
 
 
 
 
 
 
 

The Linux Programming 
Environment 

 
Computer Science Department 

Texas State University 



 

 
TUTORIAL REQUIREMENTS................................................................................................................................................. 1 

INTRODUCTION........................................................................................................................................................................ 1 

COMPILATION .......................................................................................................................................................................... 1 
COMMAND LINE COMPILATION.................................................................................................................................................. 1 

Basic Compilation ................................................................................................................................................................ 2 
The Process:  Intermediate Files .......................................................................................................................................... 2 
Compile Flags....................................................................................................................................................................... 3 
Dependency .......................................................................................................................................................................... 4 

COMPILATION USING MAKE ...................................................................................................................................................... 5 
Basic Make and Makefiles .................................................................................................................................................... 5 
Common Errors .................................................................................................................................................................... 7 
Using Variables .................................................................................................................................................................... 8 

DEBUG AND TESTING ............................................................................................................................................................. 9 
COMPILING YOUR PROGRAM FOR GDB: ................................................................................................................................... 10 

Important Commands for Running GDB:........................................................................................................................... 10 
GCOV ....................................................................................................................................................................................... 11 

Compiling your program for gcov:..................................................................................................................................... 11 
Running gcov on your program:......................................................................................................................................... 11 
gcov output interpretation: ................................................................................................................................................. 11 

GPROF...................................................................................................................................................................................... 12 
Compiling your program for gprof:.................................................................................................................................... 12 
Running gprof:.................................................................................................................................................................... 12 

DOS2UNIX AND UNIX2DOS....................................................................................................................................................... 12 
Running dos2unix or unix2dos: .......................................................................................................................................... 12 

REFERENCES: ......................................................................................................................................................................... 14 

APPENDIX:................................................................................................................................................................................ 15 
A MORE COMPLICATED MAKEFILE.......................................................................................................................................... 15 
ADDITIONAL INFORMATION ON MAKEFILES ............................................................................................................................ 15 

Variable Flavors................................................................................................................................................................. 15 
Advanced Variable Use ...................................................................................................................................................... 16 



Tutorial Requirements 
This tutorial assumes that participants have the following basic requirements. 

• Computer Science Linux account 

• Familiarity with the basic Linux command line environment 

• Some experience programming with the gcc and g++ compilers   

Introduction 
Computer Science classes that teach programming focus on learning to construct well written and well designed programs.  The 
languages that are taught in these classes are part of the tools that are used to implement the programming principles that students are 
taught.  This tutorial is not intended to provide instruction about how to write programs but to help introduce students to tools 
available to help them implement working programs. 

In this tutorial we will cover the major aspects of software development in the Linux environment that students are likely to need 
under the Computer Science program at Texas State University.   

This includes: 

• Compilation  

o Command line compilation for C/C++ 

o Compilation using make 

• Debug and Testing 

o The gnu debugger (gdb) 

o gcov   

o gprof 

o dos2unix and unix2dos 

Compilation 
 

Compiling C/C++ programs in the Linux environment will be broken down into two major sections 

• simple compilation from the command line using the gcc or g++ compiler  

• compiling more complicated projects using the Unix “make” utility. 

 

We will use the following notational conventions: 

• Files names are italicized. 

• Code snippets are in Courier font and indented  

• Linux terminal commands are in Courier font and are preceded by a dollar sign, $, representing the shell prompt. 

Command Line Compilation 
Part of a programmer’s job is to turn one or more source files into an executable program file, often referred to as a “binary” or an 
“executable”.  The process must change commands written in human readable form into a form that can be understood and executed 
by the computer system.  Compilers are one of the software tools used to perform this translation of source file to binary file.  A 
source file is a plain text file (no formatting codes such as are found when using word processors) which contains codes written in a 
particular language.  For the purposes of this tutorial we will utilize the C/C++ programming language.  Files containing C code 
normally have a file extension of .c and files containing C++ code normally have a .cpp extension, while header files always have a .h 
extension.   Below are some examples of file names and types. 

            utils.h, calc.h                         - C/C++ header files 



 

 foo.c, calc.c, main.c              - C source files 

 foo.cpp, calc.cpp, main.cpp  - C++ source files  

It is important to remember that source files should always be plain text, which means no rtf (.rft), html (.htm), or god forbid word 
documents (.doc).  The compiler is expecting text with no extra embedded formatting characters. 

