to run for a particular position. The tests subgoal checks a variety
of characteristics of the given democrat to determine the suitability of the
person for the position. If the set of democrats has no duplicates, then we do
not want to back up to the member subgoal if the tests subgoal fails, because
member will search all of the other democrats but fail, because there are no
duplicates. The second attempt of member subgoal will be a waste of
computation time. The solution to this inefficiency is to add a right side to the
first statement of the member definition, with the cut operator as the sole
element, as in

member(Element, [Element | _]) :- !.

Backtracking will not attempt to resatisfy member but instead will cause the
entire subgoal to fail.

Cut is particularly useful in a programming strategy in Prolog called

generate and test. In programs that use the generate-and-test strategy, the
goal consists of subgoals that generate potential solutions, which are then
checked by later “test” subgoals. Rejected solutions require backtracking to
“generator” subgoals, which generate new potential solutions. As an example
of a generate-and-test program, consider the following, which appears in
Clocksin and Mellish (2013):

divide(N1, N2, Result) :- is_integer(Result),

 Product1 is Result * N2,

 Product2 is (Result + 1) * N2,

 Product1 =< N1, Product2 >

 N1, !.

This program performs integer division, using addition and multiplication.
Because most Prolog systems provide division as an operator, this program
actually is not useful, other than to illustrate a simple generate-and-test
program.

The predicate is_integer succeeds as long as its parameter can be
instantiated to some nonnegative integer. If its argument is not instantiated,
is_integer instantiates it to the value 0. If the argument is instantiated to an
integer, is_integer instantiates it to the next larger integer value.

So, in divide, is_integer is the generator subgoal. It generates elements of
the sequence 0, 1, 2, . . . , one each time it is satisfied. All of the other
subgoals are the testing subgoals—they check to determine whether the value
produced by is_integer is, in fact, the quotient of the first two parameters,
N1 and N2. The purpose of the cut as the last subgoal is simple: It prevents
divide from ever trying to find an alternative solution once it has found the
solution. Although is_integer can generate a huge number of candidates,
only one is the solution, so the cut here prevents useless attempts to produce
secondary solutions.

Use of the cut operator has been compared to the use of the goto in
imperative languages (van Emden, 1980). Although it is sometimes needed, it
is possible to abuse it. Indeed, it is sometimes used to make logic programs
have a control flow that is inspired by imperative programming styles.

The ability to tamper with control flow in a Prolog program is a deficiency,

because it is directly detrimental to one of the important advantages of logic
programming—that programs do not specify how solutions are to be found.
Rather, they simply specify what the solution should look like. This design
makes programs easier to write and easier to read. They are not cluttered with
the details of how the solutions are to be determined and, in particular, the
precise order in which the computations are done to produce the solution. So,
while logic programming requires no control flow directions, Prolog
programs frequently use them, mostly for the sake of efficiency.

16.7.2 The Closed-World
Assumption
The nature of Prolog’s resolution sometimes creates misleading results. The
only truths, as far as Prolog is concerned, are those that can be proved using
its database. It has no knowledge of the world other than its database. When
the system receives a query and the database does not have information to
prove the query absolutely, the query is assumed to be false. Prolog can prove
that a given goal is true, but it cannot prove that a given goal is false. It
simply assumes that, because it cannot prove a goal true, the goal must be
false. In essence, Prolog is a true/fail system, rather than a true/false system.

Actually, the closed-world assumption should not be at all foreign to you—
our judicial system operates the same way. Suspects are innocent until proven
guilty. They need not be proven innocent. If a trial cannot prove a person
guilty, he or she is considered innocent.

The problem of the closed-world assumption is related to the negation
problem, which is discussed in the following subsection.

16.7.3 The Negation Problem
Another problem with Prolog is its difficulty with negation. Consider the
following database of two facts and a relationship:

parent(bill, jake).

parent(bill, shelley).

sibling(X, Y) :- (parent(M, X), parent(M, Y).

Now, suppose we typed the query

sibling(X, Y).

Prolog will respond with

X = jake

Y = jake

Thus, Prolog “thinks” jake is a sibling of himself. This happens because the
system first instantiates M with bill and X with jake to make the first
subgoal, parent(M, X), true. It then starts at the beginning of the database
again to match the second subgoal, parent(M, Y), and arrives at the
instantiations of M with bill and Y with jake. Because the two subgoals are
satisfied independently, with both matchings starting at the database’s
beginning, the shown response appears. To avoid this result, X must be
specified to be a sibling of Y only if they have the same parents and they
are not the same. Unfortunately, stating that they are not equal is not
straightforward in Prolog, as we will discuss. The most exacting method
would require adding a fact for every pair of atoms, stating that they were not
the same. This can, of course, cause the database to become very large, for
there is often far more negative information than positive information. For
example, most people have 364 more unbirthdays than they have birthdays.

A simple alternative solution is to state in the goal that X must not be the
same as Y, as in

sibling(X, Y) :- parent(M, X), parent(M, Y), not(X = Y).

In other situations, the solution is not so simple.

The Prolog not operator is satisfied in this case if resolution cannot satisfy
the subgoal X = Y. Therefore, if the not succeeds, it does not necessarily
mean that X is not equal to Y; rather, it means that resolution cannot prove
from the database that X is the same as Y. Thus, the Prolog not operator is not
equivalent to a logical NOT operator, in which NOT means that its operand is

probably true. This nonequivalency can lead to a problem if we happen to
have a goal of the form

not(not(some_goal)).

which would be equivalent to

some_goal.

if Prolog’s not operator were a true logical NOT operator. In some cases,
however, they are not the same. For example, consider again the member
rules:

member(Element, [Element | _]) :- !.

member(Element, [_ | List]) :- member(Element, List).

To discover one of the elements of a given list, we could use the goal

member(X, [mary, fred, barb]).

which would cause X to be instantiated with mary, which would then be
printed. But if we used

not(not(member(X, [mary, fred, barb]))).

the following sequence of events would take place: First, the inner goal
would succeed, instantiating X to mary. Then, Prolog would attempt to satisfy
the next goal:

not(member(X, [mary, fred, barb])).

This statement would fail because member succeeded. When this goal failed, X
would be uninstantiated, because Prolog always uninstantiates all variables in
all goals that fail. Next, Prolog would attempt to satisfy the outer not goal,
which would succeed, because its argument had failed. Finally, the result,
which is X, would be printed. But X would not be currently instantiated, so the
system would indicate that. Generally, uninstantiated variables are printed in
the form of a string of digits preceded by an underscore. So, the fact that
Prolog’s not is not equivalent to a logical NOT can be, at the very least,
misleading.

The fundamental reason why logical NOT cannot be an integral part of
Prolog is the form of the Horn clause:

A :- B1 ∩B2 ∩ . . . ∩Bn

If all the B propositions are true, it can be concluded that A is true. But
regardless of the truth or falseness of any or all of the B’s, it cannot be
concluded that A is false. From positive logic, one can conclude only positive
logic. Thus, the use of Horn clause form prevents any negative conclusions.

16.7.4 Intrinsic Limitations
A fundamental goal of logic programming, as stated in Section 16.4, is to
provide nonprocedural programming; that is, a system by which
programmers specify what a program is supposed to do but need not specify
how that is to be accomplished. The example given there for sorting is
rewritten here:

sort(old_list, new_list) ⊂permute(old_list, new_list) ∩sorted(new_list)

sorted(list) ⊂∀j such that 1≤j<n, list(j) ≤list (j+1)

It is straightforward to write this in Prolog. For example, the sorted subgoal
can be expressed as

sorted ([]).

sorted ([x]).

sorted ([x, y | list]) :- x <= y, sorted ([y | list]).

The problem with this sort process is that it has no idea of how to sort, other
than simply to enumerate all permutations of the given list until it happens to
create the one that has the list in sorted order—a very slow process, indeed.

So far, no one has discovered a process by which the description of a sorted
list can be transformed into some efficient algorithm for sorting. Resolution
is capable of many interesting things, but certainly not this. Therefore, a
Prolog program that sorts a list must specify the details of how that sorting

can be done, as is the case in an imperative or functional language.

Do all of these problems mean that logic programming should be abandoned?
Absolutely not! As it is, it is capable of dealing with many useful
applications. Furthermore, it is based on an intriguing concept and is
therefore interesting in and of itself. Finally, there is the possibility that new
inferencing techniques will be developed that will allow a logic programming
language system to efficiently deal with progressively larger classes of
problems.

16.8 Applications of Logic
Programming
In this section, we briefly describe a few of the larger classes of present and
potential applications of logic programming in general and Prolog in
particular.

16.8.1 Relational Database
Management Systems
Relational database management systems (RDBMSs) store data in the form
of tables. Queries on such databases are often stated in Structured Query
Language (SQL). SQL is nonprocedural in the same sense that logic
programming is nonprocedural. The user does not describe how to retrieve
the answer; rather, he or she describes only the characteristics of the answer.
The connection between logic programming and RDBMSs should be
obvious. Simple tables of information can be described by Prolog structures,
and relationships between tables can be conveniently and easily described by
Prolog rules. The retrieval process is inherent in the resolution operation. The
goal statements of Prolog provide the queries for the RDBMS. Logic
programming is thus a natural match to the needs of implementing an
RDBMS.

One of the advantages of using logic programming to implement an RDBMS
is that only a single language is required. In a typical RDBMS, a database
language includes statements for data definitions, data manipulation, and
queries, all of which are embedded in a general-purpose programming
language, such as COBOL. The general-purpose language is used for
processing the data and input and output functions. All of these functions can
be done in a logic programming language.

Another advantage of using logic programming to implement an RDBMS is
that deductive capability is built in. Conventional RDBMSs cannot deduce
anything from a database other than what is explicitly stored in them. They
contain only facts, rather than facts and inference rules. The primary
disadvantage of using logic programming for an RDBMS, compared with a
conventional RDBMS, is that the logic programming implementation is
slower. Logical inferences take longer than ordinary table look-up methods
using imperative programming techniques.

16.8.2 Expert Systems
Expert systems are computer systems designed to emulate human expertise in
some particular domain. They consist of a database of facts, an inferencing
process, some heuristics about the domain, and some friendly human
interface that makes the system appear much like an expert human consultant.
In addition to their initial knowledge base, which is provided by a human
expert, expert systems learn from the process of being used, so their
databases must be capable of growing dynamically. Also, an expert system
should include the capability of interrogating the user to get additional
information when it determines that such information is needed.

One of the central problems for the designer of an expert system is dealing
with the inevitable inconsistencies and incompleteness of the database. Logic
programming appears to be well suited to deal with these problems. For
example, default inference rules can help deal with the problem of
incompleteness.

Prolog can and has been used to construct expert systems. It can easily fulfill
the basic needs of expert systems, using resolution as the basis for query
processing, using its ability to add facts and rules to provide the learning
capability, and using its trace facility to inform the user of the “reasoning”
behind a given result. Missing from Prolog is the automatic ability of the
system to query the user for additional information when it is needed.

One of the most widely known uses of logic programming in expert systems
is the expert system construction system known as APES, which is described

in Sergot (1983) and Hammond (1983). The APES system includes a very
flexible facility for gathering information from the user during expert system
construction. It also includes a second interpreter for producing explanations
to its answers to queries.

APES has been successfully used to produce several expert systems,
including one for the rules of a government social benefits program and one
for the British Nationality Act, which is the definitive source for rules of
British citizenship.

16.8.3 Natural-Language
Processing
Certain kinds of natural-language processing can be done with logic
programming. In particular, natural-language interfaces to computer software
systems, such as intelligent databases and other intelligent knowledge-based
systems, can be conveniently done with logic programming. For describing
language syntax, forms of logic programming have been found to be
equivalent to context-free grammars. Proof procedures in logic programming
systems have been found to be equivalent to certain parsing strategies. In
fact, backward-chaining resolution can be used directly to parse sentences
whose structures are described by context-free grammars. It has also been
discovered that some kinds of semantics of natural languages can be made
clear by modeling the languages with logic programming. In particular,
research in logic-based semantics networks has shown that sets of sentences
in natural languages can be expressed in clausal form (Deliyanni and
Kowalski, 1979). Kowalski (1979) also discusses logic-based semantic
networks.

SUMMARY
Symbolic logic provides the basis for logic programming and logic
programming languages. The approach of logic programming is to use as a
database a collection of facts and rules that state relationships between facts
and to use an automatic inferencing process to check the validity of new
propositions, assuming the facts and rules of the database are true. This
approach is the one developed for automatic theorem proving.

Prolog is the most widely used logic programming language. The origins of
logic programming lie in Robinson’s development of the resolution rule for
logical inference. Prolog was developed primarily by Colmeraeur and
Roussel at Marseille, with some help from Kowalski at Edinburgh.

Logic programs are nonprocedural, which means that the characteristics of
the solution are given but the process of getting the solution is not.

Prolog statements are facts, rules, or goals. Most are made up of structures,
which are atomic propositions, and logic operators, although arithmetic
expressions are also allowed.

Resolution is the primary activity of a Prolog interpreter. This process, which
uses backtracking extensively, involves mainly pattern matching among
propositions. When variables are involved, they can be instantiated to values
to provide matches. This instantiation process is called unification.

There are a number of problems with the current state of logic programming.
For reasons of efficiency, and even to avoid infinite loops, programmers must
sometimes state control flow information in their programs. Also, there are
the problems of the closed-world assumption and negation.

Logic programming has been used in a number of different areas, primarily in
relational database systems, expert systems, and natural-language processing.

BIBLIOGRAPHIC NOTES
The Prolog language is described in several books. Edinburgh’s form of
the language is covered in Clocksin and Mellish (2003). The
microcomputer implementation is described in Clark and McCabe
(1984).

Hogger (1991) is an excellent book on the general topic of logic
programming. It is the source of the material in this chapter’s section on
logic programming applications.

REVIEW QUESTIONS
1. What are the three primary uses of symbolic logic in formal logic?

2. What are the two parts of a compound term?

3. What are the two modes in which a proposition can be stated?

4. What is the general form of a proposition in clausal form?

5. What are antecedents? Consequences?

6. Give general (not rigorous) definitions of resolution and unification.

7. What are the forms of Horn clauses?

8. What is the basic concept of declarative semantics?

9. What does it mean for a language to be nonprocedural?

10. What are the three forms of a Prolog term?

11. What is an uninstantiated variable?

12. What are the syntactic forms and usage of fact and rule statements in
Prolog?

13. What is a conjunction?

14. Explain the two approaches to matching goals to facts in a database.

15. Explain the difference between a depth-first and a breadth-first search
when discussing how multiple goals are satisfied.

16. Explain how backtracking works in Prolog.

17. Explain what is wrong with the Prolog statement K is K + 1.

18. What are the two ways a Prolog programmer can control the order of
pattern matching during resolution?

19. Explain the generate-and-test programming strategy in Prolog.

20. Explain the closed-world assumption used by Prolog. Why is this a
limitation?

21. Explain the negation problem with Prolog. Why is this a limitation?

22. Explain the connection between automatic theorem proving and
Prolog’s inferencing process.

23. Explain the difference between procedural and nonprocedural
languages.

24. Explain why Prolog systems must do backtracking.

25. What is the relationship between resolution and unification in Prolog?

PROBLEM SET
1. Compare the concept of data typing in C# with that of Prolog.

2. Describe how a multiple-processor machine could be used to implement
resolution. Could Prolog, as currently defined, use this method?

3. Write a Prolog description of your family tree (based only on facts),
going back to your grandparents and including all descendants. Be sure
to include all relationships.

4. Write a set of rules for family relationships, including all relationships
from grandparents through two generations. Now add these to the facts
of Problem 3, and eliminate as many of the facts as you can.

5. Write the following English conditional statements as Prolog-headed
Horn clauses:

1. If Fred is the father of Mike, then Fred is an ancestor of Mike.

2. If Mike is the father of Joe and Mike is the father of Mary, then
Mary is the sister of Joe.

3. If Mike is the brother of Fred and Fred is the father of Mary, then
Mike is the uncle of Mary.

6. Explain two ways in which the list-processing capabilities of Scheme
and Prolog are similar.

7. In what way are the list-processing capabilities of Scheme and Prolog
different?

8. Write a comparison of Prolog with ML, including two similarities and
two differences.

9. From a book on Prolog, learn and write a description of an occur-check

problem. Why does Prolog allow this problem to exist in its
implementation?

10. Find a good source of information on Skolem normal form and write a
brief but clear explanation of it.

PROGRAMMING EXERCISES
1. Using the structures parent(X, Y), male(X), and female(X), write a

structure that defines mother(X, Y).

2. Using the structures parent(X, Y), male(X), and female(X), write a
structure that defines sister(X, Y).

3. Write a Prolog program that finds the maximum of a list of numbers.

4. Write a Prolog program that succeeds if the intersection of two given list
parameters is empty.

5. Write a Prolog program that returns a list containing the union of the
elements of two given lists.

6. Write a Prolog program that returns the final element of a given list.

7. Write a Prolog program that implements quicksort.

Bibliography
1. ACM. (1979) “Part A: Preliminary Ada Reference Manual” and “Part B:

Rationale for the Design of the Ada Programming Language.”
SIGPLAN Notices, Vol. 14, No. 6.

2. ACM. (1993a) “History of Programming Language Conference
Proceedings.” ACM SIGPLAN Notices, Vol. 28, No. 3, March.

3. ACM. (1993b) “High Performance FORTRAN Language Specification
Part 1.” FORTRAN Forum, Vol. 12, No. 4.

4. Aho, A. V., B. W. Kernighan, and P. J. Weinberger. (1988) The AWK
Programming Language. Addison-Wesley, Reading, MA.

5. Aho, A. V., M. S. Lam, R. Sethi, and J. D. Ullman. (2006) Compilers:
Principles, Techniques, and Tools, 2e. Addison-Wesley, Reading, MA.

6. Albahari, J. and B. Abrahari (2012) C# 5.0 in a Nutshell, O’Reilly
Media, Sebastopol, CA.

7. Andrews, G. R., and F. B. Schneider. (1983) “Concepts and Notations
for Concurrent Programming.” ACM Computing Surveys, Vol. 15, No.
1, pp. 3–43.

8. ANSI. (1966) American National Standard Programming Language
FORTRAN. American National Standards Institute, New York.

9. ANSI. (1976) American National Standard Programming Language
PL/I. ANSI X3.53–1976. American National Standards Institute, New
York.

10. ANSI. (1978a) American National Standard Programming Language
FORTRAN. ANSI X3.9–1978. American National Standards Institute,
New York.

11. ANSI. (1978b) American National Standard Programming Language
Minimal BASIC. ANSI X3.60–1978. American National Standards
Institute, New York.

12. ANSI. (1989) American National Standard Programming Language C.
ANSI X3.159–1989. American National Standards Institute, New York.

13. ANSI. (1992) American National Standard Programming Language
FORTRAN 90. ANSI X3. 198–1992. American National Standards
Institute, New York.

14. Arden, B. W., B. A. Galler, and R. M. Graham. (1961) “MAD at
Michigan.” Datamation, Vol. 7, No. 12, pp. 27–28.

15. ARM. (1995) Ada Reference Manual. ISO/IEC/ANSI 8652:19.
Intermetrics, Cambridge, MA.

16. Arnold, K., J. Gosling, and D. Holmes. (2006) The Java (TM)
Programming Language, 4e. Addison-Wesley, Reading, MA.

17. Backus, J. (1954) “The IBM 701 Speedcoding System.” J. ACM, Vol. 1,
pp. 4–6.

18. Backus, J. (1959) “The Syntax and Semantics of the Proposed
International Algebraic Language of the Zurich ACM-GAMM
Conference.” Proceedings International Conference on Information
Processing. UNESCO, Paris, pp. 125–132.

19. Backus, J. (1978) “Can Programming Be Liberated from the von
Neumann Style? A Functional Style and Its Algebra of Programs.”
Commun. ACM, Vol. 21, No. 8, pp. 613–641.

20. Backus, J., F. L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur, A. J.
Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J. H. Wegstein, A.
van Wijngaarden, and M. Woodger. (1963) “Revised Report on the
Algorithmic Language ALGOL 60.” Commun. ACM, Vol. 6, No. 1, pp.
1–17.

21. Ben-Ari, M. (1982) Principles of Concurrent Programming. Prentice
Hall, Englewood Cliffs, NJ.

22. Birtwistle, G. M., O.-J. Dahl, B. Myhrhaug, and K. Nygaard. (1973)
Simula BEGIN. Van Nostrand Reinhold, New York.

23. Bodwin, J. M., L. Bradley, K. Kanda, D. Litle, and U. F. Pleban. (1982)
“Experience with an Experimental Compiler Generator Based on
Denotational Semantics.” ACM SIGPLAN Notices, Vol. 17, No. 6, pp.
216–229.

24. Bohm, C., and G. Jacopini. (1966) “Flow Diagrams, Turing Machines,
and Languages with Only Two Formation Rules.” Commun. ACM, Vol.
9, No. 5, pp. 366–371.

25. Bolsky, M., and D. Korn. (1995) The New KornShell Command and
Programming Language. Prentice Hall, Englewood Cliffs, NJ.

26. Booch, G. (1987) Software Engineering with Ada, 2e.
Benjamin/Cummings, Redwood City, CA.

27. Brinch Hansen, P. (1973) Operating System Principles. Prentice Hall,
Englewood Cliffs, NJ.

28. Brinch Hansen, P. (1975) “The Programming Language Concurrent-
Pascal.” IEEE Transactions on Software Engineering, Vol. 1, No. 2, pp.
199–207.

29. Brinch Hansen, P. (1977) The Architecture of Concurrent Programs.
Prentice Hall, Englewood Cliffs, NJ.

30. Brinch Hansen, P. (1978) “Distributed Processes: A Concurrent
Programming Concept.” Commun. ACM, Vol. 21, No. 11, pp. 934–941.

31. Brown, J. A., S. Pakin, and R. P. Polivka. (1988) APL2 at a Glance.
Prentice Hall, Englewood Cliffs, NJ.

32. Campione, M., K. Walrath, and A. Huml. (2001) The Java Tutorial, 3e.
Addison-Wesley, Reading, MA.

33. Chambers, C., and D. Ungar. (1991) “Making Pure Object-Oriented
Languages Practical.” SIGPLAN Notices, Vol. 26, No. 1, pp. 1–15.

34. Chomsky, N. (1956) “Three Models for the Description of Language.”
IRE Transactions on Information Theory, Vol. 2, No. 3, pp. 113–124.

35. Chomsky, N. (1959) “On Certain Formal Properties of Grammars.”
Information and Control, Vol. 2, No. 2, pp. 137–167.

36. Christiansen, T., B. D. Foy, and L. Wall, with J. Orwant. (2013)
Programming Perl, 4e. O’Reilly & Associates, Sebastopol, CA.

37. Church, A. (1941) Annals of Mathematics Studies. Calculi of Lambda
Conversion, Vol. 6. Princeton University Press, Princeton, NJ. Reprinted
by Klaus Reprint Corporation, New York, 1965.

38. Clark, K. L., and F. G. McCabe. (1984) Micro-PROLOG: Programming
in Logic. Prentice Hall, Englewood Cliffs, NJ.

39. Clarke, L. A., J. C. Wileden, and A. L. Wolf. (1980) “Nesting in Ada Is
for the Birds.” ACM SIGPLAN Notices, Vol. 15, No. 11, pp. 139–145.

40. Cleaveland, J. C. (1986) An Introduction to Data Types. Addison-
Wesley, Reading, MA.

41. Cleaveland, J. C., and R. C. Uzgalis. (1976) Grammars for Programming
Languages: What Every Programmer Should Know About Grammar.
American Elsevier, New York.

42. Clocksin, W. F., and C. S. Mellish. (2013) Programming in Prolog:
Using the ISO Standard. Springer-Verlag, New York.

43. Cohen, J. (1981) “Garbage Collection of Linked Data Structures.” ACM
Computing Surveys, Vol. 13, No. 3, pp. 341–368.

44. Conway, R., and R. Constable. (1976) “PL/-CS—A Disciplined Subset
of PL/I.” Technical Report TR76/293. Department of Computer Science,
Cornell University, Ithaca, NY.

45. Cornell University. (1977) PL/C User’s Guide, Release 7.6. Department
of Computer Science, Cornell University, Ithaca, NY.

46. Correa, N. (1992) “Empty Categories, Chain Binding, and Parsing.” In
Principle—Based Parsing, R. C. Berwick, S. P. Abney, and C. Tenny
(eds.). Kluwer Academic Publishers, Boston, pp. 83–121.

47. Cousineau, G., M. Mauny, and K. Callaway. (1998) The Functional
Approach to Programming. Cambridge University Press, Cambridge,
UK.

48. Dahl, O.-J., E. W. Dijkstra, and C. A. R. Hoare. (1972) Structured
Programming. Academic Press, New York.

49. Dahl, O.-J., and K. Nygaard. (1967) SIMULA 67 Common Base
Proposal. Norwegian Computing Center Document, Oslo.

50. Deliyanni, A., and R. A. Kowalski. (1979) “Logic and Semantic
Networks.” Commun. ACM, Vol. 22, No. 3, pp. 184–192.

51. Department of Defense. (1960) COBOL, Initial Specifications for a
Common Business Oriented Language. U.S. Department of Defense,
Washington, D.C.

52. Department of Defense. (1961) COBOL—1961, Revised Specifications
for a Common Business Oriented Language. U.S. Department of
Defense, Washington, D.C.

53. Department of Defense. (1962) COBOL—1961 EXTENDED, Extended
Specifications for a Common Business Oriented Language. U.S.
Department of Defense, Washington, D.C.

54. Department of Defense. (1975a) Requirements for High Order
Programming Languages, STRAWMAN. July. U.S. Department of
Defense, Washington, D.C.

55. Department of Defense. (1975b) Requirements for High Order
Programming Languages, WOODENMAN. August. U.S. Department of

Defense, Washington, D.C.

56. Department of Defense. (1976) Requirements for High Order
Programming Languages, TINMAN. June. U.S. Department of Defense,
Washington, D.C.

57. Department of Defense. (1977) Requirements for High Order
Programming Languages, IRONMAN. January. U.S. Department of
Defense, Washington, D.C.

58. Department of Defense. (1978) Requirements for High Order
Programming Languages, STEELMAN. June. U.S. Department of
Defense, Washington, D.C.

59. Department of Defense. (1980) Requirements for High Order
Programming Languages, STONEMAN. February. U.S. Department of
Defense, Washington, D.C.

60. DeRemer, F. (1971) “Simple LR(k) Grammars.” Commun. ACM, Vol.
14, No. 7, pp. 453–460.

61. DeRemer, F., and T. Pennello. (1982) “Efficient Computation of
LALR(1) Look-Ahead Sets.” ACM TOPLAS, Vol. 4, No. 4, pp. 615–
649.

62. Deutsch, L. P., and D. G. Bobrow. (1976) “An Efficient Incremental
Automatic Garbage Collector.” Commun. ACM, Vol. 11, No. 3, pp.
522–526.

63. Dijkstra, E. W. (1968a) “Goto Statement Considered Harmful.”
Commun. ACM, Vol. 11, No. 3, pp. 147–149.

64. Dijkstra, E. W. (1968b) “Cooperating Sequential Processes.” In
Programming Languages, F. Genuys (ed.). Academic Press, New York,
pp. 43–112.

65. Dijkstra, E. W. (1972) “The Humble Programmer.” Commun. ACM,
Vol. 15, No. 10, pp. 859–866.

66. Dijkstra, E. W. (1975) “Guarded Commands, Nondeterminacy, and
Formal Derivation of Programs.” Commun. ACM, Vol. 18, No. 8, pp.
453–457.

67. Dijkstra, E. W. (1976) A Discipline of Programming. Prentice Hall,
Englewood Cliffs, NJ.

68. Dybvig, R. K. (2011) The Scheme Programming Language, 4e. MIT
Press, Boston.

69. Ellis, M. A., and B. Stroustrup. (1990) The Annotated C++ Reference
Manual. Addison-Wesley, Reading, MA.

70. Farber, D. J., R. E. Griswold, and I. P. Polonsky. (1964) “SNOBOL, a
String Manipulation Language.” J. ACM, Vol. 11, No. 1, pp. 21–30.

71. Farrow, R. (1982) “LINGUIST 86: Yet Another Translator Writing
System Based on Attribute Grammars.” ACM SIGPLAN Notices, Vol.
17, No. 6, pp. 160–171.

72. Fischer, C. N., G. F. Johnson, J. Mauney, A. Pal, and D. L. Stock.
(1984) “The Poe Language-Based Editor Project.” ACM SIGPLAN
Notices, Vol. 19, No. 5, pp. 21–29.

73. Fischer, C. N., and R. J. LeBlanc. (1977) UW-Pascal Reference Manual.
Madison Academic Computing Center, Madison, WI.

74. Fischer, C. N., and R. J. LeBlanc. (1980) “Implementation of Runtime
Diagnostics in Pascal.” IEEE Transactions on Software Engineering,
Vol. SE-6, No. 4, pp. 313–319.

75. Fischer, C. N., and R. J. LeBlanc. (1991) Crafting a Compiler with C.
Benjamin-Cummings, Menlo Park, CA.

76. Flanagan, D. (2011) JavaScript: The Definitive Guide, 6e. O’Reilly
Media, Sebastopol, CA.

77. Flanagan, D., and Y. Matsumoto. (2008) The Ruby Programming
Language, O’Reilly Media, Sebastopol, CA.

78. Floyd, R. W. (1967) “Assigning Meanings to Programs.” Proceedings
Symposium Applied Mathematics. Mathematical Aspects of Computer
Science, J. T. Schwartz (ed.). American Mathematical Society,
Providence, RI.

79. Frege, G. (1892) “Über Sinn und Bedeutung.” Zeitschrift für
Philosophie und Philosophisches Kritik, Vol. 100, pp. 25–50.

80. Friedl, J. E. F. (2006) Mastering Regular Expressions, 3e. O’Reilly
Media, Sebastopol, CA.

81. Friedman, D. P., and D. S. Wise. (1979) “Reference Counting’s Ability
to Collect Cycles Is Not Insurmountable.” Information Processing
Letters, Vol. 8, No. 1, pp. 41–45.

82. Fuchi, K. (1981) “Aiming for Knowledge Information Processing
Systems.” Proceedings of the International Conference on Fifth
Generation Computing Systems. Japan Information Processing
Development Center, Tokyo. Republished (1982) by North-Holland
Publishing, Amsterdam.

83. Gehani, N. (1983) Ada: An Advanced Introduction. Prentice Hall,
Englewood Cliffs, NJ.

84. Gilman, L., and A. J. Rose. (1983) APL: An Interactive Approach, 3e.
John Wiley, New York.

85. Goodenough, J. B. (1975) “Exception Handling: Issues and Proposed
Notation.” Commun. ACM, Vol. 18, No. 12, pp. 683–696.

86. Goos, G., and J. Hartmanis (eds.). (1983) The Programming Language
Ada Reference Manual. American National Standards Institute. ANSI/-
MIL-STD-1815-A–1983. Lecture Notes in Computer Science 155.
Springer-Verlag, New York.

87. Gordon, M. (1979) The Denotational Description of Programming
Languages, An Introduction. Springer-Verlag, New York.

88. Graham, P. (1996) ANSI Common LISP. Prentice Hall, Englewood
Cliffs, NJ.

89. Gries, D. (1981) The Science of Programming. Springer-Verlag, New
York.

90. Halstead, R. H., Jr. (1985) “Multilisp: A Language for Concurrent
Symbolic Computation.” ACM Transactions on Programming Language
and Systems, Vol. 7, No. 4, October 1985, pp. 501–538.

91. Halvorson, M. (2013) Microsoft Visual Basic 2013 Step by Step.
Microsoft Press, Redmond, WA.

92. Hammond, P. (1983) APES: A User Manual. Department of Computing
Report 82/9. Imperial College of Science and Technology, London.

93. Harbison, S. P., III, and G. L. Steele, Jr. (2002) C: A Reference Manual,
5e. Prentice Hall, Upper Saddle River, NJ.

94. Henderson, P. (1980) Functional Programming: Application and
Implementation. Prentice Hall, Englewood Cliffs, NJ.

95. Hoare, C. A. R. (1969) “An Axiomatic Basis of Computer
Programming.” Commun. ACM, Vol. 12, No. 10, pp. 576–580.

96. Hoare, C. A. R. (1972) “Proof of Correctness of Data Representations.”
Acta Informatica, Vol. 1, pp. 271–281.

97. Hoare, C. A. R. (1973) “Hints on Programming Language Design.”
Proceedings ACM SIGACT/SIGPLAN Conference on Principles of
Programming Languages. Also published as Technical Report STAN-
CS-73-403, Stanford University Computer Science Department.

98. Hoare, C. A. R. (1974) “Monitors: An Operating System Structuring
Concept.” Commun. ACM, Vol. 17, No. 10, pp. 549–557.

99. Hoare, C. A. R. (1978) “Communicating Sequential Processes.”
Commun. ACM, Vol. 21, No. 8, pp. 666–677.

100. Hoare, C. A. R. (1981) “The Emperor’s Old Clothes.” Commun. ACM,
Vol. 24, No. 2, pp. 75–83.

101. Hoare, C. A. R., and N. Wirth. (1973) “An Axiomatic Definition of the
Programming Language Pascal.” Acta Informatica, Vol. 2, pp. 335–355.

102. Hogger, C. J. (1984) Introduction to Logic Programming. Academic
Press, London.

103. Hogger, C. J. (1991) Essentials of Logic Programming. Oxford Science
Publications, Oxford, England.

104. Holt, R. C., G. S. Graham, E. D. Lazowska, and M. A. Scott. (1978)
Structured Concurrent Programming with Operating Systems
Applications. Addison-Wesley, Reading, MA.

105. Horn, A. (1951) “On Sentences Which Are True of Direct Unions of
Algebras.” J. Symbolic Logic, Vol. 16, pp. 14–21.

106. Hudak, P., and J. Fasel. (1992) “A Gentle Introduction to Haskell.”
ACM SIGPLAN Notices, Vol. 27, No. 5, May 1992, pp. T1–T53.

107. Hughes, J. (1989) “Why Functional Programming Matters.” The
Computer Journal, Vol. 32, No. 2, pp. 98–107.

108. Huskey, H. K., R. Love, and N. Wirth. (1963) “A Syntactic Description
of BC NELIAC.” Commun. ACM, Vol. 6, No. 7, pp. 367–375.

109. IBM. (1954) “Preliminary Report, Specifications for the IBM
Mathematical FORmula TRANslating System, FORTRAN.” IBM
Corporation, New York.

110. IBM. (1956) “Programmer’s Reference Manual, The FORTRAN
Automatic Coding System for the IBM 704 EDPM.” IBM Corporation,
New York.

111. IBM. (1964) The New Programming Language. IBM UK Laboratories,
Hursley, England.

112. Ichbiah, J. D., J. C. Heliard, O. Roubine, J. G. P. Barnes, B. Krieg-
Brueckner, and B. A. Wichmann. (1979) “Part B: Rationale for the
Design of the Ada Programming Language.” ACM SIGPLAN Notices,
Vol. 14, No. 6.

113. IEEE. (1985) “Binary Floating-Point Arithmetic.” IEEE Standard 754,
IEEE, New York.

114. INCITS/ISO/IEC. (1997) 1539-1-1997, Information Technology—
Programming Languages—FORTRAN, Part 1: Base Language.
American National Standards Institute, New York.

115. Ingerman, P. Z. (1967). “Panini-Backus Form Suggested.” Commun.
ACM, Vol. 10, No. 3, p. 137.

116. ISO. (1998) ISO14882-1, ISO/IEC Standard – Information Technology
—Programming Language—C++. International Organization for
Standardization, Geneva, Switzerland.

117. ISO. (1999) ISO/IEC 9899:1999, Programming Language C. American
National Standards Institute, New York.

118. ISO/IEC. (1996) 14977:1996, Information Technology—Syntactic
Metalanguage—Extended BNF. International Organization for
Standardization, Geneva, Switzerland.

119. ISO/IEC. (2002) 1989:2002, Information Technology—Programming
Languages—COBOL. American National Standards Institute, New
York.

120. ISO/IEC. (2010) 1539-1, Information Technology—Programming
Languages—Fortran. American National Standards Institute, New York.

121. ISO/IEC. (2014) 8652/2012(E), Ada 2012 Reference Manual. Springer-
Verlag, New York.

122. Iverson, K. E. (1962) A Programming Language. John Wiley, New
York.

123. Jensen, K., and N. Wirth. (1974) Pascal Users Manual and Report.
Springer-Verlag, Berlin.

124. Johnson, S. C. (1975) “Yacc: Yet Another Compiler-Compiler.”
Computing Science Report 32. AT&T Bell Laboratories, Murray Hill,
NJ.

125. Jones, N. D. (ed.). (1980) Semantic-Directed Compiler Generation.
Lecture Notes in Computer Science, Vol. 94. Springer-Verlag,
Heidelberg, FRG.

126. Kay, A. (1969) The Reactive Engine. PhD Thesis. University of Utah,
September.

127. Kernighan, B. W., and D. M. Ritchie. (1978) The C Programming
Language. Prentice Hall, Englewood Cliffs, NJ.

128. Knuth, D. E. (1965) “On the Translation of Languages from Left to
Right.” Information & Control, Vol. 8, No. 6, pp. 607–639.

129. Knuth, D. E. (1967) “The Remaining Trouble Spots in ALGOL 60.”
Commun. ACM, Vol. 10, No. 10, pp. 611–618.

130. Knuth, D. E. (1968) “Semantics of Context-Free Languages.”
Mathematical Systems Theory, Vol. 2, No. 2, pp. 127–146.

131. Knuth, D. E. (1974) “Structured Programming with GOTO Statements.”
ACM Computing Surveys, Vol. 6, No. 4, pp. 261–301.

132. Knuth, D. E. (1981) The Art of Computer Programming, Vol. II, 2e.
Addison-Wesley, Reading, MA.

133. Knuth, D. E., and L. T. Pardo. (1977) “Early Development of
Programming Languages.” In Encyclopedia of Computer Science and
Technology, G. Holzman and A. Kent (eds.). Vol. 7. Dekker, New York,
pp. 419–493.

134. Kowalski, R. A. (1979) Logic for Problem Solving. Artificial
Intelligence Series, Vol. 7. Elsevier-North Holland, New York.

135. Laning, J. H., Jr., and N. Zierler. (1954) “A Program for Translation of
Mathematical Equations for Whirlwind I.” Engineering memorandum E-
364. Instrumentation Laboratory, Massachusetts Institute of Technology,
Cambridge, MA.

136. Ledgard, H. F., and M. Marcotty. (1975) “A Genealogy of Control
Structures.” Commun. ACM, Vol. 18, No. 11, pp. 629–639.

137. Lippman, S. B., and J. Lajoie. (2012) C++ Primer, 5e. Addison-Wesley,
Upper Saddle River, NJ.

138. Lischner, R. (2000) Delphi in a Nutshell. O’Reilly Media, Sebastopol,
CA.

139. Liskov, B., R. L. Atkinson, T. Bloom, J. E. B. Moss, C. Scheffert, R.
Scheifler, and A. Snyder. (1981) CLU Reference Manual. Springer,
New York.

140. Lomet, D. (1975) “Scheme for Invalidating References to Freed
Storage.” IBM Journal of Research and Development, Vol. 19, pp. 26–
35.

141. Lutz, M. (2013) Learning Python, 5e. O’Reilly Media, Sebastopol, CA.

142. MacLaren, M. D. (1977) “Exception Handling in PL/I.” ACM
SIGPLAN Notices, Vol. 12, No. 3, pp. 101–104.

143. Marcotty, M., H. F. Ledgard, and G. V. Bochmann. (1976) “A Sampler
of Formal Definitions.” ACM Computing Surveys, Vol. 8, No. 2, pp.
191–276.

144. Mather, D. G., and S. V. Waite (eds.). (1971) BASIC, 6e. University
Press of New England, Hanover, NH.

145. McCarthy, J. (1960) “Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part I.” Commun. ACM, Vol. 3, No. 4,
pp. 184–195.

146. McCarthy, J., P. W. Abrahams, D. J. Edwards, T. P. Hart, and M. Levin.
(1965) LISP 1.5 Programmer’s Manual, 2e. MIT Press, Cambridge, MA.

147. McCracken, D. (1970) “Whither APL.” Datamation, September 15, pp.
53–57.

148. Metcalf, M., J. Reid, and M. Cohen. (2004) Fortran 95/2003 Explained,
3e. Oxford University Press, Oxford, England.

149. Meyer, B. (1990) Introduction to the Theory of Programming
Languages. Prentice Hall, Englewood Cliffs, NJ.

150. Milner, R., R. Harper, and M. Tofle. (1997) The Definition of Standard
ML-Revised. MIT Press, Cambridge, MA.

151. Milos, D., U. Pleban, and G. Loegel. (1984) “Direct Implementation of
Compiler Specifications.” POPL ’84 Proceedings of the 11th ACM
SIGACT-SIGPLAN Symposium on Programming Languages, pp. 196–
202.

152. Mitchell, J. G., W. Maybury, and R. Sweet. (1979) Mesa Language
Manual, Version 5.0, CSL-79-3. Xerox Research Center, Palo Alto, CA.

153. Moss, C. (1994) Prolog++: The Power of Object-Oriented and Logic
Programming. Addison-Wesley, Reading, MA.

154. Moto-oka, T. (1981) “Challenge for Knowledge Information Processing
Systems.” Proceedings of the International Conference on Fifth
Generation Computing Systems. Japan Information Processing
Development Center, Tokyo. Republished (1982) by North-Holland
Publishing, Amsterdam.

155. Naur, P. (ed.). (1960) “Report on the Algorithmic Language ALGOL
60.” Commun. ACM, Vol. 3, No. 5, pp. 299–314.

156. Newell, A., and H. A. Simon. (1956) “The Logic Theory Machine—A
Complex Information Processing System.” IRE Transactions on
Information Theory, Vol. IT-2, No. 3, pp. 61–79.

157. Newell, A., and F. M. Tonge. (1960) “An Introduction to Information
Processing Language V.” Commun. ACM, Vol. 3, No. 4, pp. 205–211.

158. Nilsson, N. J. (1971) Problem Solving Methods in Artificial
Intelligence. McGraw-Hill, New York.

159. Pagan, F. G. (1981) Formal Specifications of Programming Languages.
Prentice Hall, Englewood Cliffs, NJ.

160. Papert, S. (1980) MindStorms: Children, Computers and Powerful Ideas.
Basic Books, New York.

161. Perlis, A., and K. Samelson. (1958) “Preliminary Report—International
Algebraic Language.” Commun. ACM, Vol. 1, No. 12, pp. 8–22.

162. Peyton Jones, S. L. (1987) The Implementation of Functional
Programming Languages. Prentice Hall, Englewood Cliffs, NJ.

163. Pratt, T. W., and M. V. Zelkowitz. (2001) Programming Languages:
Design and Implementation, 4e. Prentice Hall, Englewood Cliffs, NJ.

164. Remington-Rand. (1952) “UNIVAC Short Code.” Unpublished
collection of dittoed notes. Preface by A. B. Tonik, dated October 25,
1955 (1 p.); Preface by J. R. Logan, undated but apparently from 1952
(1 p.); Preliminary exposition, 1952? (22 pp., in which pp. 20–22 appear
to be a later replacement); Short code supplementary information, topic
one (7 pp.); Addenda #1, 2, 3, 4 (9 pp.).

165. Reppy, J. H. (1999) Concurrent Programming in ML. Cambridge
University Press, New York.

166. Richards, M. (1969) “BCPL: A Tool for Compiler Writing and Systems
Programming.” Proc. AFIPS SJCC, Vol. 34, pp. 557–566.

167. Robbins, A. (2005) Unix in a Nutshell, 4e. O’Reilly Media, Sebastopol,
CA.

168. Robinson, J. A. (1965) “A Machine-Oriented Logic Based on the
Resolution Principle.” Journal of the ACM, Vol. 12, pp. 23–41.

169. Roussel, P. (1975) “PROLOG: Manual de Reference et D’utilisation.”
Research Report. Artificial Intelligence Group, University of Aix-
Marseille, Luming, France.

170. Rubin, F. (1987) “‘GOTO Statement Considered Harmful’ considered
harmful” (letter to editor). Commun. ACM, Vol. 30, No. 3, pp. 195–196.

171. Rutishauser, H. (1967) Description of ALGOL 60. Springer-Verlag,
New York.

172. Sammet, J. E. (1969) Programming Languages: History and
Fundamentals. Prentice Hall, Englewood Cliffs, NJ.

173. Sammet, J. E. (1976) “Roster of Programming Languages for 1974–75.”
Commun. ACM, Vol. 19, No. 12, pp. 655–669.

174. Schorr, H., and W. Waite. (1967) “An Efficient Machine Independent
Procedure for Garbage Collection in Various List Structures.” Commun.
ACM, Vol. 10, No. 8, pp. 501–506.

175. Scott, D. S., and C. Strachey. (1971) “Towards a Mathematical
Semantics for Computer Language.” In Proceedings, Symposium on
Computers and Automation, J. Fox (ed.). Polytechnic Institute of
Brooklyn Press, New York, pp. 19–46.

176. Scott, M. (2009) Programming Language Pragmatics, 3e. Morgan
Kaufman, San Francisco, CA.

177. Sebesta, R. W. (1991) VAX Structured Assembly Language
Programming, 2e. Benjamin/Cummings, Redwood City, CA.

178. Sergot, M. J. (1983) “A Query-the-User Facility for Logic
Programming.” In Integrated Interactive Computer Systems, P. Degano
and E. Sandewall (eds.). North-Holland Publishing, Amsterdam.

179. Shaw, C. J. (1963) “A Specification of JOVIAL.” Commun. ACM, Vol.
6, No. 12, pp. 721–736.

180. Smith, J. B. (2006) Practical OCaml. Apress, Springer-Verlag, New
York.

181. Sommerville, I. (2010) Software Engineering, 9e. Addison-Wesley,
Reading, MA.

182. Steele, G. L., Jr. (1990) Common LISP The Language, 2e. Digital Press,
Burlington, MA.

183. Stoy, J. E. (1977) Denotational Semantics: The Scott–Strachey
Approach to Programming Language Semantics. MIT Press, Cambridge,
MA.

184. Stroustrup, B. (1983) “Adding Classes to C: An Exercise in Language
Evolution.” Software—Practice and Experience, Vol. 13, pp. 139–161.

185. Stroustrup, B. (1984) “Data Abstraction in C.” AT&T Bell Laboratories
Technical Journal, Vol. 63, No. 8, pp. 1701–1732.

186. Stroustrup, B. (1986) The C++ Programming Language. Addison-
Wesley, Reading, MA.

187. Stroustrup, B. (1988) “What Is Object-Oriented Programming?” IEEE
Software, May 1988, pp. 10–20.

188. Stroustrup, B. (1994) The Design and Evolution of C++. Addison-
Wesley, Reading, MA.

189. Stroustrup, B. (1997) The C++ Programming Language, 3e. Addison-
Wesley, Reading, MA.

190. Sussman, G. J., and G. L. Steele, Jr. (1975) “Scheme: An Interpreter for
Extended Lambda Calculus.” MIT AI Memo No. 349 (December 1975).

191. Suzuki, N. (1982) “Analysis of Pointer ‘Rotation’.” Commun. ACM,
Vol. 25, No. 5, pp. 330–335.

192. Syme, D., A. Granicz, and A. Cisternino. (2010) Expert F# 2.0. Apress,
Springer-Verlag, New York.

193. Tatroe, K., P. MacIntyre, and R. Lerdorf. (2013) Programming PHP, 3e.
O’Reilly Media, Sebastopol, CA.

194. Tanenbaum, A. S. (2005) Structured Computer Organization, 5e.
Prentice Hall, Englewood Cliffs, NJ.

195. Teitelbaum, T., and T. Reps. (1981) “The Cornell Program Synthesizer:
A Syntax-Directed Programming Environment.” Commun. ACM, Vol.
24, No. 9, pp. 563–573.

196. Tenenbaum, A. M., Y. Langsam, and M. J. Augenstein. (1990) Data
Structures Using C. Prentice Hall, Englewood Cliffs, NJ.

197. Thomas, D., A. Hunt, and C. Fowler. (2013) Programming Ruby 1.9 &
2.0: The Pragmatic Programmers Guide (The Facets of Ruby). The
Pragmatic Bookshelf, Raleigh, NC.

198. Thompson, S. (1999) Haskell: The Craft of Functional Programming,
2e. Addison-Wesley, Reading, MA.

199. Turner, D. (1986) “An Overview of Miranda.” ACM SIGPLAN Notices,
Vol. 21, No. 12, pp. 158–166.

200. Ullman, J. D. (1998) Elements of ML Programming. ML97 edition.
Prentice Hall, Englewood Cliffs, NJ.

201. van Emden, M. H. (1980) “McDermott on Prolog: A Rejoinder.”
SIGART Newsletter, No. 72, August, pp. 19–20.

202. van Wijngaarden, A., B. J. Mailloux, J. E. L. Peck, and C. H. A. Koster.
(1969) “Report on the Algorithmic Language ALGOL 68.” Numerische
Mathematik, Vol. 14, No. 2, pp. 79–218.

203. Wadler, P. (1998) “Why No One Uses Functional Languages.” ACM
SIGPLAN Notices, Vol. 33, No. 2, February 1998, pp. 25–30.

204. Warren, D. H. D., L. M. Pereira, and F. C. N. Pereira. (1979) “User’s
Guide to DEC System-10 Prolog.” Occasional Paper 15. Department of
Artificial Intelligence, University of Edinburgh, Scotland.