Basic Compilation 
We will start with the simplest case in which there is one source file with no header files that we wish to compile into an executable 
program.  If you have not already done so, please log in to your account and follow along.  If you are using the graphical interface you 
will need to open a terminal window. 

Make a directory in which to work using the following command: 
$ mkdir comp_tutorial 

Now cd into this directory and use your favorite Linux editor to enter the following: 

 
#include <iostream> 

using namespace std; 

int main() 

{ 

    cout << “hello world” << endl ; 

return 0; 

} 

 

Save this file as hello.cpp.  Now open another terminal window and cd to your comp_tutorial directory.  You will find it more 
convenient to keep the editor open while you are working. 

Enter the following command: 
$ g++ hello.cpp 

Now type ls … You should see a file named a.out in the comp_tutorial directory.  This is the executable program file.  It can be 
run with the following command:  
$ ./a.out  

If you do not supply a filename for your executable GCC (gcc or g++) will always name your file a.out.   So lets supply a name 
using the -o flag. 

$ g++ hello.cpp -o hello 

Now we find an additional executable file in our directory named hello.  It is always advisable to place this flag at the end of your 
command rather than the beginning since it is possible to accidentally leave out the name and thus name the executable the same as 
your first source file, thus permanently overwriting your source file with the executable.   

 

What if your program contains more than one source file?  In that case, simply include all the source files in the command: 

The following is an example for reference only [do not type in]: 
 g++ hello.cpp util.cpp util2.cpp -o hello 

 

Generally speaking, header files (.h) are not included in the list of source files but may be necessary for proper compilation. 

This seems pretty simple so far but we have not covered the whole story.  Let’s take a closer look at what the compiler is actually 
doing. 

The Process:  Intermediate Files  
 
In order for the C/C++ compiler to turn our source files into an executable program file it must go through four major stages: 

 Rev. 11/8/04 2



 

1. Pre-process  -- strip out comments, expand #define macros, #include lines, etc. 

2. Compile       -- parse the source code and build assembly output. 

3. Assemble     -- take the assembly code and build an object file out of it. 

4. Link             -- build an executable file by linking together object files.   

So what we commonly refer to as “compile” is actually a series of steps.  Likewise, what we commonly refer to as a compiler is a suite 
of programs all working together. 

The compiler can be stopped at any stage using the appropriate flag: 

-E  -- stops after the preprocessing stage.  It outputs source code after preprocessing to standard out (the terminal). 

-S  -- stops after the compile stage.  It outputs the assembly for each source file to a file of the same name but with a .s extension. 

-c  -- stops after the assemble stage.  It outputs an object file for each source file with the same name but with an ".o" extension.   

Stopping after the assemble stage using a -c flag is by far the most common as we shall soon see.  In fact compilation is commonly 
broken into two phases compile and link. 

Example: 

Let’s explore this by stopping at each stage for our simple hello.cpp program.  Change to the directory containing hello.cpp and type 
the following: 
$ g++ -E hello.cpp  

The output you see is our hello program with the #include<iostream> statement replaced by the source code that makes up the 
iostream library.  As you can see the library is quite large.  

Next type in the following: 
$ g++ -S hello.cpp  

[instructor note: use up arrow] … 

This should create a file named hello.s.  Let’s take a look at this file using less. 

$ less hello.s  

We are looking at the assembly code created by the compiler.  Use q to quit less.   Now we’ll create an object file.   

$ g++ -c hello.cpp  

This should create a file named hello.o.  This object file is machine code (binary) and cannot be viewed using less.  But we can view 
it using hexdump which converts the binary numbers into hexadecimal numbers that can be viewed by humans. 

$ hexdump hello.o  

Now  link the object file into an executable program file.  This of course is a trivial example since we only have one object file, but 
here goes. 
$ g++  hello.o –o hello  

This should produce an executable named hello.  We can view it using hexdump to see that the content is different from hello.o and 
we can run hello to verify that it is an executable. 
$ hexdump hello 

$ ./hello 

Compile Flags 
 

There are also many other useful compiler flags that can be supplied.  We will cover some of the more important ones here but others 
can be found using $ man g++. 

-g  - includes debug symbols 

This flag must be specified to debug programs using gdb. 

-Wall  - show all compiler warnings. 