205. Watt, D. A. (1979) “An Extended Attribute Grammar for Pascal.” ACM
SIGPLAN Notices, Vol. 14, No. 2, pp. 60–74.

206. Wegner, P. (1972) “The Vienna Definition Language.” ACM
Computing Surveys, Vol. 4, No. 1, pp. 5–63.

207. Weissman, C. (1967) LISP 1.5 Primer. Dickenson Press, Belmont, CA.

208. Wexelblat, R. L. (ed.). (1981) History of Programming Languages.
Academic Press, New York.

209. Wheeler, D. J. (1950) “Programme Organization and Initial Orders for
the EDSAC.” Proc. R. Soc. London, Ser. A, Vol. 202, pp. 573–589.

210. Wilkes, M. V. (1952) “Pure and Applied Programming.” In Proceedings
of the ACM National Conference, Vol. 2. Toronto, pp. 121–124.

211. Wilkes, M. V., D. J. Wheeler, and S. Gill. (1951) The Preparation of
Programs for an Electronic Digital Computer, with Special Reference to
the EDSAC and the Use of a Library of Subroutines. Addison-Wesley,
Reading, MA.

212. Wilkes, M. V., D. J. Wheeler, and S. Gill. (1957) The Preparation of
Programs for an Electronic Digital Computer, 2e. Addison-Wesley,
Reading, MA.

213. Wilson, P. R. (2005) “Uniprocessor Garbage Collection Techniques.”
Available at http://www.cs.utexas.edu/users/oops/papers.htm#bigsurv.

214. Wirth, N. (1971) “The Programming Language Pascal.” Acta
Informatica, Vol. 1, No. 1, pp. 35–63.

215. Wirth, N. (1973) Systematic Programming: An Introduction. Prentice
Hall, Englewood Cliffs, NJ.

216. Wirth, N. (1975) “On the Design of Programming Languages.”
Information Processing 74 (Proceedings of IFIP Congress 74). North
Holland, Amsterdam, pp. 386–393.

217. Wirth, N. (1977) “Modula: A Language for Modular Multi-
Programming.” Software—Practice and Experience, Vol. 7, pp. 3–35.

218. Wirth, N., and C. A. R. Hoare. (1966) “A Contribution to the
Development of ALGOL.” Commun. ACM, Vol. 9, No. 6, pp. 413–431.

219. Zuse, K. (1972) “Der Plankalkül.” Manuscript prepared in 1945,
published in Berichte der Gesellschaft für Mathematik und
Datenverarbeitung, No. 63 (Bonn, 1972); Part 3, 285 pp. English
translation of all but pp. 176–196 in No. 106 (Bonn, 1976), pp. 42–244.

Index

A
Absolute addressing

manual, 201

pointers and, 280

problems with, 38, 40

Abstract cells, 202, 284

Abstract class, 489, 492, 515, 517

in C#, 514–515

in C++, 507

in Java, 510

Abstract data types, 19, 236–237, 312, 485–486, 549, 560

in Ada, 479

in C#, 461–462

in C++, 453–459, 467–468

in C# 2005, 471

design issues for, 452–453

floating-point as, 450

in Java, 459–461

in Java 5.0, 468–470

language-defined, 237

object-oriented programming and, 352

parameterized, 466–471

in Ruby, 463–466

for stacks, 457, 467, 476

user-defined, 237, 450–451

Abstract method, 489, 514

in C#, 514–515

of a Java abstract class, 512

Abstraction, 2, 15, 19, 125, 198, 357

beginnings of data, 70–71

benefits of, 19, 80, 225

in BNF, 114

concept, 448–449

data, 19, 80, 366, 449–452

process, 366, 449

in Smalltalk, 84

subprogram, 367

Accept clause body, 553

Accept clauses, 553–559, 561

Access

deep, 437–439

in nested subprograms, 376, 430

in nonblocking synchronized, 569

shallow, 439–441

types, 273

ACM (Association for Computing Machinery), 51

Communications of the ACM, 53, 624

GAMM and, 51

Grace Murray Hopper Award, 454, 498

Turing Award of, 624

Activation record instance, 420, 422, 424–435, 437–439, 647–648

of static ancestors, 431–435

Activation records, 420

local_offset of a variable in, 426

in stack, 430

Active subprograms

in referencing environments, 224

in stack-dynamic local variables, 424

Actor tasks, 554, 570

Actual parameters, 203, 251, 343, 369–372, 374, 378–380, 383–385,
391, 398, 410, 418, 422, 424, 516, 634, 638, 645, 648, 661, 662, 667

Ad hoc binding, 393–394

Ad hoc polymorphism, 399

Ada, 12, 33, 55, 74, 198, 211, 373, 376, 391, 404, 422, 429, 543, 594

2005 version of, 82–83

abstract data types in, 479

assignment statement, 251

attribute grammar of, 130

Boolean operator in, 13

compilers, 23

concurrency in, 552–560

declarations of constrained anonymous types, 290

derived types, 290

design process, 79–80

evaluation of, 81–82

exception handling in, 14

exponentiation operator of, 304

functions of, 397

historical background of, 79

implement monitors and monitors of, 550

language overview of, 80–81

packages in, 80, 560

parentheses in, 251

pass-by-value-result of, 397

subrange types, 290

subtypes of, 293, 490

tasks, 552, 560–561, 570, 575

termination of selection construct, 12

type equivalence, 288, 291

Ada 83, 82, 550

Ada 95, 82–83, 543

constructing monitors, 550

pointers of, 396

Addresses, 258, 273, 277–280, 293, 341, 380, 420–422, 426, 680

of array elements, 293

in memory, 387

offset of, 265, 280

for out-mode parameters, 379

segment of, 280

of variables, 201–202

Aho, Al, 92

AI (artificial intelligence), 6, 93, 688

LISP in, 45–46, 48, 632, 653

in Perl, 93

Project at MIT, 46, 632

ALGOL 58, 113

design effort, 55

overview of, 52

report on, 53

ALGOL 60, 51, 57, 61, 62, 67

BNF in, 55

design process, 53–54

evaluation of, 54–56

example of an, 55–56

overview of, 54

primary deficiency of, 71

ALGOL 68

design process, 71

evaluation of, 72–73

language overview of, 72

orthogonality in, 72

ALGOL Bulletin, 53

Aliases, 201–202, 276, 279, 380–381, 385, 392

Aliasing, 14–15, 201–202, 380–381, 391–392, 396–397, 410

Allocation, 46, 69, 72, 207–209, 217, 237, 245–247, 252–253, 275,
281–282, 375, 421

of objects, 492–493

storage, 46, 69, 208, 217, 246–247, 252, 283

Ambiguous grammars, 118–119, 333

AND operator, 153, 155

and then Boolean operator, 13

Anonymous variables, 273

ANSI (American National Standards Institute), 58

on C, 76

Minimal BASIC standard, 62

standardization of C++, 454, 498, 594

Antecedents, 144, 147, 683, 690–701

APES system, 710

APL (A Programming Language), 13, 21

origins and characteristics of, 69–70

Append function, 656

append operations, 700

Apple, 87, 88

Apply-to-all functional forms, 628, 649–650

Arithmetic expressions, 41, 58, 90, 117, 165, 332, 653, 711

associativity in, 305–307

characteristics of, 302–303

coercions in, 313–315

conditional, 308–309

design issues for, 303

grammar for, 175–176, 184, 188

in Lisp, 308

mixed-mode, 313, 314

operand evaluation order in, 309–311

parentheses in, 307

precedence in, 303–305

in Prolog, 711

purpose of, 303

referential transparency in, 310–311

in Ruby, 307–308

rules of operator evaluation order, 305–307

side effects in, 309–311

Array types, 99, 250–261

array initialization in, 254–255

array operations in, 255–256

design issues for, 250

evaluation of, 258

implementation of, 258–260

indices and, 251–252

jagged arrays in, 256

rectangular arrays in, 256

slices in, 257

subscript bindings in, 252–254

Artificial intelligence (AI). see AI (artificial intelligence)

ASCII (American Standard Code for Information Interchange), 138,
241, 689

Assemblies, .NET, 474

Assertions, 150

in axiomatic semantics, 143–144

in Java, 604–605

Assignment statements, 11, 18, 20, 47, 136, 150, 152, 218, 251, 253,
261, 277, 286

ambiguous grammar for, 118

attribute grammar for simple, 131

in axiomatic semantics, 145–147

compound assignment operators in, 320

conditional targets and, 320

in denotational semantics, 141

as expressions, 322–323

in functional programming languages, 323–324

grammar for simple, 117–118

mixed-mode, 324

multiple, 323

simple, 319–320

unary assignment data types in, 321

Association for Computing Machinery (ACM). see ACM (Association
for Computing Machinery)

Associative arrays

definition, 261

implementation of, 262–263

structure and operations of, 261–263

Associativity, 127, 176, 181, 302

of operators, 115, 122–123

rules of operator evaluation order, 303, 305–307

Atomic propositions, 681–683, 685, 689–690, 698, 711

Atoms, 650

Lisp, 47, 629–630

predicate functions for symbolic, 641

Prolog, 689, 706, 708

AT&T Bell Laboratories, 455

Attribute computation functions, 129

Attribute grammars, 128, 292

basic concepts of, 129

computing attribute values in, 132–133

defined, 129–130

evaluation of, 133–134

examples of, 130–132

intrinsic attributes in, 130

static semantics and, 128–129

Attributes, 171, 198, 517

binding, 203–204

defined, 129

instance data as, 464

intrinsic, 130

of variables, names, 199, 201

Automatic generalization, 403

Automatic programming, 39

awk scripting language, 92

Axiomatic semantics, 680

assertions in, 143–144

assignment statements in, 145–147

evaluation of, 155

logical pretest loops in, 149–152

program proofs in, 152–155

selection in, 148–149

sequences in, 147–148

weakest preconditions in, 144–145

Axioms, 144, 155, 681, 684

B
B, language, 75

Babbage, Charles, 37, 80, 366

Backtracking, 685, 694, 697, 699, 704–705, 711

Backus, John, 40–41

BNF (Backus-Naur Form) (see BNF (Backus-Naur Form))

Fortran by, 18, 41, 624

FP (functional programming), 624–625

speedcoding system by, 39

Backward chaining, 693

Base class, 486

base prefix, 514

Basic (Beginner’s All-purpose Symbolic Instruction Code)

design process, 61–62

evaluation of, 62–63

example of, 63

BASIC-PLUS, 62

Bauer, Fritz, 51

BCD (binary coded decimal), 240

Bell Laboratories. see AT&T Bell Laboratories

BINAC computer, 38

binary coded decimal (BCD), 240

Binary operators, 256, 303

Binary semaphore, 547

Binding, 632, 635, 656

of actual parameters to formal parameters, 370

ad hoc, 393–394

attributes to variables, 203–204

deep, 393–394, 437

definition, 203

difference between access, 437

dynamic type, 205–207

exceptions to handlers, C++, 595

exceptions to handlers, Java, 599–600

explicit heap-dynamic variables in, 209–210

implicit heap-dynamic variables in, 210–211

lifetime of, 207

shallow, 393–394, 437

stack-dynamic variables in, 208–209

static type, 314

static variables in, 207–208

static-type, 493, 512

storage, 207, 226

subscript, 252–254

type, 204–207

to a variable, 689

Binding time, 203

Blocked tasks, 542

Blocks

in Ruby, 668

for scope, 213–215

BNF (Backus-Naur Form), 53–54

describing lists in, 115

fundamentals of, 114–115

origins of, 113–114

Böhm, Corrado, 332, 359

Boolean abstract data types, 461–462

Boolean data types, 76, 332

Boolean expressions, 316–318, 661

boolean type variables, 76, 90, 241, 581

Borland JBuilder, 29

Bottom-up parsers, 173–174

LR parsers and, 186–190

parsing problem for, 184–186

shift-reduce algorithms for, 186

Bottom-up resolution, 693

Bound variables, 207, 634

Bounded wildcard types, 403

Bounds, 72, 259–260, 401

Boxing, 509

Breadth-first searches, 694

break statements, 338–339, 604

multiple-selection statements and, 338–340

in user-located loop control mechanisms, 350

Brinch Hansen, Per, 548–549, 551–552

Built-in iterators, 354

Business applications, 6

Business record computerization. see COBOL

Byron, Augusta Ada, 80

Byte code, 27

byte integer, 238

byte operands, 304

C
C, 198

compilers, 23

encapsulation in, 472

evaluation of, 76–77

expressivity in, 13

for statement, 345–347

historical background of, 75–76

language categories in, 20

limited dynamic strings of, 246

local variables in, 376

mixed-mode assignment in, 324

name and structure type equivalence of, 291

orthogonality in, 10

parameters, 384

pointers in, 278

popularity of, 3

portable system of, generally, 75–77

preprocessor instruction, 27

rules and exceptions in, 10

static specifier of, 208

struct data type, 263

switch statement of, 337

type checking in, 14

union constructs in, 271

user-located loop control in, 350–351

writability of, 13

C#, 164, 198, 237, 238, 240, 242–244, 247–250, 253, 254, 256, 257,
263, 270, 371–372, 376, 411, 453, 461–462, 539, 543, 549

4.0 version, 580

5.0 version, 99

2010 version, 206

abstract data types in, 461–462, 479

arrays of, 253–255, 388

assemblies, 473–474

Boolean types in, 241

classes, 479, 551

code segments, 349

decimal data types of, 240

declaration of a variable, 208

design process for, 98

dynamic binding, 514–515

encapsulation constructs in, 461–462

enumeration types in, 247, 248

evaluation of, 99–100, 515

event handling in, 613–616

example of, 100

for statement of, 347

general characteristics, 513

generic collection classes, 353

generic library classes, 353

goto, 355–356

heap-dynamic and stack-dynamic objects in, 210

inferencing process, 667

information hiding in, 462

inheritance in, 513–514

integer types of, 238

lambda expression in, 667–668

language overview of, 98–99

List, 253

method for displaying strings in, 339

mixed-mode expressions in, 324, 398

multiple selection structure, 359

name forms, 199–200

named constants of, 226

nested class, 515

nesting method in, 407

as .NET language, 98–100

object-oriented programming in, 513–515

objects of, 253

overloaded subprograms in, 398

parameter passing methods of, 379, 384, 387–388

pointers of, 279–281, 395

predefined overloaded subprograms of, 398

reference type of, 294

references of Java, 279–280

reflection in, 526–528

selection statement nesting in, 334

static semantics rule of, 339

string classes of, 243

struct data type, 263

support for concurrency, 581

switch statement, 339

threads, 570–575

a var declaration of a variable, 204

variable declarations in, 215–216

C++, 16, 20, 29, 50, 55, 74, 76

abstract data types in, 453–459, 467–468

arrays, 250, 253–254

assignment statement of, 203

Boolean types of, 241

classes, 499–509

code segment, 210

constant reference parameters, 389

constructors in, 457

declaration of a variable, 208

declarations in, 215, 217

Delphi, 88

design process for, 86

destructors in, 457

dynamic binding in, 504–507

dynamic binding of values, 226

encapsulation constructs in, 456, 472–473

enumeration types of, 248–249

evaluation of, 87, 507–509

exception handling in, 14, 594–598

for statement of, 216, 347

formal parameters of, 370, 384

functions, 222

general characteristics, 497

global variable of, 217

information hiding in, 456

inheritance in, 497–504

integer types of, 238

language overview of, 87

limited dynamic strings of, 246

local variables in, 376

mixed-mode assignment in, 324

names in, 199–200

namespaces, 475–476

nesting selectors in, 334

object-oriented programming in, 496–509

objects, 499

operators, 311, 313

overloaded subprograms in, 398

parameterized abstract data types, 467–468

pattern-matching capabilities of, 244

pointers in, 22, 99, 202, 210, 277–282, 393–394

reference parameters in, 384

reference types in, 278

static specifier of, 208

struct data type in, 263

switch statement of, 337

typedef in, 291

unary operator of, 275

union constructs in, 271

user-located loop control in, 350–351

C89, 76, 198, 215, 241, 332, 350, 386

C99, 76, 198, 199, 215, 217, 241, 317, 332, 345, 347, 350, 386

C# 2005, 399, 403, 411

assemblies in, 473–474

generic classes in, 471

generic functions in, 403

namespaces in, 475–476

parameterized abstract data types in, 471

Call chains, 426

Calls

dynamic binding of method, 519–521

indirect, 394–396

semantics of subprogram, 418

Cambridge Polish, 631

Cambridge University, 40, 75

Camel notation, 199

Caml, 50, 658

canonical LR algorithm, 187

Captured variables, 668

CAR functions, 268, 639–640, 643–646, 650, 698, 702

Case expressions, 338–339

Case sensitivity, 200

case statements, 73, 316, 341

catch, 566–567, 594, 599–603, 606, 617

C-based languages, 36, 198–200, 211, 213, 252, 255, 305, 306, 308,
314–322, 335, 345–347, 367, 430, 436, 449, 589, 669

CBL (Common Business Language), 57

CDE (Solaris Common Desktop Environment), 29

CDR functions, 639–640, 643–646, 650, 698, 702

Central processing units (CPUs), 17–18, 418

CGI (Common Gateway Interface), 94

chain_offset, 431, 434, 439

Chambers, Craig, 508

char arrays, 242, 254

char type parameters, 400

Character string types

in C and C++, 254

design issues for, 242

evaluation of, 245

implementation of, 245–247

string length options in, 244–245

string operations in, 242–244

Character types, 241–242

Checked exceptions, 601

Child class, 486

Chomsky, Noam, 113–114

Church, Alonzo, 627

Cii Honeywell/Bull language, 80

Clark, K. L., 689

Clarke, L. A., 220

Class instance record (CIR), 519

Class methods, 487

Class variables, 487

Classes, 486

abstract, 489

base, 486

child, 486

derived, 486

of exceptions, 599

inner, 512

interlocked, 573, 582

local nested, 513

parent, 486

super, 486

wrapper, 90

Clausal form, 683–684

Clients, 450–453, 456, 459, 472, 476, 487, 503

Clocksin, W. F., 705

CLOS (Common LISP Object System), 653

Closed accept clause, 557

Closed-world assumption, 706

Closures, 405–407

CML (Concurrent ML), 576, 592

COBOL, 6, 23

computerizing business records in, 56–61

design process for, 57–58

evaluation of, 58–61

FLOW-MATIC and, 57

form of a record declaration, 264

historical background of, 57

Coercions, 90, 287, 291

in arithmetic expressions, 313–315

of deproceduring, 72

Colmerauer, Alain, 77, 688

Column major order, 259

Common Business Language (CBL), 57

Common Gateway Interface (CGI), 94

Common Intermediate Language (CIL), 474, 527

Common LISP, 49–50, 625, 651–653

backquote operator (`), 652

lists in, 268–269

Common LISP Object System (CLOS), 20, 653

Communicating Sequential Processes (CSP), 356–357, 360, 555

Communications of the ACM, 53, 624

Compatible types, 286

Competition synchronization, 539–541

in Ada, 557–559

in Java, 564–565

with monitors, 549

need for, 541

with semaphores, 547–548

Compiler design, 4, 129, 162, 203

BNF-based, 55

Compiler implementation, 23

Complex data types, 240

Compound assignment operators, 320

Compound terms, 681

Computer architecture, 17–19, 69, 198, 535–537, 624

Concurrency. see also Competition synchronization; Cooperation
synchronization

in Ada, 552–560

in C# threads, 570–575

categories of, 537–538

in Concurrent ML, 576

design issues for language support for, 543–544

explicit locks in, Java 5.0, 569–570

F# support for, 577–578

in functional languages, 575–578

fundamental concepts of, 539–543

in High-Performance Fortran, 578–580

introduction to, 534–539

in Java threads, 560–570

language design for, 543

message passing in, 551–552

monitors in, 549–551

in Multi-LISP, 575

multiprocessor architectures in, 535–537

nonblocking synchronization in, 569

protected objects in, 559–560

reasons for using, 538–539

semaphores in, 544–548

statement-level, 578–580

subprogram-level, 539–544

task termination, 555, 557

thread priorities in, 563–564

Concurrent ML (CML), 576, 592

Concurrent Pascal, 549

Conditional expressions, 46, 308–309, 343, 626, 655

Conditional targets, 320

Conjunctions, 690

CONS functions, 639–640

Consequents, 144, 683, 690

const constants, 226

Constructors, 453, 457

Context-free grammars, 113, 114, 710

Continuation, 596

Control expressions, 332

Control flow, 537, 596, 637–638

exception-handling, 593

paths, 330

statements, 92

Control statements, 330

Control structures, 2, 5, 331

Cooper, Alan, 64–65

Cooper, Jack, 80

Cooperation synchronization, 539

in Ada, 557

in Java, 565–568

with monitors, 549–550

with semaphores, 544–547

Coroutines, 71, 407–410

Costs of languages, 15–17

Counter-controlled loops, 344

in C-based languages, 345–347

design issues for iterative, 345

in functional languages, 348

in Python, 347–348

CPUs (central processing units), 17–18, 418

CSP (Communicating Sequential Processes), 356–357, 360, 555

Currie, Malcolm, 79

Curried functions, 658

Currying, 657

Cut, Prolog, 704–705

D
Dahl, Ole-Johan, 70–71

Dangling pointers, 275–276

Dangling references, 275

Data members, 456

Data structures, 352–355

Data types, 9–11, 37, 50. see also Abstract data types; Array types;
Associative arrays