This flag is useful for finding problems that are not necessarily compile errors.  It tells the compiler to print warnings issued 
during compile which are normally hidden.  

-O or –O1  - optimizes programs.   

 Rev. 11/8/04 3



 

This tells the compiler to reduce the code size and execution time of the program it produces.  This may cause unexpected 
behavior when run in debug, since GCC is taking every opportunity to eliminate temporary variables and increase efficiency.  
The process generally takes much more time and memory for compilation, but the resulting executable may be drastically 
faster. 

-O2 – optimize even more.   

This performs almost all supported optimizations except loop unrolling, function inlining and register renaming. 

-O3 – all optimizations 

-pg – generates extra code to write profile information suitable for the analysis program "gprof". 

-fprofile-arcs – used to generate coverage data or for profile-directed block ordering.   

During execution the program records how many times each branch is executed and how many times a branch is taken.  
When the compiled program exits it saves this data to a file called sourcename.da for each source file. 

-ftest-coverage - create data files for the “gcov” code-coverage utility. 

Dependency 
 
Very often, a C/C++ project of even a moderate size will have a complex interdependency between source files and libraries.  An 
interdependency occurs when source code in one source file references one or more objects declared or defined in another source file.  
For this reason the order in which we compile and link our files can be very important.  Let’s say that we have five source files 
main.cpp, which contains our main function and four other files util_A.cpp, util_B.cpp, util_C.cpp and util_D.cpp.  These files have 
the dependencies illustrated in the following graph.   

 

 

p 

p 

 Rev. 11/8/04 
main.cp
 h
util A.h
util_B.cpp
util A.cp
util_C.
util B.
util_D.cpp

util_C_D.h

cpp

4



 

Linux and Unix systems have a built-in in tool available to manage this complexity called make. 

Compilation Using Make 

Basic Make and Makefiles 
The make utility is designed to manage large groups of source files.  It automatically determines which pieces of a large program need 
to be recompiled, and issues the commands to recompile them.  The make utility uses a file usually named makefile or Makefile to 
represent the dependencies between source files.  These files consist of a list of rules which execute the given command when called.  
They are formatted as follows: 

rule_name:  [ list of  rule dependencies] [list of file dependencies] 

 [tab] [command ] 

 
rule name   This can be anything but is generally a source file name with a 

“.o” extension 

list of rule dependencies A list of the other rules on which this rule is dependent. 

list of file dependencies A list of files which must be present to execute this rule. 

Tab The tab must be present for the command to execute 

Command The command to execute. 

 
We execute these rules using the make utility. make called with no arguments executes the first rule in the Makefile.   make followed 
by a rule name executes that rule. 

A seemingly trivial but important feature of makefiles is that comments can be added which allowing you to document various facts 
about compiling the project.  Comments are denoted by the pound sign, #. 

Let’s try a trivial example using the hello.cpp file we created earlier.  Using your favorite Linux editor create a file named makefile 
containing the following: 

 

# our first makefile 

hello: hello.cpp 

 g++ hello.cpp –o hello 

 

Now remove the old hello and make hello using the following commands: 

$ rm hello 

$ make 

make with no arguments executes the first rule in makefile.  If we list the contents of our directory using ls we see that it contains 
our newly compiled executable.  So far this is not too useful.  It is only a little better than typing it in every time, however make can 
do a lot more than this.  For instance make knows if your code has been modified since the last compile.   Let’s type in make again. 
$ make 

This time we get a message telling us that hello is up to date. 

make: `hello' is up to date. 

make accomplishes this by comparing the modification date of the output file hello to the modification date of the source file, 
hello.cpp.  So if we touch this file to change its modification date then we can trick make into recompiling. 

 

$ touch hello.cpp 

$ make 

 

 Rev. 11/8/04 5



 

Here we see that make recompiles hello. 

In general make compares the modification date for every file specified in the dependency list against the modification date of the 
output file made by the rule.  If any of the dependency files are newer it re-executes the command specified by the rule. 