Boolean, 241

character, 241–242

character string, 242–247

complex, 240

decimal, 240–241

definition, 236

descriptors, 237

enumeration types, 247–249

equivalence in, 288–291

floating-point, 239–240

floating-point as an abstract, 450

integer, 238–239

of a language, 198

in Lisp, 629–631

lists, 268–270

numeric, 238–241

ones-complement notation, 239

pointer, 273–280

primitive, 238–242

record, 263–266

reference, 278–285

string length options in, 244–245

string operations in, 242–244

in terms of precision and range, 239

theory and, 292–293

tuple, 266–267

twos-complement notation, 239

union, 270–272

user-defined, 72, 73, 236

user-defined abstract, 450–451

Data-based iterators, 360

Dead task, 542

Deadlocks, 543

Deallocation, 207, 492–493

Decimal data types, 240

Declaration order, 215–216

Declarative languages, 680, 686–687

Decorating parse trees, 132

Decrement fields, 573

Deep access, 437–439

Deep binding, 393

Deferred reference counting, 282

Definitions

of records, 264

in Scheme program, 634–636

in subprograms, 367–368

Delegates, 395–396

delete operator, 456, 457

in associative arrays, 261

C++, 210, 253, 276, 499

explicit deallocation using, 497

Delphi, 88, 98, 462

Denotational semantics, 137–142, 628, 669

assignment statements in, 141

evaluation of, 142

examples of, 138–139

expressions in, 140–141

logical pretest loops in, 141–142

state of programs and, 140

Department of Defense (DoD), 57, 58, 79–80

Dependents, 54, 55, 79–83

DEPOSIT subprogram, 545

Depth-first searches, 694

Dereferencing pointers, 277

Derivations, 115–117

Derived classes, 486, 500–501

Derived types, 289

Descriptors, 237

Design issues

for abstract data types, 452–453

for arithmetic expressions, 303

for array types, 250

for character string types, 242

for enumeration types, 247

for exception handling, 591–594

for functions, 396–397

for iterative counter-controlled statements, 345

for language support for concurrency, 543–544, 580

for logically controlled loop, 348–349

for multiple selectors, 336–337

for names, 199

for object-oriented languages, 489–494

particular to pointers, 274

specific to records, 264

for subprograms, 374

trade-offs, 21–22

for two-way selectors, 332

for union types, 271

Destructors, 457

Diamond inheritance, 491

Dictionaries, 97, 262

Dijkstra, Edsger, 356

guarded commands by, 356–359, 551

on PL/I, 68

semaphores by, 544

on synchronization operations, 549

Direct left recursion, 180

Discriminated unions, 271

Disjoint tasks, 539

dispose, 281

DLLs (dynamic link libraries), 65, 474

DO CONCURRENT constructs, 43

DoD (Department of Defense), 57, 58

Domain set, 625

Dot notation, 249, 264

Double floating-point data types, 239

do-while statements, 350

Dynabook, 83

Dynamic binding, 205, 488–489

in Ada, 82

in C#, 514–515

in C++, 87, 226, 504–507

in Java, 512

of messages to methods, 493, 495

of method calls to methods, 484, 519–521

in object-oriented programming, 488–489, 493

in Ruby, 517

in Smalltalk, 495–496

of subprogram calls, 82

Dynamic chains, 426

Dynamic dispatch, 488

Dynamic languages, 69–70

Dynamic length strings, 245

Dynamic link libraries (DLLs), 65, 474

Dynamic links, 422–423

Dynamic scoping, 220–222, 437–441, 632

Dynamic semantics, 129

axiomatic semantics as, 142–155

denotational semantics as, 137–142

operational semantics as, 134–137

Dynamic type binding, 205–207

Dynamic type checking, 286

E
Eager approach, 282

EBNF (Extended BNF), 125–127

ECMA (European Computer Manufacturers Association), 94

Edinburgh syntax, 689

Edwards, Daniel J., 632

Eich, Brendan, 94

Elaboration, 208

Elemental operators, Fortran 95+, 198

Elliptical references, 265

else-if clause, 341

Encapsulation constructs

in C, 472

in C#, 461–462, 473–474

in C++, 456, 472–473, 475–476

introduction to, 471–472

in Java, 476–477

naming, 474–478

in Ruby, 463, 477–478

entry clauses, 553

Enumeration constants, 247

Enumeration types, 247–250, 337

in C#, 249

in C++, 248–249

design issues for, 247–248

designs, 247–249

evaluation of, 249–250

in F#, 249

in Java 5.0, 249

in ML, 249

Environment pointers (EPs), 418

Epilogue of subprogram linkage, 419

EPs (Environment pointers), 418

EQ? function, 641

Equivalence, 288–291

Erasure rule, 181

Errors

in arithmetic expressions, 315

European Computer Manufacturers Association (ECMA), 94

EVAL functions, 632, 635–636, 650–651

Evaluation environments, 653

Event handling

in C#, 613–616

introduction to, 608–609

in Java, 609–613

Event listeners, 610–611

Events, 591–592, 608–610

Exception handling

in Ada, 14

basic concepts of, 589–591

in C++, 14, 594–598

design issues for, 591–594

introduction to, 588–594

in Java, 598–605

in Python, 605–607

in Ruby, 607–608

Exceptions, 315

Exclusivity of objects, 489–490

Executable images, 25

Execution efficiency, 670

Expert systems, 709–710

Explicit declarations, 204

Explicit heap-dynamic variables, 209–210

Explicit locks in, Java 5.0, 569–570

Explicit type conversions, 315

Expressions

assignment statements as, 322–323

Boolean, 143, 316–318, 661

in C#, 324, 398

case, 338–339

coercion in, 313–315

conditional, 46, 308–309, 343, 626, 655

control, 332

in denotational semantics, 140–141

errors in, 315

mixed-mode, 313

in recursive-descent parsers, 175–180

relational, 316

short-circuit evaluation in, 318–319

unambiguous grammar for, 120

Expressivity, 13

Extended accept clause, 556

Extended BNF (EBNF), 125–127

eXtensible Stylesheet Language Transformations (XSLT), 21

extern qualifiers, 217

F
F#, 29, 403–404, 625, 663–666

generic functions in, 403–404

generic library classes, 353

support for concurrency, 577–578

Fact statements, 689–690

Farber, J. D., 70

Fatbars, 357

Feature multiplicity, 8

FETCH subprogram, 545

Fetch-execute cycle, 18, 26

FGCS (Fifth Generation Computing Systems), 688

Fibonacci number, 659

Fields, 264–265

Fifth Generation Computing Systems (FGCS), 688

Filter, 656

Finalization, 593

finalize methods, 509

finally clauses, 603–604

FindAll method, 667

Finite automata, 165

Finite mappings, 293

Firm coercion, 72

First-order predicate calculus, 681

Fixed heap-dynamic arrays, 252–253

Fixed stack-dynamic arrays, 252–253

flex arrays, 72

float, 14, 90, 205, 286–289, 313, 324, 387, 394

in C, 472

in C#, 395, 461, 572

in C++, 595

coercions, 90

in strong typing, 287

in type checking, 14, 286–287

in type conversions, 313–315

float variable, 287

Floating-point data types, 239, 240, 450

Floating-point operations, 37, 39–40, 75, 287, 306

FLOW-MATIC, 57

FLPL (Fortran List Processing Language), 46

Flynn, Michael J., 536

for statements, 216

in C-based languages, 345–347, 352

in Java, 13, 352

in Python, 347–348

foreach statements

in C#, 99, 254, 353

of Perl, 360

Form, 12

Formal parameters, 368–370

Fortran, 5, 18, 61, 62, 66, 198

design process for, 41

evaluation of, 43–45

exponentiation in, 306

High-Performance, 578–580

historical background of, 40–41, 51, 251, 316, 330, 624

label parameters in, 590

nested subprograms in, 429

Read statement, 588–589

stand-alone statement, 320

subprograms in, 419

versions of, 41–43, 67, 211, 263, 373, 386

Fortran List Processing Language (FLPL), 46

Forward chaining, 693

FP (functional programming), 45–50, 623–671

Free Software Organization, 689

Free unions, 271

Fully attributed parse trees, 130

Fully qualified references, 265

Functional compositions, 648–649

Functional compositions in Scheme, 639–640

Functional forms, 627–628, 648–650

Functional programming (FP), 45–50, 623–671

Functional programming languages, 294, 310, 330, 369, 406

assignment statements in, 323–324

Common Lisp, 651–653

concurrency in, 575–578

Concurrent ML (CML), 576

F#, 577–578, 663–666

functional forms in, 627–628

fundamentals of, 628–629

Haskell, 658–663

imperative languages supporting, 666–669

imperative languages vs., 669–671

introduction, 624–625

LISP, 629–632

mathematical functions in, 625–628

Multi-LISP (ML), 575, 653–658

Scheme, 633–651

simple functions in, 626–627

Functions

of Ada, 397

attribute computation, 129

of C++, 222

of C# 2005, generic, 403

of C#, generic, 399–401

CAR, 268, 639–640, 643–646, 650, 698, 702

CDR, 639–640, 643–646, 650, 698, 702

composition, 627

CONS, 639–640

curried, 658

design issues for, 396–397

EVAL, 650

of F#, generic, 403–404

of Java 5.0, generic, 401–403

of JavaScript, 667

mathematical, functional programming languages, 625–628

in Scheme, 634–636

as subprograms, 373

Functors, 695

future constructs, 575

G
GAMM (German Society for Applied Mathematics and Mechanics), 51

Garbage collection, 97

Gates, Bill, 65

Genealogy of languages, 35

Generality, 16

Generate and test, 705

Generation, 112

Generators, 112–113, 660

Generic subprograms

in C++, 399–401

in C# 2005, 403

in F#, 403–404

in Java 5.0, 401–403

German Society for Applied Mathematics and Mechanics (GAMM), 51

getPriority methods, 563

Getter methods, 516

Glennie, Alick E., 40–41

Global scope, 217–219

GNOME, 29

Go, 85

Goals, 691–692

Google, 455, 537

Gosling, James, 89

GOTO, 188–190

Grammars. see also Attribute grammars

ambiguous, 118–119, 333

context-free, 113, 114, 710

derivations and, 115–117

LL grammar class, 180–183

recognizers and, 127–128

for simple assignment statements, 117

for a small language, 116

unambiguous, 120–122, 124–125

van Wijngaarden, 72

Griswold, R.E., 70

Guarded commands, 356–359, 551

Guards, 544, 559, 659

GUIs (graphical user interfaces), 13, 608–609

C#, 614

Java, 609–610

UNIX and, 29

using Windows Forms, 614, 617

VB, 63

H
Hammond, P., 710

Handles, 185–187

Hansen, Brinch, 551

Harbison, Samuel P., 338

Hashes, 93, 96, 261, 353, 360, 471

Haskell, 369, 625, 658–663

Headed horn clauses, 686, 690–691

Header files, 473

Headless horn clauses, 686, 690–691

Heap-dynamic arrays, 252

Heap-dynamic variables, 209–211, 275, 280

Heaps, 209–210, 246

Heavyweight tasks, 539

Hejlsberg, Anders, 98

Hidden concurrency, 537

Higher-order functions, 627–628

High-Order Language Working Group (HOLWG), 79

High-Performance Fortran (HPF), 578–580

Hoare, C.A.R., 71

on Ada, 81

and ALGOL 60, 73

on language design, 13, 21, 359

message passing design, 551–552

on monitors, 549

Pascal by, 73

on pointers, 280

HOLWG (High-Order Language Working Group), 79

Hopper, Grace

award in name of, 454, 498

compiling systems by, 39

on programming languages, 57

Horn clauses, 686

HPF (High-Performance Fortran), 578–580

HTML (HyperText Markup Language), 406

introduction to, 6, 21

JavaScript and, 94–95, 162

JSP and, 101–102

PHP and, 96

XML and, 101

Hursley Laboratory, 67

Hybrid implementation systems, 26–27

HyperText Markup Language (HTML). see HTML (HyperText Markup
Language)

Hypotheses, 686

I
IAL (International Algorithmic Language), 52

IBM, 46

701 computer, 39

704 computer, 40–41, 631, 639

700-series machines, 51

COMTRAN, 57

Fortran developed by, 40–45

mainframe design, 9–10

orthogonality and, 10

PL/I developed by, 66–69

SHARE and, 53

“The IBM Mathematical FORmula TRANslating System: FORTRAN,”
41

Identifiers, 111, 237

Identity operands, 304

IEEE Floating-Point Standard, 239

format, 239

IEEE Floating-Point Standard 754, 239

IF selector function, 637

if statements

assignments and, 322

in Extended BNF, 125

Java, 115, 179, 334

JSP and, 101–102

in multiple-selection statements, 341–343

nested, 339

in nesting selectors, 333–336

in recursive-descent parsers, 175

rule for, 125, 175

in selector expressions, 336

IFIP (International Federation of Information Processing), 73

if-then-else statements, 308, 342

Imperative programming languages, 397, 624, 626, 666–669

functional languages supporting, 666–669

functional languages vs., 669–671

Implementation methods

array types, 258–260

associative arrays, 262–263

character string types, 245–247

of compiler, 23

hybrid implementation systems, 26–27

Just-in-Time (JIT) implementation system, 27

parameter-passing methods, 382–383

pointer types, 280–285

record types, 265–266

reference types, 280–285

union types, 273

Implicit declarations, 204

Implicit heap-dynamic variables, 210–211

Implicit locks in, 569–570

import declarations, 477

include statements, 538

Incremental mark-sweep garbage collection, 284

Indicants, 72

Indices, 251–252

Inference rules, 692, 693, 709–710

for computing the precondition for a while loop, 149

general form of, 144

resolution, 684

as rule of consequence, 146

for selection statements, 145, 148

in sequences, 147, 152

Inferencing process, 692–695

Infix operators, 303

Information hiding

C#, 462

C++, 456

Ruby, 464–465

Information Processing Language (IPL), 45

Inheritance

C#, 513–514

C++, 497–504

Java, 510–512

Ruby, 517

Smalltalk, 495

Inherited attributes, 129

Initial values, 226

Initialization, 254–255

Initialization of objects, 494

Inner classes, 512

Inout mode parameter passing, 379

Instance data storage, 519

Instance methods, 463, 487

Instance variables, 463, 487

Instantiation, 689

Instruction-level concurrency, 535

int, 14, 90, 167–170, 247

in C, 203, 213, 254, 314, 472

in C#, 216, 395, 461

in C++, 222, 226, 278, 395, 398, 400, 458, 468, 596, 605

in F#, 404

in Java, 202, 225, 286, 287, 313, 468, 566–569, 572, 581

in ML, 654–655

in Python, 238

in type checking, 286, 386

unary minus operator and, 304

int integer, 238

int type parameters, 400

int variable, 286

integer, 238–239

byte, 238

int, 238

long, 238

short, 238

types of, 238–239

Intercession, 522

Interface abstract class, 510

Interlocked classes, 573, 582

International Algorithmic Language (IAL), 52

International Federation of Information Processing (IFIP), 73

International Standards Organization (ISO), 94, 241

Interpreter, 631–632

Intrinsic attributes, 130

Intrinsic condition queue, 565

Intrinsic limitations, 708

IPL (Information Processing Language), 45

is operators, 695

ISO (International Standards Organization), 94, 241

Iterative statements, 343–355

counter-controlled loops and, 344–348

data structures for, 352–355

design issues for, 345, 348–349

examples, 349–350

for statements, 345–348

logically controlled loops and, 348–350

user-located loop controls as, 350–351

Iverson, Kenneth P., 69

J
Jacopini, Giuseppe, 330, 332, 359

Jagged arrays, 256

JARs (Java Archives), 474

Java, 509–513, 539, 543

5.0, generic functions in, 401–403

5.0, parameterized abstract data types, 468–470

abstract data types, 459–461, 468–470

assertions in, 604–605

binding exceptions to handlers, 599–600

classes of exceptions, 599–600

competition synchronization in, 564–565

concurrency in Java threads, 560–570

cooperation synchronization in, 565–568

design choices, 600–602

design process, 89

dynamic binding in, 226, 512

evaluation of, 90–92, 461, 513, 570, 605

event handling with, 609–613

event model, 610–613

exception handlers of, 599–600

exception handling in, 598–605

explicit locks in, 569–570

expressivity in, 13

feature multiplicity in, 8

finally clauses, 603–604

for statements of, 216, 347

general characteristics, 509

imperative-based object-orientation of, 89–92

inheritance in, 510–512

integer types of, 238

language overview of, 89–90

mixed-mode assignment in, 324

names in, 199

nested classes, 512–513

nesting selectors in, 334

nonblocking synchronization in, 569

objects of, 509

overloaded subprograms in, 398

packages, 476–477

parameterized abstract data types in, 468–470

parameters, 384

pattern-matching capabilities of, 244

popularity of, 3

primitive scalar types and classes of, 528

priorities of threads, 563–564

reflection in, 523–525

semaphores in, 564

Swing GUI components, 609–610

switch statement of, 337

Thread class, 561–563

user-located loop control in, 350

while and do statements, 350

Java Archives (JARs), 474

Java Server Pages Standard Tag Library (JSTL), 21, 101

Java Virtual Machine, 27

JavaScript, 6, 20, 26, 29, 609, 670

anonymous function in, 667

dynamic type binding in, 205–206

functions for, 667

origins and characteristics of, 94–96

join methods, 561–562

JOVIAL, 53

JSP, 100–102

JSTL (Java Server Pages Standard Tag Library), 21, 101

Just-in-Time (JIT) compilers, 91, 98, 163

Just-in-Time (JIT) implementation system, 27

K
Kay, Alan, 83–84

Kemeny, John, 61–62

Kernighan, Brian, 92, 356

Keys, 261

Keyword parameters, 370

Keywords, 370

Knuth, Donald, 40, 55, 103, 187, 356

Korn, David, 92

Kowalski, Robert

on logic-based semantic networks, 710

Prolog by, 77, 688

Kurtz, Thomas, 61

L
Lambda calculus, 627

Lambda expressions, 50, 91, 627, 635

in C#, 667–668

in Java 8, 668

in Python, 668

in Scheme, 635

Language design

Ada, 80

ALGOL 58, 52–53

ALGOL 60, 53–56

ALGOL 68, 72

BASIC, 62

C#, 98–99

C++, 87

categories in, 20–21

COBOL, 56–61

computer architecture, 17–19

concurrency, 543

early design process, 51

for Fortran, 43

Hoare’s observation, 13, 21, 359

hybrid implementation system, 26

influences on, 17–20

Java, 89–90

PL/I, 67, 68

Prolog programs, 77–78

SIMULA 67, 71

Smalltalk, 84

trade-offs, 21–22

Language generators, 112–113

Language recognizers, 112

Laning and Zierler system, 41

Lattner, C., 87

Lazy approach, 282

Lazy evaluation, 661–663

LCF (Logic for Computable Functions), 50

Learning new languages, 2

Left factoring, 183

Left recursive grammar rules, 123

Left-hand side (LHS), 114–115, 123, 138, 173–174, 181, 184, 186,
188, 190, 192, 207