Next we will illustrate how to handle multiple files with make.  Create a new file named util.cpp containing the following code: 
 

#include <iostream> 

using namespace std; 

 

void emphasize() 

{ 

    cout << “!!!” << endl ; 

} 

 

Then create another file called util.h containing the following: 
 

void emphasize(); 

 
Next open hello.cpp in an editor and modify it so that it contains the following: 

 

#include "util.h" 

#include <iostream> 

using namespace std; 

 

int main() 

{ 

  cout << "Hello World"; 

  emphasize(); 

 return 0; 

} 

 Rev. 11/8/04 6



 

 

Now our list of source files consists of three files: hello.cpp, util.cpp and util.h.  Now that we have our source files we will add them 
to our makefile.  So open makefile in an editor and modify it as follows:  

 

# our first makefile - version 2 

 

hello: hello.o util.o 

 g++ hello.o util.o –o hello 

hello.o: hello.cpp 

 g++ -c hello.cpp 

util.o: util.h util.cpp 

 g++ -c util.cpp 

 

clean:  

 rm *.o hello 

 
This makefile more clearly illustrates how dependencies can be used.  Let’s walk through what happens when we enter the make 
command: 
$ make 

1. make executes the first rule it finds, namely hello. 

2. hello has dependencies hello.o and util.o.  If these files are not present make looks for a rule that tells it how to construct 
them.  Assume both files are not present. 

3. First make looks for a rule to build hello.o, which is found below. 

4. This rule depends on hello.cpp which is present, so the command executes and an object file hello.o is created.  (Note the –c 
flag.) 

5. Then make returns to the hello rule and finds that util.o is still not present, so it looks for a rule to build this file. 

6. In the util.o rule we see that it depends on util.h and util.cpp.  These are present so the command is executed and util.o is 
created. 

7. Finally both hello.o and util.o are present so the hello rule executes its command and links the object files into an executable 
named hello. 

The final addition to our makefile is the clean rule.  This rule removes object files and the executable.  A clean rule is often very 
useful during the development process. 

Now we have something a little more useful.  We can build our whole project using make, or we can compile each individual piece as 
we work on it, and we can clean up after ourselves. (Note: Often during the development process we may want the ability to compile 
only the source file on which we are currently working.)   Let’s try to rebuild our project piece by piece.  Enter the following 
commands: 

$ make clean 

$ make util.o 

$ make hello.o   

$ make hello 

$ ls 

Our makefile is pretty useful now, but we can add even more features using variables. 

Common Errors 
By far the most common error encountered is leaving out the tab when you begin using make is not using a tab before the command 

 Rev. 11/8/04 7



 

for a given rule.  This produces the following error message: 

makefile:2: *** missing separator.  Stop. 

This is tells us that at line two in makefile we are missing a separator and should have used a tab.  Let’s cause this error in our makefile 
right now by replacing the tab in our rule for hello with spaces. The highlighted area in the following shows where to remove the tab 
and add spaces. 

# our first makefile - version 2 

 

hello: hello.o util.o 

 g++ hello.o util.o –o hello 

hello.o: hello.cpp 

 g++ -c hello.cpp 

util.o: util.h util.cpp 

 g++ -c util.cpp 

 

clean:  

 rm *.o hello 

 

Now run make again. 

$ make 

You should see a similar error message as before.  

makefile:2: *** missing separator.  Stop. 

Before we continue, make sure you correct the error we just caused. 

The next most common error is when the make file cannot find one of the files specified in the list of file dependencies.  This is 
usually caused by a typo in the file name.  For the sake of brevity we will not do an example of this.   But here is what the outlook 
would look if we had misspelled hello.cpp as hellow.cpp. 

 make: *** No rule to make target `hellow.cpp', needed by `hello.o'.  Stop. 

Using Variables 
 
Variables can be used inside a makefile in a way similar to that in an ordinary programming language.  Variables can act as a 
substitute for any item. 

Variable Declaration 
Variable declaration is very simple: 

<var_name> = < values > 

 

It is the variable name followed by an equals sign and then one or more values such as: 

cflags = -g -Wall 

 

White space after the equals sign is ignored.  Variables can also be assigned to other variables. 

objects1 = hello.o  

objects2 = ${object1} util.o 

 

The above assignment is the same as this one: 

 Rev. 11/8/04 8



 
objects2 = hello.o util.o 

Variable References 
We reference variables (i.e. expand them) by putting them inside curly brackets or parenthesis with a dollar sign in front, such as: 

 

objects2 = hello.o util.o 

program: ${objects2} 

 g++ ${objects2} –o program 

 

Uses 
In many instances variables serve to simplify our make files and make them easier to use.  For instance, we can use a variable named 
cflags to maintain a list of compiler flags we would like to use.  Then if we wish to add or remove flags in the future we need only 
modify this variable.  We can do the same thing with the names of our object files by using a variable named objects. 

 

Let’s do this right now for our makefile.  Modify your makefile as follows: 

 

# our first makefile - version 3 

#------------------------------- 

cflags = -g -Wall  

objects = hello.o util.o 

 

hello: $(objects) 

 g++ $(cflags) $(objects) –o hello 

 

hello.o: hello.cpp 

 g++ -c $(cflags) hello.cpp 

 

util.o: util.h util.cpp 

 g++ -c $(cflags) util.cpp 

 

clean:  

 rm *.o hello 

 

Let’s compile again using our new makefile.  Enter the following commands: 

 

$make clean 

$make 

Debug and Testing 
 
A debugger is software that allows you to see what is going on inside a program while it executes or what a program was doing at the 
moment it crashed.  We will use gdb to debug programs written in C and C++. 

 Rev. 11/8/04 9



 

 
gdb can do four kinds of things (plus other things in support of these) to help you catch bugs in the act: 
 
• Start your program, specifying anything that might affect it behavior. 
• Make your program stop on specified conditions. 
• Examine what has happened, when your program has stopped. 
• Change things in your program, so you can experiment with correcting the effects of one bug and go on to learn about another. 
 
Once started, gdb reads commands from the terminal until you tell it to exit with the command “quit”.  You can get online help from 
gdb itself by using the command “help”. 
 
You can run gdb with no arguments or options; but the most usual way to start gdb is with one argument: 
 
 gdb program 
 
For more information on gdb type the following at your bash shell prompt: 
 
 man gdb 
 

Compiling your program for GDB: 
 
For GDB to work with your program you will have to use the “-g” option with the gcc or g++ compiler. This option produces 
debugging information in the operating system's native format. 
 
 “gcc sort.c -o sort -g” 
 

Important Commands for Running GDB: 
 
 (gdb) set width 70 
Sets number of characters gdb thinks are in a lines. 
 
 (gdb) run 
Starts debugged program You may specify arguments to give it as if in a bash shell. 
 
 (gdb)break random_gen 
Sets breakpoint a specified line or function. 
 
 (gdb)n 
Step program, proceeding through subroutine calls. 
 
 (gdb)s 
Step program until it reaches a different source line. 
 
 (gdb)bt 
Print backtrace of all stack frames, or innermost COUNT frames. 
 
 (gdb)p array 
Print value of expression EXP. Variables accessible are those of the lexical environment of the selected stack frame, plus all those 
whose scope is global or an entire file. 
 
 (gdb)l 
List specified function or line. With no argument, lists ten more lines after or around previous listing. 
 
 (gdb)p variable = new_variable 
Use assignment expressions to give values to convenience variables. 
 
 (gdb)c 
Continue program being debugged, after signal or breakpoint. 
 

 Rev. 11/8/04 10



 

 (gdb)quit 
Exits gdb. 
 

Gcov  
 
gcov is a test coverage program.  Use it in concert with gcc to analyze your programs to create more efficient, faster running code.  
You can use gcov as a profiling tool to help discover where optimization efforts will best affect your code.  You can also use gcov 
along with the other profiling tool, gprof, to assess which parts of your code use the greatest amount of computing time. 
 
Profiling tools help analyze your code's performance.  Using a profiler such as gcov or gprof, you can find out some basic 
performance statistics, such as: 
 

• how often each line of code executes 
• what lines of code are actually executed 
• how much computing time each section of code uses 

 
Once you know these things about how your code works when compiled, you can look at each module to see which modules should 
be optimized.  Gcov helps you determine where to work on optimization. 
 