grammar rules for, 115, 123, 173

Leftmost derivations, 116

Lerdorf, Rasmus, 96

let

in F#, 664

in Haskell, 660

in ML, 214, 656

in Scheme, 214, 646–647

scope of, 215

Level numbers, 264

Lexemes, 111, 164

Lexical analysis, 163–171

lexical analyzer, 164–165

process, 164

Lifetime, 207–211

Lightweight task, 539

Limited dynamic length strings, 245

Linkers, 25, 420

Linking, 25

Linking and loading, 25

LISP, 205, 220, 222, 237. see also Common LISP; Multi-LISP (ML);
Scheme language

allocation and deallocation in, 281

artificial intelligence and, 45–46

common, 651–653

data structures in, 47, 48, 629–631

data types in, 629–631

descendants of, 49–50

design goals of, 282

design process for, 46

evaluation of, 48–49

expressions in, 308

functional programming in, 47

implementation of, 639

interpreter in, 631–632

languages related to, 50

list processing and, 45–46

reflections in, 527

single-size allocation heap in, 281–282

syntax of, 48

List comprehensions, 270

LIST functions, Scheme, 268

Lists, 115

in Common LISP, 268–269

descriptions of, 115

functions of, 638–641

in Multi-LISP (ML), 269

predicate functions for, 641–642

in Prolog, 698–703

in Scheme language, 269

simple, 47, 630, 643–644, 646

types of, 268–270

Liveness, 543

LiveScript, 94

LL algorithms, 173

LL grammar class, 180–183

Load modules, 25

Loaders, 420

Local nested classes, 513

Local referencing environments, 375–376

Local variables, 217–219, 376, 426

Local_offset, 426

Locks, 569–570

Locks-and-keys approach, 281

Logic for Computable Functions (LCF), 50

Logic programming languages

applications of, 709–710

clausal form in, 684, 686, 691

expert systems and, 709–710

natural-language processing, 710

overview of, 686–688

predicate calculus for, 680–684

Prolog, 688–708

relational database management systems and, 709

resolution construction, 684–685

theorem-proving in, 684–686

Logical concurrency, 537

Logically controlled loops, 348–350

long integer, 238

Loop invariants, 149–153

Loop parameters, 344

Loop variables, 346

Loops

in axiomatic semantics, 149–152

counter-controlled, 344–348

logically controlled, 348–350

user-located, 350–351

Lost heap-dynamic variables, 276–277

LR parsers, 186–190

Lua, 279

arrays in, 254

enumeration types of, 249

L-value, 201

M
MAC OS X, 87

Mark-sweep garbage collection, 283

Markup languages, defined, 21

Markup-programming hybrid languages, 100–102

Massachusetts Institute of Technology (MIT), 41

match expressions, 272

Matching subgoals, 692

Matching type parameters, 595

Mathematical functions, 625–628

Matsumoto, Yukihiro, 97

Mauchly, John, 38

McCabe, F. G., 689

McCarthy, John, 46, 629, 631–632

McCracken, Daniel, 21

Meek coercion, 72

Mellish, C. S., 6, 705

Member functions, 456, 505

Memory cells, 198, 200, 202

Memory leakage, 276–277

Message interface, 486

Message protocol, 486

Message-passing model, 550

Messages

binding dynamically, 493, 495

in object-oriented languages, 486

passing of, 486, 489, 490, 498, 515, 551–552

Metadata, 522

MetaLanguage (ML), 50

Metalanguages, 114

Metasymbols, 126

Method calls, 519–512

Methods, 486

Microsoft, 65

.NET computing platform, 86, 98, 163

Visual Studio .NET by, 29

Milner, Robin, 50

MIL-STD 1815, 80

MIMD (Multiple-Instruction, Multiple-Data) computers, 536

Minsky, Marvin, 46

Miranda, 50

MIT (Massachusetts Institute of Technology), 41

AI Project, 46

LISP at, 46

Lisp at, 629, 633

Scheme language, 49

Whirlwind computer, 41

Mixed inheritance, 511

Mixed-mode assignment statements, 324

Mixed-mode expressions, 324

ML (MetaLanguage), 50

M-notation, 631

Modules, 477–478

Monitors, 549–551

MSDOS.exe, 64

Multicast delegates, 396

Multi-LISP (ML), 575, 653–658, 671

lists in, 269

Multiparadigm programming, 498

Multiple assignment statements, 323

Multiple inheritance, 487, 491–492

Multiple-Instruction, Multiple-Data (MIMD) computers, 536

Multiple-selection statements

design issues for, 336–337

examples of, 337–340

implementation of, 340–341

using if, 341–343

Multiprocessors, 535–537

Multithreaded program, 569, 574, 578

N
Name type equivalence, 288

Named constant, 224–226

Names

in C#, 199

in C++, 199–200

case sensitive, 200

in C-based languages, 199–200

design issues for, 199

forms, 199–200

in Java, 199, 200

keywords, 200

in PHP, 199

reserved words and, 200

in Ruby, 199

special words, 200

variable, 199, 201

Narrowing type conversions, 302

National Physical Laboratory, 67

Natural operational semantics, 135

Naur, Peter, 53, 113

NCC (Norwegian Computing Center), 70

Negation problem, Prolog, 706–708

Nested classes

in C#, 515

in Java, 512–513

object-oriented programming, 493–494

Nested list structures, 47, 630

Nested subprograms, 376, 429–435

Nesting classes, 494

Nesting selectors, 333–336

nesting_depth, 431

.NET languages, 27, 29, 98, 353, 474, 527, 574, 582, 613, 663

NetBeans, 29

Netscape, 94

Neumann, John von, 17

new, 458, 492, 509

for allocation of heap objects, 275

in C#, 461, 513–514

in C++, 209–210, 253, 456

in heap management, 281

in Java, 469

in Ruby, 516

New Programming Language (NPL), 67

Newell, Allen, 45

next iterators, 352

Nil values, 47, 273

Nonblocking synchronization, 569

nonlocal, 219

Nonstrict languages, 661

Nonterminal symbols, 114

Norwegian Computing Center (NCC), 70

NOT operators, 316, 691, 707

NPL (New Programming Language), 67

NULL, 642

Numeric data types, 238

Numeric predicate functions, 637

Numeric type

complex values, 240

decimal data types, 240–241

floating-point data types, 239–240

integer, 238–239

Nygaard, Kristen, 70

O
Object slicing, 493

Objective-C, 87–88

Object-oriented constructs, 519–521

Object-oriented languages, 19, 85, 206, 219, 279, 291, 360

allocation of objects in, 492–493

deallocation of objects in, 492–493

design issues in, 489–494

dynamic binding in, 493

exclusivity of objects in, 489–490

initialization of objects in, 494

multiple inheritance in, 491–492

nested classes in, 493–494

single inheritance in, 491–492

static binding in, 493

subclasses vs. subtypes in, 490–491

Object-oriented programming, 3, 20, 485, 663

in C#, 513–515

in C++, 85–88, 496–509

inheritance, 485–488

instance data storage, 519

in Java, 89–92, 509–513

message passing in, 551–552

in Objective-C, 87–88

in Ruby, 515–518

in Smalltalk, 83–85, 494–496

Stroustrup on, 498–499

support for, 494–518

Objects, 486

allocation of, 492–493

in C++, 497

of C#, 253

in concurrency, 559–560

deallocation of, 492–493

exclusivity of, 489–490

initialization of, 494

in Java, 509

in Ruby, 516

OCaml, 50, 205, 484, 625, 658, 663

Open accept clause, 557

Operand evaluation order, 309–311

Operational semantics, 134–137

evaluation of, 136–137

natural, 135

problems with, 135

process of, 135–136

structural, 135

Operator evaluation order, 303–309

Operator overloading, 8, 98, 311–313

Operator precedence, 119–122

Operator precedence rules, 304

Optimization, 15

or else statements, 334

OR operators, 271

Orthogonality, 9–11

otherwise, 659

Out mode parameter passing, 378

Output functions, 636

Overflow, 315

Overloaded operators, 311–313

Overloaded subprograms, 398

Overridden methods, 487, 491

override commands, 487, 514

P
Package scope, 476

Package specification, 552

Packages, 80, 476–477

Pairwise disjointness test, 182

Papert, Seymour, 83

Paradigms of programming, 498–499

Parameter profiles, 398

Parameterized abstract data types

in C++, 467–468

in C# 2005, 471

in Java 5.0, 468–470

Parameter-passing methods, 376

of common languages, 383–385

design considerations in, 389

examples of, 389–392

implementation models for, 377–382

implementation of, 382–383

semantic models of, 377

Parameters

actual, 369

array formal, 372

formal, 369

keyword, 370

in multidimensional arrays, 387–389

positional, 370

for subprograms, 368–372

subprograms as, 392–394

type checking, 385–387

Parametric polymorphism, 399

params, 99

Parent class, 486, 491

differences between subclasses and, 486–487

Parentheses, 307

Parse trees, 24–25, 117–118

Parsing, 25, 55, 119

bottom-up, 173–174, 183–190

complexity of, 174–175

introduction to, 171–172

LL grammar class in, 180–183

LR parsers for, 186–190

recursive-descent, 175–180

shift-reduce algorithms for, 186

top-down, 172–173

Partial correctness, 152

Partial evaluation, 658

Pascal, 55, 248, 276, 281, 289, 295, 376, 394, 549, 577

Concurrent, 549

evaluation of, 74–75

historical background, 73

Turbo, 98

Pass-by-assignment, 385

Pass-by-copy, 380

Pass-by-name, 381–382

Pass-by-reference, 380–381

Pass-by-result, 378–379

Pass-by-value-result, 379–380

Passed by value, 378

pcall constructs, 575

PDA (Pushdown automaton), 186

Peripheral processors, 535

Perl, 92–94, 341, 350

array assignments, 255

arrays, 92, 253

assignment statements in, 322

associative arrays in, 261

binary logic operators of, 317

built-in pattern-matching operations, 244

clause form, 334

coercion rules for mixed-mode assignment, 324

compound assignment operators of, 320

conditional targets on assignment statements, 320

dynamic scoping in, 220

enumeration types of, 249

expressions in, 303, 309

foreach statement, 99, 360

as a general-purpose language, 93

hashes, 96, 261, 262

hybrid implementation system, 27

mixed-mode assignment in, 324

multiple-source assignment statements in, 323

nesting selectors in, 334

origins and characteristics of, 92–94

passing parameters of, 384

strings in, 245

subscripting in, 251

unary arithmetic operators in, 321

Unicode in, 241

as a UNIX utility, 93

user-located loop control in, 350

variable names in, 199

variables in, 93

Perlis, Alan, 44, 51

PHP, 6, 26, 29, 217, 386, 670

access to HTML form data, 96

built-in pattern-matching operations, 244

foreach statement, 99

formal parameters of, 370

function definitions, 217

global variables of, 217–218

origins and characteristics of, 96

relational operators of, 316

scalar types of, 339

switch statement, 339

type binding in, 205, 286

variable names in, 199

Phrases, 185–186

Physical concurrency, 537

pipeline operators (| >), 665

Plankalkül, 36–37

PL/I, 66–69

design process, 67

evaluation of, 68–69

historical background, 66

language overview of, 67–68

Pointer types

in C and C++, 277–278

dangling, 275–276, 280–281

design issues with, 274

heap management and, 281–285

implementation of, 280–281

lost heap-dynamic variables in, 276–277

operations in, 274–275

problems with, 275–277

representations of, 280

Polonsky, I. P., 70

Polymorphic references, 488

Polymorphic subprograms, 399

Polymorphism, 399, 411, 488

Portability, 16

Positional parameters, 370

Postconditions, 143, 147

in assignment statements, 145–147

introduction to, 143

in logical pretest loops, 149–152

in program proofs, 152–155

in selection statements, 148–149

in sequences, 147–148

weakest precondition and, 144–145

Posttest, 344

Precedence, 303–305

Precision, 239

Predicate calculus

clausal form, 683–684

collections of propositions, 684–686

for logic programming languages, 680–684

propositions, 681–683

Predicate functions, 129, 637, 641–642

Predicate transformers, 150

Prefix operators, 321

Preprocessors, 27–29

Pretest, 349–350

Primitive data types, 9

Boolean, 241

character, 241–242

complex, 240

decimal, 240–241

floating point, 239

integer, 238–239

numeric, 238–240

Primitive numeric functions, 633–634

Principle of substitution, 490

Priorities of tasks, 563–564

Priorities of threads, 571

private, 464, 500–503, 512–513

in C#, 461

in C++, 456, 462

in Ruby, 464

Procedure-oriented programming, 20

Procedures, 372–373

Process abstraction, 449

Processes, 539

Producer-consumer problem, 540

Productions, 114

Program counter, 18

Program proofs, 152–155

Programming design methodologies, 19–20

Programming domains

artificial intelligence in, 6

business applications in, 6

scientific applications in, 5

Web software and, 6

Programming environments, 29

Prolog, 6, 21, 680–681, 688–708

arithmetic expression in, 695–698

basic elements of, 688–703

closed-world assumption in, 706

deficiencies of, 703–708

design process for, 77

evaluation of, 78

fact statements, 689–690

goal statements, 691–692

inferencing process of, 692–695

intrinsic limitations in, 708

language overview of, 77–78

list structures in, 698–703

negation problem in, 706–708

origin of, 688

resolution order control in, 703–705

rule statements, 690–691

terms, 689

Prolog++, 20, 78

Prologue of subprogram linkage, 419

Properties, C#, 461

Propositions, 681–683

protected access modifiers, 462

Protected objects, 550, 559–560

Protocol, 368, 450, 489, 495, 511, 514, 517

for event-handling methods, 610–611, 614, 617

function’s, 393–394

message, 486

of overloaded subprogram, 398

of a subprogram, 368

Prototypes, 368

Pseudocodes, 37–40

introduction to, 37–38

related work, 40

Short Code, 38–39

Speedcoding, 39

UNIVAC “compiling” system, 39

public, 464, 500–503, 512–513

in C#, 461

in C++, 456, 462

in Ruby, 464

Pure interpretation, 26

Pure virtual function, 506

Pure virtual method, 489

Pushdown automaton (PDA), 186

Python, 217

arrays in, 254, 269

associative arrays in, 262

binary arithmetic operations in, 405

compound assignment operators of, 320

control expressions in, 332

data types in, 238, 240

declarations in, 257

enumeration types of, 249

exception handling in, 605–607

formal parameters of, 370–372

function header of, 370–371

global variable in, 217, 218

global variables of, 376

for statement of, 347–348

hashes, 96, 264

list comprehension in, 270

nesting functions in, 219

origins and characteristics of, 96–97

parameter passing methods of, 385

polymorphism in, 399

range function, 270, 348

records, 263

reflective operations in, 527

scopes in, 223

selection statement, 335

selector statement, 341–342

slice reference, 257

strings of, 243–244

subprogram headers of, 367

subprograms of, 397, 411, 472

then and else clauses, 333

tuple type of, 266–267, 293

type binding in, 205

Unicode in, 241

user-located loop control in, 350–351

variables of, 250

Q
Quantifiers, 682–683

Quasi-concurrency, 408

Quasi-concurrent subprograms, 537

Queries, 709–710

Quicksort algorithm, 661

QUOTE, 638, 652

R
Race conditions, 540

Radio buttons, 609–611, 614

raise statements, 606, 617

Raised exceptions, 591, 595, 598

RAND Corporation, 45

Range, 239

set, 625–626

Raw methods, 401

RDBMSs (Relational database management systems), 709

Read statement, 588

Readability, 7–8, 15, 249

Reader macros, 652

Readers, 625

Read-evaluate-print loops (REPLs), 633

readonly constants, 226

Ready task, 541

Real types, 133, 654–655

Recognition, 112

Record types

definition of records in, 264/

evaluation of, 265

implementation of, 265–266

references to fields in, 264–265

Rectangular arrays, 256

Recursion, 427–429, 626

Recursive rules, 115

Recursive-descent parsers, 175–183

LL grammar class in, 180–183

recursive-descent subprogram, 175–180

ref type, F#, 577

Reference counters, 282

Reference parameters, 279, 384

Reference types

dangling pointers and, 280–281

heap management and, 281–285

implementation of, 281–285

of Java and C#, 280

representations of, 280

variables, 278–279

Referencing environments, 223–224

Referential transparency, 310–311, 628

Reflection, 522

in C#, 526–528

in Java, 523–525

Refutation complete, 685

Regular expressions, 12, 244

Regular grammars, 113, 165

Regular languages, 165

Relational database management systems (RDBMSs), 709

Relational expressions, 316

Relational operators, 316

Release semaphore subprogram, 544–548

Reliability, 14–15

Rendezvous, 552, 554

repeat, 18

REPLs (read-evaluate-print loops), 633

Reserved words, 199–200

Resolution, 684–686

bottom-up, 693

closed-world assumption in, 706

defined, 684

order control, 703–705

in Prolog, 692–695, 703, 705

top-down, 693

Resumes, 408, 410

Resumption, 592

Returned values, 397

Returns, 418

reverse functions, 702

Richards, Martin, 75

Right recursive grammar rules, 123

Right-hand side (RHS), 114, 123, 138, 174, 181, 186, 188, 207

Ritchie, Dennis, 75–76, 356

Rossum, Guido van, 96

Roussel, Phillippe, 77, 688, 711

Row major order, 259

Ruby

abstract data types in, 463–466

binary logic operators of, 317

built-in pattern-matching operations, 244

case expressions, 339, 341

case statement, 342

classes of, 463–464

compound assignment operators of, 320

constructors in, 463

dynamic binding, 517

encapsulation of, 463

enumeration types of, 249

evaluation of, 466, 517–518

exception handling in, 607–608

exponentiation in, 306

formal parameters of, 370, 372

forms of multiple-selection constructs, 339–340

general characteristics, 515–517

hashes, 262–263

information hiding in, 464–465

inheritance in, 517

iterators of, 360

modules, 477–478

object-oriented programming in, 515–518

objects in, 516

origins and characteristics of, 97–98

parameter passing methods of, 385

polymorphism in, 399

records, 263

selection statement, 335

subprogram headers of, 367

type binding in, 205

user-located loop control in, 350

Rule of consequence, 146

Rules, 114–115, 117, 120

run methods, 560–561, 570

Running task, 542

Run-time stacks, 424

Russell, Stephen B., 632

R-value, 202

S
Satisfying subgoals, 692

Scalable algorithms, 535

Schedulers, 541

Scheme language, 49

apply-to-all functional forms in, 649–650

code-building functions in, 650–651

control flow in, 637–638

defining functions in, 634–636

examples of function definitions in, 643–646

functional compositions in, 648–649

functional forms in, 648–650

interpreter in, 633

LET, 646–647

list functions in, 638–641

lists in, 269

numeric predicate functions in, 637

origins of, 633

output functions in, 636

predicate functions in, 641–642

primitive numeric functions in, 633–634

tail recursive functions in, 647–648

Schwartz, Jules I., 53

Scientific applications, 5

Scope

blocks for, 213–215

declaration order for, 215–216

dynamic scoping, 220–222, 437–441

global, 217–219

lifetime and, 222–223

named constants and, 224–226

referencing environments and, 223–224

static scoping, 220

in subprograms, implementing, 437–441

Scott, Dana, 142

Scripting languages, 92–98

JavaScript, 94–96

Perl, 92–94

PHP, 96

Python, 96

Ruby, 97–98

Scripts, 162

select statements, 555–556

Selection, 148–149

Selection statements

multiple-selection, 336–343

postconditions in, 148–149

two-way, 332

Selector expressions, 336

Semantic domains, 137

Semantics. see also Axiomatic semantics; Denotational semantics

dynamic, 134–155

introduction to, 110–111

natural operational, 135

operational, 134–137

static, 128–129

structural operational, 135

Semaphores, 544–548

Sentences, 111

Sentential forms, 116

Sequences, 147–148

Sergot, M. J., 710

Server tasks, 554

Servlet containers, 101

Setter methods, 464, 516

S-expressions, 632

Shallow access, 439–441

Shallow binding, 393–394

SHARE, 51, 53, 67

Shared inheritance, 491

Shaw, J. C., 45

Shift-reduce algorithms, 186

Short Code, 38–39

short integer, 238

Short Range Committee, 58

Short-circuit evaluation, 318–319

Side effects, 309–311, 396–397

SIGPLAN Notices, 80, 103

SIMD (Single-Instruction, Multiple-Data) computers, 536

Simon, Herbert, 45

Simple assignment statements, 130, 687

Simple functions, 626–627

Simple lists, 630, 643–644

Simple phrases, 185

Simplicity, 8–9, 13, 73–75, 163

SIMULA 67, 19, 384, 453, 485–486, 498, 500

design process for, 70–71

language overview of, 71

support for coroutines in, 71

Single inheritance, 487, 491–492

Single-Instruction, Multiple-Data (SIMD) computers, 536

Single-size cells, 281–282

sleep methods, 562, 577

Slices, 242, 257

Smalltalk, 86, 494–496

dynamic binding, 495–496

evaluation of, 496

general characteristics, 494–495

inheritance in, 495

SNOBOL, 69–70

Solaris Common Desktop Environment (CDE), 29

Source languages, 23, 26, 41

special, 50

Special words, 12

Speedcoding, 39

SQL (Structured Query Language), 709

Stack-dynamic arrays, 54, 252

Stack-dynamic local variables, 421–429

Stack-dynamic variables, 208–209

Stanford University, 73

start methods, 561

Start symbols, 115

State diagrams, 165

State of programs, 140

Statement-level concurrency, 535, 538, 578–580

Statement-level control structures

counter-controlled loops, 344–348

for statements, 345–348

guarded commands by, 356–359

iterative statements, 343–355

logically controlled loops, 348

two-way selection statements, 332

unconditional branch statement, 355–356

Static ancestors, 212

Static arrays, 252

Static binding, 204–205, 493

Static chaining, 430–435

Static length strings, 244

Static links, 430–431

static modifiers, 208, 253

Static parents, 212, 430–431

Static scoping, 49, 50, 376, 435, 439, 472, 633, 652, 653

Static semantics, 128–129

Static type bindings, 204–205

Static variables, 209, 210, 375

in binding, 207–208

static_depth, 431

Steele Jr., Guy L., 338

Steelman requirements document, 80

Stepsize, 344

Stichting Mathematisch Centrum, 96

Storage bindings, 207–211

Strachey, Christopher, 142

Strawman requirements document, 79–80

Strict programming languages, 661

Strong typing, 287

structs, 10, 36, 90, 449, 453, 513

in C#, 99, 462, 479

Structural operational semantics, 135

Structure type equivalence, 288

Structured Query Language (SQL), 709

Structures, 689–690

Subclasses, 486, 489–490

Subgoals, 704–706

Subprogram calls, 367

Subprogram definition, 367

Subprogram headers, 367

Subprogram linkage, 418

Subprogram-level concurrency, 539–544

Subprograms

in C++, 399–401

in C# 2005, 403

calling indirectly, 394–396

characteristics of, 366–367

closures, 374, 405–407

coroutines, 407–410

definitions in, 367–368

design issues for, 374, 396–397

in F#, 403–404

functions as, 372–373

fundamentals of, 366–373

generic, 374, 399–404

in Java 5.0, 401–403

local variables in, 375–376

multidimensional arrays and, 387–389

nested, 376

overloaded, 374, 398

parameter profile of, 368

parameter-passing methods, 376–392

parameters as, 392–394

parameters in, 368–372

procedures as, 372–373

protocol of, 368

user-defined overloaded data types in, 404–405

Subprograms, implementing

blocks in, 436–437

calls in, 418

deep access in, 437–439

dynamic scoping in, 437–441

of nested subprograms, 429–435

with recursion, 427–429

returns in, 418

shallow access in, 439–441

stack-dynamic local variables for, 421–429

static chaining, 430–435

without recursion, 425–427

Subrange types, in Ada, 290

Subscript bindings, 252–254

Subscripts, 251

Substring references, 242

subtype enumeration type, 290

Subtype polymorphism, 399

Subtypes, 293, 490–491

Sun Microsystems, 89, 94

Superclass, 486, 500

Swing GUI components, 609–610

Symbolic atoms and lists, 641–642

Symbolic logic, 681

Synchronization, 536, 539. see also Competition synchronization;
Cooperation synchronization

of CML, 576

explicit locks as, 569–570

nonblocking, 569

of threads, 573–574

Synchronous message passing, 551–552

Syntactic domains, 137–139

Syntax. see also Attribute grammars

ambiguous grammars in, 118–119

analysis, 163

analyzer, 24, 28

associativity in, 122–123

BNF and, 113–114, 126

context-free grammars and, 113, 114

derivations in, 115–117

design, 12

in Extended BNF, 125–127

fundamentals of, 114–115

generators in, 112–113

grammars and, 115–117, 127–128

if-then-else statements, 308, 342

of Java, 110, 111

of JavaScript, 94

of LISP, 48

list descriptions in, 115

of ML, 50

operator precedence in, 119–122

parsing and, 117–118

of Python, 97

recognizers in, 112, 127–128

of Ruby, 98

of Smalltalk, 84, 86

unambiguous grammars in, 120, 124–125

Synthesized attributes, 129

Syracuse University, 684

System.Object, 98

Systems programming, 66, 75

Systems software, 22

T
Tail recursive functions, 647–648

Task(s), 539–544

concurrent execution of, 543

descriptors, 544

heavyweight, 539

lightweight, 539

states, 541–542

termination, 555, 557

task specifications, 552–553

Task termination, 555

Task-ready queue, 542, 562

Template functions, 399

Terminal symbols, 118, 138, 176

Terminal values, 344

terminate, 557

Terms, 689

Ternary operators, 309

Tests, 661

Texas A&M University, 454, 498

Text boxes, 609

Theorem-proving, 680, 684, 691

Theory of data types, 236

Thompson, Ken, 75

Threads, 539

in C#, 570–575

in Java, 560–570

priorities of, 563–564

synchronization of, 573–574

Thread class, 561–563

Threads of control, 537

throw statements, 620

Thrown exceptions, 599

throws clauses, 601

Tokens, 114, 164–166

Tombstones, 280–281

Top-down parsers, 172–173

Top-down resolution, 693

Total correctness, 152

Tracing models, 696

Trimming, 72

Tripod, 64, 65

try blocks, 569, 571

try clauses, 594–596, 600, 602–604

Tuples, 266–267

Turing machine, 631

Turner, David, 50

twos complement, 239

Two-way selection statements

clause forms in, 332–333

control expressions for, 332

design issues for, 332–333

nesting selectors in, 333–336

selector expressions in, 336

Type bindings

dynamic, 205–207

static, 204–205

Type checking, 14, 207, 286–287

Type conversions, 313–315

Type, defined, 202

type enumeration type, 247–250

Type equivalence, 288–291

Type error, 286

Type inference, 204

typedef, 291

U
Unambiguous grammars, 120–122, 124–125

for if-else, 124–125

Unary assignment data types, 311–312, 321

Unary operators, 321

Unchecked exceptions, 601, 617

Unconditional branch statements, 355–356

undef, 93, 140–141

undefined, 254

Underflow, 315

Ungar, David, 508

Unicode, 51, 241

Unification, 685, 692

Uninstantiated variables, 708

union, 273

Union types, 270–273

design issues for, 271

discriminated vs. free unions, 271

evaluation of, 273

in F#, 271–272

implementation of, 273

UNIVAC, 38–39

UNIVAC Scientific Exchange (USE), 51

University of Aix-Marseille, 77, 688

University of Edinburgh, 50, 77, 688

University of Utah, 83

UNIX, 29, 93

Unlimited extent, 406

unsafe, C#, 90, 279

USE (UNIVAC Scientific Exchange), 51

User-located loop control mechanisms, 350–351

using directive, 476

V
val statements, 656

Value, 202

Value types, 273

van Rossum, Guido, 96

van Wijngaarden grammars, 72

var declarations, 204

Variables, 200–202, 237

addresses of, 201–202

explicit heap-dynamic variables, 209–210

implicit heap-dynamic variables, 210–211

names of, 201

scope of, 211–213

type of, 202

value of, 202

Variable-size cells, 284–285

VAX minicomputers, 9

VB (Visual BASIC), 13, 63

VDL (Vienna Definition Language), 136–137

Vector processors, 535–537

vehicle class, 486

Vienna Definition Language (VDL), 136–137

Virtual method tables (vtables), 519

virtual reserved word, 528

Visible variables, 211

Visual BASIC (VB), 13, 63

Visual Studio, 29

void, 10, 367, 371

void * pointers, 278

von Neumann architecture, 17–18, 26, 624

von Neumann bottlenecks, 26

vtables (virtual method tables), 519

W
wait semaphores, 544–548

Wall, Larry, 92

Weakest preconditions, 144–145

Web browsers, 534

Web software, 6

Weinberger, Peter, 92

Well-definedness, 16

Wheeler, David J., 40

when clause, 557

while, 90

Java, 110, 111

in logical pretest loops, 149–152

loops, 213, 350, 566, 573

statement, 318, 322, 349–350

Whitaker, Lt. Col. William, 79

Widening type conversions, 313

Widgets, 608–609

Wildcard types, 402–403

Wileden, J. C., 220

Wilkes, Maurice V., 40

Windows, 64, 65

Wirth, Niklaus, 73

Wolf, A. L., 220

Wrapper classes, 90

Writability, 13

X
Xerox Palo Alto Research Center (Xerox PARC), 84

XML (eXtensible Markup Language), 101–102

XSLT (eXtensible Stylesheet Language Transformations), 101

Y
yacc, 128, 189

Z
Zuse, Konrad, 36–37

Contents
1. CONCEPTS OF PROGRAMMING LANGUAGES
2. CONCEPTS OF PROGRAMMING LANGUAGES
3. Changes for the Twelfth Edition of Concepts of Programming

Languages
4. Preface

1. Changes for the Twelfth Edition
2. The Vision
3. Chapter Outlines
4. To the Instructor
5. Supplemental Materials

5. Contents
6. CONCEPTS OF PROGRAMMING LANGUAGES
7. 1 Preliminaries

1. 1.1 Reasons for Studying Concepts of Programming Languages
2. 1.2 Programming Domains

1. 1.2.1 Scientific Applications
2. 1.2.2 Business Applications
3. 1.2.3 Artificial Intelligence
4. 1.2.4 Web Software

3. 1.3 Language Evaluation Criteria
1. 1.3.1 Readability

1. 1.3.1.1 Overall Simplicity
2. 1.3.1.2 Orthogonality
3. 1.3.1.3 Data Types
4. 1.3.1.4 Syntax Design

2. 1.3.2 Writability
1. 1.3.2.1 Simplicity and Orthogonality
2. 1.3.2.2 Expressivity

3. 1.3.3 Reliability
1. 1.3.3.1 Type Checking
2. 1.3.3.2 Exception Handling
3. 1.3.3.3 Aliasing
4. 1.3.3.4 Readability and Writability

4. 1.3.4 Cost
4. 1.4 Influences on Language Design

1. 1.4.1 Computer Architecture
2. 1.4.2 Programming Design Methodologies

5. 1.5 Language Categories
6. 1.6 Language Design Trade-Offs
7. 1.7 Implementation Methods

1. 1.7.1 Compilation
2. 1.7.2 Pure Interpretation
3. 1.7.3 Hybrid Implementation Systems
4. 1.7.4 Preprocessors

8. 1.8 Programming Environments
9. SUMMARY

10. REVIEW QUESTIONS
11. PROBLEM SET

8. 2 Evolution of the Major Programming Languages
1. 2.1 Zuse’s Plankalkül

1. 2.1.1 Historical Background
2. 2.1.2 Language Overview

2. 2.2 Pseudocodes
1. 2.2.1 Short Code
2. 2.2.2 Speedcoding
3. 2.2.3 The UNIVAC “Compiling” System
4. 2.2.4 Related Work

3. 2.3 The IBM 704 and Fortran
1. 2.3.1 Historical Background
2. 2.3.2 Design Process
3. 2.3.3 Fortran I Overview
4. 2.3.4 Fortran II
5. 2.3.5 Fortrans IV, 77, 90, 95, 2003, and 2008
6. 2.3.6 Evaluation

4. 2.4 Functional Programming: Lisp
1. 2.4.1 The Beginnings of Artificial Intelligence (AI) and List

Processing
2. 2.4.2 Lisp Design Process
3. 2.4.3 Language Overview

1. 2.4.3.1 Data Structures

2. 2.4.3.2 Processes in Functional Programming
3. 2.4.3.3 The Syntax of Lisp

4. 2.4.4 Evaluation
5. 2.4.5 Two Descendants of Lisp

1. 2.4.5.1 Scheme
2. 2.4.5.2 Common Lisp

6. 2.4.6 Related Languages
5. 2.5 The First Step Toward Sophistication: ALGOL 60

1. 2.5.1 Historical Background
2. 2.5.2 Early Design Process
3. 2.5.3 ALGOL 58 Overview
4. 2.5.4 Reception of the ALGOL 58 Report
5. 2.5.5 ALGOL 60 Design Process
6. 2.5.6 ALGOL 60 Overview
7. 2.5.7 Evaluation

6. 2.6 Computerizing Business Records: COBOL
1. 2.6.1 Historical Background
2. 2.6.2 FLOW-MATIC
3. 2.6.3 COBOL Design Process
4. 2.6.4 Evaluation

7. 2.7 The Beginnings of Timesharing: Basic
1. 2.7.1 Design Process
2. 2.7.2 Language Overview
3. 2.7.3 Evaluation

8. 2.8 Everything for Everybody: PL/I
1. 2.8.1 Historical Background
2. 2.8.2 Design Process
3. 2.8.3 Language Overview
4. 2.8.4 Evaluation

9. 2.9 Two Early Dynamic Languages: APL and SNOBOL
1. 2.9.1 Origins and Characteristics of APL
2. 2.9.2 Origins and Characteristics of SNOBOL

10. 2.10 The Beginnings of Data Abstraction: SIMULA 67
1. 2.10.1 Design Process
2. 2.10.2 Language Overview

11. 2.11 Orthogonal Design: ALGOL 68
1. 2.11.1 Design Process

2. 2.11.2 Language Overview
3. 2.11.3 Evaluation

12. 2.12 Some Early Descendants of the ALGOLs
1. 2.12.1 Simplicity by Design: Pascal

1. 2.12.1.1 Historical Background
2. 2.12.1.2 Evaluation

2. 2.12.2 A Portable Systems Language: C
1. 2.12.2.1 Historical Background
2. 2.12.2.2 Evaluation

13. 2.13 Programming Based on Logic: Prolog
1. 2.13.1 Design Process
2. 2.13.2 Language Overview
3. 2.13.3 Evaluation

14. 2.14 History’s Largest Design Effort: Ada
1. 2.14.1 Historical Background
2. 2.14.2 Design Process
3. 2.14.3 Language Overview
4. 2.14.4 Evaluation
5. 2.14.5 Ada 95 and Ada 2005

15. 2.15 Object-Oriented Programming: Smalltalk
1. 2.15.1 Design Process
2. 2.15.2 Language Overview
3. 2.15.3 Evaluation

16. 2.16 Combining Imperative and Object-Oriented Features: C++
1. 2.16.1 Design Process
2. 2.16.2 Language Overview
3. 2.16.3 Evaluation
4. 2.16.4 A Replacement for Objective-C, Swift
5. 2.16.5 Another Related Language: Delphi