For more information on gcov type at your bash shell prompt: 
 
 man gcov 
 

Compiling your program for gcov: 
 
In order to use gcov on your program you must use the “-fprofile-arcs” and “-ftest-coverage” options with gcc or g++. This tells the 
compiler to generate additional information needed by gcov (basically a flow graph of the program) and also includes addition code in 
the object files for generating the extra profiling information needed by gcov. 
 
 gcc  sort.c -o sort -fprofile-arcs -ftest-coverage 
 

Running gcov on your program: 
 
 gcov -fb sort.c 
 
This will generate a sort.c.gcov file that contains the output of gcov. The -b option outputs branch probabilities which allows you to 
see who often each branch in your program was taken. The -f option outputs function summaries for each function. 
 

gcov output interpretation: 
 
For each basic block, a line is printed after the last line of the basic block describing the branch or call that ends the basic block. There 
can be multiple branches and calls listed for a single line if there are multiple basic blocks that end on that line. For a branch, if it was 
executed at least once, then a percentage indicating the number of times the branch was executed will be printed. Otherwise, the 
message “never executed” is printed. For a call, if it was executed at lease once, then a percentage indicating the number of times that 
call returned divided by the number of times the call was executed will be printed. 
 
The execution counts are cumulative. If a program is executed again without removing the .da file, the count for the number of times 
each line in the source was executed would be added to the results of the previous runs. 
 
If you want to prove that every single line in your program was executed, you should not compile with the optimization at the same 
time. On some machines the optimizer can eliminate some simples code lines by combining them with other lines. 
 

 Rev. 11/8/04 11



 

Gprof  
 
Gprof produces an execution profile of C programs.  The effect of called routines is incorporated in the profile of each caller.  The 
profile data is taken from the call graph profile file (gmon.out default) which is created by programs that are compiled with the “-pg” 
option of gcc.  The “-pg” option also links in versions of library routines that are compiled for profiling.  Gprof reads the given object 
file (the default is “a.out”) and established the relation between its symbol table and the call graph profile form gmon.out.  If more 
than one profile file is specified, the gprof output shows the sum of the profile information in the given profile files. 
 
Gprof calculates the amount of time in each routine.  Next, these times are propagated along the edges of a call graph.  Cycles are 
discovered, and calls into a cycle are made to share the time of the cycle. 
 
Several forms of output are available for the analysis. 
 
The flat profile shows how much time your program spent in each function, and how many times that function was called.  If you 
simply want to know which function burns most of the cycles, it is stated concisely here. 
 
The call graph shows, for each function, which functions called it, which other functions it called, and how many times.  There is also 
an estimate of how much time was spent in the subroutines of each function.  This can suggest places where you might try to eliminate 
function calls that use a lot of time. 
 
The annotated source listing is a copy of the program's source code, labeled with the number of times each line of the program was 
executed. 
 
For more information on gprof type at your bash shell prompt: 
 
 man gprof 
 

Compiling your program for gprof: 
 
You must use the “-pg” option for gcc or g++ for gprof to function properly. This option generates extra code to write profile 
information suitable for gprof. You must use this option when compiling the source files and linking the object files. 
 
 gcc sort.c -o sort -pg 
 

Running gprof: 
 
 gprof sort > sort.out 
 
This will generate a sort.out file that contains the detailed output of gprof. 
 

Dos2unix and Unix2dos 
 
These programs convert plain text files in DOS/MAC format to UNIX format and vice versa. 
 
For more information on dos2unix or unix2dos type at your bash shell prompt: 
 
 man dos2unix                   or  man unix2dos 
 

Running dos2unix or unix2dos: 
 
 dos2unix sort.c 
This converts sort.c from DOS/MAC format and writes sort.c in UNIX format. 
 
 dos2unix -n sort.c sort_unix.c 

 Rev. 11/8/04 12



 

This converts sort.c from DOS/MAC format and write sort_unix.c in UNIX format. 
 
 unix2dos sort.c 
This converts sort.c from UNIX format and writes sort.c in DOS/MAC format. 
 
 unix2dos -n sort.c sort_dos.c 
This converts sort.c from UNIX format and write sort_dos.c in UNIX format.

 Rev. 11/8/04 13



 

References: 
 

1. Online GNU Make Manual. 

http://mirrors.mix5.com/gnu/Manuals/make-3.80/html_node/make.html#SEC_Top

 

2. The Linunx man pages 

$ man make 

 

3. GNU Make: A Program for Directed Compilation, R. Stallman and R McGrath, Free Software Foundation, 
2002. 

 Rev. 11/8/04 14



 

 

Appendix: 
 

A More Complicated Makefile 
# 
# Maintain the following definitions: 
# 
# HDR all header files (*.h) that you create 
# SRC all C source files (*.cpp) that you create 
# OBJ all object files (*.o) required to load your program 
# EXE name of the executable 
# DOC all the documentation files 
# CFLAGS all the compiler options 
# 
# Use the following make targets: 
# 
# all (or nothing) to build your program (into EXE's value) 
# clean to remove the executable and .o files 
 