17. 2.17 An Imperative-Based Object-Oriented Language: Java
1. 2.17.1 Design Process
2. 2.17.2 Language Overview
3. 2.17.3 Evaluation

18. 2.18 Scripting Languages
1. 2.18.1 Origins and Characteristics of Perl
2. 2.18.2 Origins and Characteristics of JavaScript
3. 2.18.3 Origins and Characteristics of PHP

4. 2.18.4 Origins and Characteristics of Python
5. 2.18.5 Origins and Characteristics of Ruby

19. 2.19 The Flagship .NET Language: C#
1. 2.19.1 Design Process
2. 2.19.2 Language Overview
3. 2.19.3 Evaluation

20. 2.20 Markup-Programming Hybrid Languages
1. 2.20.1 XSLT
2. 2.20.2 JSP

21. SUMMARY
22. BIBLIOGRAPHIC NOTES
23. REVIEW QUESTIONS
24. PROBLEM SET
25. PROGRAMMING EXERCISES

9. 3 Describing Syntax and Semantics
1. 3.1 Introduction
2. 3.2 The General Problem of Describing Syntax

1. 3.2.1 Language Recognizers
2. 3.2.2 Language Generators

3. 3.3 Formal Methods of Describing Syntax
1. 3.3.1 Backus-Naur Form and Context-Free Grammars

1. 3.3.1.1 Context-Free Grammars
2. 3.3.1.2 Origins of Backus-Naur Form
3. 3.3.1.3 Fundamentals
4. 3.3.1.4 Describing Lists
5. 3.3.1.5 Grammars and Derivations
6. 3.3.1.6 Parse Trees
7. 3.3.1.7 Ambiguity
8. 3.3.1.8 Operator Precedence
9. 3.3.1.9 Associativity of Operators

10. 3.3.1.10 An Unambiguous Grammar for if-else
2. 3.3.2 Extended BNF
3. 3.3.3 Grammars and Recognizers

4. 3.4 Attribute Grammars
1. 3.4.1 Static Semantics
2. 3.4.2 Basic Concepts
3. 3.4.3 Attribute Grammars Defined

4. 3.4.4 Intrinsic Attributes
5. 3.4.5 Examples of Attribute Grammars
6. 3.4.6 Computing Attribute Values
7. 3.4.7 Evaluation

5. 3.5 Describing the Meanings of Programs: Dynamic Semantics
1. 3.5.1 Operational Semantics

1. 3.5.1.1 The Basic Process
2. 3.5.1.2 Evaluation

2. 3.5.2 Denotational Semantics
1. 3.5.2.1 Two Simple Examples
2. 3.5.2.2 The State of a Program
3. 3.5.2.3 Expressions
4. 3.5.2.4 Assignment Statements
5. 3.5.2.5 Logical Pretest Loops
6. 3.5.2.6 Evaluation

3. 3.5.3 Axiomatic Semantics
1. 3.5.3.1 Assertions
2. 3.5.3.2 Weakest Preconditions
3. 3.5.3.3 Assignment Statements
4. 3.5.3.4 Sequences
5. 3.5.3.5 Selection
6. 3.5.3.6 Logical Pretest Loops
7. 3.5.3.7 Program Proofs
8. 3.5.3.8 Evaluation

6. SUMMARY
7. BIBLIOGRAPHIC NOTES
8. REVIEW QUESTIONS
9. PROBLEM SET

10. 4 Lexical and Syntax Analysis
1. 4.1 Introduction
2. 4.2 Lexical Analysis
3. 4.3 The Parsing Problem

1. 4.3.1 Introduction to Parsing
2. 4.3.2 Top-Down Parsers
3. 4.3.3 Bottom-Up Parsers
4. 4.3.4 The Complexity of Parsing

4. 4.4 Recursive-Descent Parsing

1. 4.4.1 The Recursive-Descent Parsing Process
2. 4.4.2 The LL Grammar Class

5. 4.5 Bottom-Up Parsing
1. 4.5.1 The Parsing Problem for Bottom-Up Parsers
2. 4.5.2 Shift-Reduce Algorithms
3. 4.5.3 LR Parsers

6. SUMMARY
7. REVIEW QUESTIONS
8. PROBLEM SET
9. PROGRAMMING EXERCISES

11. 5 Names, Bindings, and Scopes
1. 5.1 Introduction
2. 5.2 Names

1. 5.2.1 Design Issues
2. 5.2.2 Name Forms
3. 5.2.3 Special Words

3. 5.3 Variables
1. 5.3.1 Name
2. 5.3.2 Address
3. 5.3.3 Type
4. 5.3.4 Value

4. 5.4 The Concept of Binding
1. 5.4.1 Binding of Attributes to Variables
2. 5.4.2 Type Bindings

1. 5.4.2.1 Static Type Binding
2. 5.4.2.2 Dynamic Type Binding

3. 5.4.3 Storage Bindings and Lifetime
1. 5.4.3.1 Static Variables
2. 5.4.3.2 Stack-Dynamic Variables
3. 5.4.3.3 Explicit Heap-Dynamic Variables
4. 5.4.3.4 Implicit Heap-Dynamic Variables

5. 5.5 Scope
1. 5.5.1 Static Scope
2. 5.5.2 Blocks
3. 5.5.3 Declaration Order
4. 5.5.4 Global Scope
5. 5.5.5 Evaluation of Static Scoping

6. 5.5.6 Dynamic Scope
7. 5.5.7 Evaluation of Dynamic Scoping

6. 5.6 Scope and Lifetime
7. 5.7 Referencing Environments
8. 5.8 Named Constants
9. SUMMARY

10. REVIEW QUESTIONS
11. PROBLEM SET
12. PROGRAMMING EXERCISES

12. 6 Data Types
1. 6.1 Introduction
2. 6.2 Primitive Data Types

1. 6.2.1 Numeric Types
1. 6.2.1.1 Integer
2. 6.2.1.2 Floating-Point
3. 6.2.1.3 Complex
4. 6.2.1.4 Decimal

2. 6.2.2 Boolean Types
3. 6.2.3 Character Types

3. 6.3 Character String Types
1. 6.3.1 Design Issues
2. 6.3.2 Strings and Their Operations
3. 6.3.3 String Length Options
4. 6.3.4 Evaluation
5. 6.3.5 Implementation of Character String Types

4. 6.4 Enumeration Types
1. 6.4.1 Design Issues
2. 6.4.2 Designs
3. 6.4.3 Evaluation

5. 6.5 Array Types
1. 6.5.1 Design Issues
2. 6.5.2 Arrays and Indices
3. 6.5.3 Subscript Bindings and Array Categories
4. 6.5.4 Array Initialization
5. 6.5.5 Array Operations
6. 6.5.6 Rectangular and Jagged Arrays
7. 6.5.7 Slices

8. 6.5.8 Evaluation
9. 6.5.9 Implementation of Array Types

6. 6.6 Associative Arrays
1. 6.6.1 Structure and Operations
2. 6.6.2 Implementing Associative Arrays

7. 6.7 Record Types
1. 6.7.1 Definitions of Records
2. 6.7.2 References to Record Fields
3. 6.7.3 Evaluation
4. 6.7.4 Implementation of Record Types

8. 6.8 Tuple Types
9. 6.9 List Types

10. 6.10 Union Types
1. 6.10.1 Design Issues
2. 6.10.2 Discriminated Versus Free Unions
3. 6.10.3 Unions in F#
4. 6.10.4 Evaluation
5. 6.10.5 Implementation of Union Types

11. 6.11 Pointer and Reference Types
1. 6.11.1 Design Issues
2. 6.11.2 Pointer Operations
3. 6.11.3 Pointer Problems

1. 6.11.3.1 Dangling Pointers
2. 6.11.3.2 Lost Heap-Dynamic Variables

4. 6.11.4 Pointers in C and C++
5. 6.11.5 Reference Types
6. 6.11.6 Evaluation
7. 6.11.7 Implementation of Pointer and Reference Types

1. 6.11.7.1 Representations of Pointers and References
2. 6.11.7.2 Solutions to the Dangling-Pointer Problem
3. 6.11.7.3 Heap Management

1. Single-Size Cells 
2. Variable-Size Cells 

12. 6.12 Optional Types
13. 6.13 Type Checking
14. 6.14 Strong Typing
15. 6.15 Type Equivalence

16. 6.16 Theory and Data Types
17. SUMMARY
18. BIBLIOGRAPHIC NOTES
19. REVIEW QUESTIONS
20. PROBLEM SET
21. PROGRAMMING EXERCISES

13. 7 Expressions and Assignment Statements
1. 7.1 Introduction
2. 7.2 Arithmetic Expressions

1. 7.2.1 Operator Evaluation Order
1. 7.2.1.1 Precedence
2. 7.2.1.2 Associativity
3. 7.2.1.3 Parentheses
4. 7.2.1.4 Ruby Expressions
5. 7.2.1.5 Expressions in Lisp
6. 7.2.1.6 Conditional Expressions

2. 7.2.2 Operand Evaluation Order
1. 7.2.2.1 Side Effects
2. 7.2.2.2 Referential Transparency and Side Effects

3. 7.3 Overloaded Operators
4. 7.4 Type Conversions

1. 7.4.1 Coercion in Expressions
2. 7.4.2 Explicit Type Conversion
3. 7.4.3 Errors in Expressions

5. 7.5 Relational and Boolean Expressions
1. 7.5.1 Relational Expressions
2. 7.5.2 Boolean Expressions

6. 7.6 Short-Circuit Evaluation
7. 7.7 Assignment Statements

1. 7.7.1 Simple Assignments
2. 7.7.2 Conditional Targets
3. 7.7.3 Compound Assignment Operators
4. 7.7.4 Unary Assignment Operators
5. 7.7.5 Assignment as an Expression
6. 7.7.6 Multiple Assignments
7. 7.7.7 Assignment in Functional Programming Languages

8. 7.8 Mixed-Mode Assignment

9. SUMMARY
10. REVIEW QUESTIONS
11. PROBLEM SET
12. PROGRAMMING EXERCISES

14. 8 Statement-Level Control Structures
1. 8.1 Introduction
2. 8.2 Selection Statements

1. 8.2.1 Two-Way Selection Statements
1. 8.2.1.1 Design Issues
2. 8.2.1.2 The Control Expression
3. 8.2.1.3 Clause Form
4. 8.2.1.4 Nesting Selectors
5. 8.2.1.5 Selector Expressions

2. 8.2.2 Multiple-Selection Statements
1. 8.2.2.1 Design Issues
2. 8.2.2.2 Examples of Multiple Selectors
3. 8.2.2.3 Implementing Multiple Selection Structures
4. 8.2.2.4 Multiple Selection Using if

3. 8.3 Iterative Statements
1. 8.3.1 Counter-Controlled Loops

1. 8.3.1.1 Design Issues
2. 8.3.1.2 The for Statement of the C-Based Languages
3. 8.3.1.3 The for Statement of Python
4. 8.3.1.4 Counter-Controlled Loops in Functional

Languages
2. 8.3.2 Logically Controlled Loops

1. 8.3.2.1 Design Issues
2. 8.3.2.2 Examples

3. 8.3.3 User-Located Loop Control Mechanisms
4. 8.3.4 Iteration Based on Data Structures

4. 8.4 Unconditional Branching
5. 8.5 Guarded Commands
6. 8.6 Conclusions
7. SUMMARY
8. REVIEW QUESTIONS
9. PROBLEM SET

10. PROGRAMMING EXERCISES

15. 9 Subprograms
1. 9.1 Introduction
2. 9.2 Fundamentals of Subprograms

1. 9.2.1 General Subprogram Characteristics
2. 9.2.2 Basic Definitions
3. 9.2.3 Parameters
4. 9.2.4 Procedures and Functions

3. 9.3 Design Issues for Subprograms
4. 9.4 Local Referencing Environments

1. 9.4.1 Local Variables
2. 9.4.2 Nested Subprograms

5. 9.5 Parameter-Passing Methods
1. 9.5.1 Semantics Models of Parameter Passing
2. 9.5.2 Implementation Models of Parameter Passing

1. 9.5.2.1 Pass-by-Value
2. 9.5.2.2 Pass-by-Result
3. 9.5.2.3 Pass-by-Value-Result
4. 9.5.2.4 Pass-by-Reference
5. 9.5.2.5 Pass-by-Name

3. 9.5.3 Implementing Parameter-Passing Methods
4. 9.5.4 Parameter-Passing Methods of Some Common

Languages
5. 9.5.5 Type Checking Parameters
6. 9.5.6 Multidimensional Arrays as Parameters
7. 9.5.7 Design Considerations
8. 9.5.8 Examples of Parameter Passing

6. 9.6 Parameters That Are Subprograms
7. 9.7 Calling Subprograms Indirectly
8. 9.8 Design Issues for Functions

1. 9.8.1 Functional Side Effects
2. 9.8.2 Types of Returned Values
3. 9.8.3 Number of Returned Values

9. 9.9 Overloaded Subprograms
10. 9.10 Generic Subprograms

1. 9.10.1 Generic Functions in C++
2. 9.10.2 Generic Methods in Java 5.0
3. 9.10.3 Generic Methods in C# 2005

4. 9.10.4 Generic Functions in F#
11. 9.11 User-Defined Overloaded Operators
12. 9.12 Closures
13. 9.13 Coroutines
14. SUMMARY
15. REVIEW QUESTIONS
16. PROBLEM SET
17. PROGRAMMING EXERCISES

16. 10 Implementing Subprograms
1. 10.1 The General Semantics of Calls and Returns
2. 10.2 Implementing “Simple” Subprograms
3. 10.3 Implementing Subprograms with Stack-Dynamic Local

Variables
1. 10.3.1 More Complex Activation Records
2. 10.3.2 An Example without Recursion
3. 10.3.3 Recursion

4. 10.4 Nested Subprograms
1. 10.4.1 The Basics
2. 10.4.2 Static Chains

5. 10.5 Blocks
6. 10.6 Implementing Dynamic Scoping

1. 10.6.1 Deep Access
2. 10.6.2 Shallow Access

7. SUMMARY
8. REVIEW QUESTIONS
9. PROBLEM SET

10. PROGRAMMING EXERCISES
17. 11 Abstract Data Types and Encapsulation Constructs

1. 11.1 The Concept of Abstraction
2. 11.2 Introduction to Data Abstraction

1. 11.2.1 Floating-Point as an Abstract Data Type
2. 11.2.2 User-Defined Abstract Data Types
3. 11.2.3 An Example

3. 11.3 Design Issues for Abstract Data Types
4. 11.4 Language Examples

1. 11.4.1 Abstract Data Types in C++
1. 11.4.1.1 Encapsulation

2. 11.4.1.2 Information Hiding
3. 11.4.1.3 Constructors and Destructors
4. 11.4.1.4 An Example

2. 11.4.2 Abstract Data Types in Java
1. 11.4.2.1 An Example
2. 11.4.2.2 Evaluation

3. 11.4.3 Abstract Data Types in C#
1. 11.4.3.1 Encapsulation
2. 11.4.3.2 Information Hiding

4. 11.4.4 Abstract Data Types in Ruby
1. 11.4.4.1 Encapsulation
2. 11.4.4.2 Information Hiding
3. 11.4.4.3 An Example
4. 11.4.4.4 Evaluation

5. 11.5 Parameterized Abstract Data Types
1. 11.5.1 C++
2. 11.5.2 Java 5.0
3. 11.5.3 C# 2005

6. 11.6 Encapsulation Constructs
1. 11.6.1 Introduction
2. 11.6.2 Encapsulation in C
3. 11.6.3 Encapsulation in C++
4. 11.6.4 C# Assemblies

7. 11.7 Naming Encapsulations
1. 11.7.1 C++ Namespaces
2. 11.7.2 Java Packages
3. 11.7.3 Ruby Modules

8. SUMMARY
9. REVIEW QUESTIONS

10. PROBLEM SET
11. PROGRAMMING EXERCISES

18. 12 Support for Object-Oriented Programming
1. 12.1 Introduction
2. 12.2 Object-Oriented Programming

1. 12.2.1 Introduction
2. 12.2.2 Inheritance
3. 12.2.3 Dynamic Binding

3. 12.3 Design Issues for Object-Oriented Languages
1. 12.3.1 The Exclusivity of Objects
2. 12.3.2 Are Subclasses Subtypes?
3. 12.3.3 Single and Multiple Inheritance
4. 12.3.4 Allocation and Deallocation of Objects
5. 12.3.5 Dynamic and Static Binding
6. 12.3.6 Nested Classes
7. 12.3.7 Initialization of Objects

4. 12.4 Support for Object-Oriented Programming in Specific
Languages

1. 12.4.1 Smalltalk
1. 12.4.1.1 General Characteristics
2. 12.4.1.2 Inheritance
3. 12.4.1.3 Dynamic Binding
4. 12.4.1.4 Evaluation of Smalltalk

2. 12.4.2 C++
1. 12.4.2.1 General Characteristics
2. 12.4.2.2 Inheritance
3. 12.4.2.3 Dynamic Binding
4. 12.4.2.4 Evaluation

3. 12.4.3 Java
1. 12.4.3.1 General Characteristics
2. 12.4.3.2 Inheritance
3. 12.4.3.3 Dynamic Binding
4. 12.4.3.4 Nested Classes
5. 12.4.3.5 Evaluation

4. 12.4.4 C#
1. 12.4.4.1 General Characteristics
2. 12.4.4.2 Inheritance
3. 12.4.4.3 Dynamic Binding
4. 12.4.4.4 Nested Classes
5. 12.4.4.5 Evaluation

5. 12.4.5 Ruby
1. 12.4.5.1 General Characteristics
2. 12.4.5.2 Inheritance
3. 12.4.5.3 Dynamic Binding
4. 12.4.5.4 Evaluation

5. 12.5 Implementation of Object-Oriented Constructs
1. 12.5.1 Instance Data Storage
2. 12.5.2 Dynamic Binding of Method Calls to Methods

6. 12.6 Reflection
1. 12.6.1 Introduction
2. 12.6.2 What Is Reflection?
3. 12.6.3 Reflection in Java
4. 12.6.4 Reflection in C#

7. SUMMARY
8. REVIEW QUESTIONS
9. PROBLEM SET

10. PROGRAMMING EXERCISES
19. 13 Concurrency

1. 13.1 Introduction
1. 13.1.1 Multiprocessor Architectures
2. 13.1.2 Categories of Concurrency
3. 13.1.3 Motivations for the Use of Concurrency

2. 13.2 Introduction to Subprogram-Level Concurrency
1. 13.2.1 Fundamental Concepts
2. 13.2.2 Language Design for Concurrency
3. 13.2.3 Design Issues

3. 13.3 Semaphores
1. 13.3.1 Introduction
2. 13.3.2 Cooperation Synchronization
3. 13.3.3 Competition Synchronization
4. 13.3.4 Evaluation

4. 13.4 Monitors
1. 13.4.1 Introduction
2. 13.4.2 Competition Synchronization
3. 13.4.3 Cooperation Synchronization
4. 13.4.4 Evaluation

5. 13.5 Message Passing
1. 13.5.1 Introduction
2. 13.5.2 The Concept of Synchronous Message Passing

6. 13.6 Ada Support for Concurrency
1. 13.6.1 Fundamentals
2. 13.6.2 Cooperation Synchronization

3. 13.6.3 Competition Synchronization
4. 13.6.4 Protected Objects
5. 13.6.5 Evaluation

7. 13.7 Java Threads
1. 13.7.1 The Thread Class
2. 13.7.2 Priorities
3. 13.7.3 Semaphores
4. 13.7.4 Competition Synchronization
5. 13.7.5 Cooperation Synchronization
6. 13.7.6 Nonblocking Synchronization
7. 13.7.7 Explicit Locks
8. 13.7.8 Evaluation

8. 13.8 C# Threads
1. 13.8.1 Basic Thread Operations
2. 13.8.2 Synchronizing Threads
3. 13.8.3 Evaluation

9. 13.9 Concurrency in Functional Languages
1. 13.9.1 Multi-LISP
2. 13.9.2 Concurrent ML
3. 13.9.3 F#

10. 13.10 Statement-Level Concurrency
1. 13.10.1 High-Performance Fortran

11. SUMMARY
12. BIBLIOGRAPHIC NOTES
13. REVIEW QUESTIONS
14. PROBLEM SET
15. PROGRAMMING EXERCISES

20. 14 Exception Handling and Event Handling
1. 14.1 Introduction to Exception Handling

1. 14.1.1 Basic Concepts
2. 14.1.2 Design Issues

2. 14.2 Exception Handling in C++
1. 14.2.1 Exception Handlers
2. 14.2.2 Binding Exceptions to Handlers
3. 14.2.3 Continuation
4. 14.2.4 Other Design Choices
5. 14.2.5 An Example

6. 14.2.6 Evaluation
3. 14.3 Exception Handling in Java

1. 14.3.1 Classes of Exceptions
2. 14.3.2 Exception Handlers
3. 14.3.3 Binding Exceptions to Handlers
4. 14.3.4 Other Design Choices
5. 14.3.5 An Example
6. 14.3.6 The finally Clause
7. 14.3.7 Assertions
8. 14.3.8 Evaluation

4. 14.4 Exception Handling in Python and Ruby
1. 14.4.1 Python
2. 14.4.2 Ruby

5. 14.5 Introduction to Event Handling
6. 14.6 Event Handling with Java

1. 14.6.1 Java Swing GUI Components4
2. 14.6.2 The Java Event Model

7. 14.7 Event Handling in C#
8. SUMMARY
9. BIBLIOGRAPHIC NOTES

10. REVIEW QUESTIONS
11. PROBLEM SET
12. PROGRAMMING EXERCISES

21. 15 Functional Programming Languages
1. 15.1 Introduction
2. 15.2 Mathematical Functions

1. 15.2.1 Simple Functions
2. 15.2.2 Functional Forms

3. 15.3 Fundamentals of Functional Programming Languages
4. 15.4 The First Functional Programming Language: Lisp

1. 15.4.1 Data Types and Structures
2. 15.4.2 The First Lisp Interpreter

5. 15.5 An Introduction to Scheme
1. 15.5.1 Origins of Scheme
2. 15.5.2 The Scheme Interpreter
3. 15.5.3 Primitive Numeric Functions
4. 15.5.4 Defining Functions

5. 15.5.5 Output Functions
6. 15.5.6 Numeric Predicate Functions
7. 15.5.7 Control Flow
8. 15.5.8 List Functions
9. 15.5.9 Predicate Functions for Symbolic Atoms and Lists

10. 15.5.10 Example Scheme Functions
11. 15.5.11 LET

12. 15.5.12 Tail Recursion in Scheme
13. 15.5.13 Functional Forms

1. 15.5.13.1 Functional Composition
2. 15.5.13.2 An Apply-to-All Functional Form

14. 15.5.14 Functions That Build Code
6. 15.6 Common Lisp
7. 15.7 ML
8. 15.8 Haskell
9. 15.9 F#

10. 15.10 Support for Functional Programming in Primarily Imperative
Languages

11. 15.11 A Comparison of Functional and Imperative Languages
12. SUMMARY
13. BIBLIOGRAPHIC NOTES
14. REVIEW QUESTIONS
15. PROBLEM SET
16. PROGRAMMING EXERCISES

22. 16 Logic Programming Languages
1. 16.1 Introduction
2. 16.2 A Brief Introduction to Predicate Calculus

1. 16.2.1 Propositions
2. 16.2.2 Clausal Form

3. 16.3 Predicate Calculus and Proving Theorems
4. 16.4 An Overview of Logic Programming
5. 16.5 The Origins of Prolog
6. 16.6 The Basic Elements of Prolog

1. 16.6.1 Terms
2. 16.6.2 Fact Statements
3. 16.6.3 Rule Statements
4. 16.6.4 Goal Statements

5. 16.6.5 The Inferencing Process of Prolog
6. 16.6.6 Simple Arithmetic
7. 16.6.7 List Structures

7. 16.7 Deficiencies of Prolog
1. 16.7.1 Resolution Order Control
2. 16.7.2 The Closed-World Assumption
3. 16.7.3 The Negation Problem
4. 16.7.4 Intrinsic Limitations

8. 16.8 Applications of Logic Programming
1. 16.8.1 Relational Database Management Systems
2. 16.8.2 Expert Systems
3. 16.8.3 Natural-Language Processing

9. SUMMARY
10. BIBLIOGRAPHIC NOTES
11. REVIEW QUESTIONS
12. PROBLEM SET
13. PROGRAMMING EXERCISES

23. Bibliography
24. Index

1. A
2. B
3. C
4. D
5. E
6. F
7. G
8. H
9. I

10. J
11. K
12. L
13. M
14. N
15. O
16. P
17. Q
18. R

19. S
20. T
21. U
22. V
23. W
24. X
25. Y
26. Z

List of Illustrations
1. Figure 1.1 The von Neumann computer architecture
2. Figure 1.2 Layered interface of virtual computers, provided by a typical

computer system
3. Figure 1.3 The compilation process
4. Figure 1.4 Pure interpretation
5. Figure 1.5 Hybrid implementation system
6. Figure 2.1 Genealogy of common high-level programming languages
7. Figure 2.2 Internal representation of two Lisp lists
8. Figure 3.1 A parse tree for the simple statement A = B * (A + C)
9. Figure 3.2 Two distinct parse trees for the same sentence, A = B + C * A

10. Figure 3.3 The unique parse tree for A = B + C * A using an
unambiguous grammar

11. Figure 3.4 A parse tree for A = B + C + A illustrating the associativity of
addition

12. Figure 3.5 Two distinct parse trees for the same sentential form
13. Figure 3.6 A parse tree for A = A + B
14. Figure 3.7 The flow of attributes in the tree
15. Figure 3.8 A fully attributed parse tree
16. Figure 3.9 A parse tree of the binary number 110
17. Figure 3.10 A parse tree with denoted objects for 110
18. Figure 4.1 A state diagram to recognize names, parentheses, and -

arithmetic operators
19. Figure 4.2 Parse tree for (sum + 47)/ total
20. Figure 4.3 A parse tree for E+T * id
21. Figure 4.4 The structure of an LR parser

22. Figure 4.5 The LR parsing table for an arithmetic expression grammar
23. Figure 6.1 IEEE floating-point formats: (a) single precision, (b) double

precision
24. Figure 6.2 Compile-time descriptor for static strings
25. Figure 6.3 Run-time descriptor for limited dynamic strings
26. Figure 6.4 Compile-time descriptor for single-dimensioned arrays
27. Figure 6.5 The location of the [i,j] element in a matrix
28. Figure 6.6 A compile-time descriptor for a multidimensional array
29. Figure 6.7 A compile-time descriptor for a record
30. Figure 6.8 The assignment operation j = *ptr
31. Figure 6.9 An example of the actions of the marking algorithm
32. Figure 9.1 The three semantics models of parameter passing when

physical moves are used
33. Figure 9.2 One possible stack implementation of the common -

parameter-passing methods
34. Figure 9.3 Two possible execution control sequences for two coroutines

without loops
35. Figure 9.4 Coroutine execution sequence with loops
36. Figure 10.1 An activation record for simple subprogram
37. Figure 10.2 The code and activation records of a program with simple

subprograms
38. Figure 10.3 A typical activation record for a language with stack-

dynamic local variables
39. Figure 10.4 The activation record for function sub
40. Figure 10.5 Stack contents for three points in a program
41. Figure 10.6 The activation record for factorial
42. Figure 10.7 Stack contents at position 1 in factorial
43. Figure 10.8 Stack contents during execution of main and factorial
44. Figure 10.9 Stack contents at position 1 in the program main
45. Figure 10.10 Block variable storage when blocks are not treated as -

parameterless procedures
46. Figure 10.11 Stack contents for a dynamic-scoped program
47. Figure 10.12 One method of using shallow access to implement dynamic

scoping
48. Figure 12.1 A simple example of inheritance
49. Figure 12.2 Dynamic binding
50. Figure 12.3 An example of diamond inheritance

51. Figure 12.4 An example of object slicing
52. Figure 12.5 Multiple inheritance
53. Figure 12.6 Dynamic binding
54. Figure 12.7 An example of the CIRs with single inheritance
55. Figure 12.8 An example of a subclass CIR with multiple parents
56. Figure 13.1 The need for competition synchronization
57. Figure 13.2 Flow diagram of task states
58. Figure 13.3 A program using a monitor to control access to a shared

buffer
59. Figure 13.4 Two ways a rendezvous with Task_Example can occur
60. Figure 13.5 Graphical representation of a rendezvous caused by a

message sent from task A to task B
61. Figure 14.1 Exception-handling control flow
62. Figure 14.2 Output of RadioB.java
63. Figure 15.1 Internal representation of two Lisp lists
64. Figure 15.2 The result of several CONS operations
65. Figure 16.1 Control flow model for the goal likes (jake, X), likes

(darcie, X)

List of Tables
1. Table 1.1 Language evaluation criteria and the characteristics that

affect them
2. Table 12.1 Designs

Landmarks
1. Frontmatter
2. Start of Content
3. backmatter
4. List of Illustrations
5. List of Tables

1. i
2. ii

3. iii
4. iv
5. v
6. vi
7. vii
8. viii
9. ix

10. x
11. xi
12. xii
13. xiii
14. xiv
15. xv
16. xvi
17. xvii
18. xviii
19. xix
20. xx
21. xxi
22. xxii
23. xxiii
24. xxiv
25. 1
26. 2
27. 3
28. 4
29. 5
30. 6
31. 7
32. 8
33. 9
34. 10
35. 11
36. 12
37. 13
38. 14
39. 15

40. 16
41. 17
42. 18
43. 19
44. 20
45. 21
46. 22
47. 23
48. 24
49. 25
50. 26
51. 27
52. 28
53. 29
54. 30
55. 31
56. 32
57. 33
58. 34
59. 35
60. 36
61. 37
62. 38
63. 39
64. 40
65. 41
66. 42
67. 43
68. 44
69. 45
70. 46
71. 47
72. 48
73. 49
74. 50
75. 51
76. 52

77. 53
78. 54
79. 55
80. 56
81. 57
82. 58
83. 59
84. 60
85. 61
86. 62
87. 63
88. 64
89. 65
90. 66
91. 67
92. 68
93. 69
94. 70
95. 71
96. 72
97. 73
98. 74
99. 75

100. 76
101. 77
102. 78
103. 79
104. 80
105. 81
106. 82
107. 83
108. 84
109. 85
110. 86
111. 87
112. 88
113. 89

114. 90
115. 91
116. 92
117. 93
118. 94
119. 95
120. 96
121. 97
122. 98
123. 99
124. 100
125. 101
126. 102
127. 103
128. 104
129. 105
130. 106
131. 107
132. 108
133. 109
134. 110
135. 111
136. 112
137. 113
138. 114
139. 115
140. 116
141. 117
142. 118
143. 119
144. 120
145. 121
146. 122
147. 123
148. 124
149. 125
150. 126

151. 127
152. 128
153. 129
154. 130
155. 131
156. 132
157. 133
158. 134
159. 135
160. 136
161. 137
162. 138
163. 139
164. 140
165. 141
166. 142
167. 143
168. 144
169. 145
170. 146
171. 147
172. 148
173. 149
174. 150
175. 151
176. 152
177. 153
178. 154
179. 155
180. 156
181. 157
182. 158
183. 159
184. 160
185. 161
186. 162
187. 163

188. 164
189. 165
190. 166
191. 167
192. 168
193. 169
194. 170
195. 171
196. 172
197. 173
198. 174
199. 175
200. 176
201. 177
202. 178
203. 179
204. 180
205. 181
206. 182
207. 183
208. 184
209. 185
210. 186
211. 187
212. 188
213. 189
214. 190
215. 191
216. 192
217. 193
218. 194
219. 195
220. 196
221. 197
222. 198
223. 199
224. 200

225. 201
226. 202
227. 203
228. 204
229. 205
230. 206
231. 207
232. 208
233. 209
234. 210
235. 211
236. 212
237. 213
238. 214
239. 215
240. 216
241. 217
242. 218
243. 219
244. 220
245. 221
246. 222
247. 223
248. 224
249. 225
250. 226
251. 227
252. 228
253. 229
254. 230
255. 231
256. 232
257. 233
258. 234
259. 235
260. 236
261. 237

262. 238
263. 239
264. 240
265. 241
266. 242
267. 243
268. 244
269. 245
270. 246
271. 247
272. 248
273. 249
274. 250
275. 251
276. 252
277. 253
278. 254
279. 255
280. 256
281. 257
282. 258
283. 259
284. 260
285. 261
286. 262
287. 263
288. 264
289. 265
290. 266
291. 267
292. 268
293. 269
294. 270
295. 271
296. 272
297. 273
298. 274

299. 275
300. 276
301. 277
302. 278
303. 279
304. 280
305. 281
306. 282
307. 283
308. 284
309. 285
310. 286
311. 287
312. 288
313. 289
314. 290
315. 291
316. 292
317. 293
318. 294
319. 295
320. 296
321. 297
322. 298
323. 299
324. 300
325. 301
326. 302
327. 303
328. 304
329. 305
330. 306
331. 307
332. 308
333. 309
334. 310
335. 311

336. 312
337. 313
338. 314
339. 315
340. 316
341. 317
342. 318
343. 319
344. 320
345. 321
346. 322
347. 323
348. 324
349. 325
350. 326
351. 327
352. 328
353. 329
354. 330
355. 331
356. 332
357. 333
358. 334
359. 335
360. 336
361. 337
362. 338
363. 339
364. 340
365. 341
366. 342
367. 343
368. 344
369. 345
370. 346
371. 347
372. 348

373. 349
374. 350
375. 351
376. 352
377. 353
378. 354
379. 355
380. 356
381. 357
382. 358
383. 359
384. 360
385. 361
386. 362
387. 363
388. 364
389. 365
390. 366
391. 367
392. 368
393. 369
394. 370
395. 371
396. 372
397. 373
398. 374
399. 375
400. 376
401. 377
402. 378
403. 379
404. 380
405. 381
406. 382
407. 383
408. 384
409. 385

410. 386
411. 387
412. 388
413. 389
414. 390
415. 391
416. 392
417. 393
418. 394
419. 395
420. 396
421. 397
422. 398
423. 399
424. 400
425. 401
426. 402
427. 403
428. 404
429. 405
430. 406
431. 407
432. 408
433. 409
434. 410
435. 411
436. 412
437. 413
438. 414
439. 415
440. 416
441. 417
442. 418
443. 419
444. 420
445. 421
446. 422

447. 423
448. 424
449. 425
450. 426
451. 427
452. 428
453. 429
454. 430
455. 431
456. 432
457. 433
458. 434
459. 435
460. 436
461. 437
462. 438
463. 439
464. 440
465. 441
466. 442
467. 443
468. 444
469. 445
470. 446
471. 447
472. 448
473. 449
474. 450
475. 451
476. 452
477. 453
478. 454
479. 455
480. 456
481. 457
482. 458
483. 459

484. 460
485. 461
486. 462
487. 463
488. 464
489. 465
490. 466
491. 467
492. 468
493. 469
494. 470
495. 471
496. 472
497. 473
498. 474
499. 475
500. 476
501. 477
502. 478
503. 479
504. 480
505. 481
506. 482
507. 483
508. 484
509. 485
510. 486
511. 487
512. 488
513. 489
514. 490
515. 491
516. 492
517. 493
518. 494
519. 495
520. 496

521. 497
522. 498
523. 499
524. 500
525. 501
526. 502
527. 503
528. 504
529. 505
530. 506
531. 507
532. 508
533. 509
534. 510
535. 511
536. 512
537. 513
538. 514
539. 515
540. 516
541. 517
542. 518
543. 519
544. 520
545. 521
546. 522
547. 523
548. 524
549. 525
550. 526
551. 527
552. 528
553. 529
554. 530
555. 531
556. 532
557. 533

558. 534
559. 535
560. 536
561. 537
562. 538
563. 539
564. 540
565. 541
566. 542
567. 543
568. 544
569. 545
570. 546
571. 547
572. 548
573. 549
574. 550
575. 551
576. 552
577. 553
578. 554
579. 555
580. 556
581. 557
582. 558
583. 559
584. 560
585. 561
586. 562
587. 563
588. 564
589. 565
590. 566
591. 567
592. 568
593. 569
594. 570

595. 571
596. 572
597. 573
598. 574
599. 575
600. 576
601. 577
602. 578
603. 579
604. 580
605. 581
606. 582
607. 583
608. 584
609. 585
610. 586
611. 587
612. 588
613. 589
614. 590
615. 591
616. 592
617. 593
618. 594
619. 595
620. 596
621. 597
622. 598
623. 599
624. 600
625. 601
626. 602
627. 603
628. 604
629. 605
630. 606
631. 607

632. 608
633. 609
634. 610
635. 611
636. 612
637. 613
638. 614
639. 615
640. 616
641. 617
642. 618
643. 619
644. 620
645. 621
646. 622
647. 623
648. 624
649. 625
650. 626
651. 627
652. 628
653. 629
654. 630
655. 631
656. 632
657. 633
658. 634
659. 635
660. 636
661. 637
662. 638
663. 639
664. 640
665. 641
666. 642
667. 643
668. 644

669. 645
670. 646
671. 647
672. 648
673. 649
674. 650
675. 651
676. 652
677. 653
678. 654
679. 655
680. 656
681. 657
682. 658
683. 659
684. 660
685. 661
686. 662
687. 663
688. 664
689. 665
690. 666
691. 667
692. 668
693. 669
694. 670
695. 671
696. 672
697. 673
698. 674
699. 675
700. 676
701. 677
702. 678
703. 679
704. 680
705. 681

706. 682
707. 683
708. 684
709. 685
710. 686
711. 687
712. 688
713. 689
714. 690
715. 691
716. 692
717. 693
718. 694
719. 695
720. 696
721. 697
722. 698
723. 699
724. 700
725. 701
726. 702
727. 703
728. 704
729. 705
730. 706
731. 707
732. 708
733. 709
734. 710
735. 711
736. 712
737. 713
738. 714
739. 715
740. 716
741. 717
742. 718

743. 719
744. 720
745. 721
746. 722
747. 723
748. 724
749. 725
750. 726
751. 727
752. 728
753. 729
754. 730
755. 731
756. 732
757. 733
758. 734
759. 735
760. 736
761. 737
762. 738
763. 739
764. 740
765. 741
766. 742
767. 743
768. 744
769. 745
770. 746
771. 747
772. 748
773. 749
774. 750
775. 751
776. 752
777. 753
778. 754
779. 755

780. 756
781. 757
782. 758
783. 759
784. 760

The architecture consists of two units, the memory unit and the central
processing unit. The central processing consists of the Arithmetic and logic
unit and the control unit. The control unit sends information to the arthmetic
and logic unit. The input and output devices are connected to this unit. The
result of the operations in the C P U is given as input to the memory unit.
This unit stores both instructions and data and passes on the output to the C P
U.

The first layer is the bare machine. The second layer is the macro instruction.
The third layer is the operating system. The fourth layer is divided into 8
sections: A d a compiler labeled virtual a d a computer; Java virtual machine
labeled virtual java computer; C compiler labeled virtual C computer; dot
NET common language run time; Scheme interpreter labeled virtual scheme
computer; operating system command interpreter; assembler labeled virtual
assembly language computer; and an incomplete section which indicates
additional items in this layer. The fifth incomplete layer includes; the java
virtual computer consists of the java compiler and java compiler; the dot NET
common language run time unit consists of V B dot NET compiler which is
in a virtual v b dot net computer and C hash compiler labeled Virtual C hash
computer.

The source program is fed into the lexical analyzer. These lexical units are
passed to the syntax analyzer. The lexical analyzer and the syntax analyzer
are also given as input to the symbol table. The parse trees from the syntax
analyzer and the output from the symbol table is fed into the intermediate
code generator and semantic analyzer. The output of this semantic analyzer is
sent for optional optimization and passed to the code generator. The
intermediate code generated and the output from the symbol table is given to
the code generator. The code machine language generated by the code
generator and input data are given to the computer which produces the
results.

The source program is fed into the lexical analyzer. These lexical units are
passed to the syntax analyzer. The parse trees from the analyzer are fed into
the intermediate code generator. The intermediate code and input data are
passed into the interpreter. The output from the interpreter is the result.

In 19 57, Fortran 1 was created which lead to the frotran continuations as
well as inspiring the ALGOL programing. In 19 58, Fortran 2 was created
which lead to FORTRAN 4 in 1962. In 1978, Fortran 77. In 19 90 Fortran 90.
In 19 95 Fortran 95. In 2003 Fortran 2003. In 2008 Fortran 2008. In 20 15
Fortran 2015.In 19 58, ALGOL 58 was inspired by Fortran 1. And continued
in it’s series in 1960 with ALGOL 60. In 1966, ALGOL W which developed
into pascal in 19 71, pascal in turn inspired 3 products, MODULA 2, M L,
and Ada 83. On a different branch in 1968: ALGOL 68 was developed from
ALGOL 60. C was partially inspired by ALGOL 68 in 19 71. ALGOL 60
inspired Basic in 19 64 which lead to quick basic in 19 88 then visual basic in
19 90 and finally visual basic dot NET in 2001. From Pascal in 19 71 there
are 3 product lines, MODULA 2, M L, and Ada 83. MODULA 2 lead to
oberon in 19 88. Modula 2 lead to Modula 3 in 19 88, Modela 3 partially
inspired python in 19 92. In 1963, SIMULA 1 was created, inspired by
ALGOL 60. In 1967, SIMULA 67. In 19 80 small talk 80. Small talk
partially inspired both objective c in 19 84,which lead to swift in 20 14, and
ruby in 19 94. Simula 67 along with Ada 83 both inspried Eiffel in 19 90. In
19 57 Flow matic was created which lead to COBOL in 19 60 then P L slash
I in 19 64. In 19 62 C P L was created and lead to B C P L in 19 69. In 19 70
B was created which lead to C in 19 71. The line then splits into two
branches. The first branch starts with A N S I, C or C 89 in 19 89 and goes on
to Python in 19 91 then python 2 point 0 in 2000 and Python 3 point 0 in
2007. A N S I, C also leads to C 99 in 19 99. The second branch from C goes
to C + + and Java in 19 94. Java lead to Java 5 point 0 2004, Java 6 point 0 in
2006, Java 7 point 0 in 2009, and Java 8 point 0 in 20 14. C + + also leads to
C hash 2000 then to C hash 2 point 0 in 2006, C hash 3 point 0 in 2007, C
hash 4 point 0 in 2009, C hash 5 point 0 in 20 12. In 19 59 L I S P was
created. L I SP then inpired two product lines Scheme and M L. Scheme was
made in 1975 and lead to commmon l i s p. M L was created in 19 78 an
dlead to Miranda in 19 83 then Haskell 19 88. In 19 63 SNOBOL was created
which lead to Icon in 19 82. Snowbol also lead to a w k in 19 78 with lead to
Perl in 19 86. Pearl lead to P H P in 19 94 and Javascript in 19 96. Pearl also
lead to Ruby in 19 94. Ruby lead to Ruby 1.8 in 2004 which lead to Ruby 1.9
in 2009.

The internal representation of the list A, B, C, D: A pointer points to the head
node in the list. Four nodes with data parts A, B, C, and D and the next
pointer linked to its successor. The node D does not have a successor and the
pointer value is null. The internal representation of the list A, B, C, D, E, F,
G: A pointer points to the head node A in the list. Node A is linked to Node
B. Node B is linked to node D and Node C. The node C does not have a
successor and the pointer value is null. Node D points to a dummy node for E
with a null value. This node points to the node E which similarly points to a
null node and points to Node F. This node F points to node G. The node G
does not have a successor and the pointer value is null.

The first level, assign, has 3 branches from left to right, i d which represents
A, equals, expression. The second level, expression, has 3 branches from left
to right, i d which represents B, asterisk, expression. The third level,
expression, has 3 branches from left to right, left parenthesis, expression,
right parenthesis. The fourth level, i d, which represents A, plus, expression.
This expression denotes the i d which represents C.

The first tree has 3 levels. The first level, assign, has 3 branches from left to
right, i d which represents A, equals, expression. The second level,
expression, has 3 branches from left to right, expression which represents the
i d with attribute B, asterisk, and expression. The third level, expression, has
3 branches from left to right, expression, which represents the i d with
attribute C, asterisk, expression, which represents the i d with attribute A.
Similarly the second tree has 3 levels. The first level, assign, has 3 branches
from left to right, i d which represents A, equals, expression. The second
level, expression, has 3 branches from left to right, expression, asterisk,
expression which represents the i d with attribute A. The third level,
expression, has 3 branches from left to right, expression, which represents the
i d with attribute B, +, expression, which represents the i d with attribute C.

The first level, assign, has 3 branches from left to right, i d which represents
A, equals, expression. The second level, expression, has 3 branches from left
to right, expression which which leads to the term and factor of i d with
attribute B; plus; term. The third level, term, has 3 branches from left to right,
term, which leads to the factor of i d with attribute C. the i d with attribute C;
asterisk; factor of i d with attribute A.

The first level, assign, has 3 branches from left to right, i d which represents
A, equals, expression. The second level, expression, has 3 branches from left
to right; plus; term which leads to the factor of i d with attribute A. The third
level, expression, has 3 branches from left to right, expression which which
leads to the term and factor of i d with attribute B; plus; term, which leads to
the factor of i d with attribute C.

First parse tree. The if statement in the first level can be expressed using 5
branches in the second level such as if, logic expression, statement, else,
statement. The if statement has another if statement branch in level three
which has 3 branches in the fourth level such as if, logic expression,
statement. Second parse tree. The if statement in the first level can be
expressed using 3 branches in the second level such as if, logic expression,
statement. The statement has another if statement branch in level three and
has 5 branches in the fourth level such as if, logic expression, statement, else,
statement.

The first level, assign, has 3 branches to the second level, from left to right,
variable with attribute A; equals; expression. This Expression has 3 branches
to the third level, from left to right, variable 2 with attribute A, +, variable 3
with attribute B.

The first level, assign, has 3 branches to the second level, from left to right,
variable with attribute A; equals; expression. This Expression has 3 branches
to the third level, from left to right, variable 2 with attribute A, +, variable 3
with attribute B. The attribute A flows from the actual type to the expected
type. The attributes A and B flow from the actual type towards the
expression.

The first level, assign, has 3 branches to the second level, from left to right,
variable with attribute A; equals; expression. A note beside variable reads
actual type = real type. This Expression has 3 branches to the third level,
from left to right, variable 2 with attribute A, +, variable 3 with attribute B. A
note beside expression reads expected type = real type, actual type = real
type. Notes beside variable 2 and variable 3 reads, actual type = real type and
actual type = integer type.

The first level binary underscore number has two branches to the second
level, bit 0 and binary number. Binary number has two branches to the third
level, bit 1 and binary number. Binary number has a branch bit 1 in the fourth
level.

The first level binary underscore number has two branches to the second
level, bit 0 and binary number. The object 6 is attached to the first level.
Binary number has two branches to the third level, bit 1 and binary number.
The object 3 is attached to the second level. Binary number has a branch bit 1
in the fourth level. The object 1 is attached to the third level.

The transitions and their transitional behavior are as follows: Start to i d,
Letter, add c h a r, get c h a r; Start to i n t, Digit, add c h a r, get c h a r;
unknown to done, t points to look up next c h a r, get c h a r. The state i d has
a self transition and its behavior reads, letter or digit, add c h a r, get c h a r.
The state i n t has a self transition and its behavior reads, digit, add c h a r, get
c h a r. A transition from i d reads return lookup left parenthesis lexeme right
parenthesis. A transition from i n t reads, return i n t underscore l i t.
Similarly a transition from done state reads, return t.

The first level, expression leads to the second level, term. Term has 3
branches to the third level, from left to right, factor, slash, factor which leads
to total. The first Factor has 3 branches to the fourth level, from left to right,
left parenthesis, expression and right parenthesis. Expression has three
branches from left to right, term to factor to sum, +, term to factor to 47.

L R parser has two components Parser code and parser table. The parser code
is connected to the parser stack and the parsing table is connected to the
input. The parse stack contains the following elements: S sub 0, X sub 1, S
sub 1, incomplete list, X sub m, S sub m. A pointer labeled top points
towards S sub m. The input coming from parsing table consists of the
following elements a sub i, a sub i + 1, blank, incomplete list, a sub n and
dollar sign.

state action,
i d

action,
+

action,
asterisk

action, left
parenthesis

action,
right
parenthesis

action,
dollar
sign

go
to, E

go
to, T

go
to, F

0 S 5 blank blank S 4 blank blank 1 2 3
1 blank S 6 blank blank blank accept blank blank blank
2 blank R 2 S 7 blank R 2 R 2 blank blank blank
3 blank R 4 R 4 blank R 4 R 4 blank blank blank
4 S 5 blank blank S 4 blank blank 8 2 3
5 blank R 6 R 6 blank R 6 R 6 blank blank blank
6 S 5 blank blank S 4 blank blank blank 9 3
7 S 5 blank blank S 4 blank blank blank blank 10
8 blank S 6 blank blank S 11 blank blank blank blank
9 blank R 1 blank S 7 R 1 R 1 blank blank blank
10 blank R 3 blank R 3 R 3 R 3 blank blank blank
11 blank R 5 blank R 5 R 5 R 5 blank blank blank

The single precision format is represented using a 1 by 3 grid where the grids
represent the following: sign bit, exponent in 8 bits and fraction in 23 bits.
The double precision format is represented using a 1 by 3 where the grids
represent the following: sign bit, exponent in 11 bits and fraction in 52 bits.

The column values of the matrix table are: 0, 1, incomplete, j minus 1, j,
incomplete, n minus 1. The row values of the matrix table are: 0, 1,
incomplete, i minus 1, i, incomplete, m minus 1. The location of i, j is the cell
where the column j and row i meet and is marked using a circle with a x in it.