SRC =  main.cpp airplane.cpp queue.cpp  
OBJ =  main.o airplane.o queue.o 
EXE =  airplane  
CFLAGS =  -Wall   
 
 
all: ${OBJ} 
 g++   ${OBJ} -o ${EXE} ${CFLAGS} 
 
main.o: main.cpp 
 g++ -c -g  ${CFLAGS}$  main.cpp  
 
airplane.o: airplane.cpp 
 g++ -c -g ${CFLAGS}$  airplane.cpp  
 
queue.o: queue.cpp 
 g++ -c -g ${CFLAGS}$  queue.cpp  
 
clean: 
 rm -f ${OBJ} ${EXE} core 
 

Additional Information on Makefiles 
 

Variable Flavors 
There are two flavors of variables but we will only discuss recursively expanded variables here.  The value you specify is 
installed verbatim; if it contains references to other variables, these references are expanded whenever this variable is 
substituted (in the course of expanding some other string). When this happens, it is called recursive expansion.[1]  This means 

 Rev. 11/8/04 15



 

that we can define variables out of order. 

 

objects2 = ${object1} util.o 

objects1 = hello.o  

This code definition works just as well as our earlier one, since objects1 is not expanded until objects2 is referenced.  This also 
leads to unusual behavior such as the following: 

 

Cflags = $(Cflags) -g 

 

When Cflags is expanded later on in a makefile it results in an infinite loop, since Cflags is recursively expanded.  We can fix 
this by using the += operator such as: 

 

Cflags += -g 

 

This appends “-g” to the end of Cflags. 

 

Advanced Variable Use 
Rules can also modify variables. We can use this fact to build a makefile that allows us to produce a debug version of our hello 
program. 

First we will add another variable to our make file and then use a rule to change the value of this variable. 

Add cflags to makefile as follows: 

 

# our first makefile - version 4a 

#------------------------------- 

cflags = -O 

objects = hello.o util.o 

hello: $(objects) 

 g++ $(cflags) $(objects) –o hello 

 

hello.o: hello.cpp 

 g++ -c $(cflags) hello.cpp 

 

util.o: util.h util.cpp 

 g++ -c $(cflags) util.cpp 

 

clean:  

 rm $(objects) hello 

We have included the optimization flag, so that our executable is optimized.  Now lets add a rule to change our clfags variable 

 Rev. 11/8/04 16



 

to flags that are useful during debugging. 

Change your make file as follows: 

 

# our first makefile - version 4b 

#------------------------------- 

cflags = -O 

objects = hello.o util.o 

 

#compile with optimization 

hello: $(objects) 

 g++ $(cflags) $(objects) –o hello 

 

# compile for debug 

debug: cflags = -g –Wall 

debug: hello 

 

hello.o: hello.cpp 

 g++ -c $(cflags) hello.cpp 

 

util.o: util.h util.cpp 

 g++ -c $(cflags) util.cpp 

 

clean:  

 rm $(objects) hello 

 

With the debug rule we have set cflags to a new value so that it no longer includes the optimazion flag, instead it includes the 
debug symbols flag, -g, and the show all warning flag, -Wall.  These are very useful when debugging code. 

This has been a very rudimentary introduction to make.  Make is capable of much, much more.  For more information take a 
look at the sources listed in the References section below. 

 Rev. 11/8/04 17


	Tutorial Requirements
	Introduction
	Compilation
	Command Line Compilation
	Basic Compilation
	The Process:  Intermediate Files
	Compile Flags
	Dependency

	Compilation Using Make
	Basic Make and Makefiles
	Common Errors
	Using Variables
	Variable Declaration
	Variable References
	Uses



	Debug and Testing
	Compiling your program for GDB:
	Important Commands for Running GDB:

	Gcov
	Compiling your program for gcov:
	Running gcov on your program:
	gcov output interpretation:

	Gprof
	Compiling your program for gprof:
	Running gprof:

	Dos2unix and Unix2dos
	Running dos2unix or unix2dos:


	References:
	Appendix:
	A More Complicated Makefile
	Additional Information on Makefiles
	Variable Flavors
	Advanced Variable Use