The fields read: record, name, type, incomplete, , name, type, offset and
address. There are two sets called field one and field n. Field 1 includes
name, type, and offset. Field n includes name, type, and offset.

The p t r pointer with value 7080 points to the block with reference address
7080. This address block holds the value 206. A note beside this block reads
an anonymous dynamic variable. This block points towards the j block and
the value 206 is assigned to j.

A pointer from block r points towards action 1. Action 1 leads to action 2 and
7. Action 2 leads to action 3 and 6. Action 3 leads to action 4 and 5. Action 7
leads to action 8 and 10. Action 8 leads to action 9 and action 10 lead to
actions 11 and 12.The order of the node marking is represented by creating
an outline around the actions using dashed lines with an x at each step.

The value of the caller is sub left parenthesis a, b, c right parenthesis and the
value of callee is void sub left parenthesis i n t, x, i n t, y, i n t z right
parenthesis. The first semantic model displays the caller parameter a, being
passed to the callee parameter x, the arrow is labeled call. This is an in mode
transmission. The second semantic model displays the callee parameter y
being returned to the caller parameter b, the arrow is labeled return. This is an
out mode transmission. The third semantic model displays the caller
parameter c being passed to the callee parameter z, the arrow is labeled call
and the callee parameter z passed back to the caller parameter c, the arrow is
labeled return. This is an in out mode transmission.

Three stacks main, stack and function sub with the following stack values:
main, w, x, y, z and code; stack, value of a, value of b, value of c and address
d; function sub, r e f to a, assign to b, r e f to c, assign to c and r e f to d; This
is together grouped as code. The stack operations for the parameter passing
methods are as follows: The main stack values w and y are passed to the
stack value of a, and value of c. The address of at start is passed to the
address d which is returned back to the main stack. The value of b and value
of c are returned back to the main stack values x and y. The function sub
parameters r e f to a, assign to b, r e f to c, assign to c and r e f to d are passed
on to the stack values value of a, value of b, value of c, value of c and address
of d respectively.

Illustration a. Two routines A and B where A receives the input, resume,
from master. The routine A consists of sequences, resume B and routine B
consists of sequences, resume A. The control transfers from resume B to
resume A and back from resume A to resume B. The sequence continues.
Illustration b. Two routines A and B where B receives the input, resume,
from master. The routine A consists of sequences, resume B and routine B
consists of sequences, resume A. The control transfers from resume B to
resume A and back from resume A to resume B. The sequence continues.

Two routines A and B where A receives the input, resume, from master. The
routine A consists of sequences, resume B and routine B consists of
sequences, resume A. The control transfers from resume B to resume A and
back from resume A to resume B. The sequences loop back to the first
sequence when it gets completed. The control from resume B to resume A is
the first resume and the subsequent resume is the control from resume A to
resume B.

Data has 1 cell stack in the main sub section and three cell stacks each in the
lettered sections. The main section information reads local variables. Section
A reads local variables, parameters, and return address. Section B reads local
variables, parameters, and return address. Section C reads local variables,
parameters, and return address.

From top to bottom, next to the first step reads sum. Next to the second step
reads list 4. Next to the third step reads step 3. Next to the fourth step reads
step 2. Next to the fifth step reads step 1. Next to the sixth step reads step 0.
Next to the seventh step reads part. Next to the eighth step reads total.

At point one there are 2 sections, A R I which means activation record
instance for fun 1 and A R I for main. There are 5 cell stacks in fun 1 reading,
local, local, parameter, dynamic link and return to main. There is one cell
stack in main which reads local. There are variables notated beside the stacks.
Next to the top level is t, next to the second level is s, and next to the third
level is r. The main section is labeled with variable p. A line runs from
dynamic link to the bottom of the main section or sixth step. At point 2 there
are 3 sections, A R I for fun 2, A R I for fun 1, and A R I for main. There are
4 cell stacks in fun 2 which read, local, parameter, dynamic link, return to fun
1. There are 5 cell stacks in fun 1 which read, local, local, parameter,
dynamic link and return to main. There is one cell stack in main which reads
local. There are variables notated beside the stacks. Next to the top level is y
and the one below it x. The fifth level variable is t. Next to the sixth level is s,
and next to the seventh level is r. Next to the bottom or tenth level is p. Two
lines run from both the third line to the top of the main or bottom level and
from the eighth level to the bottom of the main or bottom level. At point 3
there are 4 sections, A R I for fun 3, A R I for fun 2, A R I for fun 1, and A R
I for main. There are 2 cell stacks in fun 3 which read, parameter and
dynamic link. There are 4 cell stacks in fun 2 which read, local, parameter,
dynamic link, return to fun 1. There are 5 cell stacks in fun 1 which read,
local, local, parameter, dynamic link and return to main. There is one cell
stack in main which reads local. There are variables notated beside the stacks.
In section fun 3 variable q is next to the parameter level. In section fun 2
variable y is next to local level and variable x is next to level parameter. In
section fun 1 variable t is next to the first local level and variable s is next to
the second local level. In section main, the variable p is next to the only level.
Three lines run from the dynamic link level in section 3 to the bottom of
section fun 2, the dynamic link level in section fun 2 to the top of the main or
bottom level, and from the dynamic link level in fun 1 to the bottom of the
main or bottom level.

At first call there are 2 sections, First A R I for factorial which means first
activation record instance for factorial and A R I for main. There are 4 cell
stacks for first A R I for factorial, functional value question mark, parameter
3, dynamic link with line to the bottom of A R I main, and return to main.
There is one cell stack for A R I for main which is local question mark. The
variable n is next to parameter 3 in the first A R I. The top line of first A R I
is pointed to by an arrow labeled top. The word value is next to the main or
bottom most level. At second call there are 3 sections, second A R I for
factorial, First A R I for factorial which means first activation record instance
for factorial and A R I for main. There are 4 cell stacks for second A R I for
factorial, functional value question mark, parameter 2, dynamic link with a
line to the bottom of first A R I section, and return to factorial. There are 4
cell stacks for first A R I for factorial, functional value question mark,
parameter 3, dynamic link with line to the bottom of A R I main, and return
to main. There is one cell stack for A R I for main which is, local question
mark. The variable n is next to parameter 2 in the second A R I and parameter
3 in the first A R I. The top line of second A R I is pointed to by an arrow
labeled top. The word value is next to the main or bottom most level. At third
call there are 4 sections, third A R I for factorial, second A R I for factorial,
First A R I for factorial which means first activation record instance for
factorial and A R I for main. There are 4 cell stacks for third A R I for
factorial, functional value question mark, parameter 1, dynamic link with a
line to the bottom of the second A R I section, and return to factorial. There
are 4 cell stacks for second A R I for factorial, functional value question
mark, parameter 2, dynamic link with a line to the bottom of first A R I
section, and return to factorial. There are 4 cell stacks for first A R I for
factorial, functional value question mark, parameter 3, dynamic link with line
to the bottom of A R I main, and return to main. There is one cell stack for A
R I for main which is, local question mark. The variable n is next to
parameter 1 in the third A R I, parameter 2 in the second A R I, and
parameter 3 in the first A R I. The top line of third A R I is pointed to by an
arrow labeled top. The word value is next to the main or bottom most level.

At position 2 in factorial third call completed there are 4 sections, third A R I
for factorial, second A R I for factorial, First A R I for factorial which means
first activation record instance for factorial and A R I for main. There are 4
cell stacks for third A R I for factorial, functional value 1, parameter 1,
dynamic link with a line to the bottom of the second A R I section, and return
to factorial. There are 4 cell stacks for second A R I for factorial, functional
value question mark, parameter 2, dynamic link with a line to the bottom of
first A R I section, and return to factorial. There are 4 cell stacks for first A R
I for factorial, functional value question mark, parameter 3, dynamic link
with line to the bottom of A R I main, and return to main. There is one cell
stack for A R I for main which is, local question mark. The variable n is next
to parameter 1 in the third A R I, parameter 2 in the second A R I, and
parameter 3 in the first A R I. The top line of third A R I is pointed to by an
arrow labeled top. The word value is next to the main or bottom most level.
At position 2 in factorial second call completed call there are 3 sections,
second A R I for factorial, First A R I for factorial which means first
activation record instance for factorial and A R I for main. There are 4 cell
stacks for second A R I for factorial, functional value 2, parameter 2,
dynamic link with a line to the bottom of first A R I section, and return to
factorial. There are 4 cell stacks for first A R I for factorial, functional value
question mark, parameter 3, dynamic link with line to the bottom of A R I
main, and return to main. There is one cell stack for A R I for main which is,
local question mark. The variable n is next to parameter 2 in the second A R I
and parameter 3 in the first A R I. The top line of second A R I is pointed to
by an arrow labeled top. The word value is next to the main or bottom most
level. At position 2 in factorial first call completed, there are 2 sections, First
A R I for factorial and A R I for main. There are 4 cell stacks for first A R I
for factorial, functional value 6, parameter 3, dynamic link with line to the
bottom of A R I main, and return to main. There is one cell stack for A R I
for main which is local question mark. The variable n is next to parameter 3
in the first A R I. The top line of first A R I is pointed to by an arrow labeled
top. The word value is next to the main or bottom most level. In position 3 in
main final results. There is one cell stack for A R I for main which is local
question mark. The top line of first A R I is pointed to by an arrow labeled
top. The word value is next to the main or bottom most level.

There are 5 sections labeled A R I for sub 1, A R I for sub 3, A R I for sub 2,
A R I for big sub, A R I for main underscore 2. There is a label at the top
reading top. Section sub 1 has 5 cell stacks, local, local, dynamic link which
has a line that goes to the bottom of sub 3, static link which has a dotted line
that goes to the bottom of big sub, and return to sub 3. The variable d is next
to the top local and the variable a is next to the second local. Section sub 3
has 5 cell stacks, local, local, dynamic link which has a line that goes to the
bottom of sub 2, static link which has a dotted line that goes to the bottom of
big sub, and return to sub 2. The variable e is next to the top local and the
variable c is next to the second local. Section sub 2 has 5 cell stacks, local,
local, dynamic link which has a line that goes to the bottom of sub big sub,
static link which has a dotted line that goes to the bottom of big sub, and
return to sub big sub. The variable e is next to the top local, the variable b is
next to the second local, and the variable x is next to parameter. Section big
sub has 6 cell stacks, local, local, local, dynamic link which has a line that
goes to the bottom of main, static link, and return to main. The variable c is
next to the top local, the variable b is next to the second local, and the
variable a is next to the third local. Section main has 1 cell stacks, local. The
variable x is next to the local.

Three unlabeled levels proceed the block variables levels of e, d, c, b and g,
and a and f. Locals levels read, z, y, and x. The bottom most level is a large
shaded black that reads, activation record instance for main.

There are 5 sections labeled A R I for sub 3, A R I for sub 2, A R I for sub 1,
A R I for sub 1, A R I for main. Section sub 3 has 4 cell stacks, local, local,
dynamic link which has a line that goes to the bottom of sub 2, and return to
sub 2. The variable z is next to the top local and the variable x is next to the
second local. Section sub 2 has 4 cell stacks, local, local, dynamic link which
has a line that goes to the bottom of sub 1, and return to sub 1. The variable w
is next to the top local and the variable v is next to the second local. Section
sub 1 has 4 cell stacks, local, local, dynamic link which has a line that goes to
the bottom of sub 1, and return to main. The variable w is next to the top
local and the variable v is next to the second local. Section main has 2 cell
stacks, local and local. The variable u is next to the top local and the variable
v is next to the second local.

There are 5 stacks that are labeled, u, v, x, z, and w. The names in the stack
cells indicate the program units of the variable declaration. U has one cell
stack labeled main. V has three cell stacks labeled, sub 1, sub 1, main. X has
two cell stacks labeled, sub 3 and sub 2. Z has one cell stack labeled sub 3. W
has three cell stacks labeled, sub 2, sub 1, sub 1.

The first block is the Public class A consists of a method draw and an
incomplete line of code. The second block is the Public class B extends A
consists of a draw method and an incomplete line of code. This block has an
upward arrow pointing towards the first block. The client block consists of
the following code. Line 1. A my A = new A (); Line 2. my A period draw ();
Line 3. Incomplete line of code.

A stack with value variables b 1 and a 1 pointing towards its corresponding
objects. variable b 1 points towards its objects X and Y. This is labeled data
area. Variable a 1 points towards its object X. This is labeled data area.

The first illustration has three classes Shape, circle and rectangle with values
virtual void draw left parenthesis right parenthesis = 0, void draw left
parenthesis right parenthesis and void draw left parenthesis right parenthesis.
The classes circle and shape are inherited from the class shape. Similarly
class square can also be inherited. The second illustration displays the type of
the pointers and it’s binding to objects. The shape asterisk pointer is
represented as a rectangular block with reference p t r underscore shape
binded towards its object square with value void draw left parenthesis right
parenthesis. Similarly, The rectangle asterisk pointer is represented as a
rectangular block with reference r e c t binded towards its object rectangle
with value void draw left parenthesis right parenthesis. The binding is
represented using a continuous arrow pointing towards the block. The square
asterisk pointer is represented using a dot.

The class instance record for A is represented using a virtual method table
with 3 fields, v table pointer, a and b pointing towards a v table for A with
two fields. The two fields have pointers towards, code for A’s draw and code
for A’s area. Similarly, the class instance record for B is represented using a
virtual method table with 5 fields, v table pointer, a, b, c and d pointing
towards a v table for B with three fields. The three fields have pointers
towards, code for A’s area, code for B’s draw and code for B’sift.

The class instance record for C is represented using a virtual method table
with 5 fields, v table pointer, a, v table pointer, b and c. The first v table
pointer points to C’s v table for C and A part with 3 fields. The three fields
have pointers towards, code for C’s in it, code for C’s fun and code for C’s d
u d. The second v table pointer points to C’s v table for B part with one field
that points towards code for B’s sum.

The value of total 3 is represented by a continuous line. Values 4 and 6 are
written on the line. Task A is presented by a continuous line with markings
Fetch TOTAL, Add 1 and Store TOTAL. Similarly, Task B is represented by
a continuous line with markings Fetch TOTAL, Multiply by 2 and Store
TOTAL. Time is represented by a continuous arrow pointing towards the
right.

The flow of the states is as follows: A new state is created; The state then
becomes ready with a task; The scheduled task begins running The task with
time slice expiration returns back to the ready state; The completed task is
sent to the dead state; The input or output from the running state is sent to the
blocked state which, when completed goes back to the ready state.

The processes SUB 1 and SUB 3 are given to the insertion block for inserting
data and the removed data is fed back to the processes. Insert sends
information to buffer and remove received information from buffer.

The first timeline diagram depicts the occurrence, task example waits for
sender. The timeline is represented using a continuous arrow pointing
towards the right. The task example consists of the following steps in the
time line: Wait at accept, Accept and wait at accept. Wait at accept is
represented by dashed lines. The sender consists of the following steps, sends
message, rendezvous and continue execution. The rendezvous section is
represented in dashed lines. The second timeline diagram depicts the
occurrence, sender waits for task example. The timeline is represented using
a continuous arrow pointing towards the right. The task example consists of
the following steps in the time line: Busy, Accept and wait at accept. Wait at
accept is represented by dashed lines. The sender consists of the following
steps, sends message and is suspended, rendezvous and continue execution.
The rendezvous section is represented in dashed lines.

Task A has two jobs 1 and 2 and task B has two jobs 3 and 4, labeled, accept
clauses. Both tasks consist of a task body connected to each other by a
bidirectional arrow. A note beside reads, B period Job 3 value.

The flow transfers from the executing code to the exception handlers. The
executing code consists of the following: Line 1, incomplete. Line 2, begin.
Line 3, incomplete. Line 4, some statement. Line 5, incomplete. Line 6, end
semicolon. Line 7, incomplete. The exception handlers consist of the
following: Line 1, when incomplete line of code. Line 2. begin. Line
3.incomplete. Line 4, end semicolon. The exception is raised in, some
statement. The control exception to handler binding, flows from some
statement to the when statements. The when then continues back to the some
statement in the executing code, the end, two incomplete sections, and a
termination on the side.

The internal representation of the list A, B, C, D: A pointer points to the head
node in the list. Four nodes with data parts A, B C and D and the next pointer
linked to its successor. The node D does not have a successor and the pointer
value is null. The internal representation of the list A left parenthesis B C
right parenthesis D left parenthesis E left parenthesis F G right parenthesis
right parenthesis: A pointer points to the head node A in the list. Node A is
linked to Node B. Node B is linked to node D and Node C. The node C does
not have a successor and the pointer value is null. Node D points to a dummy
node for E with a null value. This node points to the node E which similarly
points to a null node and points to Node F. This node F points to node G. The
node G does not have a successor and the pointer value is null.

The internal representation of lisp list C O N S single quote A single quote
left parenthesis right parenthesis which after construct operation becomes A.
A head node with data part value A and null pointer value. The internal
representation of lisp list C O N S single quote A single quote left parenthesis
B C right parenthesis which after construct operation becomes A B C. Three
nodes with data parts A, B and C and the next pointer linked to its successor.
The node C does not have a successor and the pointer value is null. The
internal representation of lisp list C O N S single quote left parenthesis right
parenthesis single quote left parenthesis A Bright parenthesis which after
construct operation becomes left parenthesis right parenthesis A B. A head
node with data part value pointing towards another node with data part NIL.
The head node points to a node with data part A and this node points to a
node with data part B with a null pointer. The internal representation of lisp
list C O N S single quote A B single quote left parenthesis C D right
parenthesis which after construct operation becomes left parenthesis A B
right parenthesis C D. The head node points to two nodes with data parts A
and C. Node C points to a node with data part D and with a null pointer
value. Node A points to a node with data part B and with a null pointer value.

Each goal is depicted by a rectangular box with four ports call, fail, exit and
redo. The control enters the block through the call port or the redo port. If the
goal succeeds, the control leaves through the exit port. If the goal fails, the
control leaves through the fail port. If two sections are connected as in the
example the redo and fail sections connect and the exit and call sections
connect.

	CONCEPTS OF PROGRAMMING LANGUAGES
	CONCEPTS OF PROGRAMMING LANGUAGES
	CONCEPTS OF PROGRAMMING LANGUAGES
	CONCEPTS OF PROGRAMMING LANGUAGES
	CONCEPTS OF PROGRAMMING LANGUAGES
	Changes for the Twelfth Edition of Concepts of Programming Languages
	Supplemental Materials
	Supplemental Materials
	Supplemental Materials
	Contents
	CONCEPTS OF PROGRAMMING LANGUAGES
	1 Preliminaries
	1.1 Reasons for Studying Concepts of Programming Languages
	1.2.4?Web Software
	1.3.4?Cost
	1.4.2?Programming Design Methodologies
	1.5 Language Categories
	1.6 Language Design Trade-Offs
	1.7.4?Preprocessors
	1.8 Programming Environments
	SUMMARY
	REVIEW QUESTIONS
	PROBLEM SET
	2 Evolution of the Major Programming Languages
	2.1.2?Language Overview
	2.2.4?Related Work
	2.3.6?Evaluation
	2.4.6?Related Languages
	2.5.7?Evaluation
	2.6.4?Evaluation
	2.7.3?Evaluation
	2.8.4?Evaluation
	2.9.2?Origins and Characteristics of SNOBOL
	2.10.2?Language Overview
	2.11.3?Evaluation
	2.12.2.2 Evaluation
	2.13.3?Evaluation
	2.14.5?Ada 95 and Ada 2005
	2.15.3?Evaluation
	2.16.5?Another Related Language: Delphi
	2.17.3?Evaluation
	2.18.5?Origins and Characteristics of Ruby
	2.19.3?Evaluation
	2.20.2?JSP
	SUMMARY
	BIBLIOGRAPHIC NOTES
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	3 Describing Syntax and?Semantics
	3.1 Introduction
	3.2.2?Language Generators
	3.3.3?Grammars and Recognizers
	3.4.7?Evaluation
	3.5.3.8 Evaluation
	SUMMARY
	BIBLIOGRAPHIC NOTES
	REVIEW QUESTIONS
	PROBLEM SET
	4 Lexical and Syntax Analysis
	4.1 Introduction
	4.2 Lexical Analysis
	4.3.4?The Complexity of Parsing
	4.4.2?The LL Grammar Class
	4.5.3?LR Parsers
	SUMMARY
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	5 Names, Bindings, and Scopes
	5.1 Introduction
	5.2.3?Special Words
	5.3.4?Value
	5.4.3.4 Implicit Heap-Dynamic Variables
	5.5.7?Evaluation of Dynamic Scoping
	5.6 Scope and Lifetime
	5.7 Referencing Environments
	5.8 Named Constants
	SUMMARY
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	6 Data Types
	6.1 Introduction
	6.2.3?Character Types
	6.3.5?Implementation of Character String Types
	6.4.3?Evaluation
	6.5.9?Implementation of Array Types
	6.6.2?Implementing Associative Arrays
	6.7.4?Implementation of Record Types
	6.8 Tuple Types
	6.9 List Types
	6.10.5?Implementation of Union Types
	Variable-Size Cells?
	6.12 Optional Types
	6.13 Type Checking
	6.14 Strong Typing
	6.15 Type Equivalence
	6.16 Theory and Data Types
	SUMMARY
	BIBLIOGRAPHIC NOTES
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	7 Expressions and -Assignment Statements
	7.1 Introduction
	7.2.2.2 Referential Transparency and Side Effects
	7.3 Overloaded Operators
	7.4.3?Errors in Expressions
	7.5.2?Boolean Expressions
	7.6 Short-Circuit Evaluation
	7.7.7?Assignment in Functional Programming Languages
	7.8 Mixed-Mode Assignment
	SUMMARY
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	8 Statement-Level Control Structures
	8.1 Introduction
	8.2.2.4 Multiple Selection Using if
	8.3.4?Iteration Based on Data Structures
	8.4 Unconditional Branching
	8.5 Guarded Commands
	8.6 Conclusions
	SUMMARY
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	9 Subprograms
	9.1 Introduction
	9.2.4?Procedures and Functions
	9.3 Design Issues for Subprograms
	9.4.2?Nested Subprograms
	9.5.8?Examples of Parameter Passing
	9.6 Parameters That Are Subprograms
	9.7 Calling Subprograms Indirectly
	9.8.3?Number of Returned Values
	9.9 Overloaded Subprograms
	9.10.4?Generic Functions in F#
	9.11 User-Defined Overloaded Operators
	9.12 Closures
	9.13 Coroutines
	SUMMARY
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	10 Implementing Subprograms
	10.1 The General Semantics of Calls and Returns
	10.2 Implementing ��Simple�� Subprograms
	10.3.3?Recursion
	10.4.2?Static Chains
	10.5 Blocks
	10.6.2?Shallow Access
	SUMMARY
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	11 Abstract Data Types and Encapsulation Constructs
	11.1 The Concept of Abstraction
	11.2.3?An Example
	11.3 Design Issues for Abstract Data Types
	11.4.4.4 Evaluation
	11.5.3?C# 2005
	11.6.4?C# Assemblies
	11.7.3?Ruby Modules
	SUMMARY
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	12 Support for Object--Oriented Programming
	12.1 Introduction
	12.2.3?Dynamic Binding
	12.3.7?Initialization of Objects
	12.4.5.4 Evaluation
	12.5.2?Dynamic Binding of Method Calls to Methods
	12.6.4?Reflection in C#
	SUMMARY
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	13 Concurrency
	13.1.3?Motivations for the Use of Concurrency
	13.2.3?Design Issues
	13.3.4?Evaluation
	13.4.4?Evaluation
	13.5.2?The Concept of Synchronous Message Passing
	13.6.5?Evaluation
	13.7.8?Evaluation
	13.8.3?Evaluation
	13.9.3?F#
	13.10.1?High-Performance Fortran
	SUMMARY
	BIBLIOGRAPHIC NOTES
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	14 Exception Handling and Event Handling
	14.1.2?Design Issues
	14.2.6?Evaluation
	14.3.8?Evaluation
	14.4.2?Ruby
	14.5 Introduction to Event Handling
	14.6.2?The Java Event Model
	14.7 Event Handling in C#
	SUMMARY
	BIBLIOGRAPHIC NOTES
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	15 Functional Programming Languages
	15.1 Introduction
	15.2.2?Functional Forms
	15.3 Fundamentals of Functional Programming Languages
	15.4.2?The First Lisp Interpreter
	15.5.14?Functions That Build Code
	15.6 Common Lisp
	15.7 ML
	15.8 Haskell
	15.9 F#
	15.10 Support for Functional Programming in Primarily Imperative Languages
	15.11 A Comparison of Functional and Imperative Languages
	SUMMARY
	BIBLIOGRAPHIC NOTES
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	16 Logic Programming Languages
	16.1 Introduction
	16.2.2?Clausal Form
	16.3 Predicate Calculus and Proving Theorems
	16.4 An Overview of Logic Programming
	16.5 The Origins of Prolog
	16.6.7?List Structures
	16.7.4?Intrinsic Limitations
	16.8.3?Natural-Language Processing
	SUMMARY
	BIBLIOGRAPHIC NOTES
	REVIEW QUESTIONS
	PROBLEM SET
	PROGRAMMING EXERCISES
	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z
	Z

